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Abstract

Temporal knowledge graph completion001
(TKGC) aims to predict missing facts at002
different timestamps. A promising solution for003
this task is learning temporal knowledge graph004
representations in vector space, focusing on005
modeling important relation patterns inherent006
in temporality. However, existing methods007
often involve complex spatial transformations,008
such as expanding into complicated spaces,009
which might sacrifice computational efficiency.010
Additionally, relying solely on individual011
geometric operation also limits representa-012
tional ability, thereby hindering the predictive013
performance. To address these challenges,014
this study introduces a Temporal knowledge015
graph Embedding model via Rodrigues’016
Rotation Formula (TERRF) for TKGC.017
TERRF treats link prediction as a rigid body018
transformation in three-dimensional space,019
comprising two key operations: a Normalized020
Scaling operation and an Efficient Rotation021
operation. The Normalized Scaling operation022
sets an initial position for entities, allowing023
for more flexible rotations, while the Efficient024
Rotation operation uses Rodrigues’ Rotation025
Formula, requiring only an axis and angle026
representation. Experimental results show027
that our proposed TERRF model significantly028
outperforms competitive baseline models029
and achieves state-of-the-art results on three030
popular benchmark datasets.031

1 Introduction032

Knowledge graphs (KGs) form the core of diverse033

real-world applications, including but not limited034

to question answering (Zhang et al., 2024), infor-035

mation retrieval (Ziems et al., 2024), and recom-036

mender systems (Wasi, 2024). KGs store structured037

facts in the form of triples (s, r, o), where s, r, and038

o denote the subject, relation, and object, respec-039

tively. Despite containing millions of entities and040

billions of facts, large-scale KGs, such as YAGO041

(Fabian et al., 2007), Freebase (Bollacker et al.,042

2008), and Wikidata (Erxleben et al., 2014) re- 043

main particularly incomplete. As such, knowledge 044

graph completion (also known as link prediction) 045

has gained widespread attention in recent years. 046

However, real-world KGs continue growing in- 047

herently tied to specific timestamps. For exam- 048

ple, the triple (Barack Obama, Make a visit, South 049

Korea) is valid on 2014-04-18. Therefore, tempo- 050

ral knowledge graphs (TKGs) are introduced as 051

quadruples (s, r, o, τ) to describe facts that evolve 052

over time τ . Given the incompleteness of TKGs, 053

we focus on temporal knowledge graph comple- 054

tion (TKGC), aiming to infer missing temporal 055

links from a TKG. One prominent solution for this 056

task is knowledge graph embedding (KGE), which 057

learns low-dimensional representations for each el- 058

ements in static/temporal KGs, and then compute 059

plausibility scores for all possible facts. 060

This has led to the development of a wide range 061

of TKGC work, building on static KGE models 062

(Leblay and Chekol, 2018; García-Durán et al., 063

2018; Dasgupta et al., 2018). As a promising ap- 064

proach used in static KGE, learning rotation trans- 065

formation parametrized by relation has gained pop- 066

ularity, where the idea is to rotate the subject entity 067

to fall near its corresponding object entity (Sun 068

et al., 2019; Zhang et al., 2019). When it comes to 069

TKGs, there are two major categories of rotation- 070

based temporal KGE methods: The first category 071

involves learning embeddings in complex or hyper- 072

complex spaces by adding imaginary dimensions 073

(Xu et al., 2020; Chen et al., 2022; Li et al., 2023). 074

The second category, based on (Saxe et al., 2014), 075

aims to rotate entities via orthogonal transforma- 076

tions in the real number system Rn, treating each 077

relation as an orthogonal matrix ∈ Rn×n. Never- 078

theless, there are still two limitations: 079

• For one thing, extending to hypercomplex spaces 080

or defining each relation as an orthogonal ma- 081

trix for high-dimensional rotation might yield an 082
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reduction in computational efficiency, and the083

space cost is also highly related to the number of084

entities and relations.085

• For another, single type of operation for KGE is086

insufficient, since each operator may have mod-087

eling limitations for different relational patterns088

(Ying et al., 2024). This indicates that flexible089

transformations in space are crucial for temporal090

KGE.091

Towards these problems, we propose TERRF,092

a Temporal knowledge graph Embedding model093

via Rodrigues’ Rotation Formula (Wang and Dai,094

2023). Generally, TERRF can be regarded as a095

three-dimensional (3D) rigid body transformation096

that includes both rotation and scaling. We give a097

simple way to define any such transformation by098

a scaling factor to set the initial position, a direc-099

tion of the rotation axis, and an angle of rotation.100

Specifically, a Normalized Scaling operation pa-101

rameterized by relation and timestamp is initially102

applied to determine a start position for the sub-103

ject entity. Then, we introduce a more efficient104

method for implementing rotation based on Ro-105

drigues’ Rotation Formula, which requires only a106

unit vector and a scalar value to represent the axis107

and angle of rotation, respectively. Subsequently,108

the subject entity is rotated, and the plausibility of109

the quadruple is assessed by computing the embed-110

ding similarity between the subject and the object111

entities. Unlike previous methods that treat rela-112

tions and timestamps solely as rotations, TERRF113

also integrates entity features into the rotation con-114

struction to achieve a more flexible transformation.115

Notably, TERRF executes 3D rotation operations in116

a more straightforward way, and also enhances the117

flexibility in modeling complex relation patterns.118

Experimental results on three challenging bench-119

marks show that our proposed TERRF outperforms120

various baseline models, demonstrating the effec-121

tiveness of our approach. Additionally, we validate122

in our experiments that TERRF has more flexible123

transformation capabilities. From a mathematical124

perspective, we prove that TERRF can simultane-125

ously model multiple important temporal relation126

patterns, which is shown in Appendix A.127

2 Related Work128

2.1 Static Knowledge Graph Embedding129

Traditional static knowledge graph embedding is130

popularized by distance-based models, such as131

TransE (Bordes et al., 2013), which capture the 132

relationship between entities by using the semantic 133

distance. To address complex relationships, vari- 134

ous extensions, such as TransH (Wang et al., 2014), 135

TransR (Lin et al., 2015), and TransD (Ji et al., 136

2015) have been proposed following TransE. To 137

enable KGE models to represent more relation pat- 138

terns, including symmetry, antisymmetry, inver- 139

sion, and composition, RotatE (Sun et al., 2019) 140

teat each relation as 2D rotation in the complex 141

space C. Beyond complex representations, QuatE 142

(Zhang et al., 2019) explores 3D rotations in hyper- 143

complex space H. To mitigate the issue of space 144

cost, RotateCT (Dong et al., 2022) combines trans- 145

lation and 2D rotation operations in the complex 146

space. DCNE (Dong et al., 2024) represents rela- 147

tions as rotations in 2D space using dual complex 148

number multiplication. 149

2.2 Temporal Knowledge Graph Embedding 150

Most temporal KGE methods extend static KG em- 151

bedding techniques to TKGs. TTransE (Leblay and 152

Chekol, 2018) builds upon TransE (Bordes et al., 153

2013) by incorporating timestamp information as 154

an additional element that controls the translation. 155

TA-DistMult (García-Durán et al., 2018) is pro- 156

posed on the basis of the DistMult (Yang et al., 157

2014) method. HyTE (Dasgupta et al., 2018) maps 158

the factual triples associated with the start time onto 159

hyperplanes. Hibrid-TE (Wang and Li, 2019) inte- 160

grates both of TransD (Ji et al., 2015) and HyTE by 161

projecting entities and relations onto hyperplanes 162

constructed from time spans. DE-SimplE (Goel 163

et al., 2020) utilizes a diachronic entity embedding 164

function which captures the characteristics of en- 165

tities at a specific time. TeRo (Xu et al., 2020) 166

defines the temporal evolution of entities as ro- 167

tations in the complex vector space. TeAST (Li 168

et al., 2023) models TKGs in the complex space, 169

representing the relations on Archimedean spiral 170

timelines. CompoudE (Ge et al., 2022) and TCom- 171

poundE (Ying et al., 2024) represent relations and 172

timestamps as different geometric operations. 173

Our proposed TERRF leverages scaling and 3D 174

rotation in real number system to offer a compre- 175

hensive and expressive representation of TKGs. 176

3 Background 177

3.1 Hamilton’s Quaternions 178

Quaternion belongs to hypercomplex number sys- 179

tem H, extending traditional complex number sys- 180
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(C) This work: given an axis k∈R3 and an angle 

θ∈R1 , rotate v via Rodrigues’ Rotation Formula
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(B) Transform v via an orthogonal matrix A∈R3×3

T(x)=Ax
vrot=Rot (v, k, θ) 

(A)  Visualization of  Q2         Q1

in quaternion space (      : Hamilton product)

Q2

Figure 1: Illustrations of the rotation via Hamilton’s Quaternions, Orthogonal Transformation, and Rodrigues’
Rotation Formula, respectively.

tem C to 4D space. A quaternion can repre-181

sent a rotation in 3D space with the expression:182

Q = a + bi + cj + dk, where the coefficients a,183

b, c, d are real numbers and i, j, k are imaginary184

units pointing along the three spatial axes. Given185

quaternions Q1 and Q2, a composite spatial rota-186

tion can be modeled with quaternions Hamilton187

product: Q2 ⊗Q1, which is shown in Figure 1(A).188

Based on this, static KGE model QuatE (Zhang189

et al., 2019) and temporal KGE model TLT-KGE190

(Zhang et al., 2022) have modeled link prediction191

as rotation in quaternion space. Nevertheless, ex-192

panding to complicated spaces such as quaternion193

leads to more dimensions than real number, which194

increases the space cost and greatly reduces the195

computational efficiency (Dong et al., 2024).196

3.2 Orthogonal Transformation197

Orthogonal transformation (Saxe et al., 2014) is198

a linear transformation T : Rn → Rn in a real199

inner product space. Specifically, ∀x ∈ Rn, it200

holds that ||T (x)|| = ||x||, and ∀x,y ∈ Rn,201

⟨x,y⟩ = ⟨T (x), T (y)⟩. This means that orthog-202

onal transformations rotate the coordinate system203

without changing the length of each vector and the204

angles between vectors (as shown in Figure 1(B)).205

In mathematics, an orthogonal transformation can206

be represented by an orthogonal matrix A ∈ Rn×n,207

i.e., T (x) = Ax.208

Previous KGE method (Tang et al., 2020) have209

represented each relation as a orthogonal matrix210

through Gram-Schmidt process for rotation trans-211

formation. However, this approach increases the212

number of parameters required to express relations213

and incurs computational overhead due to the ma-214

trix orthogonalization process.215

3.3 Rodrigues’ Rotation Formula 216

Given the limitations of Hamilton’s Quaternions 217

and orthogonal transformation, a more concise and 218

effective method for link prediction is highly desir- 219

able. 220

In mathematics, Rodrigues’ Rotation Formula 221

(Wang and Dai, 2023) constitutes an efficient al- 222

gorithm for rotating a vector around a specified 223

axis by a given angle in 3D real number system (as 224

shown in Figure 1(C)). ∀v ∈ R3, a rotated vector 225

vrot is expressed as: 226

vrot = Rot(v,k, θ)

= cos(θ)v + sin(θ)k× v + (1− cosθ)(k · v)k,
(1) 227

where k ∈ R3 stands for a unit vector defining an 228

axis of rotation; θ ∈ R1 represents the angle by 229

which v is rotated about the axis k according to 230

the right-hand rule; × and · denote cross product 231

and dot product, respectively. As such, any rotation 232

operation in 3D space can be accomplished using a 233

single unit vector and an angle. 234

4 Methodology 235

Formally, let E represent the set of entities, R 236

refers to the set of relations, and T stands for the 237

set of timestamps. A temporal knowledge graph 238

G is defined as a collection of factual quadruples 239

{(s, r, o, τ)}, where s, o ∈ E , r ∈ R, and τ ∈ T . 240

Our goal is to predict the object for (s, r, ?, τ), and 241

the subject for (?, r, o, τ). Given all facts occurring 242

at time τ , we denote es, er, eo, eτ as the embed- 243

ding of s, r, o, τ , respectively, each of which ∈ Rn. 244

To achieve 3D transformations, we uniformly par- 245

tition each embedding into a combination of local 246

vectors with a magnitude of 3 for processing, rep- 247
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(A) The issue of directly using rotation. (B) Our solution

Figure 2: Illustration of Normalized Scaling. (A) Given
a point s, direct rotation operations will confine s to the
surface of a 3D hypersphere with radius ||s||, limiting
spatial flexibility. (B) To address this, we perform a
dynamical scaling operation on s before rotating. This
scales the coordinates of s along each axis to obtain
new coordinates ss, which serve as the starting point for
subsequent rotations.

resented as:248

e =

n
3
−1⊕

i=0

e[3i: 3i+3], (2)249

where e denotes es, er, or eτ ;
⊕

denotes the con-250

catenation. Then, we propose a 3D rigid body251

transformation (TERRF) for temporal KGE, con-252

sisting of two operations: Normalized Scaling and253

Rotation via Rodrigues’ Rotation Formula. Note254

that the rotation implemented in this paper just in-255

volves rotating around an axis from the origin by a256

certain angle.257

4.1 Normalized Scaling258

Due to the limitations of direct rotation operations259

(see Figure 2 (A)), we apply a Normalized Scaling260

operation before performing rotations (as shown261

in Figure 2 (B)). Such an operation is employed to262

determine an initial position for each entity accord-263

ing to different relations and timestamps. Specif-264

ically, we design a scaling factor (a unit vector)265

in 3D space. First, we define the fusion vector266

er,τ = er + eτ . Then, for the i-th segment vector267

of the subject entity, the scaling vector is computed268

as:269

ẽs
[3i: 3i+3] =

h(er,τ )
[3i: 3i+3]

||h(er,τ )[3i: 3i+3]||
◦es[3i: 3i+3], (3)270

where h(·) denotes a linear layer; all of es[3i: 3i+3],271

h(er,τ )
[3i: 3i+3] and ẽs

[3i: 3i+3] ∈ R3; ◦ refers to272

the Hadamard (or element-wise) product. The rea-273

son for normalizing the scaling factors is to prevent274

overfitting.275
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Given (s1, r, τ, ? ) and  (s2, r, τ, ? ) , they have the same object: o
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(A) The issue of only integrating r, 

τ for rotation construction. (B) Our solution

Figure 3: Illustration of axis and angle constructions,
where ss1, ss2 are the positions after applying Normalized
Scaling to s1 and s2; sr1 and sr2 are the rotated positions.
(A) Constructing the direction axis k and rotation angle
θ solely from the relation r and timestamp t might make
it difficult to simultaneously position sr1 and sr2 close to
the object o. (B) To address this, we incorporate entity
features s into the construction process, allowing the ro-
tation process to adapt to changes in entity information
and enhancing spatial flexibility.

4.2 Rotation via Rodrigues’ Rotation Formula 276

Subsequently, we employ a more flexible 3D space 277

transformation to achieve the reasoning process for 278

TKGC. Our goal is to use a simpler way to charac- 279

terize rotations in 3D space. Unlike existing meth- 280

ods that utilize hypercomplex numbers or orthogo- 281

nal matrices, we construct only an Axis Vector and 282

Angle Value to perform rotation operations. We 283

naturally consider relation r and timestamp τ as 284

the necessary factors for representing the geometric 285

transformation. However, as shown in Figure 3 (A), 286

when r and τ are fixed, the spatial transformation 287

of the subject entity will also be fixed. To prevent 288

the limitations arising from using the same axis and 289

angle for all entities, we incorporate entity features 290

into the construction of the rotation axis and angle 291

(as shown in Figure 3 (B)). As such, we define a 292

new fusion vector es,r,τ = es + er + eτ 293

Axis Vector. The axis vector is defined by a nor- 294

malization process: 295

k[3i: 3i+3] =
Fk(es,r,τ )

[3i: 3i+3]

||Fk(es,r,τ )[3i: 3i+3]||
, (4) 296

where Fk(·) is a linear layer that incorporates es, 297

er, and eτ ; the segment k[3i: 3i+3] is a unit vector, 298

which reflects the i-th direction of the axis around 299

which ẽs
[3i: 3i+3] will rotate. 300

Angle Value. We obtain the angle representation 301
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by converting es,r,τ to302

θi = 2π ◦ σ(F(Fθ(αes,r,τ )
[3i: 3i+3])), (5)303

where θi ∈ R1 is the i-th calculated angle; σ(·)304

is the Tanh function to constrain θi ∈ (−2π, 2π);305

Fθ(·) denotes a linear layer; F(·) is employed to306

further project the segment of the hidden represen-307

tation from R3 to R1; α is the angle weight, which308

is implemented as a hyperparameter.309

After getting the axis vector and angle value, we310

apply the Rodrigues’ Rotation Formula to ẽs, and311

obtain the rotated vector e⋆s:312

e⋆s
[3i: 3i+3] = Rot(ẽs

[3i: 3i+3],k[3i: 3i+3], θi). (6)313

The score function is defined as the inner product314

between e⋆s and eo:315

ϕ(s, r, o, τ) =< e⋆s, eo > . (7)316

4.3 Training317

With the scoring function ϕ(s, r, o, τ), the likeli-318

hood of any o ∈ E answering the query (s, r, ?, τ)319

can be computed as:320

P(o|s, r, τ) = expϕ(s, r, o, τ)∑
s′∈E expϕ(s

′, r, o, τ)
, (8)321

and the reverse inferring likelihood for query322

(?, r, o, τ) is similarly defined as P(s|o, r−1, τ),323

where r−1 denotes the reverse relation of r. As324

a widely used strategy in TNTComplEx (Lacroix325

et al., 2020) and TCompoundE (Ying et al., 2024),326

we employ reciprocal learning for training TERRF.327

The loss function is defined as:328

Lu = − logP(o|s, r, τ)− logP(s|o, r−1, τ)

+ λu(||es||33 + ||e⋆s||33 + ||eo||33)
(9)329

where the N3 regularization is applied to the origi-330

nal entity embeddings es, eo, and the transformed331

entity embedding e⋆s; λu is the weight coefficient.332

Following TNTComplEx (Lacroix et al., 2020), we333

employ a smoothing temporal regularizer to ensure334

that neighboring timestamps have similar represen-335

tations, which is calculated as:336

Lτ =
1

Nτ − 1

Nτ−1∑
i=1

||eτ(i+1) − eτ(i)||33 (10)337

The total loss function is defined as:338

L = Lu + λτLτ (11)339

where λτ represents the weight coefficient for reg-340

ularizer.341

ICEWS14 ICEWS05-15 GDELT

#E 7,128 10,488 500
#R 230 251 20
#T 365 4,017 366

#Train 72,826 386,962 2,735,685
#Valid 8,963 46,092 341,961
#Test 8,941 46,275 341,961

Table 1: Statistics of TKGC datasets in the experiment.

5 Experiments 342

5.1 Datasets 343

We evaluate the performance on three public 344

TKG benchmark datasets: ICEWS14, ICEWS05- 345

15, and GDELT. Among them, ICEWS14 and 346

ICEWS05-15 are derived from Integrated Crisis 347

Early Warning System (ICEWS) dataset (Lauten- 348

schlager et al., 2015). ICEWS is an event-based 349

KG that contains political facts starting from 1995, 350

with ICEWS14 focusing on events in 2014 and 351

ICEWS05-15 covering events from 2005 to 2015. 352

GDELT is a subset of the Global Database of 353

Events, Language, and Tone (GDELT) (Leetaru 354

and Schrodt, 2013). GDELT integrates information 355

from diverse sources, encompassing factual entries 356

with daily timestamps ranging from April 1, 2015, 357

to March 31, 2016. Notably, GDELT focuses on 358

the coverage to the 500 most common entities and 359

the 20 most frequent relations. The summary of 360

the datasets are listed in Table 1. 361

5.2 Evaluation Protocol 362

Given a test quadruple (s, r, o, τ), we predict the 363

missing subject or object entity for the two queries 364

(s, r, ?, τ) and (?, r, o, τ). During inference, we 365

employ the time-aware filtered setting (Lacroix 366

et al., 2020; Xu et al., 2020; Chen et al., 2022; 367

Ying et al., 2024) to measure the performance in 368

the TKGC task. 369

We adopt the widely used evaluation metrics, 370

including Mean Reciprocal Rank (MRR) and 371

Hits@N (Qiao and Hu, 2020). MRR is the av- 372

erage of the reciprocals of the ranks for all correct 373

triples. The Hits@N is the proportion of the top N 374

of all correct triples rankings. Notably, the higher 375

values of MRR and Hits@N indicate better per- 376

formances. We set N=1, 3, 10 for Hits@N in this 377

experiment. For convenience, we denote Hits@N 378

as H@N (N∈ {1, 3, 10}) throughout this paper. 379
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5.3 Experimental Setup380

We use Python 3.8 and Pytorch framework to im-381

plement our model. All computations are done on382

a single NVIDIA GeForce RTX 2080 Ti GPU for383

the sake of fairness. We train our model using the384

Adagrad (Duchi et al., 2011) optimizer and choose385

the optimal hyperparameters using a grid search386

method according MRR on the validation set.387

Finally, the optimal configurations of our model388

are as follows. The embedding dimensionality is389

set to 6000 for all the datasets. For the ICEWS14390

dataset, the learning rate, batch size, and the max391

epoch are set to 0.01, 4000, and 400. We set the392

learning rate, batch size, and max epoch to 0.08,393

6000, 100 in ICEWS05-15. Regarding GDELT,394

the learning rate, batch size, and the max epoch are395

set to 0.05, 2000, and 50. Other important optimal396

hyperparameters for TERRF are shown as follows:397

• ICEWS14: λu = 0.01, λτ = 1, α = 1;398

• ICEWS05-15: λu = 0.05, λτ = 1, α = 0.1;399

• GDELT: λu = 0.001, λτ = 0.001, α = 0.1.400

5.4 Baselines401

We compare our model TERRF with traditional402

static KGE models and representative temporal403

KGE models with interpolation setting. The static404

KGE models include TransE (Bordes et al., 2013),405

DistMult (Yang et al., 2014), ComplEx (Trouil-406

lon et al., 2016), and SimplE (Kazemi and Poole,407

2018). The temporal KGE models include TTransE408

(Leblay and Chekol, 2018), DE-SimplE (Goel et al.,409

2020), TA-DisMult (García-Durán et al., 2018),410

HyTE (Dasgupta et al., 2018), ChronoR (Sadeghian411

et al., 2021), TComplEx (Lacroix et al., 2020),412

TNTComplEx (Lacroix et al., 2020), TGAP (Jung413

et al., 2020), TeLM (Xu et al., 2021), BoxTE (Mess-414

ner et al., 2022), TLT-KGE (Zhang et al., 2022), Ro-415

tateQVS (Chen et al., 2022), TARGAT (Xie et al.,416

2023), TeAST (Li et al., 2023), and TCompoundE417

(Ying et al., 2024).418

Notably, the TCompoundE model, which inte-419

grates translation and scaling operations is highly420

related to our work. Other recent temporal KGE421

models that represent TKGs in complex or hyper-422

complex space (e.g., TeLM, RotateQVS, TLT-KGE,423

TeAST) are also associated with our TERRF, since424

the rotation learning is involved. Additionally, we425

also compare our approach with the models utiliz-426

ing graph neighborhood information (i.e., T-GAP,427

and TARGAT).428

5.5 Main Results 429

Table 2 presents the link prediction results of our 430

proposed TERRF and various baselines on three 431

benchmarks. Generally, TERRF outperforms all 432

the baselines on ICEWS14, ICEWS05-15, and 433

GDELT across all the metrics. These results 434

demonstrate the superiority of the TERRF model. 435

Compared to traditional static KGE models, our 436

model TERRF significantly surpasses all these 437

baselines, which shows the usefulness of time in- 438

formation. Compared to the most related models, 439

such as RotateQVS (Chen et al., 2022), TeAST 440

(Li et al., 2023) and TCompoundE (Ying et al., 441

2024), TERRF obtains significant improvement 442

gains. The reason is that our method achieves a 443

more flexible spatial transformation, thereby mod- 444

eling complex relational and temporal information 445

in TKGs. Additionally, TERRF also obtains sub- 446

stantially better results than the methods integrat- 447

ing graph neighborhood information, such as T- 448

GAP (Jung et al., 2020), and TARGET (Xie et al., 449

2023). It indicates that the rigid transformation 450

of our method is indeed useful. Notably, we ob- 451

serve that TERRF outperforms the other baselines 452

by large margins in GDELT dataset. Particularly, 453

TERRF achieves relative improvements of 3.6%, 454

5.0%, 2.7%, 0.8% for MRR, H@1, H@3, and 455

H@10 compared with TCompoundE. This is be- 456

cause our model constructs rotation operations us- 457

ing three elements: entity, relation, and timestamp, 458

allowing spatial transformations to vary according 459

to entity characteristics (see Section 6.3). To con- 460

clude, the experimental results across three datastes 461

verify the ability of our proposed TERRF model. 462

6 Analysis 463

6.1 Ablation Study 464

In order to explore each component of our proposed 465

TERRF, we conduct ablation study experiments. 466

The results are reported in Table 3, where "w/o NS" 467

denotes the model without using the Normalized 468

Scaling operation, and "w/o RR" denotes the model 469

without using the Rotation operation via Rodrigues’ 470

Rotation Formula. As shown in Table 3, we can 471

see that the two ablation variants perform worse 472

than the proposed TERRF model across all three 473

datasets. The reason for this can be attributed to 474

two factors: (1) Merely employing a rotation op- 475

eration is insufficient due to the fixed distance to 476

the origin of the coordinate system, whereas the 477

Normalized Scaling operation provides a proper 478
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Models ICEWS14 ICEWS05-15 GDELT

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.326 0.154 0.430 0.644 0.330 0.152 0.440 0.660 0.155 0.060 0.178 0.335
DistMult 0.441 0.325 0.498 0.668 0.457 0.338 0.515 0.691 0.210 0.133 0.224 0.365
ComplEx 0.442 0.400 0.430 0.664 0.464 0.347 0.524 0.696 0.213 0.133 0.225 0.366
SimplE 0.458 0.341 0.516 0.687 0.478 0.359 0.539 0.708 0.206 0.124 0.220 0.366

TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616 0.115 0.0 0.160 0.318
DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403
TA-DisMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728 0.206 0.124 0.219 0.365
HyTE 0.297 0.108 0.416 0.655 0.315 0.116 0.445 0.681 0.118 0.0 0.165 0.326
ChronoR 0.625 0.547 0.669 0.773 0.675 0.596 0.723 0.820 - - - -
TComplEX 0.610 0.530 0.660 0.770 0.660 0.590 0.710 0.810 0.340 0.294 0.361 0.498
TNTComplEx 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810 0.349 0.258 0.373 0.502
T-GAP 0.610 0.509 0.677 0.790 0.670 0.568 0.743 0.845 - - - -
TeLM 0.625 0.545 0.673 0.774 0.678 0.599 0.728 0.823 0.350 0.261 0.375 0.504
BoxTE 0.613 0.528 0.664 0.763 0.667 0.582 0.719 0.820 0.352 0.269 0.377 0.511
RotateQVS 0.591 0.507 0.642 0.754 0.633 0.529 0.709 0.813 0.270 0.175 0.293 0.458
TLT-KGE 0.634 0.551 0.684 0.786 0.690 0.609 0.741 0.835 0.358 0.265 0.388 0.543
TARGAT 0.631 0.545 0.683 0.793 0.685 0.608 0.736 0.825 - - - -
TeAST 0.637 0.560 0.682 0.782 0.683 0.604 0.732 0.829 0.371 0.283 0.401 0.544
TCompoundE 0.644 0.561 0.694 0.795 0.692 0.612 0.743 0.837 0.433 0.347 0.469 0.595

TERRF (Ours) 0.650 0.570 0.698 0.800 0.701 0.621 0.752 0.847 0.469 0.397 0.496 0.603

Table 2: Summary of results on three datasets, namely ICEWS14, ICEWS05-15, and GDELT. The best score is in
bold and the second best is underlined.

Models ICEWS14 ICEWS05-15 GDELT

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TERRF 0.650 0.570 0.698 0.800 0.701 0.621 0.752 0.847 0.469 0.397 0.496 0.631
w/o NS 0.643 0.561 0.693 0.793 0.698 0.618 0.749 0.845 0.453 0.378 0.482 0.593
w/o RR 0.621 0.536 0.671 0.782 0.675 0.588 0.731 0.835 0.416 0.324 0.453 0.592

Table 3: Ablation study on three datasets, , namely ICEWS14, ICEWS05-15, and GDELT. The best score is in bold
and the second best is underlined.

initial position. (2) Utilizing our designed rotation479

strategy via Rodrigues’ Rotation Formula allows480

for more flexible spatial transformations, thus en-481

abling the modeling of more complex relational482

and temporal patterns. Furthermore, we observe483

that individually employing rotation (w/o NS) con-484

sistently outperforms the variant that only utilizes485

Normalized Scaling (w/o RR). This demonstrates486

that our rotation learning strategy plays a more487

crucial role in link prediction. The experimental488

results of the ablation study confirm that both the489

United Scaling and the Rotation via Rodrigues’490

Rotation Formula contribute to improving the per-491

formance of TERRF.492

6.2 Impact of the Normalization for Scaling493

In this section, we investigate the impact of vector494

normalization in the Normalized Scaling. We com-495

Normalization ICEWS14

MRR H@1 H@3 H@10

- 0.641 0.561 0.688 0.790
Min-Max 0.644 0.563 0.692 0.792
Softmax-Weight 0.646 0.565 0.693 0.795
Z-Score 0.648 0.567 0.693 0.798
Vector-Norm (Ours) 0.650 0.570 0.698 0.800

χ = 0.1 0.645 0.567 0.692 0.792
χ = 1 0.641 0.561 0.688 0.790
χ = 10 0.640 0.559 0.688 0.791

Table 4: Results on different normalizations for scaling.

pare our strategy (i.e., convert the scaling factor to 496

a unit vector) with several variants, including one 497

without normalization, and others with different 498

normalization methods: Min-Max normalization, 499

Softmax weighted strategy, and Z-Score technique 500
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M# Elements GDELT

s r τ MRR H@1 H@3 H@10

M1 - - - 0.416 0.324 0.453 0.592

M2 ✓ ✓ 0.411 0.319 0.447 0.589
M3 ✓ ✓ 0.415 0.324 0.451 0.591
M4 ✓ ✓ 0.460 0.380 0.494 0.609
M5 ✓ ✓ ✓ 0.469 0.397 0.496 0.603

Table 5: Results on GDELT dataset in terms of different
constructions of axis and angle of rotation. M1 stands
for the model without using rotation learning.

M# Elements ICEWS05-15

s r τ MRR H@1 H@3 H@10

M1 - - - 0.698 0.618 0.749 0.845

M2 ✓ ✓ 0.694 0.612 0.746 0.844
M3 ✓ ✓ 0.693 0.609 0.746 0.845
M4 ✓ ✓ 0.701 0.620 0.753 0.848
M5 ✓ ✓ ✓ 0.701 0.621 0.752 0.847

Table 6: Results on ICEWS05-15 dataset in terms of
different constructions of axis and angle of rotation. M1
stands for the model without using rotation learning.

(as shown in Table 4). From the results, we find501

that using normalization obtains more performance502

gains compared with the one without normaliza-503

tion, where our proposed Vector-Norm (regards the504

scaling factor as a unit vector) performs the best.505

We speculate that this is due to the use of appropri-506

ate normalization operations, which helps prevent507

overfitting.508

Additionally, there is also a possibility that the509

numerical size of the scaling factor affects the510

results. Therefore, we replace the denominator511

||h(er + eτ )
[3i: 3i+3]|| in Eq. 3 with a constant χ.512

We conduct experiment to investigate the impact513

of changes in χ on the TKGC performance. From514

Table 4, we observe that changes in χ have a mini-515

mal impact on the performance of link prediction,516

which indirectly supports our above conclusion.517

6.3 Analysis of the Rotation Learning518

To explore aspects of rotation learning, we conduct519

experiments on the construction of the axis and520

angle in Rodrigues’ Rotation Formula. We remove521

different elements (i.e., s, r, τ ) to redefine the axis522

vector k and angle θ. These model variants are523

compared in Table 5 and Table 6. From the results,524

we observe that combining all the elements consis-525

tently and significantly enhances the performance526

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Angle weight 

0.30

0.35

0.40

0.45

0.50

0.55

0.60

MRR
H@1
H@3
H@10

Figure 4: Results on GDELT dataset regarding the dif-
ferent angle weight α.

(M5). Additionally, we find that the performance 527

varies when any two elements from s, r, and τ 528

are combined together (M2-4). Notably, simulta- 529

neously combining s and τ is the primary reason 530

for the significant performance improvements (M4 531

vs. M2-3). Nevertheless, it verifies that integrating 532

information of entity, relation and time to construct 533

axis and angle is more stable and effective. 534

Moreover, we also analyze the effect of the angle 535

weight α, which is shown in Figure 4. The results 536

show that when α = 0.05 or 0.1, TERFF obtains 537

the remarkable performances across all the metrics, 538

while the further increasing of α leads to worse 539

results (i.e., α ∈ {0.15, 0.2, 0.25, 0.3}). Neverthe- 540

less, our TERRF beats the one removing rotation 541

operation (α = 0). This indicates that a suitable 542

angle weight can enhance the rotation learning. 543

7 Conclusion 544

This paper proposes to learn embeddings via a 3D 545

rigid body transformation for TKGC task. On the 546

one hand, we utilize a Normalized Scaling opera- 547

tion to set an initial position for entity to provide 548

a more flexible range of rotations. On the other 549

hand, we propose a efficient rotation strategy via 550

Rodrigues’ Rotation Formula, which merely re- 551

quires an axis and angle representation. Empirical 552

results show that our proposed TERRF achieves 553

the promising results and outperforms state-of-the- 554

art models. Furthermore, we have mathematically 555

derived that TERRF can model multiple important 556

temporal relation patterns. 557
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Limitations558

Despite our method enabling more efficient im-559

plementation of rotation operations and achieving560

significant results, the current application of Ro-561

drigues’ Rotation Formula is limited to rotations in562

three-dimensional space. Efficient spatial transfor-563

mations in higher dimensions remain a significant564

challenge. Additionally, while our method partially565

avoids the dimension expansion of entities and rela-566

tions, which would lead to a total parameter count567

highly dependent on the number of entities and568

relations, the parameter count of our method still569

largely depends on the three linear transformation570

matrices used to convert scaling factors, direction571

axes, and angles, as determined by the embedding572

dimension. In the future, we will continually solve573

these limitations for a better temporal knowledge574

graph embedding solution.575
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A Proof of Relation Pattern Modeling798

In this section we provide the proofs that our799

TERRF can model various relational patterns800

A.1 Definition of Relation Patterns801

Definition 1: Relation r is symmetric, if ∀s, o, τ ,802

(s, r, o, τ) ∧ (o, r, s, τ) ∈ G;803

Definition 2: Relation r is asymmetric, if804

∀s, o, τ , (s, r, o, τ) ∈ G ∧ (o, r, s, τ) /∈ G;805

Definition 3: Relation r1 and r2 are asymmetric,806

if ∀s, o, τ , (s, r1, o, τ) ∧ (o, r2, s, τ) ∈ G;807

Definition 4: Relation r1 and r2 are evolving808

over time from timestamp τ1 to timestamp τ2, if809

∀s, o, τ , (s, r1, o, τ1) ∧ (o, r2, s, τ2) ∈ G;810

Definition 5: Relation r reflects the many-to-one811

pattern when s1 and s2 are simultaneously associ-812

ated with o at the timestamp τ , i.e., (s1, r, o, τ)∧813

(s2, r, o, τ) ∈ G.814

A.2 Matrix Notation for Rodrigues’ Rotation815

Formula816

∀v ∈ R3, the rotated vector vrot using Rodrigues’817

Rotation Formula can be expressed in matrix form818

as:819
vrot = Rot(v,k, θ)

= Rv,
(12)820

where821

R = I+ (sin θ)K+ (1− cos θ)K2, (13)822

and I ∈ R3×3 is the identity matrix, while K ∈ 823

R3×3 denotes the skew-symmetric matrix gener- 824

ated by the rotation vector k. 825

Therefore, Eq. 6 can be rewritten as: 826

e⋆s
[3i: 3i+3] = Rot(ẽs

[3i: 3i+3],k[3i: 3i+3], θi)

= R(i)
s,r,τ ẽs

[3i: 3i+3]

= R(i)
s,r,τ

(
h(er,τ )

[3i: 3i+3]

||h(er,τ )[3i: 3i+3]||
◦ es[3i: 3i+3]

)
= R(i)

s,r,τ

(
s(i)r,τ ◦ es[3i: 3i+3]

)
=
(
R(i)

s,r,τ ◦ s(i)r,τ

)
es

[3i: 3i+3]

= M(i)
s,r,τes

[3i: 3i+3]

(14) 827

where M
(i)
s,r,τ ∈ R3×3 represents a matrix that con- 828

tains all the spatial transformation operations in 829

the TERRF model. To facilitate subsequent ex- 830

pressions, we uniformly use es, Ms,r,τ and eo to 831

represent e[3i: 3i+3]
s , M[3i: 3i+3]

s,r,τ and e
[3i: 3i+3]
o , re- 832

spectively. 833

A.3 Symmetric Pattern 834

For the symmetric pattern, we have ϕ(s, r, o, τ) = 835

ϕ(o, r, s, τ), and we derive: 836

Ms,r,τeseo
T = Mo,r,τeoes

T

⇒ M−1
o,r,τMs,r,τ = I or M−1

s,r,τMo,r,τ = I.
(15) 837

This demonstrates that the TERRF model can cap- 838

ture the symmetric pattern when Ms,r,τ and Mo,r,τ 839

are inverse matrices. 840

A.4 Asymmetric Pattern 841

For the asymmetric pattern, we have ϕ(s, r, o, τ) ̸= 842

ϕ(o, r, s, τ). According to the proof in Ap- 843

pendix A.3, the TERRF model can capture the 844

asymmetric pattern when Ms,r,τ and Mo,r,τ are 845

not inverse matrices. 846

A.5 Inverse Pattern 847

In the inverse pattern, ϕ(s, r1, o, τ) = ϕ(o, r2, s, τ) 848

holds, leading to: 849

Ms,r1,τeseo
T = Ms,r2,τeseo

T

⇒ M−1
s,r2,τMs,r1,τ = I or M−1

s,r1,τMs,r2,τ = I.
(16) 850

This shows that the TERRF model can capture 851

the inverse pattern when Ms,r1,τ and Ms,r2,τ are 852

inverse matrices. 853
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A.6 Temporal Evolution Pattern854

For the temporal evolution pattern, we have855

ϕ(s, r1, o, τ1) = ϕ(s, r2, o, τ2), resulting in:856

Ms,r1,τ1eseo
T = Ms,r2,τ2eseo

T

⇒ M−1
s,r2,τ2Ms,r1,τ2 = I or M−1

s,r1,τ1Ms,r2,τ2 = I.
(17)857

This indicates that the TERRF model can capture858

the temporal evolution pattern when Ms,r1,τ1 and859

Ms,r2,τ2 are inverse matrices.860

A.7 Many-to-One Pattern861

In this scenario, we have ϕ(s1, r, o, τ) =862

ϕ(s2, r, o, τ), as illustrated in Figure 3.863

First, let us investigate the case where entity in-864

formation is not incorporated into the spatial trans-865

formation construction of TERRF. Specifically, we866

replace Ms,r,τ with Mr,τ , which corresponds to867

M7 in Table 5. By definition, we derive:868

Mr,τes1eo
T = Mr,τes2eo

T

⇒ M−1
r,τMr,τes1eo

T = es1eo
T = es2eo

T

⇒ es1 = es2

(18)869

As shown above, when only using the relation and870

timestamp for transformation (i.e., Mr,τ ), the em-871

beddings of s1 and s2 will converge to the same872

value. However, in many cases, there are signifi-873

cant semantic differences between s1 and s2. Thus,874

this approach cannot adequately model the many-875

to-one pattern.876

When using our strategy (i.e., Ms,r,τ ), we have:877

Ms1,r,τes1eo
T = Ms2,r,τes2eo

T

⇒ Ms1,r,τes1 = Ms2,r,τes2

⇒ es1 = M−1
s1,r,τMs2,r,τes2 .

(19)878

Therefore, we observe that the TERRF model879

can capture the many-to-one pattern when es1 =880

M−1
s1,r,τMs2,r,τes2 .881
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