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Abstract
Randomized smoothing is currently a state-of-the-
art method to construct a certifiably robust classi-
fier from neural networks against `2-adversarial
perturbations. Under the paradigm, the robustness
of a classifier is aligned with the prediction confi-
dence, i.e., the higher confidence from a smoothed
classifier implies the better robustness. This mo-
tivates us to rethink the fundamental trade-off
between accuracy and robustness in terms of cal-
ibrating confidences of smoothed classifier. In
this paper, we propose a simple training scheme,
coined SmoothMix, to control the robustness of
smoothed classifiers via self-mixup: it trains con-
vex combinations of samples along the direction
of adversarial perturbation. The proposed pro-
cedure effectively identifies over-confident, near
off-class samples as a cause of limited robust-
ness in case of smoothed classifiers, and offers
an intuitive way to adaptively set a new decision
boundary between these samples for better robust-
ness. Our experiments show that the proposed
method can significantly improve the certified `2-
robustness of smoothed classifiers compared to
state-of-the-art robust training methods.

1. Introduction
Adversarial examples (Szegedy et al., 2014; Goodfellow
et al., 2015) in deep neural networks clearly highlight that
neural networks often generalize differently from humans,
at least without an additional prior of local smoothness of
predictions with respect to the input space: an adversarially-
crafted, yet imperceptible input perturbation can drastically
change the prediction of a neural network based classifier.
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Randomized smoothing (Lecuyer et al., 2019; Cohen et al.,
2019) is relatively a recent idea that aims to indirectly en-
code the smoothness prior: Cohen et al. (2019) have shown
that any classifier, regardless of whether it is smooth or not,
can be transformed into a certifiably robust classifier via
averaging its predictions over Gaussian noise. Compared to
adversarial training (Madry et al., 2018) which directly en-
codes the smoothness by augmenting training data with its
adversarial examples, this notion of “indirect” smoothness
can be favorable in a sense that (a) it is easier to optimize,
and (b) offers a provable guarantee on the robustness.

Contribution. In this paper, we propose SmoothMix, a
novel adversarial training method designed for improving
the certified robustness of smoothed classifiers. One of the
key features that smoothed classifiers offer is a direct corre-
spondence from prediction confidence to adversarial robust-
ness: achieving a higher confidence in a smoothed classifier
implies that the classifier can give a better certified robust-
ness. Inspired by this, we found that the certified robustness
of a given data sample can be significantly decreased by
nearby off-class but over-confident (Pereyra et al., 2017) in-
puts: such “harmful” inputs would occupy an unnecessarily
large robust radius near the sample of our interest.

Under the finding, we aim to calibrate the confidence of
these off-class inputs to improve the certified robustness
at the original input. More specifically, we first observe
that such over-confident examples can be efficiently found
along the direction of adversarial perturbations for a given
input. Then, we suggest to regularize the over-confident pre-
dictions along the adversarial direction toward the uniform
prediction through a mixup loss (Zhang et al., 2018) (see
Figure 1 for an overview). This new approach of incorpo-
rating adversarial examples effectively permits more distant
examples in training, even when they goes off-class, based
on the local-smoothness of smoothed classifiers.

Overall, our work suggests that the robustness of a classifier
should be set individually per sample considering its nearby
inputs: we approach this problem with the relationship be-
tween the confidence and robustness of smoothed classifiers.
Recently, there have been also some initial attempts to incor-
porate a sample-wise treatment for robustness by allowing
input-dependent noise scales in randomized smoothing (Al-
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(a) Adversarial training (b) SmoothAdv (c) SmoothMix (Ours)

Figure 1. Illustrations of how each training method obtains adversarial robustness: adversarial training (Madry et al., 2018) considers an
ε-ball around each sample and corrects adversarial examples found in these balls; SmoothAdv (Salman et al., 2019) directly employs
adversarial training on smoothed classifiers; SmoothMix (ours) can be differentiated from SmoothAdv as it (i) does not assume an explicit
norm restriction on adversarial examples, and (ii) applies the mixup (Zhang et al., 2018) instead of correcting the adversarial examples.

farra et al., 2020; Wang et al., 2021; Chen et al., 2021). How-
ever, our theoretical analysis shows that such an approach
would eventually suffer from the curse of dimensionality
(Theorem 1 in Appendix I), highlighting our approach of
focusing on a “better calibration” as a promising alternative.

2. Preliminaries
We assume an i.i.d. dataset D = {(xi, yi)}ni=1 ∼ P , where
xi ∈ Rd and yi ∈ Y := {1, · · · , C}, and focus on the
problem of correctly classifying a given input x into one
of C classes. Let f : Rd → Y be a classifier modeled
by f(x) := arg maxc∈Y Fc(x) with F : Rd → ∆C−1,
where ∆C−1 denotes the probability simplex in RC . For
example, F can be a neural network followed by a softmax
layer. In the context of adversarial robustness, one may
additionally concern to maximize the minimum-distance
of adversarial perturbation (Moosavi-Dezfooli et al., 2016;
Carlini & Wagner, 2017; Carlini et al., 2019), namely:

R(f ;x, y) := min
f(x′)6=y

‖x′ − x‖2. (1)

Randomized smoothing. In cases when f is too complex
to control its predictions in practice, e.g., if f is a neural
network on high-dimensional data, directly solving and max-
imizing (1) can be hard. Randomized smoothing (Cohen
et al., 2019) instead construct a new classifier f̂ from f that
is easier to obtain robustness by transforming the base classi-
fier f with a certain smoothing measure, where in this paper
we focus on the case of Gaussian distributions N (0, σ2I):

f̂(x) := arg max
c∈Y

Pδ∼N (0,σ2I) (f(x+ δ) = c) . (2)

For a given (x, y), R(f̂ ;x, y) can be lower-bounded by the
certified radius R(f̂ , x, y), which can be derived from the
confidence of f̂ at x, namely we denote it by pf (x):

R(f̂ ;x, y) ≥ σ · Φ−1(pf (x)) =: R(f̂ , x, y), (3)

where pf (x) := Pδ∼N (0,σ2I)(f(x+ δ) = f̂(x)), (4)

provided that f̂(x) = y, and otherwise R(f̂ ;x, y) := 0.
Here, Φ denotes the cumulative distribution function of the
standard normal distribution.

Although randomized smoothing can be applied for any clas-
sifier f : Rd → Y , the robustness of smoothed classifiers
can vary depending on pf as in (3), i.e., how f performs
on a given input under the presence of Gaussian noise. In
this sense, to obtain a robust f̂ , Cohen et al. (2019) simply
propose to train f using Gaussian augmentation by default:

min
F

E (x,y)∼P
δ∼N (0,σ2I)

[L(F (x+ δ), y)] , (5)

where L denotes the standard cross-entropy loss.

3. Method
Our goal in this paper is to develop a more suitable form
of adversarial training (AT) for smoothed classifiers, tak-
ing into account their unique characteristics on adversarial
robustness over standard neural networks. Figure 1 illus-
trates a motivating example: as shown in Figure 1(a), AT
typically assumes a fixed-sized ball of radius ε that each
adversarial perturbation must be in, as the goal of the train-
ing is to defend the classifier against adversaries under a
specific threat model. However, in a case when AT is ap-
plied to a smoothed classifier, e.g., as done by SmoothAdv
(Salman et al., 2019), this assumption may be too restrictive,
particularly for inputs where the classifier already certifies
robustness of radii larger than ε (e.g., Figure 1(b)). This
demands for a new form of AT specially for smoothed clas-
sifiers, e.g., that allows more distant adversarial examples,
despite its fundamental difficulty in the context of standard
neural networks (Kang et al., 2020; Zhang et al., 2020b).

3.1. Exploring over-confident adversarial examples in
smoothed classifiers

Recall that we have a (base) classifier f of the form f(x) =

arg maxc∈Y Fc(x), f̂ is its smoothed counterpart, and we
aim to improve the robustness of f̂ by incorporating adver-
sarial examples in training. In this paper, we are particularly
interested in adversarial examples of f̂ that is found without
a hard restriction in its perturbation size. More concretely,
for a given training sample (x, y) ∼ P , we find adversarial
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examples by solving the following optimization:

x̃ := arg max
x′

(
L(f̂ ;x′, y)− β · ‖x′ − x‖22

)
, (6)

where L is the cross-entropy loss, and β > 0 is to ensure
that (6) cannot be arbitrarily far from x.

As proposed by Salman et al. (2019), one can optimize (6)
by approximating the intractable f̂ with the soft-smoothed
classifier F̂ := Eδ[F (x+ δ)]: based on this approximation,
we simply perform a T -step gradient ascent from x̃(0) := x
with step size α > 0 to solve (6) using m samples of δ,
namely δ1, · · · , δm ∼ N (0, σ2I):1

x̃(t+1) := x̃(t) + α · ∇xJ(x̃(t))

‖∇xJ(x̃(t))‖2
, (7)

where J(x) := − log

(
1

m

∑
i

Fy(x+ δi)

)
. (8)

Figure 2 demonstrates two particular instances of these “un-
restricted” adversarial examples found from (7) on x, and
plots how the confidence of inputs changes as they are lin-
early interpolated from the clean input to its adversarial
counterpart x̃. From this, we make several remarks those
would lead to a more direct motivation to our method:

• We observe x̃ via (7), i.e., from a smoothed classi-
fier, could contain enough amount of semantic changes
even in a perceptual sense, in either ways of translat-
ing the input to another class (Figure 2(a)), or simply
removing some relevant information for the current
class (Figure 2(b)). At least for these cases, therefore,
it is reasonable for the classifier to keep their low con-
fidence to the original class. In this sense, we leverage
the provable robustness of smoothed classifiers during
training to reasonably obtain a semantically off-class
samples those to be labeled as the uniform confidence
(Santurkar et al., 2019; Kaur et al., 2019).

• A major problem we rather highlight here is the ten-
dency of over-confidence (Pereyra et al., 2017) toward
the adversarial direction: the adversarial example x̃
usually attain significantly higher confidence compared
to those of x, consequently their certified radius (3)
would be much larger as well. Therefore, considering
that x̃ are still nearby x, such the over-confidence at
x̃ would negatively affect the certified radius of x, es-
pecially when x̃ does not contain much semantically
meaningful information as observed in Figure 2(b).

1Here, we note that the β-term in (6) are omitted in (7). In
practice, we do not use nor tune β in our method for simplicity,
as the role of β can be replaced by assuming a finite α · T , i.e.,
by the Lagrangian duality: an unconstrained optimization with
`2-regularization implicitly defines a hard constraint in its `2-norm.

(a) In-class translation (b) Out-of-class translation

Figure 2. Illustration of adversarial examples unrestrictively found
in CIFAR-10 with a smoothed ResNet-110 (σ = 0.25). The plot
demonstrates the change of confidence between two classes as the
input is linearly interpolated.

3.2. SmoothMix for confidence-calibrated training of
smoothed classifiers

Based on the observations from Section 3.1, we hypothesize
that the miscalibration of confidences between x and its
unrestricted adversarial example x̃ is an important factor
that degrades the certified robustness of smoothed classifiers,
and propose to penalize the over-confidence by mixing the
uniform confidence to them. More concretely, we consider
the mixup (Zhang et al., 2018) training between x and x̃,
i.e., by augmenting the given data with the following pairs:

xmix := (1− λ) · x+ λ · x̃(T ), (9)

ymix := (1− λ) · F̂ (x) + λ · 1C , (10)

where λ ∼ U
([

0, 12
])

with the uniform distribution U ,
F̂ (x) ∈ ∆C−1 is the soft-smoothed prediction of x, and
1 denotes the C-dimensional vector of ones. Here, we no-
tice that λ is sampled only from [0, 12 ], unlike the standard
choice (Zhang et al., 2018) of U([0, 1]): recall from Fig-
ure 2(a) that x̃ can be often semantically in-class, so that
a direct supervision of the uniform confidence on it could
harm the classifier. By simply taking only the half part of
the mixed samples closer to x, we could reasonably avoid
these cases while maintaining its effect to prevent the over-
confidence issue. The actual loss to minimize for these new
data simply follows the cross-entropy loss with Gaussian
augmentation, similarly to (5):

Lmix := Eδ∼N (0,σ2I)

[
L(F (xmix + δ), ymix)

]
. (11)

Incorporating SmoothAdv for free. As we focuse on ad-
versarial examples that are moderately far from the original
inputs assuming that the classifier is already locally-smooth,
one may still enjoy the effectiveness of SmoothAdv if it
could further enforce the local smoothness. We found that
simply taking x← x̃(1) without modifying our current train-
ing, i.e., using the single-step adversarial example found
during (7) instead of the clean sample, can reasonably bring
this effect. In this respect, we allow SmoothMix to use
(x̃(1), y) instead of (x, y) depending on demand of more
robustness at expense of decreased clean accuracy.
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Table 1. Comparison of approximate certified test accuracy (%) and ACR on CIFAR-10. We set our results bold-faced whenever the value
improves the Gaussian baseline, and underlined whenever the value improves the best among the considered baselines. ∗ indicates that the
results are evaluated from the official pre-trained models released by authors.

σ Models (CIFAR-10) ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.25

Gaussian (Cohen et al., 2019) 0.424 76.6 61.2 42.2 25.1 0.0 0.0 0.0 0.0
Stability training (Li et al., 2019) 0.421 72.3 58.0 43.3 27.3 0.0 0.0 0.0 0.0
SmoothAdv∗ (Salman et al., 2019) 0.544 73.4 65.6 57.0 47.5 0.0 0.0 0.0 0.0
MACER∗ (Zhai et al., 2020) 0.531 79.5 69.0 55.8 40.6 0.0 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.552 75.8 67.6 58.1 46.7 0.0 0.0 0.0 0.0

SmoothMix (Ours) 0.553 77.1 67.9 57.9 46.7 0.0 0.0 0.0 0.0
+ One-step adversary 0.548 74.2 66.1 57.4 47.7 0.0 0.0 0.0 0.0

0.50

Gaussian (Cohen et al., 2019) 0.525 65.7 54.9 42.8 32.5 22.0 14.1 8.3 3.9
Stability training (Li et al., 2019) 0.521 60.6 51.5 41.4 32.5 23.9 15.3 9.6 5.0
SmoothAdv∗ (Salman et al., 2019) 0.684 65.3 57.8 49.9 41.7 33.7 26.0 19.5 12.9
MACER∗ (Zhai et al., 2020) 0.691 64.2 57.5 49.9 42.3 34.8 27.6 20.2 12.6
Consistency (Jeong & Shin, 2020) 0.720 64.3 57.5 50.6 43.2 36.2 29.5 22.8 16.1

SmoothMix (Ours) 0.715 65.0 56.7 49.2 41.2 34.5 29.6 23.5 18.1
+ One-step adversary 0.737 61.8 55.9 49.5 43.3 37.2 31.7 25.7 19.8

Overall training. Combining the proposed loss with the
standard Gaussian training (5) gives the full objective to
minimize for our training method. For a given sample
(x, y) ∼ P , and by letting Lnat := Eδ [L(F (x+ δ), y)],
the final loss of SmoothMix is given by:

L := Lnat + η · Lmix (12)

where η > 0 is a hyperparameter to control the trade-off be-
tween accuracy and robustness. Algorithm 1 in Appendix A
demonstrates a concrete training procedure of SmoothMix
using m samples of δ for the Monte Carlo approximation.

4. Experiments
We evaluate the effectiveness of our method extensively on
MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009),
and ImageNet (Russakovsky et al., 2015) datasets.2 Overall,
the results consistently highlight that our newly proposed
training can significantly improve the certified robustness
of smoothed classifiers compared to existing robust training
methods. We point out the improvements are especially
remarkable on the certified accuracy at larger perturbations,
at which SmoothMix mainly focus on compared to prior
arts. We also conduct an extensive ablation study on the pro-
posed method to convey a detailed analysis in Appendix H,
verifying that our method (a) is robust to the choice of
hyperparameters, and (b) is an effective way to control the
robustness of smoothed classifiers against accuracy. The full
details on the experimental setups, e.g., baselines, evaluation
metrics, and hyperparameters, are specified in Appendix B.

Results on CIFAR-10. We report the approximate cer-
tified accuracy and average certified radius (ACR) (see
Appendix B.2) of smoothed classifiers from ResNet-110

2All the experimental results on MNIST and ImageNet datasets
are reported in Appendix D and F, respectively.

(He et al., 2016) using the full CIFAR-10 test dataset. We
consider three different models as varying the noise level
σ ∈ {0.25, 0.5, 1.0} (the results with σ = 1.0 can be found
in Appendix E). When SmoothMix is used, we consider
fixed hyperparameters of T = 4, m = 2, and η = 5.0
throughout the experiments. We make sure that α · T to
be proportional to σ: there are different statistical upper
bounds on the certified radius depending on σ. Namely, we
set α = 0.5, 1.0, 2.0 with σ = 0.25, 0.5, 1.0, respectively.

The results are summarized in Table 1 (and Figure 4 in Ap-
pendix). We observe that our method generally exhibits
better trade-offs between accuracy and certified robustness
compared to other baselines: e.g., at σ = 0.5, “SmoothMix”
could improve the previous best result from “Consistency”
by a significant margin of 0.720 → 0.737. Without the
single-step adversary, “SmoothMix” can effectively pre-
serve the clean accuracy while also improving ACR, e.g., at
σ = 0.25, “SmoothMix” could even improve the clean accu-
racy of “Gaussian”: although “MACER” could improve the
clean accuray as well, one could see that their improvements
in robust accuracy are relatively limited.

5. Conclusion
In this paper, we observe that adversarial training with an un-
restricted adversary can be feasible and even more promis-
ing (compared to the restricted ones) when it comes with
smoothed classifiers, based on a close relationship between
randomized smoothing and confidence-calibrated classifiers
(Guo et al., 2017; Lee et al., 2018). Although our focus in
this paper is currently limited only to the over-confidence
issue, we believe there are still many rooms to be explored
in future for another such connection, e.g., could the recent
advances in the literature of uncertainty estimation of deep
neural networks (Hendrycks et al., 2019; Tack et al., 2020)
help to improve the robustness of smoothed classifiers.
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A. Training procedure of SmoothMix

Algorithm 1 SmoothMix training
Input: Sample (x, y) ∼ P . smoothing factor σ. number of noise samples m. number of steps T . step size α. regularization

strength η > 0.

1: Sample δ1, · · · , δm ∼ N (0, σ2I), and λ ∼ U(
[
0, 12
]
)

2: // FIND AN ADVERSARIAL EXAMPLE
3: x̃(0), F̂ (x(0))← x, 1

m

∑m
i=1 F (x+ δi)

4: for t = 0 to T − 1 do
5: J(x̃(t))← − log F̂y(x̃(t))

6: x̃(t+1) ← x̃(t) + α · ∇xJ(x̃
(t))

‖∇xJ(x̃(t))‖2
7: F̂ (x̃(t+1))← 1

m

∑m
i=1 F (x̃(t+1) + δi)

8: end for
9: if use_single_step then x← x̃(1)

10: // COMPUTE THE SMOOTHMIX LOSS
11: xmix, ymix ← ((1− λ) · x+ λ · x̃(T )), ((1− λ) · F̂ (x) + λ · 1C )
12: for i = 1 to m do
13: Lnat

i , Lmix
i ← L(F (x+ δi), y),L(F (xmix + δi), y

mix)
14: end for
15: L← 1

m

∑
i(L

nat
i + η · Lmix

i )

B. Experimental details
Throughout our experiments, we follow the same training details of prior works (Cohen et al., 2019; Salman et al., 2019;
Zhai et al., 2020; Jeong & Shin, 2020) for a fair comparison: more specifically, we use LeNet (LeCun et al., 1998) for
MNIST, ResNet-110 (He et al., 2016) for CIFAR-10, and ResNet-50 (He et al., 2016) for ImageNet. We train every model
via stochastic gradient descent using Nesterov momentum of weight 0.9 without dampening. We set a weight decay of 10−4

for all the models. We consider three different noise levels σ ∈ {0.25, 0.5, 1.0} for smoothing classifiers for MNIST and
CIFAR-10 models, and σ ∈ {0.5, 1.0} in the case of ImageNet. We used up to 4 NVIDIA TITAN Xp GPUs to run each
configurations considered in our experiments, both for training and certification: more specifically, we used a single GPU to
run every experimenet on MNIST and CIFAR-10, and four GPUs to run ImageNet models.

B.1. Baseline methods

We compare our method with a variety of existing techniques proposed for a robust training of smoothed classifiers, as listed
in what follows: (a) Gaussian (Cohen et al., 2019): standard training with Gaussian augmentation; (b) Stability training (Li
et al., 2019): a cross-entropy regularization between F (x) and F (x+ δ); (c) SmoothAdv (Salman et al., 2019): adversarial
training on smoothed classifier; (d) MACER (Zhai et al., 2020): a regularization that maximizes an approximative form of
the certified radius (3); and (e) Consistency (Jeong & Shin, 2020): a KL-divergence based regularization that minimizes the
variance of F (x+ δ) across δ. Whenever possible, we use the pre-trained models released by authors for our evaluation to
reproduce the baselines: e.g., for CIFAR-10 results of SmoothAdv, we report the performance evaluated from the pre-trained
models released by the authors3 for a fixed configuration of T = 10, ε = 1.0, and m = 8.

B.2. Evaluation metrics

Our evaluation of the robustness for a given smoothed classifier f̂ is largely based on the protocol proposed by Cohen et al.
(2019), similarly to prior works (Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020): more concretely, Cohen et al.
(2019) proposed a practical Monte Carlo based certification procedure, namely CERTIFY, that returns the prediction of f̂
and a “safe” lower bound of certified radius over the randomness of n samples with probability at least 1− α, or abstains
the certification.

3https://github.com/Hadisalman/smoothing-adversarial

https://github.com/Hadisalman/smoothing-adversarial
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From CERTIFY, we consider two evaluation metrics: (a) the approximate certified test accuracy at various radii: the fraction
of the test dataset which CERTIFY classifies correctly with radius larger than r without abstaining, and (b) the average
certified radius (ACR) (Zhai et al., 2020): the average of certified radii returned by CERTIFY on the test dataset counting
only the correctly classified samples, namely ACR := 1

|Dtest|
∑

(x,y)∈Dtest
CR(f, σ, x) · 1f̂(x)=y, where Dtest is the test

dataset, and CR denotes the certified radius from CERTIFY(f, σ, x). Here, the latter metric, ACR, is for a better comparison
of robustness under trade-off between accuracy and robustness (Tsipras et al., 2019; Zhang et al., 2019). We use the official
PyTorch implementation4 of CERTIFY, with n = 100, 000, n0 = 100 and α = 0.001, following (Cohen et al., 2019; Salman
et al., 2019; Jeong & Shin, 2020).

B.3. Datasets

MNIST dataset (LeCun et al., 1998) consists 70,000 gray-scale hand-written digit images of size 28×28, 60,000 for training
and 10,000 for testing. Each of the images is labeled from 0 to 9, i.e., there are 10 classes. We do not perform any
pre-processing except for normalizing the range of each pixel from 0-255 to 0-1. When MNIST is used for training, we use
LeNet (LeCun et al., 1998) for 90 epochs and use the initial learning rate of 0.01. The learning rate is decayed by 0.1 at
30-th and 60-th epoch.

CIFAR-10 dataset (Krizhevsky, 2009) consist of 60,000 RGB images of size 32×32 pixels, 50,000 for training and 10,000
for testing. Each of the images is labeled to one of 10 classes, and the number of data per class is set evenly, i.e., 6,000
images per each class. We use the standard data-augmentation scheme of random horizontal flip and random translation up
to 4 pixels, as also used by other baselines (Cohen et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020).
We also normalize the images in pixel-wise by the mean and the standard deviation calculated from the training set. When
CIFAR-10 is used for training, we train ResNet-110 (He et al., 2016) models for 150 epochs with initial learning rate of 0.1.
The learning rate if decated by 0.1 at 50-th and 100-th epoch.

ImageNet classification dataset (Russakovsky et al., 2015) consists of 1.2 million training images and 50,000 validation
images, which are labeled by one of 1,000 classes. For data-augmentation, we perform 224×224 random cropping with
random resizing and horizontal flipping to the training images. At test time, on the other hand, 224×224 center cropping is
performed after re-scaling the images into 256×256. When ImageNet is used for training, we train ResNet-50 (He et al.,
2016) models for 90 epochs with initial learning rate of 0.1. The learning rate if decated by 0.1 at 30-th and 60-th epoch.

B.4. Detailed hyperparameters for baselines

Stability training (Li et al., 2019) uses a single hyperparameter λ > 0 to control the relative strength of the stability
regularization compared to the standard cross-entropy loss. In our experiments, we use λ = 2 by default for this method, but
except for the “σ = 1.0” model on CIFAR-10: in this case, we had to reduce it to λ = 1 for a stable training.

SmoothAdv (Salman et al., 2019) mainly controls three hyperparameters those are for performing projected gradient
descent (PGD) to find adversarial examples in the training: namely, it uses m: the number of noise samples, T : the number
of PGD steps, and ε: an `2-norm restriction on adversarial perturbations. For SmoothAdv models, we fix T = 10 and
ε = 1.0 throughout the experiments. In case of m, and use m = 4 for MNIST models, and m = 8 for CIFAR-10. Following
Salman et al. (2019), we also adopt the warm-up strategy on ε, i.e., it is initially set to zero, and gradually increased for the
first 10 epochs up to the original value of ε.

MACER (Zhai et al., 2020) adds four hyperparameters to the training: namely, it uses m: the number of noise samples, λ:
the relative strength of regularization, β: a temperature scaling factor, and γ: a margin gap. We follow the configurations
reported by Zhai et al. (2020) to reproduce the MNIST results: namely, we use m = 16, β = 16.0, γ = 8.0 and λ = 16.0.
We use λ = 6.0 in case of σ = 1.0 on MNIST, however, for a better training stability. We use the pre-trained models released
by the authors for evaluations on CIFAR-10, which can be downloaded at https://github.com/RuntianZ/macer.
These CIFAR-10 models are reported to be trained with m = 16, β = 16.0, γ = 8.0, and λ = 12.0 and 4.0 for σ = 0.25
and 0.5, respectively. For σ = 1.0, λ is initially set to 0, and changed to λ = 12.0 after the first learning rate decay.

Consistency (Jeong & Shin, 2020) controls two hyperparameters, namely λ and η, each for the relative strength of the
consistency term and the entropy term, respectively. We obtain results from the best hyperparameters those reported by
Jeong & Shin (2020) when the consistency regularization is applied to the Gaussian training baseline, both in MNIST and

4https://github.com/locuslab/smoothing

https://github.com/RuntianZ/macer
https://github.com/locuslab/smoothing
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Figure 3. Comparison of approximate certified accuracy for various training methods on MNIST. The sharp drop of certified accuracy in
each plots is due to that there is a strict upper bound in radius that CERTIFY can output for a given σ and n = 100, 000.

CIFAR-10 datasets. More concretely, we fix η = 0.5 for every model, and use λ = 5 for MNIST and λ = 10 for CIFAR-10
models by default. In case of σ = 0.25, λ is doubled in both datasets, i.e., λ = 10 and λ = 20 for MNIST and CIFAR-10,
respectively, as it is shown to achieve better ACRs.

C. Related work
Certified adversarial robustness. We focus on improving adversarial robustness of randomized smoothing (Cohen et al.,
2019) based classifiers, which is currently one of prominent ways to obtain a classifier with a robustness certification. In
general, there have been many attempts other than randomized smoothing to provide a robustness certification of deep neural
networks (Gehr et al., 2018; Wong & Kolter, 2018; Mirman et al., 2018; Xiao et al., 2019; Gowal et al., 2019; Zhang et al.,
2020a), and correspondingly with attempts to further improve the robustness with respect to those certification protocols
(Croce et al., 2019; Croce & Hein, 2020; Balunovic & Vechev, 2020). Nevertheless, randomized smoothing has attracted
particular attention as the first approach that could successfully scaled up to the ImageNet dataset (Russakovsky et al., 2015).
A more complete taxonomy on the literature can be found in Li et al. (2020).

Confidence-calibrated training. Overconfident predictions of deep neural networks (Pereyra et al., 2017) have been
considered as problematic in many scenarios, e.g., uncertainty estimation of in-distribution samples (Guo et al., 2017; Jiang
et al., 2018; Kumar et al., 2019), those of out-of-distribution samples (Hendrycks & Gimpel, 2017; Lee et al., 2018; Meinke
& Hein, 2020), and ensemble learning (Lee et al., 2017), just to name a few. In the context of adversarial training, Stutz et al.
(2020) have shown that regularizing confidence on adversarial examples to be uniform can improve detection of adversarial
examples from unseen threat models. In this paper, we address the overconfidence at adversarial examples particularly
focusing on smoothed classifiers, observing that a simple approach of directly fixing the problem could significantly improve
the certified robustness.

Mixup-based training. Originally, mixup (Zhang et al., 2018) has proposed as a simple yet effective data augmentation
scheme to improve generalization and robustness (against small adversarial attacks) of deep neural networks, and there
have been significant follow-up works to further improve this form (Verma et al., 2019; Yun et al., 2019; Kim et al., 2020;
2021). Recently, Zhang et al. (2021) have also explored on theoretical justifications behind how could such an augmentation
improves generalization and robustness. Although our method uses a similar linear interpolation scheme of mixup, there
is still an essential difference between ours and this line of works: namely, we do not rely on the prior of interpolating
two (or more) independent samples, but rather aims to directly calibrate predictions between a clean and its (unrestricted)
adversarial example, i.e., we consider a new form of self-mixup training.

There have been also attempts to employ mixup particularly for improving adversarial robustness: Lamb et al. (2019) have
shown that an additional mixup loss between adversarial examples upon the standard mixup training achieves a comparable
robustness to adversarial training (AT) (Madry et al., 2018), while not compromising the clean accuracy as much as AT; Lee
et al. (2020) have proposed Adversarial Vertex Mixup to improve AT, by extrapolating predictions along the direction of
adversarial perturbation up to few times of its norm via mixup training. Our proposed method can be differentiated to these
approaches, in a sense that we employ mixup not to directly improve the robustness of a given neural network, but of its
smoothed counterpart. It is also our unique perspective that we consider unrestricted adversarial examples to be interpolated.
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Table 2. Comparison of approximate certified test accuracy (%) and ACR on MNIST. All the models are trained and evaluated with
the same smoothing factor specified by σ. Each value except ACR indicates the fraction of test samples those have `2 certified radius
larger than the threshold specified at the top row. We set our results bold-faced whenever the value improves the Gaussian baseline, and
underlined whenever the value improves the best among the considered baselines.

σ Models (MNIST) ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.25

Gaussian (Cohen et al., 2019) 0.911 99.2 98.5 96.7 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability training (Li et al., 2019) 0.915 99.3 98.6 97.1 93.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 0.932 99.4 99.0 98.2 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER (Zhai et al., 2020) 0.920 99.3 98.7 97.5 94.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.928 99.5 98.9 98.0 96.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothMix (η = 1.0) 0.931 99.5 98.9 98.2 96.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+ One-step adversary 0.933 99.4 99.0 98.2 96.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix (η = 5.0) 0.932 99.4 99.0 98.2 96.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+ One-step adversary 0.933 99.3 99.0 98.2 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian (Cohen et al., 2019) 1.553 99.2 98.3 96.8 94.3 89.7 81.9 67.3 43.6 0.0 0.0 0.0 0.0
Stability training (Li et al., 2019) 1.570 99.2 98.5 97.1 94.8 90.7 83.2 69.2 45.4 0.0 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 1.687 99.0 98.3 97.3 95.8 93.2 88.5 81.1 67.5 0.0 0.0 0.0 0.0
MACER (Zhai et al., 2020) 1.594 98.5 97.5 96.2 93.7 90.0 83.7 72.2 54.0 0.0 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 1.657 99.2 98.6 97.6 95.9 93.0 87.8 78.5 60.5 0.0 0.0 0.0 0.0

SmoothMix (η = 1.0) 1.678 99.0 98.4 97.4 95.7 93.0 88.1 80.0 65.6 0.0 0.0 0.0 0.0
+ One-step adversary 1.694 98.8 98.1 97.1 95.3 92.7 88.3 81.7 69.5 0.0 0.0 0.0 0.0
SmoothMix (η = 5.0) 1.694 98.7 98.0 97.0 95.3 92.7 88.5 81.8 70.0 0.0 0.0 0.0 0.0
+ One-step adversary 1.685 98.2 97.5 96.3 94.5 91.3 87.4 81.0 70.7 0.0 0.0 0.0 0.0

1.00

Gaussian (Cohen et al., 2019) 1.620 96.3 94.4 91.4 86.8 79.8 70.9 59.4 46.2 32.5 19.7 10.9 5.8
Stability training (Li et al., 2019) 1.634 96.5 94.6 91.6 87.2 80.7 71.7 60.5 47.0 33.4 20.6 11.2 5.9
SmoothAdv (Salman et al., 2019) 1.779 95.8 93.9 90.6 86.5 80.8 73.7 64.6 53.9 43.3 32.8 22.2 12.1
MACER (Zhai et al., 2020) 1.598 91.6 88.1 83.5 77.7 71.1 63.7 55.7 46.8 38.4 29.2 20.0 11.5
Consistency (Jeong & Shin, 2020) 1.740 95.0 93.0 89.7 85.4 79.7 72.7 63.6 53.0 41.7 30.8 20.3 10.7

SmoothMix (η = 1.0) 1.788 95.5 93.5 90.5 86.2 80.6 73.4 64.3 53.7 43.2 33.5 23.9 14.1
+ One-step adversary 1.816 94.7 92.4 89.2 84.6 79.4 72.5 64.0 54.5 44.8 36.2 27.4 18.7
SmoothMix (η = 5.0) 1.820 93.7 91.6 88.1 83.5 77.9 70.9 62.7 53.8 44.8 36.6 28.9 21.5
+ One-step adversary 1.823 93.3 90.9 87.5 83.0 77.5 70.6 62.7 53.4 44.9 37.1 29.3 22.4

D. Results on MNIST
For MNIST (LeCun et al., 1998) experiments, we report the approximate certified accuracy and ACR of smoothed classifiers
obtained from LeNet (LeCun et al., 1998) with different training methods, including SmoothMix, using the full MNIST
test dataset. We consider three different models as varying the noise level σ ∈ {0.25, 0.5, 1.0}. During inference, we apply
randomized smoothing with the same σ used in the training. When SmoothMix is used, we consider a fixed hyperparameter
value for α = 1.0 and m = 4, the step size and the number of noise samples. We set T = 2, 4, 8 for the models with
σ = 0.25, 0.5, 1.0, respectively, based on our empirical observation that it is beneficial to set α · T to be proportional to σ.
We apply the same m = 4 for SmoothAdv, i.e., for adversarial training, and T = 10 with an `2-ball of radius ε = 1.0.

The results are presented in Table 2 and Figure 3. Overall, we observe that our proposed SmoothMix loss (11) added
to the Gaussian training dramatically improve the certified test accuracy from “Gaussian”. By considering the one-step
adversary (Section 3.2) in training, we could further improve the robust accuracy, significantly improving ACRs compared
to the previous state-of-the-art training methods: e.g., our method could improve ACRs with σ = 1.0 from 1.779→ 1.823.
This shows that improvements from SmoothMix can be orthogonal to those from SmoothAdv. It is also remarkable that
even without the one-step adversarial example, one could further improve the certified robustness by simply increasing the
relative strength η of the SmoothMix loss, e.g., by 1.0→ 5.0 as presented in Table 2: e.g., “SmoothMix” with η = 5.0 still
outperforms “SmoothAdv” by 1.779→ 1.820 at σ = 1.0. Finally, we note that our models could substantially improve the
robustness at larger perturbations with less degradation in the clean accuracy, e.g., compared to “MACER” or “Consistency”:
considering that they are also regularization based approaches to control the robustness via controlling their regularization
strength, the results show that our form of loss could better compensate the trade-off between accuracy and robustness.
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Figure 4. Comparison of approximate certified accuracy for various training methods on
CIFAR-10. The sharp drop of certified accuracy in each plots is due to that there is a strict
upper bound in radius that CERTIFY can output for a given σ and n = 100, 000.
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Figure 5. Equal-confidence mixing ratios on
CIFAR-10, i.e., the minimal mixing ratios for
changing the correct prediction when each
input is linearly interpolated to its adversarial
example.

E. Additional results on CIFAR-10
In this section, we report additional experimental results on CIFAR-10 (Krizhevsky, 2009), namely with σ = 1.0 (see
Table 1 for the results for σ ∈ {0.25, 0.5}). We defer this results to Appendix as the scenario can be less practical compared
to the others: e.g., the clean accuracy in this setup is < 50% in most cases. We follow the same experimental details as
specified in Section 4 and Appendix B, including the common hyperparameter choice of η = 5.0 for SmoothMix for other
experiments as well. Again, we compare our method with various existing robust training methods for smoothed classifiers
(Cohen et al., 2019; Li et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020), and Table 3 summarizes
the results. Overall, we still observe a similar trend to Section 4 that (a) “SmoothMix” offers a significant improvement
of robust accuracy without compromising the clean accuracy much, and (b) incorporating the one-step adversary thus can
further complementarily boost ACR to outperform other state-of-the-art baseline training methods: e.g., it is notable that
“SmoothMix + One-step adversary” achieves fairly comparable or better robust accuracy than MACER while maintaining
much higher clean accuracy, i.e., the certified test accuracy at r = 0.0, namely 41.4→ 45.1. This confirms that our proposed
SmoothMix can offer a better trade-off between accuracy and certified robustness during training.

Table 3. Comparison of approximate certified test accuracy (%) and ACR on CIFAR-10. All the models are trained and evaluated with
the same smoothing factor specified by σ. Each value except ACR indicates the fraction of test samples those have `2 certified radius
larger than the threshold specified at the top row. We set our results bold-faced whenever the value improves the Gaussian baseline, and
underlined whenever the value achieves the best among the considered baselines. ∗ indicates that the results are evaluated from the official
pre-trained models released by authors.

σ Models (CIFAR-10) ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1.00

Gaussian (Cohen et al., 2019) 0.542 47.2 39.2 34.0 27.8 21.6 17.4 14.0 11.8 10.0 7.6
Stability training (Li et al., 2019) 0.526 43.5 38.9 32.8 27.0 23.1 19.1 15.4 11.3 7.8 5.7
SmoothAdv∗ (Salman et al., 2019) 0.660 50.8 44.9 39.0 33.6 28.5 23.7 19.4 15.4 12.0 8.7
MACER∗ (Zhai et al., 2020) 0.744 41.4 38.5 35.2 32.3 29.3 26.4 23.4 20.2 17.4 14.5
Consistency (Jeong & Shin, 2020) 0.756 46.3 42.2 38.1 34.3 30.0 26.3 22.9 19.7 16.6 13.8

SmoothMix (Ours) 0.725 47.1 42.5 37.5 32.9 28.7 24.9 21.3 18.3 15.5 12.6
+ One-step adversary 0.773 45.1 41.5 37.5 33.8 30.2 26.7 23.4 20.2 17.2 14.7

F. Results on ImageNet
We also compare our method on ImageNet (Russakovsky et al., 2015) classification dataset, to verify the scalability of the
method on large-scale datasets. In this experiment, we perform our evaluation on the sub-sampled validation dataset of
ImageNet with 500 samples following the previous works (Cohen et al., 2019; Salman et al., 2019; Jeong & Shin, 2020).
When SmoothMix is used, we simply set T = 1 and m = 1 mainly in order to reduce the overall training cost, and we
fix α = 8.0 for both cases of σ = 0.5, 1.0: this choice leads larger α · T when σ = 0.5 compared to the MNIST and
CIFAR-10 experiments, but we empirically observe that ImageNet is less sensitive to α · T , possibly due to that ImageNet
consists of higher-resolution inputs, i.e., higher input dimension accordingly, than the others. We use the one-step adversary
(Section 3.2) by default here, but we make sure that each adversarial example (found with a large α) is further projected in a
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`2-ball of ε = 1.0 before it replaces the clean sample, which can be done without adding significant computational overhead.
Table 4 summarizes the results, and we still observe the effectiveness of SmoothMix compared to the baseline methods, both
in terms of ACR and certified test accuracy.

Table 4. Comparison of approximate certified test accuracy (%) on ImageNet. We set our results bold-faced whenever the value improves
the Gaussian baseline, and underlined whenever the value achieves the best among the considered baselines.

σ Models (ImageNet) ACR 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.50

Gaussian (Cohen et al., 2019) 0.733 57 46 37 29 0 0 0 0
Consistency (Jeong & Shin, 2020) 0.822 55 50 44 34 0 0 0 0
SmoothAdv (Salman et al., 2019) 0.825 54 49 43 37 0 0 0 0

SmoothMix (Ours) 0.846 55 50 43 38 0 0 0 0

1.00

Gaussian (Cohen et al., 2019) 0.875 44 38 33 26 19 15 12 9
Consistency (Jeong & Shin, 2020) 0.982 41 37 32 28 24 21 17 14
SmoothAdv (Salman et al., 2019) 1.040 40 37 34 30 27 25 20 15

SmoothMix (Ours) 1.047 40 37 34 30 26 24 20 17

G. Variance of results over multiple runs
In our experiments, we report single-run results for ACR and certified robust accuracy as also done by (Cohen et al., 2019;
Salman et al., 2019; Li et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020), considering that ACR is fairly a robust metric to
network initialization: e.g., in Table 5, we report the mean and standard deviation of ACRs across 5 seeds for the MNIST
results reported in Table 2. Overall, we confirm that ACR generally shows low variance over multiple runs across a wide
range of training methods, including ours.

Table 5. Comparison of ACR for various training methods on MNIST. The reported values are the mean and standard deviation across 5
seeds. We set our result bold-faced whenever the value improves the baseline, and the underlined are best-performing model per σ.

ACR (MNIST) σ = 0.25 σ = 0.50 σ = 1.00

Gaussian (Cohen et al., 2019) 0.9108±0.0003 1.5581±0.0016 1.6184±0.0021

Stability (Li et al., 2019) 0.9152±0.0007 1.5719±0.0028 1.6341±0.0018

SmoothAdv (Salman et al., 2019) 0.9322±0.0005 1.6872±0.0007 1.7786±0.0017

MACER (Zhai et al., 2020) 0.9201±0.0006 1.5899±0.0069 1.5950±0.0051

Consistency (Jeong & Shin, 2020) 0.9279±0.0003 1.6549±0.0011 1.7376±0.0017

SmoothMix (η = 1.0) 0.9296±0.0003 1.6776±0.0007 1.7867±0.0020

+ One-Step adversary 0.9330±0.0004 1.6932±0.0009 1.8169±0.0011

SmoothMix (η = 5.0) 0.9317±0.0002 1.6932±0.0007 1.8185±0.0016

+ One-Step adversary 0.9332±0.0002 1.6851±0.0003 1.8212±0.0013

H. Ablation study
We also conduct an ablation study to investigate the individual effects of the hyperparameters in our method. Unless
otherwise noted, we perform experiments on MNIST with σ = 1.0. We report the detailed values of the results for
Figure 6(a), 6(b), 6(c) and 6(d) in Table 6, 7, 8 and 9, respectively.

Effect of η. By design, SmoothMix controls the trade-off between accuracy and robustness by adjusting η, the relative
strength of Lmix over Lnat (12). Here, we further examine the effect of η by comparing the certified robustness on varying
η ∈ {1, 2, 4, 8, 16}: the results in Figure 6(a) show that increasing η consistently improves the certified robustness of the
classifier, which confirms Lmix, the mixup loss, as an effective term to trade-off the robustness against Lnat for accuracy.

Trade-off between α and T . In practice, SmoothMix can trade-off between the step size α and the number of steps T to
compensate between a more accurate optimization of (6) and its computational cost, while maintaining the effective range
of the perturbation by α · T . Figure 6(b) explores this trade-off, by comparing models trained with different combinations of
(α, T ) under control of α · T = 8.0. Interestingly, the results indicate that the choice of α and T does not significantly affect
the final performance as long as α · T is constant: all the considered combinations achieve similar robustness, with only a
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Figure 6. Comparison of approximate certified test accuracy of SmoothMix and its ablations. “Gaussian” indicates the baseline training
with Gaussian augmentation.

slight degradation in ACR even at (α, T ) = (8.0, 1) (see Table 7). This suggests that (a) finding adversarial examples in a
smoothed classifier can be simpler than one might expect, and (b) one can effectively reduce the training cost of SmoothMix
using small T in practice.

Hard restriction on adversarial attacks. One of key features of SmoothMix is at its unrestricted search of adversarial
examples. Here, we examine the case when there is a hard restriction on each search, namely in `2-radius of ε ∈ {2, 4, 6, 8}.
The results presented in Figure 6(c) along with the Gaussian baseline (“Gaussian”) and the original unrestricted setup
(“ε = ∞”) show that SmoothMix indeed works best when there is no such restrictions, although these ablations still
reasonably improve the Gaussian baseline, i.e., calibrating with adversarial examples outside the ε-ball can indeed help to
improve the certified robustness in our training scheme.

Effect of m. Figure 6(d) investigates the effect of using different m ∈ {1, 2, 4, 8}, the number of noise samples to
approximate the prediction of smoothed classifier: the larger m, the better approximation of smoothed classifier, which
would be beneficial for both natural loss and SmoothMix loss (12). Overall, we observe that SmoothMix can still improve
ACR from “Gaussian” even with m = 1, but with a moderate degradation in the clean accuracy: as m is one of the crucial
factors related to the total training cost in practice, one is recommended to use smaller m, e.g., m = 2 or 4, considering its
little effect to the final ACR.

Equal-confidence mixing ratios. Recall from Figure 2 that we are motivated by the problem of miscalibration in smoothed
classifiers between clean and its adversarial example. To see how much the proposed SmoothMix could alleviate this
issue, we compare the distributions of the minimal mixing ratios that changes its prediction of a given classifier on the test
dataset, namely the equal-confidence mixing ratios, before and after training with SmoothMix. For this comparison, we use
ResNet-110 on CIFAR-10 assuming σ = 0.25. Figure 5 shows the result, and it indeed confirms SmoothMix has an effect
of improving calibration between clean and adversarial examples.

Table 6. Comparison of ACR and approximate certified test accuracy on MNIST for varying η. We assume σ = 1.0 in this experiment.
“Gaussian” indicates the baseline training with Gaussian augmentation. We set the results bold-faced whenever the value improves
“Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

η = 1 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1
η = 2 1.810 94.9 92.7 89.7 85.1 79.6 72.6 63.8 54.0 44.4 35.4 26.6
η = 4 1.820 94.0 91.8 88.4 83.9 78.3 71.4 63.0 53.6 44.9 36.8 28.7
η = 8 1.817 93.4 91.0 87.5 82.7 77.3 70.2 62.4 53.0 44.8 37.0 29.3
η = 16 1.812 92.9 90.3 86.7 82.1 76.6 69.7 61.8 52.6 44.5 36.9 29.6
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Table 7. Comparison of ACR and approximate certified test accuracy on MNIST for varying α and T under control of α · T = 8. We
assume σ = 1.0 in this experiment. “Gaussian” indicates the baseline training with Gaussian augmentation. We set the results bold-faced
whenever the value improves “Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

(α, T ) = (8.0, 1) 1.785 95.5 93.5 90.5 86.0 80.5 73.1 63.9 53.5 43.3 33.2 24.0
(α, T ) = (4.0, 2) 1.788 95.4 93.4 90.4 85.9 80.5 73.5 63.9 53.5 43.1 33.4 24.4
(α, T ) = (2.0, 4) 1.790 95.5 93.5 90.7 86.2 80.7 73.7 64.3 53.9 43.2 33.4 23.8
(α, T ) = (1.0, 8) 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1

Table 8. Comparison of ACR and approximate certified test accuracy on MNIST for varying ε, the hard limit on `2-norm of adversarial
perturbations. We assume σ = 1.0 in this experiment. “Gaussian” indicates the baseline training with Gaussian augmentation. “ε =∞”
denotes our original setup of unrestricted adversarial attacks. We set the results bold-faced whenever the value improves “Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

ε = 2.0 1.723 96.1 94.3 91.4 87.1 81.2 73.6 63.7 52.1 39.8 28.2 16.6
ε = 4.0 1.751 95.9 94.0 91.1 86.8 81.0 73.7 64.3 53.1 41.4 30.6 19.8
ε = 6.0 1.778 95.6 93.7 90.6 86.5 80.8 73.7 64.4 53.8 42.8 32.6 22.9
ε = 8.0 1.788 95.5 93.5 90.4 86.1 80.5 73.5 64.2 53.8 43.2 33.5 24.1

ε =∞ (Ours) 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1

Table 9. Comparison of ACR and approximate certified test accuracy on MNIST for varying m, the number of noise samples used for
estimating smoothed predictions. We assume σ = 1.0 in this experiment. “Gaussian” indicates the baseline training with Gaussian
augmentation. We set the results bold-faced whenever the value improves “Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

m = 1 1.744 94.5 92.2 88.9 84.1 78.1 70.9 61.9 51.7 41.7 31.9 23.2
m = 2 1.776 95.3 93.0 89.8 85.4 79.8 72.7 63.5 53.1 42.6 33.0 24.0
m = 4 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1
m = 8 1.788 95.9 93.9 91.0 86.7 81.0 73.9 64.6 54.1 43.2 33.1 23.3
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I. Discussion on input-dependent designs of noise scales
In this section, we show that if one allows different noise scales for each input in attempt to generalize the current framework
of randomized smoothing (Cohen et al., 2019), then the actual robustness guarantee would rapidly decrease as the input
dimension grows. In particular, we consider the following classifier f̃ generalizing (2) with some non-negative function
g : Rd → R≥0, defined as follows:

f̃(x) := arg max
c∈Y

Pδ∼N (0,g(x)I)(f(x+ δ) = c),

In other words, we assume that the scaling parameter of the smoothing noise can now be a function of x. As in the main text,
we are interested in the certified radius R(f̃ ;x, y) of f̃ .

One may expect that R(f̃ ;x, y) can be significantly larger than R(f̂ ;x, y) since f̂ is a special case of f̃ , i.e., constant g(x).
However, we show that it may not be true for high-dimensional inputs: even a small deviation of g(x) can incur very poor
certified robustness. Formally, we prove the following theorem.

Theorem 1. Let ri, i ∈ N be any i.i.d. random variables of zero mean, unit variance, and E[r4i ] <∞. Let Fd be a collection
of all measurable functions from Rd to {0, 1}. Let p ∈ (0.5, 1), σ, τ > 0, and ε ∈ (0, 1/2] be constants such that σ 6= τ .
Then, for δ := (r1, . . . , rd), for any c ∈ {0, 1}, and for any d ∈ N, the following statements hold:

sup
x,x′∈Rd:‖x−x′‖2≤ε

inf
f∈Fd:P(f(x+σδ)=c)=p

P(f(x′ + τδ) = c) ≤ C/d.

for some constant C > 0 which is a function of other constants p, σ, τ, ε,E[r4i ].

Theorem 1 indicates the curse of dimensionality for the worst classifier under general noises of a finite kurtosis. In particular,
it states that there exists an upper bound on P(f(x+ τδ) = c) inversely proportional to the input dimension d even though
two inputs x, x′ are extremely close. Hence, if we utilize different noise scales (i.e., σ) for each input, the resulting lower
bound on the certified radius relying on the worst-case bound as in (Cohen et al., 2019; Lecuyer et al., 2019; Salman et al.,
2019) will be small for high-dimensional inputs. Namely, choosing (almost) constant noise scale for the inputs in the target
certification region is necessary.

I.1. Proof of Theorem 1

We first define z = (z1, . . . , zd) := x′ − x, i.e., ‖z‖2 ≤ ε. Then, the following inequality trivially holds.

inf
f∈Fd:E[f(x+σδ)]=p

E[f(x′ + τδ)] ≤ inf
U⊂Rd:P(σδ∈U)=p

P (τδ + z ∈ U)

≤ P
(
‖τδ + z‖22

d
∈ [σ2 − k, σ2 + k]

)
(13)

where k is a non-negative number satisfying

P
(
‖σδ‖22
d
∈ [σ2 − k, σ2 + k]

)
= p.

The following lemma asserts that the RHS of (13) is bounded by C/d where C is some constant which is only a function of
E[r4i ], σ, τ, ε, p. This completes the proof of Theorem 1.

Lemma 2. There exists C which is a function of E[r4i ], σ, τ, ε, p such that the following statements hold: for any d ∈ N and
for any z ∈ Rd satisfying ‖z‖2 ≤ ε,

P
(
‖τδ + z‖22

d
∈ [σ2 − k, σ2 + k]

)
≤ C

d
.
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I.2. Proof of Lemma 2

Lemma 2 is a direct consequence of the law of large numbers applied to the i.i.d. random variables r2i . First, we compute the
variance of ‖σδ‖

2
2

d using the following equality: for η :=
√

E[r4i ]− 1,

Var
(
‖σδ‖22
d

)
= E

[(
‖σδ‖22
d
− σ2

)2
]

= E

(σ2

d

d∑
i=1

(r2i − 1)

)2


=
σ4

d2

d∑
i=1

E
[
(r2i − 1)2

]
=
σ4

d2

d∑
i=1

E[r4i ]− 1

=
σ4(E[r4i ]− 1)

d
=
σ4η2

d

where the third equality follows from the independence of ris and the fourth inequality follows from E[r2i ] = 1. Hence,
from the Chebyshev’s inequality, we have

P

(∣∣∣∣‖σδ‖22d
− σ2

∣∣∣∣ < σ2η√
d(1− p)

)
≥ 1− (

√
1− p)2 = p, (14)

i.e., k ≤ σ2η√
d(1−p)

.

Now, we derive a similar concentration inequality for ‖τδ+z‖
2
2

d . To this end, we bound its deviation from τ2 +
‖z‖22
d as

follows:

P
(∣∣∣∣‖τδ + z‖22

d
−
(
τ2 +

‖z‖22
d

)∣∣∣∣ ≥ σ2 + τ2

3

)
= 1− P

(∣∣∣∣‖τδ + z‖22
d

−
(
τ2 +

‖z‖22
d

)∣∣∣∣ < σ2 + τ2

3

)
≤ 1− P

(∣∣∣∣‖τδ‖22d
− τ2

∣∣∣∣ < σ2 + τ2

6
and

∣∣∣∣∣2τ
∑d
i=1 rizi
d

∣∣∣∣∣ < σ2 + τ2

6

)

= P

(∣∣∣∣‖τδ‖22d
− τ2

∣∣∣∣ ≥ σ2 + τ2

6
or

∣∣∣∣∣2τ
∑d
i=1 rizi
d

∣∣∣∣∣ ≥ σ2 + τ2

6

)

≤ P
(∣∣∣∣‖τδ‖22d

− τ2
∣∣∣∣ ≥ σ2 + τ2

6

)
+ P

(∣∣∣∣∣2τ
∑d
i=1 rizi
d

∣∣∣∣∣ ≥ σ2 + τ2

6

)

≤ 36τ4η2 + 144τ2ε2

(σ2 + τ2)2d
(15)

where the last inequality is from the variance bounds

Var
(
‖τδ‖22
d
− τ2

)
=
τ4η2

d

Var

(
2τ
∑d
i=1 rizi
d

)
=

4τ2‖z‖22
d2

≤ 4τ2ε2

d2

and the Chebyshev’s inequality

P
(∣∣∣∣‖τδ‖22d

− τ2
∣∣∣∣ ≥ σ2 + τ2

6

)
≤ 36τ4η2

(σ2 + τ2)2d

P

(∣∣∣∣∣2τ
∑d
i=1 rizi
d

∣∣∣∣∣ ≥ σ2 + τ2

6

)
≤ 144τ2ε2

(σ2 + τ2)2d2
.
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Then, for all d ≥ max
{

4σ4η2

(τ2−σ2)2(1−p) ,
6ε2

σ2+τ2

}
, i.e., σ2η√

d(1−p)
≤ |τ

2−σ2|
2 and ε2

d ≤
σ2+τ2

6 , it holds that

P
(
‖τδ + z‖22

d
∈ [σ2 − k, σ2 + k]

)
≤ P

(
‖τδ + z‖22

d
∈
[
σ2 − |τ

2 − σ2|
2

, σ2 +
|τ2 − σ2|

2

])
≤ P

(∣∣∣∣‖τδ + z‖22
d

−
(
τ2 +

‖z‖22
d

)∣∣∣∣ ≥ σ2 + τ2

3

)
≤ 36τ4η2 + 144τ2ε2

(σ2 + τ2)2d

by using (15). Hence, choosing

C := max

{
4σ4η2

(τ2 − σ2)2(1− p)
,

6ε2

σ2 + τ2
,

36τ4η2 + 144τ2ε2

(σ2 + τ2)2

}
completes the proof of Lemma 2.


