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Abstract

Randomized smoothing is currently a state-of-the-
art method to construct a certifiably robust classi-
fier from neural networks against ¢5-adversarial
perturbations. Under the paradigm, the robustness
of a classifier is aligned with the prediction confi-
dence, i.e., the higher confidence from a smoothed
classifier implies the better robustness. This mo-
tivates us to rethink the fundamental trade-off
between accuracy and robustness in terms of cal-
ibrating confidences of smoothed classifier. In
this paper, we propose a simple training scheme,
coined SmoothMix, to control the robustness of
smoothed classifiers via self-mixup: it trains con-
vex combinations of samples along the direction
of adversarial perturbation. The proposed pro-
cedure effectively identifies over-confident, near
off-class samples as a cause of limited robust-
ness in case of smoothed classifiers, and offers
an intuitive way to adaptively set a new decision
boundary between these samples for better robust-
ness. Our experiments show that the proposed
method can significantly improve the certified /5-
robustness of smoothed classifiers compared to
state-of-the-art robust training methods.

1. Introduction

Adversarial examples (Szegedy et al., 2014; Goodfellow
et al., 2015) in deep neural networks clearly highlight that
neural networks often generalize differently from humans,
at least without an additional prior of local smoothness of
predictions with respect to the input space: an adversarially-
crafted, yet imperceptible input perturbation can drastically
change the prediction of a neural network based classifier.
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Randomized smoothing (Lecuyer et al., 2019; Cohen et al.,
2019) is relatively a recent idea that aims to indirectly en-
code the smoothness prior: Cohen et al. (2019) have shown
that any classifier, regardless of whether it is smooth or not,
can be transformed into a certifiably robust classifier via
averaging its predictions over Gaussian noise. Compared to
adversarial training (Madry et al., 2018) which directly en-
codes the smoothness by augmenting training data with its
adversarial examples, this notion of “indirect” smoothness
can be favorable in a sense that (a) it is easier to optimize,
and (b) offers a provable guarantee on the robustness.

Contribution. In this paper, we propose SmoothMix, a
novel adversarial training method designed for improving
the certified robustness of smoothed classifiers. One of the
key features that smoothed classifiers offer is a direct corre-
spondence from prediction confidence to adversarial robust-
ness: achieving a higher confidence in a smoothed classifier
implies that the classifier can give a better certified robust-
ness. Inspired by this, we found that the certified robustness
of a given data sample can be significantly decreased by
nearby off-class but over-confident (Pereyra et al., 2017) in-
puts: such “harmful” inputs would occupy an unnecessarily
large robust radius near the sample of our interest.

Under the finding, we aim to calibrate the confidence of
these off-class inputs to improve the certified robustness
at the original input. More specifically, we first observe
that such over-confident examples can be efficiently found
along the direction of adversarial perturbations for a given
input. Then, we suggest to regularize the over-confident pre-
dictions along the adversarial direction toward the uniform
prediction through a mixup loss (Zhang et al., 2018) (see
Figure 1 for an overview). This new approach of incorpo-
rating adversarial examples effectively permits more distant
examples in training, even when they goes off-class, based
on the local-smoothness of smoothed classifiers.

Overall, our work suggests that the robustness of a classifier
should be set individually per sample considering its nearby
inputs: we approach this problem with the relationship be-
tween the confidence and robustness of smoothed classifiers.
Recently, there have been also some initial attempts to incor-
porate a sample-wise treatment for robustness by allowing
input-dependent noise scales in randomized smoothing (Al-
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(a) Adversarial training

(b) SmoothAdv

(¢) SmoothMix (Ours)

Figure 1. Tllustrations of how each training method obtains adversarial robustness: adversarial training (Madry et al., 2018) considers an
""-ball around each sample and corrects adversarial examples found in these balls; SmoothAdv (Salman et al., 2019) directly employs
adversarial training on smoothed classifiers; SmoothMix (ours) can be differentiated from SmoothAdyv as it (i) does not assume an explicit
norm restriction on adversarial examples, and (ii) applies the mixup (Zhang et al., 2018) instead of correcting the adversarial examples.

farra et al., 2020; Wang et al., 2021; Chen et al., 2021). How-
ever, our theoretical analysis shows that such an approach
would eventually suffer from the curse of dimensionality
(Theorem 1 in Appendix I), highlighting our approach of
focusing on a “better calibration” as a promising alternative.

2. Preliminaries

We assume an i.i.d. dataset D = f(zi, yi)g9jL,; P, where
zi 2 R%and 3 2 Y := f1, ,Cg, and focus on the
problem of correctly classifying a given input x into one
of C classes. Let f : RY ¥ Y be a classifier modeled
by f(z) := argmaxoy Fe(z) with F : R4 ¥ C 1,
where © ! denotes the probability simplex in R€. For
example, I’ can be a neural network followed by a softmax
layer. In the context of adversarial robustness, one may
additionally concern to maximize the minimum-distance
of adversarial perturbation (Moosavi-Dezfooli et al., 2016;
Carlini & Wagner, 2017; Carlini et al., 2019), namely:

R(f;x,y) = f(@i)gyka:" K. (1)

Randomized smoothing. In cases when f is too complex
to control its predictions in practice, e.g., if f is a neural
network on high-dimensional data, directly solving and max-
imizing (1) can be hard. Randomized smoothing (Cohen
et al., 2019) instead construct a new classifier f\ from f that
is easier to obtain robustness by transforming the base classi-
fier f with a certain smoothing measure, where in this paper
we focus on the case of Gaussian distributions N (0, o21):

fay =argmaxP ;o) (fz+9) =9, @

For a given (z, y), R(f 2, y) can be lower-bounded by the
certified radius R( f\ , T, 1), which can be derived from the
confidence of f at z, namely we denote it by pg (z):

R(fiz,y) o pe@) = R(f z,y), O
where p(z) '=P N 21)(f(z +6) = f(2)), &)

provided that f\(x) = y, and otherwise R( f vx,y) = 0.
Here, denotes the cumulative distribution function of the
standard normal distribution.

Although randomized smoothing can be applied for any clas-

sifier f : RY ¥ Y, the robustness of smoothed classifiers

can vary depending on pf as in (3), i.e., how f performs

on a given input under the presence of Gaussian noise. In

this sense, to obtain a robust f\, Cohen et al. (2019) simply

propose to train f using Gaussian augmentation by default:
mFin E xy) p [L(F(x+9),y)l, 3

N (0; 21)

where L denotes the standard cross-entropy loss.

3. Method

Our goal in this paper is to develop a more suitable form
of adversarial training (AT) for smoothed classifiers, tak-
ing into account their unique characteristics on adversarial
robustness over standard neural networks. Figure 1 illus-
trates a motivating example: as shown in Figure 1(a), AT
typically assumes a fixed-sized ball of radius ¢ that each
adversarial perturbation must be in, as the goal of the train-
ing is to defend the classifier against adversaries under a
specific threat model. However, in a case when AT is ap-
plied to a smoothed classifier, e.g., as done by SmoothAdy
(Salman et al., 2019), this assumption may be too restrictive,
particularly for inputs where the classifier already certifies
robustness of radii larger than ¢ (e.g., Figure 1(b)). This
demands for a new form of AT specially for smoothed clas-
sifiers, e.g., that allows more distant adversarial examples,
despite its fundamental difficulty in the context of standard
neural networks (Kang et al., 2020; Zhang et al., 2020b).

3.1. Exploring over-confident adversarial examples in
smoothed classifiers

Recall that we have a (base) classifier f of the form f(x) =
arg max.oy Fe(z), Fis its smoothed counterpart, and we
aim to improve the robustness of f\ by incorporating adver-
sarial examples in training. In this paper, we are particularly
. . . N . .

interested in adversarial examples of f that is found without
a hard restriction in its perturbation size. More concretely,
for a given training sample (xz,y) P, we find adversarial
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examples by solving the following optimization:
x:=argmax L(f%x%y) kx xk3 ; (6)
X0

wherelL is the cross-entropy loss, and 0 is to ensure
that (6) cannot be arbitrarily far from.

As proposed by Salman et al. (2019), one can optirf6e (@) In-class translation  (b) Out-of-class translation
by approximating the intractabfwith the soft-smoothed Figure 2.lllustration of adversarial examples unrestrictively found

class_i erF := E [F(x+ )I: bas_ed on this appr%ximation, in CIFAR-10 with a smoothed ResNet-110€ 0:25). The plot
we simply perform & -step gradient ascent from? := x demonstrates the change of con dence between two classes as the

with step size > 0 to solve(6) usingm samples of ,  inputis linearly interpolated.
namely 1; ; m N (0; 21):
s 3.2. SmoothMix for con dence-calibrated training of
w(t+D) = () 4 M; 7) smoothed classi ers
kr xJ (x()kz : . ,
X ! Based on the observations from Section 3.1, we hypothesize
where J(x) ;= log % Fy(x+ i) @ (8) that themiscalibrationof con dences betweer and its

i unrestricted adversarial exampdds an important factor
that degrades the certi ed robustness of smoothed classi ers,
Figure 2 demonstrates two particular instances of these “ur@nd propose to penalize the over-con dence by mixing the
restricted” adversarial examples found fr¢Monx, and  uniformcon dence to them. More concretely, we consider
plots how the con dence of inputs changes as they are linthe mixup (Zhang et al., 2018) training betwe&nandx,
early interpolated from the clean input to its adversariali-€., by augmenting the given data with the following pairs:
counterpartc. From this, we make several remarks those .
would lead to a more direct motivation to our method: XM= ) x+ o T ©)
y™e=@ ) FeO+ & (10)
* We observer via (7), i.e,, from a smoothed classi-
er, could contain enough amount of semantic changesvhere U 0,3 with the uniform distributionU,
even in a perceptual sense, in either ways of translaF (x) 2 € 1 is the soft-smoothed prediction &f and
ing the input to another class (Figure 2(a)), or simply1 denotes th€ -dimensional vector of ones. Here, we no-
removing some relevant information for the currenttice that is sampled only fronfo; %], unlike the standard
class (Figure 2(b)). At least for these cases, thereforeghoice (Zhang et al., 2018) &f([0; 1]): recall from Fig-
it is reasonable for the classi er to keep their low con-ure 2(a) that¢ can be often semantically in-class, so that
dence to the original class. In this sense, we leveragea direct supervision of the uniform con dence on it could
the provable robustness of smoothed classi ers durincharm the classi er. By simply taking only the half part of
training to reasonably obtain a semantically off-classthe mixed samples closer xg we could reasonably avoid
samples those to be labeled as the uniform con dencehese cases while maintaining its effect to prevent the over-
(Santurkar et al., 2019; Kaur et al., 2019). con dence issue. The actual loss to minimize for these new
data simply follows the cross-entropy loss with Gaussian

* A major problem we rather highlight here is the ten'augmentation, similarly to (5):

dency ofover-con dencgPereyra et al., 2017) toward
the adversgria_l d!rection: .the adversarial examgple L™ = E ©: 21y L(F (X™MX 4 ) y™xy (1)
usually attain signi cantly higher con dence compared
to those ofx, consequently theicerti ed radius (3)
would be much larger as well. Therefore, considerin
thatx are still nearby, such the over-con dence at
x would negatively affect the certi ed radius &f es-
pecially when< does not contain much semantically
meaningful information as observed in Figure 2(b).

Incorporating SmoothAdv for free. As we focuse on ad-
Yversarial examples that are moderately far from the original
inputs assuming that the classi er is already locally-smooth,
one may still enjoy the effectiveness of SmoothAdyv if it
could further enforce the local smoothness. We found that
simply takingx ~ » without modifying our current train-
ing, i.e., using thesingle-step adversarial exampieund

k . A during(7) instead of the clean sample, can reasonably bring
practice, we do not use nor tunein our method for simplicity, . . .
as the role of can be replaced by assuming a nite T, i.e., this effect. In this respect, we allow SmoothMix to use

by the Lagrangian duality an unconstrained optimization with (xM;y) instead of(x;y) depending on demand of more
*»-regularization implicitly de nes a hard constraintinitsnorm.  robustness at expense of decreased clean accuracy.

'Here, we note that the-term in (6) are omitted in(7). In
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Table 1.Comparison of approximate certi ed test accuracy (%) and ACR on CIFAR-10. We set our results bold-faced whenever the value
improves the Gaussian baseline, and underlined whenever the value improves the best among the considered lrzdietites that the
results are evaluated from the of cial pre-trained models released by authors.

Models (CIFAR-10) ACR| 0.00 025 050 075 100 125 150 175

Gaussian (Cohen et al., 2019) 0.4p46.6 612 422 251 00 00 00 0.0
Stability training (Li et al., 2019) 0.421 723 580 433 273 00 00 00 0.0
SmoothAdv (Salman etal., 2019) 0.54473.4 656 570 475 00 00 00 0.0

0.25 MACER (Zhaietal., 2020) 0.531 795 690 558 406 00 00 00 0.0
Consistency (Jeong & Shin, 2020) 0.5%275.8 67.6 581 46.7 0.0 0.0 0.0 0.0
SmoothMix (Ours) 0.553| 77.1 679 579 467 00 00 00 00
+ One-step adversary 0.548 74.2 66.1 574 47.7 0.0 0.0 0.0 0.0
Gaussian (Cohen et al., 2019) 0.59%5.7 549 428 325 220 141 83 39

Stability training (Li et al., 2019) 0.521 60.6 515 414 325 239 153 96 50
SmoothAdv (Salman etal., 2019) 0.68465.3 57.8 499 417 337 260 195 129

0.50 MACER (Zhaietal., 2020) 0.691 64.2 575 499 423 348 276 202 126
Consistency (Jeong & Shin, 2020) 0.72064.3 57,5 50.6 43.2 36.2 295 228 16.1
SmoothMix (Ours) 0.715| 65.0 56.7 49.2 412 345 296235 18.1
+ One-step adversary 0.737 61.8 559 495 433 37.2 31.7 257 19.8

Overall training. Combining the proposed loss with the (He et al., 2016) using the full CIFAR-10 test dataset. We
standard Gaussian trainir{g) gives the full objective to  consider three different models as varying the noise level
minimize for our training method. For a given sample 2 f 0:25;0:5;1:0g (the results with = 1:0 can be found
(x;y) P, and by lettingL"™ := E [L(F(x+ );y)], in Appendix E). When SmoothMix is used, we consider
the nal loss of SmoothMix is given by: xed hyperparameters of = 4, m = 2,and =5:0

Lo Lnat g L mix (12) throughout the experiments. We make sure thafl to

: be proportional to : there are different statistical upper

where > 0is a hyperparameter to control the trade-off be-bounds on the certi ed radius depending onNamely, we
tween accuracy and robustness. Algorithm 1 in Appendix Aset = 0:5;1:0; 2.0 with = 0:25,0:5; 1.0, respectively.

demonstrates a concrete training procedure of SmoothMixpe results are summarized in Table 1 (and Figure 4 in Ap-

usingm samples of for the Monte Carlo approximation.  hendix). We observe that our method generally exhibits
better trade-offs between accuracy and certi ed robustness
4. Experiments compared to other baselinesg., at = 0:5, “SmoothMix”

) ) could improve the previous best result from “Consistency”
We evaluate the effectiveness of our method extensively By a signi cant margin of0:720 !  0:737. Without the

MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009), single-step adversary, “SmoothMix” can effectively pre-
and ImageNet (Russakovsky et al., 2015) datasexserall,  serve the clean accuracy while also improving A@R,, at
the results consistently highlight that our newly proposed _ 25, “SmoothMix” could even improve the clean accu-
training can signi cantly improve the certi ed robustness racy of “Gaussian”; although “MACER” could improve the

of smoothed classi ers compared to existing robust trainingejean accuray as well, one could see that their improvements
methods. We point out the improvements are especially, ropust accuracy are relatively limited.

remarkable on the certi ed accuracy at larger perturbations,

at which SmoothMix mainly focus on compared to prior 5. Conclusion

arts. We also conduct an extensive ablation study on the pro-

posed method to convey a detailed analysis in Appendix HN this paper, we observe that adversarial training withian
verifying that our method (a) is robust to the choice ofrestrictedadversary can be feasible and even more promis-
hyperparameters, and (b) is an effective way to control théng (compared to theestrictedones) when it comes with
robustness of smoothed classi ers against accuracy. The fumoothed classi ers, based on a close relationship between
details on the experimental setups}., baselines, evaluation randomized smoothing ambn dence-calibratedtlassi ers
metrics, and hyperparameters, are speci ed in Appendix BGuo et al., 2017; Lee et al., 2018). Although our focus in
this paper is currently limited only to the over-con dence
issue, we believe there are still many rooms to be explored
in future for another such connectiang., could the recent
advances in the literature of uncertainty estimation of deep

2All the experimental results on MNIST and ImageNet datasetsn€ural networks (Hendrycks et al., 2019; Tack et al., 2020)
are reported in Appendix D and F, respectively. help to improve the robustness of smoothed classi ers.

Results on CIFAR-10. We report theapproximate cer-
ti ed accuracy and average certi ed radiugACR) (see
Appendix B.2) of smoothed classi ers from ResNet-110
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A. Training procedure of SmoothMix

Algorithm 1 SmoothMix training

Input: Sample(x;y) P. smoothing factor . number of noise samples. number of step3 . step size . regularization
strength > 0.

1: Samples; ; m N (0; 2l),and U (0;3
2: // FIND AN ADVERSARJAL EXAMPLE

3O F(x@) x0T F(x+ )

4: fort=0toT 1do

5. J(xM) log Fy (%)

70 FEtDy L0 R 4 )

8: end for

9: if use_single _step then x  x1)

10: // COMPUTE THESMOOTHMIX LOSS

[N
[N

XY™ (@) x+ o AT ) R+ )
12: fori =1 tomdo

13 LI L (F(x+ )iy L(FOM™ o+ i)y™)

14: end for

15: L A0 L+ LMY

m

B. Experimental details

Throughout our experiments, we follow the same training details of prior works (Cohen et al., 2019; Salman et al., 2019;
Zhai et al., 2020; Jeong & Shin, 2020) for a fair comparison: more speci cally, we use LeNet (LeCun et al., 1998) for
MNIST, ResNet-110 (He et al., 2016) for CIFAR-10, and ResNet-50 (He et al., 2016) for ImageNet. We train every model
via stochastic gradient descent using Nesterov momentum of weight 0.9 without dampening. We set a weightldeday of

for all the models. We consider three different noise levelsf 0:25; 0:5; 1:0g for smoothing classi ers for MNIST and
CIFAR-10 models, and 2 f 0:5; 1:0g in the case of ImageNet. We used up to 4 NVIDIA TITAN Xp GPUs to run each

con gurations considered in our experiments, both for training and certi cation: more speci cally, we used a single GPU to
run every experimenet on MNIST and CIFAR-10, and four GPUs to run ImageNet models.

B.1. Baseline methods

We compare our method with a variety of existing techniques proposed for a robust training of smoothed classi ers, as listed
in what follows: (a) Gaussian (Cohen et al., 2019): standard training with Gaussian augmentation; (b) Stability training (Li
et al., 2019): a cross-entropy regularization betwééx) andF (x + ); (c) SmoothAdv (Salman et al., 2019): adversarial
training on smoothed classi er; (d) MACER (Zhai et al., 2020): a regularization that maximizes an approximative form of
the certi ed radiug3); and (e) Consistency (Jeong & Shin, 2020): a KL-divergence based regularization that minimizes the
variance ofF (x + ) across . Whenever possible, we use the pre-trained models released by authors for our evaluation to
reproduce the baselinesg., for CIFAR-10 results of SmoothAdyv, we report the performance evaluated from the pre-trained
models released by the authbfsr a xed con guration of T = 10;" = 1:0, andm = 8.

B.2. Evaluation metrics

Our evaluation of the robustness for a given smoothed clasBiisfargely based on the protocol proposed by Cohen et al.
(2019), similarly to prior works (Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020): more concretely, Cohen et al.
(2019) proposed a practical Monte Carlo based certi cation procedure, n@eelyiFy, that returns the prediction &

and a “safe” lower bound of certi ed radius over the randomness sdmples with probability at least , or abstains

the certi cation.

3https://github.com/Hadisalman/smoothing-adversarial
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From CERTIFY, we consider two evaluation metrics: (a) gugproximate certi ed test accura@t various radii: the fraction
of the test dataset whiocBERTIFY classi es correctly with radius larger thanwithout abstaining, and (b) theverage
certi ed radius (ACR) (Zhai et al., 2020): the average of cg,rti ed radii returneddBRTIFY on the test dataset counting
only the correctly classi ed samples, nam&lgR := ﬁ (xy )2D tes CR(f; ;x ) Iz y whereDyeg; is the test

dataset, an€R denotes the certi ed radius fro@eRTIFY(f; ;x ). Here, the latter metric, ACR, is for a better comparison

of robustness under trade-off between accuracy and robustness (Tsipras et al., 2019; Zhang et al., 2019). We use the of cial
PyTorch implementatichof CERTIFY, with n = 100; 000, ng = 100 and = 0:001, following (Cohen et al., 2019; Salman

et al., 2019; Jeong & Shin, 2020).

B.3. Datasets

MNIST dataset (LeCun et al., 1998) consists 70,000 gray-scale hand-written digitimages of s2& 88,000 for training

and 10,000 for testing. Each of the images is labeled from 0 to 9, i.e., there are 10 classes. We do not perform any
pre-processing except for normalizing the range of each pixel from 0-255 to 0-1. When MNIST is used for training, we use
LeNet (LeCun et al., 1998) for 90 epochs and use the initial learning rate of 0.01. The learning rate is decayed by 0.1 at
30-th and 60-th epoch.

CIFAR-10 dataset (Krizhevsky, 2009) consist of 60,000 RGB images of size832ixels, 50,000 for training and 10,000

for testing. Each of the images is labeled to one of 10 classes, and the number of data per class is set evenly, i.e., 6,000
images per each class. We use the standard data-augmentation scheme of random horizontal ip and random translation up
to 4 pixels, as also used by other baselines (Cohen et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020).
We also normalize the images in pixel-wise by the mean and the standard deviation calculated from the training set. When
CIFAR-10 is used for training, we train ResNet-110 (He et al., 2016) models for 150 epochs with initial learning rate of 0.1.
The learning rate if decated by 0.1 at 50-th and 100-th epoch.

ImageNetclassi cation dataset (Russakovsky et al., 2015) consists of 1.2 million training images and 50,000 validation
images, which are labeled by one of 1,000 classes. For data-augmentation, we perfo284£22@ndom cropping with
random resizing and horizontal ipping to the training images. At test time, on the other hand2224enter cropping is
performed after re-scaling the images into 2266. When ImageNet is used for training, we train ResNet-50 (He et al.,
2016) models for 90 epochs with initial learning rate of 0.1. The learning rate if decated by 0.1 at 30-th and 60-th epoch.

B.4. Detailed hyperparameters for baselines

Stability training (Li et al., 2019) uses a single hyperparameter 0 to control the relative strength of the stability
regularization compared to the standard cross-entropy loss. In our experiments, we sy default for this method, but
except for the “ = 1:0" model on CIFAR-10: in this case, we had to reduce it te 1 for a stable training.

SmoothAdv (Salman et al., 2019mainly controls three hyperparameters those are for performing projected gradient
descent (PGD) to nd adversarial examples in the training: namely, itmsebe number of noise sampl€k, the number

of PGD steps, antf: an”,-norm restriction on adversarial perturbations. For SmoothAdv models, vile=x10 and

" = 1:0throughout the experiments. In casenfand usen = 4 for MNIST models, anan = 8 for CIFAR-10. Following
Salman et al. (2019), we also adopt therm-upstrategy ort, i.e,, it is initially set to zero, and gradually increased for the

rst 10 epochs up to the original value bf

MACER (Zhai et al., 2020) adds four hyperparameters to the training: namely, it usethe number of noise samples,

the relative strength of regularization, a temperature scaling factor, anda margin gap. We follow the con gurations
reported by Zhai et al. (2020) to reproduce the MNIST results: namely, weusé6, =16:0, =8:0and =16:0.
Weuse =6:0incase of = 1:00n MNIST, however, for a better training stability. We use the pre-trained models released
by the authors for evaluations on CIFAR-10, which can be downloadeitet//github.com/RuntianZ/macer .
These CIFAR-10 models are reported to be trained mith 16, =16:0, =8:0,and =12:0and4:0for =0:25
and0:5, respectively. For = 1:0, is initially set to 0, and changed to= 12:0 after the rst learning rate decay.

Consistency (Jeong & Shin, 2020¢ontrols two hyperparameters, namehand , each for the relative strength of the
consistency term and the entropy term, respectively. We obtain results from the best hyperparameters those reported by
Jeong & Shin (2020) when the consistency regularization is applied to the Gaussian training baseline, both in MNIST and

“https://github.com/locuslab/smoothing
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(@ =0:25 (b) =0:50 (c) =1:00

Figure 3.Comparison of approximate certi ed accuracy for various training methods on MNIST. The sharp drop of certi ed accuracy in
each plots is due to that there is a strict upper bound in radius #rRtI€Y can output for a given andn = 100; 000.

CIFAR-10 datasets. More concretely, we x= 0:5 for every model, and use=5 for MNIST and = 10 for CIFAR-10
models by default. In case of=0:25, is doubled in both dataseisg.,, =10 and =20 for MNIST and CIFAR-10,
respectively, as it is shown to achieve better ACRs.

C. Related work

Certi ed adversarial robustness. We focus on improving adversarial robustnessasidomized smoothin@ohen et al.,

2019) based classi ers, which is currently one of prominent ways to obtain a classi er with a robustness certi cation. In
general, there have been many attempts other than randomized smoothing to provide a robustness certi cation of deep neural
networks (Gehr et al., 2018; Wong & Kolter, 2018; Mirman et al., 2018; Xiao et al., 2019; Gowal et al., 2019; Zhang et al.,
2020a), and correspondingly with attempts to further improve the robustness with respect to those certi cation protocols
(Croce et al., 2019; Croce & Hein, 2020; Balunovic & Vechev, 2020). Nevertheless, randomized smoothing has attracted
particular attention as the rst approach that could successfully scaled up to the ImageNet dataset (Russakovsky et al., 2015).
A more complete taxonomy on the literature can be found in Li et al. (2020).

Con dence-calibrated training. Overcon dent prediction®f deep neural networks (Pereyra et al., 2017) have been
considered as problematic in many scenaréas, uncertainty estimation of in-distribution samples (Guo et al., 2017; Jiang

et al., 2018; Kumar et al., 2019), those of out-of-distribution samples (Hendrycks & Gimpel, 2017; Lee et al., 2018; Meinke

& Hein, 2020), and ensemble learning (Lee et al., 2017), just to name a few. In the context of adversarial training, Stutz et al.
(2020) have shown that regularizing con dence on adversarial examples to be uniform can improve detection of adversarial
examples from unseen threat models. In this paper, we address the overcon dence at adversarial examples particularly
focusing orsmoothed classi ersobserving that a simple approach of directly xing the problem could signi cantly improve

the certi ed robustness.

Mixup-based training. Originally, mixup(Zhang et al., 2018) has proposed as a simple yet effective data augmentation
scheme to improve generalization and robustness (against small adversarial attacks) of deep neural networks, and there
have been signi cant follow-up works to further improve this form (Verma et al., 2019; Yun et al., 2019; Kim et al., 2020;
2021). Recently, Zhang et al. (2021) have also explored on theoretical justi cations behind how could such an augmentation
improves generalization and robustness. Although our method uses a similar linear interpolation scheme of mixup, there
is still an essential difference between ours and this line of works: namely, we do not rely on the prior of interpolating
two (or more)independensamples, but rather aims to directly calibrate predictions between a clean and its (unrestricted)
adversarial examplé.e., we consider a new form akelf-mixuptraining.

There have been also attempts to employ mixup particularly for improving adversarial robustness: Lamb et al. (2019) have
shown that an additional mixup loss between adversarial examples upon the standard mixup training achieves a comparable
robustness to adversarial training (AT) (Madry et al., 2018), while not compromising the clean accuracy as much as AT, Lee
et al. (2020) have proposédiversarial Vertex Mixupo improve AT, by extrapolating predictions along the direction of
adversarial perturbation up to few times of its norm via mixup training. Our proposed method can be differentiated to these
approaches, in a sense that we employ mixup not to directly improve the robustness of a given neural network, but of its
smoothed counterpart. It is also our unique perspective that we consiaestrictedadversarial examples to be interpolated.
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Table 2.Comparison of approximate certi ed test accuracy (%) and ACR on MNIST. All the models are trained and evaluated with
the same smoothing factor speci ed by Each value except ACR indicates the fraction of test samples those heedi ed radius

larger than the threshold speci ed at the top row. We set our results bold-faced whenever the value improves the Gaussian baseline, and
underlined whenever the value improves the best among the considered baselines.

Models (MNIST) ACR‘0.00 0.25 050 0.75 100 125 150 175 200 225 250 275

Gaussian (Cohen et al., 2019) 091P9.2 985 967 933 00 00 0O OO 0O 00 00 0.0
Stability training (Li etal., 2019) 0.91%599.3 986 971 938 00 00 00 00 00 00 0.0 00
SmoothAdv (Salman et al., 2019) 0.93209.4 99.0 982 968 00 00 00 00 00 00 00 00

MACER (Zhai et al., 2020) 0.92099.3 98.7 975 948 00 00 0O 00 0O 00 00 00
0.25 Consistency (Jeong & Shin, 2020) 0.92®9.5 989 980 960 00 00 00 00 00 00 0.0 00
SmoothMix ( = 1:0) 0.931] 995 989 982 964 00 00 00 00 00O 00 00 o00
+ One-step adversary 0.933 994 99.0 982 9%9 00 00 00 OO0 00 00 00 00
SmoothMix ( =5:0) 0.932| 994 99.0 982 9.7 00O 00 00 0O 0O 00 00 00
+ One-step adversary 0.933 99.3 99.0 98.2 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gaussian (Cohen et al., 2019) 1.5539.2 983 968 943 89.7 819 673 436 00 00 00 0.0

Stability training (Li etal., 2019) 1570 99.2 985 97.1 948 90.7 832 692 454 00 00 00 00
SmoothAdv (Salman et al., 2019) 1.68P9.0 98.3 97.3 958 932 885 811 675 00 00 00 0.0

MACER (Zhai et al., 2020) 1594985 975 96.2 937 900 837 722 540 00 00 00 00
0.50 Consistency (Jeong & Shin, 2020) 1.65®9.2 98.6 976 959 93.0 878 785 605 00 00 0.0 0.0

SmoothMix ( =1:0) 1.678| 99.0 984 974 957 93.0 881 80.0 65600 0.0 00 0.0

+ One-step adversary 1 69 98.8 98.1 971 953 92.7 883 _81.7695 00 00 00 0.0

SmoothMix ( =5:0) 98.7 98.0 97.0 953 92.7 885818 70.0 00 00 0.0 0.0

+ One-step adversary 1 68 98.2 975 96.3 945 913 874 81.0_70700 00 00 00

Gaussian (Cohen et al., 2019) 62@6.3 944 914 86.8 798 709 594 46.2 325 19.7 109 538

Stability training (Li et al., 2019) 1. 63 965 946 916 87.2 80.7 717 605 47.0 334 206 112 59

SmoothAdv (Salman et al., 2019) 1.7795.8 93.9 90.6 865 808 737 646 539 433 328 222 121

MACER (Zhai et al., 2020) 1598916 881 835 777 711 63.7 557 468 384 292 200 115
1.00 Consistency (Jeong & Shin, 2020) 1.74®5.0 93.0 89.7 854 79.7 727 63.6 53.0 417 308 203 107

+ One-step adversary 94,7 924 89.2 84.6 79.4725 64.0 545 448 36.2 27.4 18.7
SmoothMix ( =5:0) 93.7 916 881 835 779 70.962.7 53.8 448 36.6 28.9 21.5

SmoothMix ( =1:0) 1788 955 935 905 86.280.6 734 643 537 43.2_ 335239 14.1
+ One-step adversary 93.3 909 875 830 775 706627 534 449 37.1 293 224

D. Results on MNIST

For MNIST (LeCun et al., 1998) experiments, we report the approximate certi ed accuracy and ACR of smoothed classi ers
obtained from LeNet (LeCun et al., 1998) with different training methods, including SmoothMix, using the full MNIST
test dataset. We consider three different models as varying the noise 12vied:25; 0:5; 1:0g. During inference, we apply
randomized smoothing with the sameised in the training. When SmoothMix is used, we consider a xed hyperparameter
value for = 1:0andm = 4, the step size and the number of noise samples. WE seP; 4; 8 for the models with

= 0:25; 0:5; 1.0, respectively, based on our empirical observation that it is bene cial to s&tto be proportional to .
We apply the samm = 4 for SmoothAdvj.e., for adversarial training, antl = 10 with an”,-ball of radius" = 1:0.

The results are presented in Table 2 and Figure 3. Overall, we observe that our proposed Smooth(¥l} éakied

to the Gaussian training dramatically improve the certi ed test accuracy from “Gaussian”. By considering the one-step
adversary (Section 3.2) in training, we could further improve the robust accuracy, signi cantly improving ACRs compared
to the previous state-of-the-art training methoeglg:, our method could improve ACRs with=1:0from 1:779! 1:823

This shows that improvements from SmoothMix can be orthogonal to those from SmoothAdv. It is also remarkable that
even without the one-step adversarial example, one could further improve the certi ed robustness by simply increasing the
relative strength of the SmoothMix losse.g., by 1:0! 5:0 as presented in Table 2., “SmoothMix” with = 5:0 still
outperforms “SmoothAdv” byl:779! 1:820at = 1:0. Finally, we note that our models could substantially improve the
robustness at larger perturbations with less degradation in the clean acelgacgmpared to “MACER” or “Consistency”:
considering that they are also regularization based approaches to control the robustness via controlling their regularization
strength, the results show that our form of loss could better compensate the trade-off between accuracy and robustness.



SmoothMix: Training Con dence-calibrated Smoothed Classi ers for Certi ed Adversarial Robustness

Figure 5.Equal-con dence mixing ratioen
(@ =0:25 (b) =0:50 CIgFAR-lO,Ci].e., the minimal mixingratios for
Figure 4.Comparison of approximate certi ed accuracy for various training methodsbanging the correct prediction when each
CIFAR-10. The sharp drop of certi ed accuracy in each plots is due to that there is a #wett is linearly interpolated to its adversarial
upper bound in radius thateRTIFY can output for a given andn = 100; 000. example.

E. Additional results on CIFAR-10

In this section, we report additional experimental results on CIFAR-10 (Krizhevsky, 2009), namely with:0 (see

Table 1 for the results for 2 f 0:25; 0:5g). We defer this results to Appendix as the scenario can be less practical compared

to the otherse.g., the clean accuracy in this setup<iss0%in most cases. We follow the same experimental details as
speci ed in Section 4 and Appendix B, including the common hyperparameter choice 6f0 for SmoothMix for other
experiments as well. Again, we compare our method with various existing robust training methods for smoothed classi ers
(Cohen et al., 2019; Li et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020), and Table 3 summarizes
the results. Overall, we still observe a similar trend to Section 4 that (a) “SmoothMix” offers a signi cant improvement

of robust accuracy without compromising the clean accuracy much, and (b) incorporating the one-step adversary thus can
further complementarily boost ACR to outperform other state-of-the-art baseline training meglgadsis notable that
“SmoothMix + One-step adversary” achieves fairly comparable or better robust accuracy than MACER while maintaining
much higher clean accuragyg., the certi ed test accuracy at= 0:0, namely 41.4 45.1. This con rms that our proposed
SmoothMix can offer a better trade-off between accuracy and certi ed robustness during training.

Table 3.Comparison of approximate certi ed test accuracy (%) and ACR on CIFAR-10. All the models are trained and evaluated with
the same smoothing factor speci ed by Each value except ACR indicates the fraction of test samples those heedi ed radius

larger than the threshold speci ed at the top row. We set our results bold-faced whenever the value improves the Gaussian baseline, and
underlined whenever the value achieves the best among the considered basétidiestes that the results are evaluated from the of cial
pre-trained models released by authors.

Models (CIFAR-10) ACR‘0.00 0.25 050 0.75 1.00 125 150 1.75 200 225

Gaussian (Cohen et al., 2019) 0.5427.2 39.2 340 278 216 174 140 118 100 7.6
Stability training (Li et al., 2019) 0.526 435 389 328 270 231 191 154 113 7.8 57
SmoothAdv (Salman et al., 2019) 0.66050.8 44.9 39.0 336 285 237 194 154 120 8.7

1.00 MACER (zZhaietal., 2020) 0.744 41.4 385 352 323 293 264 234 202 174 145
Consistency (Jeong & Shin, 2020) 0.75@16.3 42.2 38.1 34.3 30.0 263 229 19.7 16.6 13.8
SmoothMix (Ours) 0.725| 47.1 425 375 329 287 249 213 183 155 126
+ One-step adversary 0.773 451 415 375 338 30.226.7 234 20.2 17.2 14.7

F. Results on ImageNet

We also compare our method on ImageNet (Russakovsky et al., 2015) classi cation dataset, to verify the scalability of the
method on large-scale datasets. In this experiment, we perform our evaluation on the sub-sampled validation dataset of
ImageNet with 500 samples following the previous works (Cohen et al., 2019; Salman et al., 2019; Jeong & Shin, 2020).
When SmoothMix is used, we simply set= 1 andm = 1 mainly in order to reduce the overall training cost, and we

x = 8:0for both cases of = 0:5;1:0: this choice leads larger T when = 0:5compared to the MNIST and
CIFAR-10 experiments, but we empirically observe that ImageNet is less sensitiveltppossibly due to that ImageNet
consists of higher-resolution inpuise., higher input dimension accordingly, than the others. We use the one-step adversary
(Section 3.2) by default here, but we make sure that each adversarial example (found with 3 iafgether projected in a
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“»-ball of =1:0before it replaces the clean sample, which can be done without adding signi cant computational overhead.
Table 4 summarizes the results, and we still observe the effectiveness of SmoothMix compared to the baseline methods, both
in terms of ACR and certi ed test accuracy.

Table 4.Comparison of approximate certi ed test accuracy (%) on ImageNet. We set our results bold-faced whenever the value improves
the Gaussian baseline, and underlined whenever the value achieves the best among the considered baselines.

Models (ImageNet) ACR 00 05 10 15 20 25 3.0 35
Gaussian (Cohen et al., 2019) 0733 57 46 37 29 0 0 0 0
Consistency (Jeong & Shin, 2020) 0.822 55 50 44 34 0 0 0 0
0.50  smoothAdv (Salmanetal.,, 2019) 0825 54 49 43 37 0 0 O O
SmoothMix (Ours) 0846 55 50 43 38 O 0 0 0
Gaussian (Cohen et al., 2019) 0875 44 38 33 26 19 15 12 9

Consistency (Jeong & Shin, 2020) 0.982 41 37 32 28 24 21 17 14
100 smoothAdv (Salmanetal., 2019) 1.040 40 37 34 30 27 25 20 15

SmoothMix (Ours) 1.047 40 37 34 30 26 24 20 17

G. Variance of results over multiple runs

In our experiments, we report single-run results for ACR and certi ed robust accuracy as also done by (Cohen et al., 2019;
Salman et al., 2019; Li et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020), considering that ACR is fairly a robust metric to
network initialization:e.g., in Table 5, we report the mean and standard deviation of ACRs across 5 seeds for the MNIST
results reported in Table 2. Overall, we con rm that ACR generally shows low variance over multiple runs across a wide
range of training methods, including ours.

Table 5.Comparison of ACR for various training methods on MNIST. The reported values are the mean and standard deviation across 5
seeds. We set our result bold-faced whenever the value improves the baseline, and the underlined are best-performing model per

ACR (MNIST) =0:25 =0:50 =1:00

Gaussian (Cohen et al., 2019) 0.9108003 1.5581 0.0016 1.6184 o0.0021
Stability (Li et al., 2019) 0.91520.0007 1.5719 0.0028 1.6341 0.0018
SmoothAdv (Salman et al., 2019)  0.9322005 1.6872 0.0007 1.7786 o0.0017
MACER (Zhai et al., 2020) 0.920Db.000s 1.5899 0.0069 1.5950 o0.0051
Consistency (Jeong & Shin, 2020) 0.92%9003 1.6549 00011 1.7376 o0.0017
SmoothMix ( =1:0) 0.9296 0.0003 1.6776 0.0007 1.7867 0.0020
+ One-Step adversary 0.93300.0004 1.6932 0.0009 1.8169 o.0011
SmoothMix ( =5:0) 0.9317 00002 1.6932 0.0007 1.8185 0.0016
+ One-Step adversary 0.93320.0002 1.6851 0.0003 1.8212 0.0013

H. Ablation study

We also conduct an ablation study to investigate the individual effects of the hyperparameters in our method. Unless
otherwise noted, we perform experiments on MNIST witle 1:0. We report the detailed values of the results for
Figure 6(a), 6(b), 6(c) and 6(d) in Table 6, 7, 8 and 9, respectively.

Effect of . By design, SmoothMix controls the trade-off between accuracy and robustness by adjugtiegelative

strength ofL™* overL" (12). Here, we further examine the effect oby comparing the certi ed robustness on varying
2 1;2;4; 8;16g: the results in Figure 6(a) show that increasingpnsistently improves the certi ed robustness of the

classi er, which con rmsL™*, the mixup loss, as an effective term to trade-off the robustness ag&gor accuracy.

Trade-off between andT. In practice, SmoothMix can trade-off between the step siaed the number of stedsto
compensate between a more accurate optimization of (6) and its computational cost, while maintaining the effective range
of the perturbation by T. Figure 6(b) explores this trade-off, by comparing models trained with different combinations of

(; T ) undercontrol of T = 8:0. Interestingly, the results indicate that the choice @hdT does not signi cantly affect

the nal performance as long as T is constant: all the considered combinations achieve similar robustness, with only a






