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Abstract

Temporal knowledge graph completion
(TKGC) aims to predict missing facts at
different timestamps. A promising solution for
this task is learning temporal knowledge graph
representations in vector space, focusing on
modeling important relation patterns inherent
in temporality. However, existing methods
often involve complex spatial transformations,
such as expanding into complicated spaces,
which might sacrifice computational efficiency.
Additionally, relying solely on individual
geometric operation also limits representa-
tional ability, thereby hindering the predictive
performance. To address these challenges,
this study introduces a Temporal knowledge
graph Embedding model via Rodrigues’
Rotation Formula (TERRF) for TKGC.
TERREF treats link prediction as a rigid body
transformation in three-dimensional space,
comprising two key operations: a Normalized
Scaling operation and an Efficient Rotation
operation. The Normalized Scaling operation
sets an initial position for entities, allowing
for more flexible rotations, while the Efficient
Rotation operation uses Rodrigues’ Rotation
Formula, requiring only an axis and angle
representation. Experimental results show
that our proposed TERRF model significantly
outperforms competitive baseline models
and achieves state-of-the-art results on three
popular benchmark datasets.

1 Introduction

Knowledge graphs (KGs) form the core of diverse
real-world applications, including but not limited
to question answering (Zhang et al., 2024), infor-
mation retrieval (Ziems et al., 2024), and recom-
mender systems (Wasi, 2024). KGs store structured
facts in the form of triples (s, r, 0), where s, r, and
o denote the subject, relation, and object, respec-
tively. Despite containing millions of entities and
billions of facts, large-scale KGs, such as YAGO
(Fabian et al., 2007), Freebase (Bollacker et al.,

2008), and Wikidata (Erxleben et al., 2014) re-
main particularly incomplete. As such, knowledge
graph completion (also known as link prediction)
has gained widespread attention in recent years.

However, real-world KGs continue growing in-
herently tied to specific timestamps. For exam-
ple, the triple (Barack Obama, Make a visit, South
Korea) is valid on 2014-04-18. Therefore, tempo-
ral knowledge graphs (TKGs) are introduced as
quadruples (s, 7, 0, 7) to describe facts that evolve
over time 7. Given the incompleteness of TKGs,
we focus on temporal knowledge graph comple-
tion (TKGC), aiming to infer missing temporal
links from a TKG. One prominent solution for this
task is knowledge graph embedding (KGE), which
learns low-dimensional representations for each el-
ements in static/temporal KGs, and then compute
plausibility scores for all possible facts.

This has led to the development of a wide range
of TKGC work, building on static KGE models
(Leblay and Chekol, 2018; Garcia-Duran et al.,
2018; Dasgupta et al., 2018). As a promising ap-
proach used in static KGE, learning rotation trans-
formation parametrized by relation has gained pop-
ularity, where the idea is to rotate the subject entity
to fall near its corresponding object entity (Sun
et al., 2019; Zhang et al., 2019). When it comes to
TKGs, there are two major categories of rotation-
based temporal KGE methods: The first category
involves learning embeddings in complex or hyper-
complex spaces by adding imaginary dimensions
(Xu et al., 2020; Chen et al., 2022; Li et al., 2023).
The second category, based on (Saxe et al., 2014),
aims to rotate entities via orthogonal transforma-
tions in the real number system R", treating each
relation as an orthogonal matrix € R™*". Never-
theless, there are still two limitations:

* For one thing, extending to hypercomplex spaces
or defining each relation as an orthogonal ma-
trix for high-dimensional rotation might yield an



reduction in computational efficiency, and the
space cost is also highly related to the number of
entities and relations.

* For another, single type of operation for KGE is
insufficient, since each operator may have mod-
eling limitations for different relational patterns
(Ying et al., 2024). This indicates that flexible
transformations in space are crucial for temporal
KGE.

Towards these problems, we propose TERRF,
a Temporal knowledge graph Embedding model
via Rodrigues’ Rotation Formula (Wang and Dai,
2023). Generally, TERRF can be regarded as a
three-dimensional (3D) rigid body transformation
that includes both rotation and scaling. We give a
simple way to define any such transformation by
a scaling factor to set the initial position, a direc-
tion of the rotation axis, and an angle of rotation.
Specifically, a Normalized Scaling operation pa-
rameterized by relation and timestamp is initially
applied to determine a start position for the sub-
ject entity. Then, we introduce a more efficient
method for implementing rotation based on Ro-
drigues’ Rotation Formula, which requires only a
unit vector and a scalar value to represent the axis
and angle of rotation, respectively. Subsequently,
the subject entity is rotated, and the plausibility of
the quadruple is assessed by computing the embed-
ding similarity between the subject and the object
entities. Unlike previous methods that treat rela-
tions and timestamps solely as rotations, TERRF
also integrates entity features into the rotation con-
struction to achieve a more flexible transformation.
Notably, TERRF executes 3D rotation operations in
a more straightforward way, and also enhances the
flexibility in modeling complex relation patterns.

Experimental results on three challenging bench-
marks show that our proposed TERRF outperforms
various baseline models, demonstrating the effec-
tiveness of our approach. Additionally, we validate
in our experiments that TERRF has more flexible
transformation capabilities. From a mathematical
perspective, we prove that TERRF can simultane-
ously model multiple important temporal relation
patterns, which is shown in Appendix A.

2 Related Work

2.1 Static Knowledge Graph Embedding

Traditional static knowledge graph embedding is
popularized by distance-based models, such as

TransE (Bordes et al., 2013), which capture the
relationship between entities by using the semantic
distance. To address complex relationships, vari-
ous extensions, such as TransH (Wang et al., 2014),
TransR (Lin et al., 2015), and TransD (Ji et al.,
2015) have been proposed following TransE. To
enable KGE models to represent more relation pat-
terns, including symmetry, antisymmetry, inver-
sion, and composition, RotatE (Sun et al., 2019)
teat each relation as 2D rotation in the complex
space C. Beyond complex representations, QuatE
(Zhang et al., 2019) explores 3D rotations in hyper-
complex space H. To mitigate the issue of space
cost, RotateCT (Dong et al., 2022) combines trans-
lation and 2D rotation operations in the complex
space. DCNE (Dong et al., 2024) represents rela-
tions as rotations in 2D space using dual complex
number multiplication.

2.2 Temporal Knowledge Graph Embedding

Most temporal KGE methods extend static KG em-
bedding techniques to TKGs. TTransE (Leblay and
Chekol, 2018) builds upon TransE (Bordes et al.,
2013) by incorporating timestamp information as
an additional element that controls the translation.
TA-DistMult (Garcia-Duran et al., 2018) is pro-
posed on the basis of the DistMult (Yang et al.,
2014) method. HyTE (Dasgupta et al., 2018) maps
the factual triples associated with the start time onto
hyperplanes. Hibrid-TE (Wang and Li, 2019) inte-
grates both of TransD (Ji et al., 2015) and HyTE by
projecting entities and relations onto hyperplanes
constructed from time spans. DE-SimplE (Goel
et al., 2020) utilizes a diachronic entity embedding
function which captures the characteristics of en-
tities at a specific time. TeRo (Xu et al., 2020)
defines the temporal evolution of entities as ro-
tations in the complex vector space. TeAST (Li
et al., 2023) models TKGs in the complex space,
representing the relations on Archimedean spiral
timelines. CompoudE (Ge et al., 2022) and TCom-
poundE (Ying et al., 2024) represent relations and
timestamps as different geometric operations.

Our proposed TERRF leverages scaling and 3D
rotation in real number system to offer a compre-
hensive and expressive representation of TKGs.

3 Background

3.1 Hamilton’s Quaternions

Quaternion belongs to hypercomplex number sys-
tem H, extending traditional complex number sys-
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Figure 1: Illustrations of the rotation via Hamilton’s Quaternions, Orthogonal Transformation, and Rodrigues’

Rotation Formula, respectively.

tem C to 4D space. A quaternion can repre-
sent a rotation in 3D space with the expression:
Q = a + bi + ¢j + dk, where the coefficients a,
b, ¢, d are real numbers and i, j, k are imaginary
units pointing along the three spatial axes. Given
quaternions 1 and ()2, a composite spatial rota-
tion can be modeled with quaternions Hamilton
product: Q2 ® 1, which is shown in Figure 1(A).

Based on this, static KGE model QuatE (Zhang
et al., 2019) and temporal KGE model TLT-KGE
(Zhang et al., 2022) have modeled link prediction
as rotation in quaternion space. Nevertheless, ex-
panding to complicated spaces such as quaternion
leads to more dimensions than real number, which
increases the space cost and greatly reduces the
computational efficiency (Dong et al., 2024).

3.2 Orthogonal Transformation

Orthogonal transformation (Saxe et al., 2014) is
a linear transformation 7' : R® — R" in a real
inner product space. Specifically, Yx € R”, it
holds that ||T'(x)|| = |[|x||, and Vx,y € R",
(x,y) = (T'(x),T(y)). This means that orthog-
onal transformations rotate the coordinate system
without changing the length of each vector and the
angles between vectors (as shown in Figure 1(B)).
In mathematics, an orthogonal transformation can
be represented by an orthogonal matrix A € R™*",
ie,T(x)=Ax.

Previous KGE method (Tang et al., 2020) have
represented each relation as a orthogonal matrix
through Gram-Schmidt process for rotation trans-
formation. However, this approach increases the
number of parameters required to express relations
and incurs computational overhead due to the ma-
trix orthogonalization process.

3.3 Rodrigues’ Rotation Formula

Given the limitations of Hamilton’s Quaternions
and orthogonal transformation, a more concise and
effective method for link prediction is highly desir-
able.

In mathematics, Rodrigues’ Rotation Formula
(Wang and Dai, 2023) constitutes an efficient al-
gorithm for rotating a vector around a specified
axis by a given angle in 3D real number system (as
shown in Figure 1(C)). Vv € R3, a rotated vector
Vot 18 expressed as:

Vyot = Rot(v,k, 0)
= cos(A)v + sin(A)k x v + (1 — cosf) (k - v)k,
ey
where k € R? stands for a unit vector defining an
axis of rotation; § € R! represents the angle by
which v is rotated about the axis k according to
the right-hand rule; x and - denote cross product
and dot product, respectively. As such, any rotation
operation in 3D space can be accomplished using a
single unit vector and an angle.

4 Methodology

Formally, let £ represent the set of entities, R
refers to the set of relations, and 7 stands for the
set of timestamps. A temporal knowledge graph
G is defined as a collection of factual quadruples
{(s,r,0,7)}, where s,0 € £,r € R,and T € T.
Our goal is to predict the object for (s,r,?,7), and
the subject for (7,7, 0, 7). Given all facts occurring
at time 7, we denote eg, €., €,, €, as the embed-
ding of s, r, o, T, respectively, each of which € R".
To achieve 3D transformations, we uniformly par-
tition each embedding into a combination of local
vectors with a magnitude of 3 for processing, rep-
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(A) The issue of directly using rotation. (B) Our solution

Figure 2: Illustration of Normalized Scaling. (A) Given
a point s, direct rotation operations will confine s to the
surface of a 3D hypersphere with radius ||s||, limiting
spatial flexibility. (B) To address this, we perform a
dynamical scaling operation on s before rotating. This
scales the coordinates of s along each axis to obtain
new coordinates s®, which serve as the starting point for
subsequent rotations.

resented as:

n
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e — @ e[3i: 3i+3}’ (2)
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where e denotes e, €,, or e,; @ denotes the con-
catenation. Then, we propose a 3D rigid body
transformation (TERRF) for temporal KGE, con-
sisting of two operations: Normalized Scaling and
Rotation via Rodrigues’ Rotation Formula. Note
that the rotation implemented in this paper just in-
volves rotating around an axis from the origin by a
certain angle.

4.1 Normalized Scaling

Due to the limitations of direct rotation operations
(see Figure 2 (A)), we apply a Normalized Scaling
operation before performing rotations (as shown
in Figure 2 (B)). Such an operation is employed to
determine an initial position for each entity accord-
ing to different relations and timestamps. Specif-
ically, we design a scaling factor (a unit vector)
in 3D space. First, we define the fusion vector
e, = e, + e,. Then, for the i-th segment vector
of the subject entity, the scaling vector is computed
as:

s [3d: 3i43] _ h(em)[gi: Si+3]

_ 3i: 3i+3]
s Hh(ew)[Si: 3i+3}” » 3)

oes[

where h(-) denotes a linear layer; all of e[3% 3i+3],
h(e,,)B% 373 and 6,13% 3%3) ¢ R3; o refers to
the Hadamard (or element-wise) product. The rea-
son for normalizing the scaling factors is to prevent
overfitting.

Given (s, 1, T,?)and (s, 1, T, ?), they have the same object: o

sk
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(A) The issue of only integrating r,
T for rotation construction.

(B) Our solution

Figure 3: Illustration of axis and angle constructions,
where sf, s5 are the positions after applying Normalized
Scaling to s; and s9; s and s are the rotated positions.
(A) Constructing the direction axis k and rotation angle
6 solely from the relation r and timestamp ¢ might make
it difficult to simultaneously position s] and s close to
the object o. (B) To address this, we incorporate entity
features s into the construction process, allowing the ro-
tation process to adapt to changes in entity information
and enhancing spatial flexibility.

4.2 Rotation via Rodrigues’ Rotation Formula

Subsequently, we employ a more flexible 3D space
transformation to achieve the reasoning process for
TKGC. Our goal is to use a simpler way to charac-
terize rotations in 3D space. Unlike existing meth-
ods that utilize hypercomplex numbers or orthogo-
nal matrices, we construct only an Axis Vector and
Angle Value to perform rotation operations. We
naturally consider relation r and timestamp 7 as
the necessary factors for representing the geometric
transformation. However, as shown in Figure 3 (A),
when r and 7 are fixed, the spatial transformation
of the subject entity will also be fixed. To prevent
the limitations arising from using the same axis and
angle for all entities, we incorporate entity features
into the construction of the rotation axis and angle
(as shown in Figure 3 (B)). As such, we define a
new fusion vector e, ;. » = e, + e, +e;

Axis Vector. The axis vector is defined by a nor-
malization process:

K30 3i+3] _ fk(esmﬁ)[&: sit3] ()
|| Fic (e )30 331

where Fy () is a linear layer that incorporates e,

e,, and e;; the segment k3% 3+3] i5 a unit vector,

which reflects the ¢-th direction of the axis around

which &, 3131 will rotate.

Angle Value. We obtain the angle representation



by converting e ;. to
0; =2moo(F(Fy (aesmT)Bi: 3“'3])), 5)

where 0; € R! is the i-th calculated angle; o(-)
is the Tanh function to constrain 0; € (—27, 27);
Fo(+) denotes a linear layer; F(-) is employed to
further project the segment of the hidden represen-
tation from R? to R!; « is the angle weight, which
is implemented as a hyperparameter.

After getting the axis vector and angle value, we
apply the Rodrigues’ Rotation Formula to €5, and
obtain the rotated vector e}:

e§[3i: 3i+3] _ p ot ( e~8[3i: 3i+3}’k[3i: 3i+3}792,). (6)

The score function is defined as the inner product
between e} and e,:

d(s,1m,0,T) =< €5,€, > . @)

4.3 Training

With the scoring function ¢(s,r, 0, 7), the likeli-
hood of any o € £ answering the query (s,r,7,7)
can be computed as:

€Xp ¢($7 T, o, T)
Zs’eg €xp ¢(S/> r,o, T) ’

and the reverse inferring likelihood for query
(?,7,0,7) is similarly defined as P(s|o,r~1,7),
where r~! denotes the reverse relation of r. As
a widely used strategy in TNTComplEx (Lacroix
et al., 2020) and TCompoundE (Ying et al., 2024),
we employ reciprocal learning for training TERRF.
The loss function is defined as:

P(ols,r,7) = ®)

L, = —logP(ols,r,7) — log P(s]|o,r*

+ Mu([lesll3 + [lez][5 + lleol3)

7)

©)
where the N3 regularization is applied to the origi-
nal entity embeddings eg, e,, and the transformed
entity embedding e}; \,, is the weight coefficient.
Following TNTComplEx (Lacroix et al., 2020), we
employ a smoothing temporal regularizer to ensure
that neighboring timestamps have similar represen-
tations, which is calculated as:

L Nt
= 3
Lr = N, — 1 ; ller+1) —er@lls (10

The total loss function is defined as:

L=L,+ NL (11)

where A\, represents the weight coefficient for reg-
ularizer.

| ICEWS14 ICEWS05-15 GDELT
#E 7,128 10,488 500
#R 230 251 20
#T 365 4,017 366
#Train 72,826 386,962 2,735,685
#Valid 8,963 46,092 341,961
#Test 8,941 46,275 341,961

Table 1: Statistics of TKGC datasets in the experiment.

5 Experiments

5.1 Datasets

We evaluate the performance on three public
TKG benchmark datasets: ICEWS14, ICEWS05-
15, and GDELT. Among them, ICEWS14 and
ICEWSO05-15 are derived from Integrated Crisis
Early Warning System (ICEWS) dataset (Lauten-
schlager et al., 2015). ICEWS is an event-based
KG that contains political facts starting from 1995,
with ICEWS14 focusing on events in 2014 and
ICEWSO05-15 covering events from 2005 to 2015.
GDELT is a subset of the Global Database of
Events, Language, and Tone (GDELT) (Leetaru
and Schrodt, 2013). GDELT integrates information
from diverse sources, encompassing factual entries
with daily timestamps ranging from April 1, 2015,
to March 31, 2016. Notably, GDELT focuses on
the coverage to the 500 most common entities and
the 20 most frequent relations. The summary of
the datasets are listed in Table 1.

5.2 Evaluation Protocol

Given a test quadruple (s, 7,0, 7), we predict the
missing subject or object entity for the two queries
(s,r,?7,7) and (?,7,0,7). During inference, we
employ the time-aware filtered setting (Lacroix
et al., 2020; Xu et al., 2020; Chen et al., 2022;
Ying et al., 2024) to measure the performance in
the TKGC task.

We adopt the widely used evaluation metrics,
including Mean Reciprocal Rank (MRR) and
Hits@N (Qiao and Hu, 2020). MRR is the av-
erage of the reciprocals of the ranks for all correct
triples. The Hits@N is the proportion of the top N
of all correct triples rankings. Notably, the higher
values of MRR and Hits@N indicate better per-
formances. We set N=1, 3, 10 for Hits@N in this
experiment. For convenience, we denote Hits@N
as H@N (Ne {1, 3, 10}) throughout this paper.



5.3 Experimental Setup

We use Python 3.8 and Pytorch framework to im-
plement our model. All computations are done on
a single NVIDIA GeForce RTX 2080 Ti GPU for
the sake of fairness. We train our model using the
Adagrad (Duchi et al., 2011) optimizer and choose
the optimal hyperparameters using a grid search
method according MRR on the validation set.
Finally, the optimal configurations of our model
are as follows. The embedding dimensionality is
set to 6000 for all the datasets. For the ICEWS14
dataset, the learning rate, batch size, and the max
epoch are set to 0.01, 4000, and 400. We set the
learning rate, batch size, and max epoch to 0.08,
6000, 100 in ICEWSO05-15. Regarding GDELT,
the learning rate, batch size, and the max epoch are
set to 0.05, 2000, and 50. Other important optimal
hyperparameters for TERRF are shown as follows:

* ICEWS14: )\, =001, A, =1, a=1;
* ICEWSO05-15: )\, =0.05, \; =1, a = 0.1;
* GDELT: )\, = 0.001, A = 0.001, o = 0.1.

5.4 Baselines

We compare our model TERRF with traditional
static KGE models and representative temporal
KGE models with interpolation setting. The static
KGE models include TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), ComplEx (Trouil-
lon et al., 2016), and SimplE (Kazemi and Poole,
2018). The temporal KGE models include TTransE
(Leblay and Chekol, 2018), DE-SimplE (Goel et al.,
2020), TA-DisMult (Garcia-Duran et al., 2018),
HyTE (Dasgupta et al., 2018), ChronoR (Sadeghian
et al., 2021), TComplEx (Lacroix et al., 2020),
TNTComplEx (Lacroix et al., 2020), TGAP (Jung
etal., 2020), TeLM (Xu et al., 2021), BoxTE (Mess-
ner et al., 2022), TLT-KGE (Zhang et al., 2022), Ro-
tateQVS (Chen et al., 2022), TARGAT (Xie et al.,
2023), TeAST (Li et al., 2023), and TCompoundE
(Ying et al., 2024).

Notably, the TCompoundE model, which inte-
grates translation and scaling operations is highly
related to our work. Other recent temporal KGE
models that represent TKGs in complex or hyper-
complex space (e.g., TeLM, RotateQVS, TLT-KGE,
TeAST) are also associated with our TERREF, since
the rotation learning is involved. Additionally, we
also compare our approach with the models utiliz-
ing graph neighborhood information (i.e., T-GAP,
and TARGAT).

5.5 Main Results

Table 2 presents the link prediction results of our
proposed TERRF and various baselines on three
benchmarks. Generally, TERRF outperforms all
the baselines on ICEWS14, ICEWSO05-15, and
GDELT across all the metrics. These results
demonstrate the superiority of the TERRF model.
Compared to traditional static KGE models, our
model TERRF significantly surpasses all these
baselines, which shows the usefulness of time in-
formation. Compared to the most related models,
such as RotateQVS (Chen et al., 2022), TeAST
(Li et al., 2023) and TCompoundE (Ying et al.,
2024), TERREF obtains significant improvement
gains. The reason is that our method achieves a
more flexible spatial transformation, thereby mod-
eling complex relational and temporal information
in TKGs. Additionally, TERRF also obtains sub-
stantially better results than the methods integrat-
ing graph neighborhood information, such as T-
GAP (Jung et al., 2020), and TARGET (Xie et al.,
2023). It indicates that the rigid transformation
of our method is indeed useful. Notably, we ob-
serve that TERRF outperforms the other baselines
by large margins in GDELT dataset. Particularly,
TERREF achieves relative improvements of 3.6%,
5.0%, 2.7%, 0.8% for MRR, H@1, H@3, and
H@10 compared with TCompoundE. This is be-
cause our model constructs rotation operations us-
ing three elements: entity, relation, and timestamp,
allowing spatial transformations to vary according
to entity characteristics (see Section 6.3). To con-
clude, the experimental results across three datastes
verify the ability of our proposed TERRF model.

6 Analysis
6.1 Ablation Study

In order to explore each component of our proposed
TERRF, we conduct ablation study experiments.
The results are reported in Table 3, where "w/o NS"
denotes the model without using the Normalized
Scaling operation, and "w/o RR" denotes the model
without using the Rotation operation via Rodrigues’
Rotation Formula. As shown in Table 3, we can
see that the two ablation variants perform worse
than the proposed TERRF model across all three
datasets. The reason for this can be attributed to
two factors: (1) Merely employing a rotation op-
eration is insufficient due to the fixed distance to
the origin of the coordinate system, whereas the
Normalized Scaling operation provides a proper



Models \ ICEWS14 ICEWS05-15 GDELT

| MRR H@1 H@3 H@10 | MRR H@1 H@3 H@10 | MRR H@1 H@3 He@I10
TransE 0326 0.154 0430 0.644 | 0330 0.152 0440 0.660 | 0.155 0.060 0.178 0.335
DistMult 0441 0325 0498 0.668 | 0457 0338 0515 0.691 | 0210 0.133 0224 0.365
ComplEx 0442 0400 0430 0.664 | 0464 0347 0524 0.696 | 0213 0.133 0225 0.366
SimplE 0458 0341 0516 0.687 | 0478 0359 0539 0.708 | 0206 0.124 0220 0.366
TTransE 0255 0074 - 0601 | 0271 008 - 0616 | 0.115 00 0160 0318
DE-SimplE | 0.526 0418 0592 0.725 | 0.513 0392 0578 0.748 | 0230 0.141 0.248 0.403
TA-DisMult | 0477 0363 - 0686 | 0474 0346 - 0728 | 0206 0.124 0219 0.365
HyTE 0297 0.108 0416 0.655 | 0.315 0.116 0445 0.681 | 0.118 0.0 0.165 0326
ChronoR 0.625 0547 0.669 0.773 | 0.675 0596 0.723 0820 | - - - -
TComplEX | 0.610 0.530 0.660 0.770 | 0.660 0.590 0.710 0.810 | 0.340 0.294 0361 0.498
TNTComplEx | 0.620 0.520 0.660 0.760 | 0.670 0.590 0.710 0810 | 0.349 0.258 0373 0.502
T-GAP 0.610 0509 0.677 0.790 | 0.670 0.568 0.743 0.845 | - - - -
TeLM 0.625 0545 0.673 0774 | 0.678 0599 0.728 0.823 | 0350 0261 0.375 0.504
BoxTE 0.613 0528 0.664 0.763 | 0.667 0.582 0.719 0.820 | 0352 0.269 0.377 0511
RotateQVS 0.591 0507 0.642 0.754 | 0.633 0.529 0.709 0813 | 0270 0.175 0.293 0458
TLT-KGE 0.634 0551 0.684 0.786 | 0.690 0.609 0.741 0.835 | 0358 0265 0.388 0.543
TARGAT 0.631 0545 0.683 0.793 | 0.685 0.608 0.736 0.825 | - - - -
TeAST 0.637 0560 0.682 0.782 | 0.683 0.604 0.732 0.829 | 0.371 0283 0401 0.544
TCompoundE | 0.644 0.561 0.694 0.795 | 0.692 0.612 0.743 0.837 | 0433 0347 0469 0.595
TERRF (Ours) | 0.650 0.570 0.698 0.800 | 0.701 0.621 0.752 0.847 | 0.469 0.397 0.496 0.603

Table 2: Summary of results on three datasets, namely [CEWS 14, ICEWS05-15, and GDELT. The best score is in

bold and the second best is underlined.

Models | ICEWS14 ICEWS05-15 GDELT

| MRR H@1 H@3 H@10 | MRR H@1 H@3 H@10 | MRR H@1 H@3 H@10
TERRF | 0.650 0.570 0.698 0.800 | 0.701 0.621 0.752 0.847 | 0.469 0397 0.496 0.631
w/oNS | 0.643 0561 0.693 0.793 | 0.698 0.618 0.749 0.845 | 0.453 0378 0482 0.593
w/oRR | 0.621 0536 0.671 0.782 | 0.675 0588 0.731 0.835 | 0.416 0324 0453 0.592

Table 3: Ablation study on three datasets, , namely ICEWS14, ICEWSO05-15, and GDELT. The best score is in bold

and the second best is underlined.

initial position. (2) Utilizing our designed rotation
strategy via Rodrigues’ Rotation Formula allows
for more flexible spatial transformations, thus en-
abling the modeling of more complex relational
and temporal patterns. Furthermore, we observe
that individually employing rotation (w/o NS) con-
sistently outperforms the variant that only utilizes
Normalized Scaling (w/o RR). This demonstrates
that our rotation learning strategy plays a more
crucial role in link prediction. The experimental
results of the ablation study confirm that both the
United Scaling and the Rotation via Rodrigues’
Rotation Formula contribute to improving the per-
formance of TERRF.

6.2 Impact of the Normalization for Scaling

In this section, we investigate the impact of vector
normalization in the Normalized Scaling. We com-

N oo \ ICEWS14
ormalization

‘ MRR H@l H®@3 H@10
- 0.641 0.561 0.688 0.790
Min-Max 0.644 0.563 0.692 0.792
Softmax-Weight 0.646 0.565 0.693 0.795
Z-Score 0.648 0.567 0.693 0.798
Vector-Norm (Ours) | 0.650 0.570 0.698 0.800
x =0.1 0.645 0.567 0.692 0.792
x=1 0.641 0.561 0.688 0.790
x =10 0.640 0.559 0.688 0.791

Table 4: Results on different normalizations for scaling.

pare our strategy (i.e., convert the scaling factor to
a unit vector) with several variants, including one
without normalization, and others with different
normalization methods: Min-Max normalization,
Softmax weighted strategy, and Z-Score technique



M | Flements GDELT

| s r 7 |MRR H@1 H@3 He@I10
MI |- - -[0416 0324 0453 0592
M2 v v | 0411 0319 0447 0.589
M3 | v v 0415 0324 0451 0591
M4 | v v | 0460 0380 0.494 0.609
M5 | v v vV |0469 0397 0496 0.603

Table 5: Results on GDELT dataset in terms of different
constructions of axis and angle of rotation. M1 stands
for the model without using rotation learning.

M ‘ Elements ICEWS05-15

| s r 7 |MRR H@l H@3 H@I10
Ml | - - - [0698 0618 0749 0.845
M2 v V0694 0612 0746 0.844
M3 |V v 0.693 0.609 0.746 0.845
M4 | v v 0701 0.620 0.753 0.848
M5|v v v |0701 0621 0752 0847

Table 6: Results on ICEWS05-15 dataset in terms of
different constructions of axis and angle of rotation. M1
stands for the model without using rotation learning.

(as shown in Table 4). From the results, we find
that using normalization obtains more performance
gains compared with the one without normaliza-
tion, where our proposed Vector-Norm (regards the
scaling factor as a unit vector) performs the best.
We speculate that this is due to the use of appropri-
ate normalization operations, which helps prevent
overfitting.

Additionally, there is also a possibility that the
numerical size of the scaling factor affects the
results. Therefore, we replace the denominator
||h(e, + e,)13 33| in Eq. 3 with a constant .
We conduct experiment to investigate the impact
of changes in x on the TKGC performance. From
Table 4, we observe that changes in x have a mini-
mal impact on the performance of link prediction,
which indirectly supports our above conclusion.

6.3 Analysis of the Rotation Learning

To explore aspects of rotation learning, we conduct
experiments on the construction of the axis and
angle in Rodrigues’ Rotation Formula. We remove
different elements (i.e., s, r, 7) to redefine the axis
vector k and angle 6. These model variants are
compared in Table 5 and Table 6. From the results,
we observe that combining all the elements consis-
tently and significantly enhances the performance

0.60 /‘X

0.55

0.50

0.45

0.40

0.351 —@= MRR
—— H@I
H@3

0.30
30T H@10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Angle weight a

Figure 4: Results on GDELT dataset regarding the dif-
ferent angle weight a.

(M5). Additionally, we find that the performance
varies when any two elements from s, r, and 7
are combined together (M2-4). Notably, simulta-
neously combining s and 7 is the primary reason
for the significant performance improvements (M4
vs. M2-3). Nevertheless, it verifies that integrating
information of entity, relation and time to construct
axis and angle is more stable and effective.

Moreover, we also analyze the effect of the angle
weight a,, which is shown in Figure 4. The results
show that when o« = 0.05 or 0.1, TERFF obtains
the remarkable performances across all the metrics,
while the further increasing of « leads to worse
results (i.e., o € {0.15,0.2,0.25,0.3}). Neverthe-
less, our TERREF beats the one removing rotation
operation (o = 0). This indicates that a suitable
angle weight can enhance the rotation learning.

7 Conclusion

This paper proposes to learn embeddings via a 3D
rigid body transformation for TKGC task. On the
one hand, we utilize a Normalized Scaling opera-
tion to set an initial position for entity to provide
a more flexible range of rotations. On the other
hand, we propose a efficient rotation strategy via
Rodrigues’ Rotation Formula, which merely re-
quires an axis and angle representation. Empirical
results show that our proposed TERRF achieves
the promising results and outperforms state-of-the-
art models. Furthermore, we have mathematically
derived that TERRF can model multiple important
temporal relation patterns.



Limitations

Despite our method enabling more efficient im-
plementation of rotation operations and achieving
significant results, the current application of Ro-
drigues’ Rotation Formula is limited to rotations in
three-dimensional space. Efficient spatial transfor-
mations in higher dimensions remain a significant
challenge. Additionally, while our method partially
avoids the dimension expansion of entities and rela-
tions, which would lead to a total parameter count
highly dependent on the number of entities and
relations, the parameter count of our method still
largely depends on the three linear transformation
matrices used to convert scaling factors, direction
axes, and angles, as determined by the embedding
dimension. In the future, we will continually solve
these limitations for a better temporal knowledge
graph embedding solution.
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A Proof of Relation Pattern Modeling

In this section we provide the proofs that our
TERRF can model various relational patterns

A.1 Definition of Relation Patterns

Definition 1: Relation r is symmetric, if Vs, o, T,
(57 r? 0? T) /\ (07 7“7 87 T) 6 g;

Definition 2: Relation r is asymmetric, if
Vs,o0,7, (s,r,0,7) € GA(o,1,8,7) ¢ G;

Definition 3: Relation 7y and ry are asymmetric,
ifVs,0,7, (s,7m1,0,7) A (0,72,5,T) € G;

Definition 4: Relation r; and r, are evolving
over time from timestamp 7; to timestamp 7o, if
Vs, 0,7, (s,71,0,71) A (0,72, 8,72) € G,

Definition 5: Relation r reflects the many-to-one
pattern when s; and s9 are simultaneously associ-
ated with o at the timestamp 7, i.e., (s1,7,0,7) A
(s2,7,0,7) €G.

A.2 Matrix Notation for Rodrigues’ Rotation
Formula

Vv € R3, the rotated vector v, using Rodrigues’
Rotation Formula can be expressed in matrix form
as:

Vot = Rot(v,k,0)

— Ry, 12)

where

R =1+ (sinf)K + (1 —cosf)K?,  (13)

11

and I € R3*3 is the identity matrix, while K €
R3*3 denotes the skew-symmetric matrix gener-
ated by the rotation vector k.

Therefore, Eq. 6 can be rewritten as:

e;[i&i: 3i+3] _ Rot (€, [3i: 3i+3],k[3i: 3i+3}, 6;)

o e, B 3i+3}>

6,130 3i+3)
h(er T)[Si: 3i+3]
| h(ey., ) Bis 33|

R ZZ . (Sri)r o e, 3% 3i+3])

= (RO 052 )00
_ j 3i: 3i4+3
- Msz,z’,res[ i 8]
(14)
where Mgle € R3x3 represents a matrix that con-

tains all the spatial transformation operations in
the TERRF model. To facilitate subsequent ex-
pressions, we uniformly use e, M, r and e, to

represent eLSz: 31+3]’ ML%ZniTSZ+3] and e([)?n: 31+3], re-
spectively.
A.3 Symmetric Pattern
For the symmetric pattern, we have ¢(s,r,0,7) =
¢(o,r,s,T), and we derive:
T T
Ms,r,reseo = Mo,r,Teoes
-1 -1
=M, Ms,r=1o0or Mg, M,,,=1
(15)

This demonstrates that the TERRF model can cap-
ture the symmetric pattern when M, - and M, . -
are inverse matrices.

A4 Asymmetric Pattern

For the asymmetric pattern, we have ¢(s, 7,0, T) #
¢(o,r,s,7). According to the proof in Ap-
pendix A.3, the TERRF model can capture the
asymmetric pattern when My, » and M, ., are
not inverse matrices.

A.5 Inverse Pattern
In the inverse pattern, ¢(s,r1,0,7) = ¢(0,72,8,T)
holds, leading to:

T
= MS,’I’Q,TeSeO
=TorM,}

S,71,T

T
M ;- rese,
-1
=M M, r

S,72,T

M, =L

(16)
This shows that the TERRF model can capture
the inverse pattern when M ., - and M ., , are
inverse matrices.
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A.6 Temporal Evolution Pattern

For the temporal evolution pattern, we have
o(s,r1,0,7) = P(8,72,0,T2), resulting in:

T T
Ms,n m1€s€0 = Ms,rz ,2€5€0

M1
= M rom 871,71

A7
This indicates that the TERRF model can capture
the temporal evolution pattern when M ., -, and
M., 7, are inverse matrices.

A.7 Many-to-One Pattern

In this scenario, we have ¢(s1,r,0,7) =
@(s2,7,0,7), as illustrated in Figure 3.

First, let us investigate the case where entity in-
formation is not incorporated into the spatial trans-
formation construction of TERRF. Specifically, we
replace M, with M, -, which corresponds to
M7 in Table 5. By definition, we derive:

T T
M, res e, = M, re,e,
—1 T T T
= MT7TMT,Te81eO =e5,€, =e€ze, (18)

= €s, = €5,

As shown above, when only using the relation and
timestamp for transformation (i.e., M,. ), the em-
beddings of s; and sz will converge to the same
value. However, in many cases, there are signifi-
cant semantic differences between s and so. Thus,
this approach cannot adequately model the many-
to-one pattern.

When using our strategy (i.e., M , -), we have:

T T
Msl,T,Tesl € = Msg,r,’resg €
= Msl,r,resl = Msg,r,’resg (19)
-1
=e,;, =M M, rr€s,.

S1,7,T

Therefore, we observe that the TERRF model
can capture the many-to-one pattern when e;, =
M_! M, rr€s,.

81,7,

-1
M, 7 =TorM M y7m =L
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