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ABSTRACT

Hierarchical goal-based reinforcement learning (HGRL) is a promising approach
to learn a long-horizon task by decomposing it into a series of subtasks of achiev-
ing subgoals in a shorter horizon. However, the performance of HGRL crucially
depends on the design of intrinsic rewards for these subtasks: as frequently ob-
served in practice, short-sighted reward designs often lead the agent into undesir-
able states where the final goal is no longer achievable. One potential remedy to
the issue is to provide the agent with a means to evaluate the achievability of the fi-
nal goal upon the completion of the subtask; yet, evaluating this achievability over
a long planning horizon is a challenging task by itself. In this work, we propose
a subtask reward scheme aimed at bridging the gap between the long-horizon pri-
mary goal and short-horizon subtasks by incorporating a look-ahead information
towards the next subgoals. We provide an extensive empirical analysis in MuJoCo
environments, demonstrating the importance of looking ahead to the subsequent
sub-goals and the improvement of the proposed framework applied to the existing
HGRL baselines.

1 INTRODUCTION

A variety of real-world sequential decision-making problems can be conceptualized as the pursuit of
specific goals, e.g., navigating a walking robot (Schaul et al., 2015; Nachum et al., 2018) or moving
an object using a robotic arm (Andrychowicz et al., 2017) to a specific position. Goal-conditioned
reinforcement learning (RL) addresses these challenges by developing goal-conditioned policies that
maximize returns with respect to the target goal. This approach offers a versatile policy applicable
to a range of distinct problems, each defined by its respective goal. Besides this, goal-conditioned
RL enables hierarchical goal-based RL (HGRL) (Eysenbach et al., 2019; Huang et al., 2019; Zhang
et al., 2020; Kim et al., 2021; Lee et al., 2022), decomposing a complex long-horizon goal into a
series of manageable short-horizon subgoals.

However, the efficacy of HGRL crucially hinges on the design of rewards associated with these
subtasks. Empirical observations highlight that myopic reward designs often misguide the agent,
leading it to unfavorable states where the ultimate goal becomes unattainable, despite being good
at accomplishing subgoals. We illustrate this problem with Figure 1: in (A), the agent achieved
subgoal sg1 and sg2 while it could not process to the final goal g since it tumbled around sg2; but
in (B) it achieved all the subgoals and final goal. In both (A) and (B), a myopically designed reward
function would give the same reward for the segment between sg1 and sg2. Such a myopic reward
often misguides the agent to learn how to tumble around sg2 from (A).

In particular, this problem can be intensified by hindsight experience replay (HER) (Andrychowicz
et al., 2017), which is a common practice for further acceleration of HGRL. The key idea of HER it
to augment data by transforming any trajectory into a virtually successful one by shifting subgoals
or goals. Hence, it would generate more augmented segments with subgoal sg2 using (A) rather
than (B) since the agent struggled around sg2 quite a while in (A) but it just passed sg2 in (B).
Consequently, this misguides the agent on sg2 whereas HER hindsights the beneficial experience to
sg1 in (A).
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Figure 1: A motivating example. In both (A) and (B), a tripod agent achieved sg2, whereas it
malfunctioned in the end of (A). Hence, to mitigate adverse impact of learning (A), we need a
forward-looking reward that discriminates the segments to sg2 in (A) and (B) by assessing the fea-
sibility of achieving the final goal in advance.

The challenge lies in the intricate balance between providing the necessary guidance to reach sub-
goals and ensuring that these intermediate accomplishments align with the pursuit of the final goal.
To mitigate this issue, providing the agent with a mechanism to estimate the feasibility of reaching
the final goal upon completing a subgoal seems promising. However, such an estimation would be
unavailable or unstable in the beginning, in particular, when the goal is challenging. Paradoxically,
the estimation is more demanding as the ultimate goal is more difficult. In addition, the design of re-
ward depending on both subgoal and goal necessitates the policy being aware of them, which dilutes
the benefit from the goal decomposition in HGRL. This motivates us to devise an effective proxy for
the feasibility of the ultimate goal.

To this end, we devise a simple yet effective design of reward for subgoals, called forward-looking
reward (FLR), which is also easily applicable to most of existing HGRL methods. To be specific,
we let the agent simply check if it can proceed to a potential next subgoal slightly distant from
the current subgoal, instead of assessing the feasibility of the final goal. By doing so, we guide the
agent towards each subgoal while favoring states and actions conducive to accomplishing subsequent
subgoals on the path to the final objective.

To substantiate our proposed approach, we present an extensive empirical analysis conducted within
the MuJoCo simulation environments. Our results underscore the critical importance of considering
and incorporating a forward-looking perspective toward subsequent sub-goals in the sub-task reward
design. We also verify the efficacy of the proposed short-term look-ahead as an affordable proxy for
the long-term look-ahead. Furthermore, we demonstrate the superior performance of our proposed
framework over existing HGRL baselines, in particular, when the training begins with unskilled
agents even for subgoals. This affirms the effectiveness of our forward-looking approach in facili-
tating more efficient HGRL as we enable HGRL with immature agents, while the previous methods
(Kim et al., 2023; Lee et al., 2022; Kim et al., 2021) often require a certain level of proficiency.

Our main contributions are summarized as follows:

• We show that the previous HGRL methods overlook the importance of forward-looking
rewards for subgoals, and thus often lead to short-sighted agents, just optimizing immediate
subgoals while neglecting the ultimate goal in future.

• To address this inefficiency, we introduce FLR provisioning an effective proxy of the fea-
sibility of the final goal. FLR is simply applicable to most of HGRL methods.

• The extensive experiments analyze the problem of not forward-looking in HGRL, and jus-
tify the proposed FLR, by demonstrating the improvement of the proposed framework ap-
plied to the existing HGRL baselines, in particular, when starting from unskilled agents.

Related works As mentioned, designing subtasks is one of the most prominent components in
hierarchical RL, to make subtasks quickly affordable while minimizing the risk of misalignment to
the ultimate task. To this end, there have been pioneer works to learn or meta-learn such subtasks
(Nachum et al., 2018; Florensa et al., 2017; Vezhnevets et al., 2017; Li et al., 2020) or directly
sub-policies (Vezhnevets et al., 2016; Bacon et al., 2017), and to define subtasks directly using the
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advantage function comparing the values of the current and previous states to complete the task (Li
et al., 2019). Meanwhile, the goal-based RL naturally provides a form of subtasks, described by
subgoals sharing the same space of goals, where the goal is defined by a desired feature of states.
Despite the misalignment issue illustrated in Figure 1, this is a reasonable practice as the goal would
be carefully tailored and specified by users, and it requires no extra efforts to seek other subtasks
(Nachum et al., 2018; Florensa et al., 2017; Vezhnevets et al., 2017; Li et al., 2020). Hence, in this
work, we aim to provide an effective heuristic to bridge the misalignment gap from inheriting the
predefined description of goals as that of subgoals.

2 METHOD

2.1 PROBLEM FORMULATION

We consider a goal-conditioned Markov decision process (gMDP), defined by a tuple M :=
hS,A, p;G, r, �; ⇢0, ⇢gi, where S is the state space, A is the action space, p(st+1|st, at) is the
(latent) stationary dynamics function, G is the goal space, r is the (extrinsic) goal-dependent reward
function, � 2 (0, 1) is the discounted reward, ⇢0 is the initial state distribution, and ⇢g is the goal
distribution. The goal is often described by a desired feature of states (Kim et al., 2023; Lee et al.,
2022; Kim et al., 2021). To be specific, the goal is often encoded in reward function r for rt+1 as
follows:

r(st+1, g) :=

⇢
0 if k�(st+1)� gk < �

�1 otherwise
, (1)

where � is a feature extractor (e.g., in navigation tasks, �(st+1) is the agent location while state st+1

contains more information than the location.) and � > 0 is a threshold determining the success of
achieving a goal.

The reward design given in (1) guides the agent to obtain the desired feature (that matches the goal)
and maintain it. We aim to find a policy ⇡ : S⇥G 7! [0, 1]A that maximizes the following objective
J(⇡):

J(⇡) := E⇢0,⇢g [V⇡(s0; g)] , V⇡(s0; g) := E⇡,g

" 1X

t=0

�
t
rt+1 | s0

#
(2)

where the expectation E⇢0,⇢g is taken over the initial state distribution ⇢0 and the goal distribution
⇢g , and V⇡(s0; g) is the value function of goal-conditioned policy ⇡(·; g) for goal g.

Policy hierarchy A standard hierarchy of policy ⇡ = (⇡h,⇡l) consists of high-level policy ⇡h :
S ⇥ G 7! G and low-level policy ⇡l : S ⇥ G 7! [0, 1]A on different time horizons. Specifically,
at every k steps, the high-level policy ⇡h(ski, g) chooses i-th subgoal sgi 2 S to guide the low-
level policy for the next k-steps, i.e., action at ⇠ ⇡l(st, sgi) for t 2 [ki, ki + k). This enables a
decomposition of the RL problem in (2) into ones over shorter horizons: (i) high-level RL for ⇡h

over transitions {(ski, sgi, rhi+1, ski+k)}1i=0 of a high-level horizon indexed by i; and (ii) low-level
RL for ⇡l on k transitions {(st, at, rlt+1, st+1)}ki+k�1

t=ki , where the reward r
h and r

l are the key
design components to reduce the discrepancy between the original and decomposed problems. For
the ease of presentation, we consider an HGRL framework that repeatedly alternates two different
RL problems to improve high-level ⇡h and low-level ⇡l, respectively, considering the other is fixed.

The key challenge is to design the intrinsic low-level reward r
l, and we propose our method

for designing r
l in the next section. For the high-level policy, we can define the high-level re-

ward as r
h
i+1 :=

Pk�1
t=0 �

t
rki+t+1 with a discount factor �

k. We can easily check the equiva-
lence between the original value function V(⇡h,⇡l)(s; g) and the high-level one V

h
⇡h
(s; g,⇡l) :=

E(⇡h,⇡l),g[
P1

i=0 �
ki
r
h
i+1], and thus between the original objective J((⇡h,⇡l)) and the high-level

objective function Jh(⇡h;⇡l) = E⇢0,⇢g

⇥
V

h
⇡h
(s0; g,⇡l)

⇤
. Besides using the rewards from the en-

vironment for the high-level policy ⇡h as in (Kim et al., 2021; Zhang et al., 2020; Nachum et al.,
2018), we can also employ a shortest path algorithm on a graph of goals as ⇡h (Kim et al., 2023;
Nasiriany et al., 2019; Huang et al., 2019). In our experiments, we use the latter formulation.
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2.2 FORWARD-LOOKING REWARD DESIGN FOR LOW-LEVEL POLICY

In this section, we propose the forward-looking reward (FLR) shaping that guides the low-level
agent to consider the achievability of the final goal with respect to the current subgoal or the state.
The key difference of our reward shaping from the existing ones, which use the form (1) as is, is
to exploit the future outcomes after reaching the given subgoal, i.e., it is forward-looking. To this
end, we first describe an idealized reward function that assumes access to the true value function of
the high-level policy. Next, we describe our practical implementation to estimate the value function
using a proxy model.

Reward with true value function. We first describe the desired reward function when one
has access to the true value function, i.e., the expected reward upon reaching the given sub-
goal. To be specific, we consider reward design for the low-level policy ⇡l on the k transitions
{(st, at, rlt+1, st+1)}ki+k�1

t=ki given subgoal sgi = ⇡h(ski, g) from the high-level policy for goal g,
as follows:

r↵(st+1, sgi, g) :=

⇢
↵V⇡(st+1; g) if k�(st+1)� sgik < �

�1 otherwise
, (3)

where V⇡(st+1; g) is the value of state st+1 under policy ⇡ = (⇡h,⇡l) for the final goal g. The in-
tention behind this reward design r↵ is to drive the low-level policy for subgoal sgi while preferring
states that are advantageous to achieve the final goal g.

The choice of ↵ The choice of ↵ controls the priority on the subgoal over the final goal. Note that
the reward r↵ with ↵ = 0 reduces to the reward in (1), which neglects the final goal. However, as
illustrated in Figure 1, the achievability of subsequent subgoals sgi+1, sgi+2, . . . , and the final goal
g must be taken into account to successfully complete the original long-horizon task.

Therefore, we set ↵ > 0, which guides the low-level agent to the favorable states to the final goal g
after reaching the subgoal sgi. However, noting that V⇡(st+1; g)  0, overly large value of ↵ would
result in a misleading reward such that �1 > ↵V⇡(st+1; g), demotivating the agent to achieve the
subgoal. To eliminate such a misleading rewarding, we propose a small but positive value of ↵, in
particular, bounded by (1 � �). The upper bound (1 � �) is from the lower bound of the value
function, V⇡(st+1; g) � � 1

1�� . With the choice of ↵ 2 (0, 1� �], we can guarantee that the reward
is always informative, i.e.,

�1  ↵V⇡(s; g) , (4)

which ensures that the reward function keeps attracting the low-level agent around the subgoal cu-
rated by the high-level policy. The same intention can be alternatively implemented as r

l
t+1 =

r�(st, st+1, g) = �V⇡(st+1; g) � V⇡(st; g) + �r(st+1, sgi) that continuously consults the value
function, c.f., (Li et al., 2019). However, such frequent access to the value function might be prone
to unstable learning as the agent simultaneously learns the value function.

Forward-looking reward (FLR) with a proxy for V⇡(s; g) Referring the value function V⇡(s; g)
provides a beneficial provision to the low-level policy on the final goal g. However, the estimate
of V⇡(s; g) is not informative at the beginning, in particular, when goal g is challenging, c.f., Fig-
ure 5(b). In addition, to learn RL problems associated with r↵(s, sgi, g) in (3), we may need to
redefine the low-level policy as ⇡l(s, sgi, g) rather than ⇡l(s, sgi) agnostic to g. This requires an
additional complication to train the low-level policy.

These limitations of r↵ with V⇡(s; g) motivate us to devise a proxy of V⇡(s; g) without specification
on g. For an effective proxy, we propose to replace the final goal g with a potential next subgoal in
an affordable range. Specifically, the proposed reward for rlt+1 is given as follows: for some " > 2�,

r̃↵(st+1, sgi) :=

(
max

sg:"ksgi�sgk
↵V

l
⇡l
(st+1; sg) if k�(st+1)� sgik < �

�1 otherwise
, (5)

where V
l
⇡l
(s, sg) := E⇡l,sg

hPk
t=0 �

t
r̃↵(st+1, sg)|s0 = s

i
is the value function of policy ⇡l(·, sg)

initialized at state s for subgoal sg. The maximization over subgoals in (5) yields the subgoal
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sg
⇤ = argmaxsg:"ksgi�sgk V

l
⇡l
(st+1, sg) that is the most confident among subgoals distant from

the current sgi. The choice of " > 2� ensures that sg⇤ is not achieved at st+1 as

ksg⇤ � �(st+1)k � ksg⇤ � sgik � ksgi � �(st+1)k � "� � > � . (6)

The selection of sg⇤ with the most confidence can be interpreted as a plausible next subgoal since
in HGRL, the high-level policy would plan a path of subgoals to the final goal using the confident
transitions from one to another. Presuming that more distant goal is more difficult Zhang et al.
(2020); Kim et al. (2021), being achievable to subgoal sg⇤ slightly different than the current sg is a
necessary criterion to being achievable to final goal g likely further than the current sgi. In addition,
the estimation of V l

⇡l
(st+1; sg⇤) for the most confident next subgoal sg⇤ would be more stable than

V⇡(st+1; g) for the final goal g. Hence, the estimate of V l
⇡l
(st+1, sg

⇤) is a good representative of
the reachability to nearby subgoals. The reward r̃↵ can guide the low-level agent to the current sgi
while being reachable to the neighboring subgoals. It is also worth to mention that the same upper
bound (1� �) of ↵ can guarantee no misleading reward in (4).

2.3 HGRL WITH FORWARD-LOOKING REWARD

Drawing from FLW, we introduce a practical training algorithm for the low-level policy that seam-
lessly integrates with the latest HGRL methodologies. (Lee et al., 2022; Kim et al., 2021; 2023).
Moreover, within the context of HGRL, we incorporate the use of hindsight experience replay (HER)
Andrychowicz et al. (2017) to address the challenges posed by sparse reward settings.

In this process, we begin by sampling a batch of transitions {(st, at, st+1, sgt)}|B| from the replay
buffer, where |B| represents the batch size. Subsequently, we leverage the principles of HER to
re-label the sub-goals, denoted as sgt, by selecting one of the successfully achieved states �(st+f )
within the trajectory, where f is the sampled future step from current timestep t. Following the
re-labeling step, we proceed to compute updated rewards using (5). This involves (i) identifying
transitions within the batch that effectively reach the re-labeled sub-goals, (ii) sampling several next
sub-goals, sg0, at a distance of " from the original sub-goals for these selected transitions and finding
sg

0 that maximizes the value as mentioned in (5), and (iii) assigning a reward of V l
⇡l
(st+1; sg0) for

these transitions, while assigning a reward of -1 for others. Finally, we proceed to update the low-
level policy accordingly. For a detailed pseudo-code of our algorithm, please refer to Algorithm 1
in Appendix A.

3 EXPERIMENTS

We demonstrate the proposed forward-looking reward design in the Mujoco environments (Todorov
et al., 2012). We note that FLR can serve as an extension to all HGRL techniques without look-
ahead mechanisms. For a plug-in method, we adopt the DHRL method proposed in Lee et al. (2022)
which we describe in the next subsection in detail. Hence, we refer to our proposed method as
(FLR+DHRL) in all our experiments.

3.1 EXPERIMENTS SETUP

Environments We primarily conduct our experiment on the Ant Maze navigation task introduced
in Todorov et al. (2012). In this environment, an ant must navigate to various locations in a large
sized maze. We consider two types of environments and agents:

• AntMaze4leg: This is the standard Ant-Maze environment with 4-legged ant starting at the
bottom left in 24⇥ 24, �-shaped maze, and targets to the top left of the corner.

• AntMaze3leg: 3-legged ant starts at the left in 24 ⇥ 8 room, and targets to the right. This
setup adds complexity compared to traditional locomotion tasks and tests the adaptability
and robustness of our approach.

Baselines We compare our method (FLR+DHRL) to the previous HGRL methods described as
the following:
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(a) AntMaze3Leg (b) AntMaze4Leg

Figure 2: Investigating success rate across AntMaze3Leg and AntMaze4Leg: We use 5 random
seeds, unveiling average performance and standard deviation smoothed equally. Note that the suc-
cess rate of PIG surges after 1M timesteps in AntMaze4Leg.

• HIGL (Kim et al., 2021): HIGL is a method in which the high-level policy is guided by
landmarks obtained through graph planning with k-step constraint. The low-level policy is
trained with dense rewards.(i.e. rl(st+1, g) = �k�(st+1)� gk2)

• DHRL (Lee et al., 2022): DHRL is a method in which the sequence of waypoints is made
by the subgoal generated by a high-level policy and graph planning algorithm. The low-
level is trained to follow the waypoint of the shortest path with sparse rewards using HER.

• PIG (Kim et al., 2023): PIG is a method in which the target-goal conditioned policy imitates
the sub-goal conditioned policy, where the sub-goal is generated by the graph planning.
Sparse reward with HER is used for training target policy.

Our method As previously mentioned, our proposed FLR scheme is broadly applicable to all
HGRL methods. In our experiment, we attach FLR to DHRL and PIG in AntMaze3Leg to show
the improvement and applicability of FLR to HGRL and analyze with DHRL due to the outstand-
ing performance exhibited by DHRL in recent HGRL benchmarks (for the detailed exposition of
DHRL, we refer the readers to Algorithm 2 in Appendix A). For all environments, we use the re-
ward threshold � = 0.5, ↵ = 0.01, and the sampling distance " = 2. More detailed information on
our experiments (e.g., hyper-parameters, rollouts, etc.) can be found in Applendix B.

Evaluation We evaluate the success rate, which signifies the number of times the agent succeeded
over the course of 10 test episodes. Similar to the evaluation criteria applied by previous baselines,
we define the threshold of ’success’ as when the agent enters within a radius of 5 from the final goal
in both experimental experiments. We also cumulatively assess the number of episodes in which the
agent ends in a fallen state during the testing process.

3.2 PERFORMANCE AND EFFICIENCY ANALYSIS

FLR is more sample efficient Figure 2 shows the result of our method compared with others.
As we observe, FLR demonstrates superior performance in AntMaze3Leg, where a more deli-
cate reward design is necessary to prevent the agent to fall after achieving a sub-goal. Even in
AntMaze4Leg, where the chances of falling are relatively lower, our framework exhibits slight gains
in performance.
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(a) Rollout(10) (b) Rollout(100) (c) Rollout(200)

Figure 3: Robustness to the number of initial random rollouts in AntMaze3Leg

(a) Fall episode count (b) Reward difference

Figure 4: Validation of FLR in AntMaze3Leg: (a) Our evaluation involves tracking the z-positions
of ant robots at the last timestep of the episode, specifically counting where it falls below a certain
threshold. (b) We computed the reward difference by averaging rewards for transitions reaching
sub-goals after applying FLR. Notably, the previous reward function always gets the same reward
agnostic to its state.

FLR-extension reinforces the baseline HGRL method The �-shape in the AntMaze4Leg en-
vironment is a challenging obstacle to overcome; only DHRL can effectively accomplish the final
goal, as shown in Figure 2. Our method (FLR+DHRL) inherits this ability of DHRL, and out-
performs all baselines in both environments. Furthermore, in the AntMaze3Leg environment, we
compare performances of the PIG and the FLR-guided PIG (FLR+PIG). As we observe in Figure 2,
FLR improves the performance of the vanilla PIG, supporting our claim that FLR can potentially
reinforce a broader class of HGRL methods. This superior performance can be attributed to our
low-level policy being trained to look ahead subsequent subgoals.

FLR intrinsically encourages exploration As shown in Figure 3, our framework enhances the
sample efficiency via giving more intrinsic rewards from the reward look-ahead design. We em-
phasize that a vanilla DHRL requires a much longer burn-in period through initial random rollout.
In contrast, our framework demonstrates robust learning, even when starting with less exploratory
trajectories, highlighting its sample-efficient nature.

FLR leads the agent to stable states We report the number of the episodes where the agent falls
in Figure 4(a). It is evident that both PIG and DHRL experienced a substantial number of episodes
where the agent falls, and FLR can always improve the situation. This indicates that our approach
encourages the agent to consider future tasks in the learning process. Moreover, Figure 4(b) illus-
trates the look-ahead reward difference between the normal and fall states when the proposed FLR
is applied. This result demonstrates the effectiveness of FLR in gradually penalizing fallen states as
learning progresses, meaning that the agent is trained to look ahead.

3.3 ABLATION STUDY

We ablate two components in the proposed FLR scheme: methods to select the next sub-goal and
using different values of ↵.
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(a) Success rate with " (b) Reward difference with "

(c) Success rate with ↵ (d) Reward difference with ↵

Figure 5: Ablation studies on FLR

Selecting next sub-goal We assess several options to select the next sub-goal within our approach:
(i) selecting the final goal as the next sub-goal and (ii) setting sampling distance " = 0.5 which is
the same as the reward threshold �. Figure 5(a) shows that any method of selecting the next sub-goal
that is more than 2� away from the current subgoal outperforms DHRL. Conversely, the method
selecting closed subgoals demonstrates comparable or marginally inferior performance. Comparing
the performance of selecting next subgoal as goal and " = 2, we observe that selecting the final
goal as the next sub-goal results in relatively lower performance. This is because when the final
goal is chosen as the next sub-goal, the value function is only updated after reaching the goal, which
leads to difficulty distinguishing between unstable and stable states. As shown in 5(b), selecting
too far or near the next subgoal does not make the low-level policy distinguish the fallen states or
not. Therefore, in increasingly complex environments, the method of selecting the next sub-goal
becomes even more crucial, a topic we leave for future work.

Effective of ↵ We investigate the role of ↵ in our method. In line with the investigation of the
optimal value of alpha mentioned in Section 2.2, selecting the appropriate ↵ is crucial. To investigate
its effects, we set � = 0.99 and use different values of ↵ in [0.001, 0.01, and 0.1]. Figure 5(c)
illustrates that setting alpha to 0.01 = 1� � results in the best performance. This is expected in our
reward design: when alpha is too large, even after a certain degree of learning, reaching sub-goals
results in receiving rewards less than -1, leading to deteriorated performance. Conversely, when
alpha is excessively small, the low-level policy struggles to distinguish between states where the
agent has toppled over and those where it has not, resulting in sub-optimal performance.

4 CONCLUSION

In summary, our contributions include the recognition of the importance of forward-looking rewards
in HGRL, the introduction of forward-looking reward (FLR) as a practical and adaptable solution,
and empirical evidence showcasing the superiority of our framework over existing HGRL baselines.
Recalling that the previous HGRL requires substantial pre-training of agents for a certain level of
proficiency in advance, we believe that the proposed FLR is a simple yet effective practice for more
efficient HGRL as it enables HGRL with virtually zero-skilled agents.
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