
Fact or Fiction? Improving Fact Verification with Knowledge Graphs
through Simplified Subgraph Retrievals

Anonymous ACL submission

Abstract
Despite recent success in natural language pro-001
cessing (NLP), fact verification still remains a002
difficult task. Due to misinformation spreading003
increasingly fast, attention has been directed004
towards automatically verifying the correctness005
of claims. In the domain of NLP, this is usually006
done by training supervised machine learning007
models to verify claims by utilizing evidence008
from trustworthy corpora. We present efficient009
methods for verifying claims on a dataset where010
the evidence is in the form of structured knowl-011
edge graphs. We use the FACTKG dataset,012
which is constructed from the DBpedia knowl-013
edge graph extracted from Wikipedia. By sim-014
plifying the evidence retrieval process, from015
fine-tuned language models to simple logical016
retrievals, we are able to construct models that017
both require less computational resources and018
achieve better test-set accuracy.019

1 Introduction020

As the volume of information generated continues021

to grow, so does the risk of misinformation spread-022

ing, which has made automatic fact verification a023

crucial task in NLP (Cohen et al., 2011; Hassan024

et al., 2015; Thorne and Vlachos, 2018; Bekoulis025

et al., 2021). Traditionally, fact verification has026

been tackled in journalism by experts manually027

researching topics and writing articles about their028

findings. Some specific websites dedicated to this029

approach are FactCheck.org and PolitiFact.com.030

However, it is time consuming and labor intensive,031

and is not able to follow the pace of the creation032

of information in digital media (Cohen et al., 2011;033

Hassan et al., 2015).034

One of the most popular datasets for fact ver-035

ification is the Fact Extraction and VERification036

(FEVER) dataset (Thorne et al., 2018). It consists037

of claims supported by a corpus of Wikipedia arti-038

cles. Models trained on the dataset need to extract039

the relevant evidence and use it to classify claims040

as supported, refuted or not enough information.041

Despite its popularity, several issues have been 042

discovered. Due to the manual construction of 043

claims, the structure of the language is inherently 044

biased with respect to the classes, and therefore it 045

is possible to achieve good performance without 046

using the evidence at all (Schuster et al., 2019). It 047

has also been shown that models trained on FEVER 048

experience a significant drop in performance when 049

the factual evidence is changed in a way that in- 050

fluences the validity of claims (Hidey et al., 2020). 051

These issues can be improved by accordingly ad- 052

justing the validation and test dataset to contain 053

less biased data (Schuster et al., 2019; Hidey et al., 054

2020), but we believe it is important to develop 055

models on other datasets as well. 056

A less studied approach to process evidence is by 057

structured data. In many real-world examples, data 058

is available in large structured databases, rather 059

than unstructured articles. This is relevant for do- 060

mains such as social networks, logistics, manage- 061

ment systems and database systems. The dataset 062

TabFact (Chen et al., 2019) is created with this 063

intent, consisting of claims with tabular evidence 064

extracted from Wikipedia. 065

We will dedicate this article to increase the 066

performance of models trained on the FACTKG 067

dataset (Kim et al., 2023), a dataset created for fact 068

verification with structured evidence in the form 069

of knowledge graphs (KGs). The claims are cre- 070

ated with evidence from DBpedia (Lehmann et al., 071

2015), a large KG extracted from Wikipedia. A 072

KG consists of nodes and edges linked together to 073

represent structural concepts. Nodes represent en- 074

tities, such as persons, things or events, and edges 075

represent relations, conveying how entities are re- 076

lated, as shown in Figure 1. For instance, a node 077

can be the company Meyer Werft, and since it is 078

located in the city Papenburg, they are connected 079

with the edge location. We refer to Meyer Werft, 080

location, Papenburg as a knowledge triple. 081

Since the task of fact verification with KGs re- 082

1



Figure 1: An example claim from FACTKG (Kim et al.,
2023). The claim can be verified or refuted based on the
DBpedia KG (Lehmann et al., 2015). This is Figure 1
from Kim et al. (2023).

mains relatively unexamined, we want to explore083

several different approaches to the problem. We084

use the following three model architectures:085

• Textual Fine-tuning: Fine-tuning pretrained086

encoder models on text data for claim verifi-087

cation. We use BERT (Devlin et al., 2018)088

by concatenating the claims with subgraphs089

represented as strings.090

• Hybrid Graph-Language Model: Using091

a modification of a question answer graph092

neural network (QA-GNN) (Yasunaga et al.,093

2021), which both uses a pretrained encoder094

model to embed the claim, and a graph neu-095

ral network (GNN) to structurally process the096

subgraphs.097

• LLM Prompting: Deploying state-of-the-art098

language models in a few-shot setting, without099

the need for additional finetuning. We use100

ChatGPT 4o (Achiam et al., 2023; Open AI,101

2024) for this setting.102

The textual finetuning serves as a simple and con-103

ventional method, while the QA-GNN can handle104

graph based data efficiently and is more specifically105

constructed for the task of interest. In contrast, the106

LLM prompting displays how well general purpose107

language models can perform on the task. It does108

not require any further training and does not use109

any evidence. Therefore, it will serve as a baseline110

and give insight to how difficult the task is.111

Our main contribution is that we increase the112

accuracy and computational efficiency of models113

trained on FACTKG. By utilizing efficient sub- 114

graph retrieval methods, we are able to substan- 115

tially increase the test-set accuracy from 77.65% 116

(Kim et al., 2023) to 93.49%. To the best of the 117

authors knowledge, this is the best performance 118

achieved so far on the dataset. Additionally, our 119

models train quicker, taking only 1.5-10 hours, 120

compared to the 2-3 days spent on the bench- 121

mark model from Kim et al. (2023), reported by 122

the authors. The code and documentation can be 123

found at https://anonymous.4open.science/ 124

r/Fact-or-Fiction/README.md. 125

2 Related Work 126

2.1 Fact Verification 127

The FEVER dataset is one of the most popular 128

datasets used for fact verification (Thorne et al., 129

2018), and has influenced several model architec- 130

tures. Graph-based Evidence Aggregating and Rea- 131

soning (GEAR) (Zhou et al., 2019) works by find- 132

ing relevant articles with entity linking, giving them 133

a relevance score, embedding the claim and sen- 134

tences in the relevant evidence with a pre-trained 135

BERT (Devlin et al., 2018), and then using a GNN 136

to reason over the embeddings. The Neural Seman- 137

tic Matching Network (NSMN) (Nie et al., 2019) 138

used three homogenous neural networks used for 139

document retrieval, sentence selection and claim 140

verification. By using a transformer based archi- 141

tecture, Generative Evidence REtrieval (GERE) 142

(Chen et al., 2022) combined the evidence retrieval 143

and sentence identifying into a single step. 144

Several other datasets for fact verification have 145

also been proposed. The Fake News Challenge 146

(Hanselowski et al., 2018) were aimed towards pre- 147

dicting the relevance and agreement of a title and 148

text. VitaminC (Schuster et al., 2021) focuses on 149

representing changing evidence, and was created 150

by constructing claims based on different revisions 151

of Wikipedia articles. The dataset FAVIQ (Park 152

et al., 2021) explored ambiguous parts of claims, 153

while TabFact (Chen et al., 2019) used tabular data 154

as evidence. There have also been proposed mul- 155

timodular dataset for fact verification, combining 156

claims and images (Zlatkova et al., 2019; Mishra 157

et al., 2022). 158

2.2 The FactKG Dataset 159

The FACTKG dataset (Kim et al., 2023) consists 160

of 108 000 English claims for fact verification, 161

where the downstream task is to predict whether 162

2

https://anonymous.4open.science/r/Fact-or-Fiction/README.md
https://anonymous.4open.science/r/Fact-or-Fiction/README.md
https://anonymous.4open.science/r/Fact-or-Fiction/README.md


the claims are true or false. The claims are con-163

structed from the DBpedia KG (Lehmann et al.,164

2015), which is extracted from Wikipedia and rep-165

resents how entities are related to each other.166

The claims are constructed on either of the fol-167

lowing five reasoning types:168

• One-hop: To answer a one-hop claim, one169

only needs to traverse one edge in the KG.170

In other words, only one knowledge triple is171

needed to verify the validity of the claim.172

• Multi-hop: As opposed to one-hop claims,173

one needs to traverse multiple steps in the KG174

to verify multi-hop claims.175

• Conjunction: The claim includes a combina-176

tion of multiple claims, which are often added177

together with the word and.178

• Existence: These claims state that an entity179

has a relation, but does not specify which en-180

tity it relates to.181

• Negation: The claim contains negations, such182

as not.183

The dataset is split in a train-validation-test set184

of proportion 8:1:1. The train and validation set185

includes relevant subgraphs for each claim, but not186

the test set. All claims include a list of entities187

present in the claim and as nodes in the KG.188

2.3 Question Answer Graph Neural Networks189

The question answer graph neural network (QA-190

GNN) (Yasunaga et al., 2021) is a hybrid language191

and GNN model that both uses a pre-trained lan-192

guage model to process the text, and couples it with193

a GNN reasoning over a subgraph. It is given text194

and a subgraph as input. The text, consisting of a195

question and possible answers, is added as a node196

to the subgraph. The language model embeds the197

text, and assigns a relevance score to each node in198

the subgraph. The relevance scores are multiplied199

with the node features, before being sent into the200

GNN. The GNN output, text-node and the text em-201

bedding are concatenated before being put into the202

classification layer.203

3 Methods204

3.1 Efficient Subgraph Retrieval205

We experiment with different ways of retrieving206

relevant subgraphs for the claim, focusing on com-207

Figure 2: Examples of the different subgraphs ex-
plored in this article. Boxes and bold letters represent
entities, while arrows and italic letters represent rela-
tions. This claim is meant for illustrative purposes and
is not present in the FACTKG dataset.

putational efficiency. Each datapoint in the FAC- 208

TKG dataset consists of a claim and a list of entities 209

that appear both in the claim and the KG. Since 210

the part of DBpedia used in FactKG is fairly large 211

(1.53GB), it is necessary to only use a small sub- 212

graph of it as input to the models. The benchmark 213

model from Kim et al. (2023) uses two language 214

models to predict the relevant edges and the depth 215

of the graph. We wish to simplify this step in or- 216

der to reduce the model complexity, and propose 217

non-trainable methods for subgraph retrieval. 218

We experiment with the following methods (ex- 219

amples can be found in Figure 2): 220

• Direct: Only includes knowledge triples 221

where both nodes are present in the entity list. 222

• Contextualized: First, includes all direct sub- 223

graphs. Additionally, lemmatize the words in 224

the claim and check if the nodes in the entity 225

list have any relations corresponding to the 226

lemmatized words in the claim. Include all 227

knowledge triples where at least one node is 228

3



in the entity list and the relation is found in229

the claim.230

• Single-step: Includes every knowledge triple231

one can be traversed in one step from a node232

in the entity list. In other words, include every233

knowledge triple that contains at least one234

node in the entity list.235

3.2 Finetuning BERT236

We use BERT (Devlin et al., 2018) as our pre-237

trained language model. We first train a baseline238

model using only the claims and no subgraphs, and239

then with all of the different methods for retrieving240

subgraphs. The subgraphs are converted to strings,241

where each knowledge triple is represented with242

square brackets, and the name of the nodes and243

edges are the same as they appear in DBpedia. The244

order of the knowledge triples is determined by the245

order of the list of entities in the FactKG dataset246

and the order of the edges in DBpedia. The sub-247

graphs are concatenated after the claims and a “ | ”248

separation token.249

3.3 QA-GNN Architecture250

In order to adapt the QA-GNN to the fact verifica-251

tion setting, we perform some slight modifications.252

Because the possible answers are always “true” or253

“false”, we embed only the claims, instead of the254

question and answer combination. Additionally,255

we do not connect the embedded question or claim256

to the subgraph.257

We use a pre-trained BERT (Devlin et al., 2018)258

as the language model to embed and calculate the259

relevance scores. In order to reduce the complexity260

of the model, we use a frozen BERT to calculate261

the embeddings for the nodes and the edges in262

the graph. This way, all of the embeddings in the263

graph can be pre-calculated. We use the last hidden264

layer representation of the CLS token, which is of265

length 768. The BERT that calculates the relevance266

scores and the embedding of the claim is not frozen.267

The relevance scores are computed as the cosine268

similarity between the claim embedding and the269

embedding of the text in the nodes.270

We use a graph attention network (Veličković271

et al., 2017) for our GNN. Since the subgraphs are272

quite shallow, we only use two layers in the GNN,273

and apply batch norm (Ioffe and Szegedy, 2015).274

Each layer has 256 features, which is mean-pooled275

and concatenated with the BERT embedding and276

sent into the classification layer. We add dropout277

(Srivastava et al., 2014) to the GNN layers and the 278

classification layer. 279

3.4 ChatGPT Prompting 280

We construct a prompt for ChatGPT 4o in order 281

to answer a list of claims as accurately as possi- 282

ble. This is done by creating an initial prompt 283

and validating the results on 100 randomly drawn 284

claims from the validation set, and by trying dif- 285

ferent configurations of the prompt until we do not 286

get a better validation set accuracy. We then use 287

the best prompt with 100 randomly drawn unseen 288

test-set questions, and attempt to ask 25, 50 and 289

100 claims at a time, to see if the amount of claims 290

at a time influences the performance. We run the 291

testing three times. 292

Since we do not have access to vast enough com- 293

putational resources to run an LLM, this analysis 294

is limited by only using 100 datapoints from the 295

test set. In order to get access to a state-of-the-art 296

LLM, we used the ChatGPT website with a “Chat- 297

GPT Plus” subscription to perform the prompting. 298

This model is not seeded, so the exact answers are 299

not reproducible, but every prompt and answer are 300

available in the software provided with this article. 301

We used the ChatGPT 4o model 30th of May 2024. 302

Every prompt was performed in the “temporary 303

chat” setting, so the model did not have access to 304

the history of previous experiments. 305

Due to the inability to use the entire test set and 306

the lack of reproducibility, we do not directly com- 307

pare this experiment to the other models. However, 308

we still believe it serves as a valuable benchmark. 309

Recently, the performance of LLMs has rapidly im- 310

proved, which suggests that their applications will 311

continue to broaden. Additionally, this approach 312

is not fine-tuned, and may work as an interesting 313

benchmark that can contextualize the results of the 314

other models. 315

3.5 Benchmark Models 316

We will compare the results against the best bench- 317

mark models from Kim et al. (2023) and the best 318

performing models known to the authors, found in 319

Gautam (2024). These comparisons include both 320

baselines that use only the claims and models that 321

also incorporate subgraph evidence. 322

Claim-Only Models: 323

• FactKG BERT Baseline: The baseline model 324

from Kim et al. (2023) uses a fine-tuned 325

BERT, training only on the claims. 326

4



Input Type Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only
FACTKG BERT Baseline 69.64 63.31 61.84 70.06 63.62 65.20

FactGenius RoBERTa Baseline 71 72 52 74 54 68
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

With Subgraphs
FACTKG GEAR Benchmark 83.23 77.68 81.61 68.84 79.41 77.65

FactGenius RoBERTa-two-stage 89 85 95 75 87 85
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49

Table 1: Test-set accuracy for the best models from this article and the best benchmark models. The FACTKG
models are from Kim et al. (2023), while the FactGenius models are from Gautam (2024). The fine-tuned BERT
model performed the best, while the QA-GNN was the computationally most efficient model.

• RoBERTa Baseline: Similarly to above, the327

baseline from Gautam (2024) uses a fine-328

tuned language model with claims only, but329

uses RoBERTa (Liu et al., 2019) as the base330

model.331

Models Utilizing Subgraphs:332

• GEAR-Based Model: The benchmark model333

from Kim et al. (2023) is inspired by GEAR334

(Zhou et al., 2019), but has been adapted to335

handle graph-based evidence. It uses two fine-336

tuned language models to retrieve the sub-337

graphs. One of them predicts relevant edges,338

the other predicts the depth of the subgraph.339

• FactGenius: This model combines zero-shot340

LLM prompting with fuzzy text matching on341

the KG (Gautam, 2024). The LLM filters rel-342

evant parts of the subgraphs, which are then343

refined using fuzzy text matching. Finally,344

a fine-tuned RoBERTa is used to make the345

downstream prediction.346

3.6 Further Experimental Details347

Due to computational constraints, we tuned the hy-348

perparameters one by one, instead of performing349

a grid search. All the training was performed on a350

RTX 2080 Ti GPU with 11GB VRAM. The BERT351

model has 109 483 778 parameters, which all were352

fine-tuned. The QA-GNN used a total of 109 746353

945 parameters. The FACTKG dataset comes with354

a lighter version of DBpedia that only contains rele-355

vant entries, which was used for this paper. Further356

details can be found in Appendix A.357

4 Results358

4.1 Improved Performance and Efficiency359

The test results for our best model configurations360

and the benchmark models can be found in Table 1.361

The best performing model is the fine-tuned BERT362

with single-step subgraphs. The fine-tuned BERT 363

without any subgraphs were able to achieve slightly 364

higher performance than the one from Kim et al. 365

(2023), which we suggest is due to finding better 366

hyperparameters. 367

Additionally, our models were much faster to 368

train. While the GEAR model used 2-3 days to 369

train on an RTX 3090 GPU (reported by the authors 370

by email), our QA-GNN only used 1.5 hours. The 371

training time of our fine-tuned BERT model was 372

greatly influenced by the size of the subgraphs we 373

used. With no subgraphs, it took about 2 hours to 374

train, while with the one-hop subgraph it took 10 375

hours. FactGenius was reported to use substantially 376

more computational resources, running the LLM 377

inference on a A100 GPU with 80GB VRAM for 378

8 hours. 379

4.2 Successful Subgraphs Retrievals 380

We now look at the different configurations for 381

the subgraph retrievals, which greatly influenced 382

the performance of the models. Since the direct 383

and contextual approach only includes subgraphs 384

if a certain requirement is fulfilled, it will result 385

in some of the claims having empty subgraphs. 386

In the training and validation set, 49.0% of the 387

graphs were non-empty for the direct approach, and 388

62.5% were non-empty for the contextual approach. 389

The single-step method resulted in vastly bigger 390

subgraphs. 391

While the QA-GNN could handle the big 392

subgraphs efficiently, the fine-tuned BERT was 393

severely slowed down when the size of the sub- 394

graphs got bigger. Therefore, we substituted any 395

empty subgraphs with the single-step subgraph 396

when using QA-GNN, but kept the empty graphs 397

when using fine-tuned BERT. This means that some 398

claims for the direct and contextual BERT models 399

were predicted only using the bias in the language 400

model and the claim. 401

5



Model One-hop Conjunction Existence Multi-hop Negation Total
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

BERT (direct) 80.24 83.30 59.05 77.62 74.58 79.64
BERT (contextual) 81.20 84.45 61.05 77.04 77.40 80.25
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49
QA-GNN (direct) 74.60 74.01 58.97 76.41 74.12 75.01

QA-GNN (contextual) 76.58 69.94 84.68 74.58 80.75 76.12
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

Table 2: Test-set accuracy for different subgraph retrieval methods on FACTKG. The direct approach only
includes knowledge triples where both nodes appear in the claim, the contextual also includes edges appearing
in the claim, and the single-step includes all knowledge triples where at least one node appears in the claim. The
QA-GNN models used the single-step subgraph if the direct or contextual is empty, while the BERT models did not.

Model One-hop Conjunction Existence Multi-hop Negation Total
P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1

BERT (no subgraphs) 71.89 / 51.66 / 60.12 75.44 / 34.20 / 47.06 59.52 / 73.63 / 65.82 85.19 / 60.90 / 71.03 58.88 / 73.13 / 65.24 75.25 / 54.00 / 62.88
QA-GNN (direct) 76.19 / 67.04 / 71.32 80.11 / 51.22 / 62.49 56.19 / 74.10 / 63.91 80.04 / 74.80 / 77.33 70.97 / 73.80 / 72.36 77.21 / 69.01 / 72.88
QA-GNN (contextual) 84.79 / 61.29 / 71.15 80.27 / 38.29 / 51.85 81.83 / 88.38 / 84.98 82.31 / 67.17 / 73.98 77.26 / 82.26 / 79.68 84.10 / 62.78 / 71.89
QA-GNN (single-step) 82.51 / 70.55 / 76.06 78.89 / 53.95 / 64.08 79.69 / 88.70 / 83.95 78.44 / 73.09 / 75.67 77.06 / 79.10 / 78.07 81.41 / 71.19 / 75.96
BERT (contextual) 83.05 / 75.51 / 79.10 88.60 / 72.56 / 79.78 59.68 / 63.42 / 61.49 84.10 / 70.67 / 76.80 75.84 / 74.46 / 75.15 83.30 / 74.28 / 78.53
BERT (direct) 83.89 / 71.86 / 77.41 88.69 / 69.32 / 77.82 58.97 / 54.16 / 56.46 83.38 / 72.91 / 77.80 69.99 / 78.11 / 73.82 83.76 / 72.12 / 77.51
BERT (single-step) 96.27 / 98.29 / 97.27 96.06 / 98.13 / 97.09 96.45 / 98.12 / 97.28 85.31 / 76.59 / 80.72 92.01 / 91.71 / 91.86 93.75 / 92.79 / 93.27

Table 3: Precision (P), Recall (R), and F1 scores for different models and subgraph types on the test-set.

The results can be found in Table 2 and Table 3.402

We see a clear improvement in BERT when us-403

ing the direct subgraphs over none, a small im-404

provement when using the contextual subgraphs,405

and a big improvement when using the single-step406

method. The same is true for the QA-GNN, but407

the differences in performance are smaller. The408

models score the lowest on multi-hop claims.409

Since we used non-trainable subgraph retrieval410

methods and a frozen BERT for embedding the411

nodes and edges in the subgraphs, we performed412

this processing before training the models. During413

training, the models used a lookup table to get the414

subgraphs and the word embeddings, which signif-415

icantly decreased the training time. The retrieval416

of all the subgraphs took about 15 minutes, and the417

embedding of all the words appearing in them took418

about 1 hour. We also tried training a QA-GNN419

without frozen embeddings, but it ran so slow that420

we were not able to carry out the training with our421

available computational resources.422

4.3 Competitive ChatGPT Performance423

The results for the ChatGPT prompting can be424

found in Table 4. The accuracy is substantially425

lower than from our best models, but better than426

the baselines using only the claims. The accuracy427

is fairly consistent over the three runs, and we do428

not see a big difference between the amount of429

questions asked at a time.430

Model Accuracy (mean ± std)
ChatGPT 25 questions 73.67 ± 0.5
ChatGPT 50 questions 76.33 ± 3.3
ChatGPT 100 questions 73.00 ± 1.4

Table 4: Test-set accuracy for different configurations
of ChatGPT prompting. The metrics are averaged over
three runs. The prompts included 25, 50 or 100 claims
at a time, but the same claims were used in all of the
configurations.

We started with an initial prompt asking for just 431

the truth values for a list of claims, and updated 432

it to also include some training examples and to 433

ask for explanations. Several configurations of the 434

prompt were tested, and it was also improved based 435

on feedback from ChatGPT. 436

We saw the biggest improvement when we asked 437

for a short explanation of the answers, instead of 438

just the truth values. Without asking for explana- 439

tions, the amount of answers were often longer or 440

shorter than the amount of questions, but this never 441

happened when explanations were included. We 442

added numbers to the questions to further help with 443

this issue. We also saw a slight improvement by for- 444

mulating the prompt with bullet point lists and by 445

including some example inputs and outputs from 446

the training set. The final prompt can be found in 447

Figure 3. 448

6



Task:
Determine the truth value (True or False) of the following claims based on information verifiable from Wikipedia, as represented
in the DBpedia knowledge graph. Provide your answers without using real-time internet searches or code analysis, relying
solely on your pre-trained knowledge.
Instructions:

• You will evaluate the following claims, presented one per line.

• Base your answers solely on your knowledge as of your last training cut-off.

• Provide answers in Python list syntax for easy copying.

• Respond with True for verifiable claims, and False otherwise.

• Include a brief explanation for each answer, explaining your reasoning based on your pre-training.

• If the claim is vague or lacks specific information, please make an educated guess on whether it is likely to be True or
False.

Output Format: Format your responses as a list in Python. Each entry should be a tuple, formatted as (claim number, answer,
explanation).
Example Claims:
1. The Atatürk Monument is located in Izmir, Turkey, where the capital is Ankara.
2. Yes, Eamonn Butler’s alma mater is the University of Texas System!
3. I have heard 300 North LaSalle was completed in 2009.
4. The band Clinton Gregory created an album in the rock style. ...
Example output:
[

(1, True, "The Atatürk Monument is indeed located in Izmir, and the capital of Turkey is Ankara."),
(2, False, "Eamonn Butler did not attend the University of Texas System; he is a British author and economist whose

educational background does not include this institution."),
(3, True, "300 North LaSalle in Chicago was indeed completed in 2009."),
(4, False, "Clinton Gregory is primarily known as a country music artist, not rock."),

...
]
Here are the actual claims you should answer:

Figure 3: Final prompt used to get truth values from ChatGPT 4o. The actual questions are not included, but
were in the format of the Example Claims. The Example Claims are from the training set, and the Example
Output is copy pasted from an actual ChatGPT answer.

5 Discussion449

We were able to train better and more efficient mod-450

els by simplifying the subgraph retrieval methods,451

both by using a fine-tuned BERT and a slightly452

modified QA-GNN model. While the QA-GNN453

models trained the fastest, the fine-tuned BERT454

clearly performed the best, significantly outper-455

forming the benchmark models. This suggests that456

the simple logical subgraph retrievals worked bet-457

ter than the complex trained approaches in previous458

work. We suggest that the performance gain in the459

claim-only benchmark was due to slightly better460

hyperparameters.461

All of the models performed better the bigger the462

subgraphs were. This suggests that the model archi-463

tectures are able to utilize the relevant parts of the464

subgraphs, without needing an advanced subgraph465

retrieval step. This is emphasized by our fine-tuned466

BERT model achieving a 93.49% test set accuracy467

by only using the single-step subgraphs, while the468

GEAR model from Kim et al. (2023), which trained 469

two language models to perform graph retrieval, 470

achieved a 77.65% test-set accuracy. 471

When examining the precision and recall met- 472

rics in Table 3, we see that most of the models has 473

a higher precision than recall, except for the best 474

performing model, the single-step BERT. However, 475

the single-step BERT does have a lower recall for 476

the multi-hop claims, which it performs signifi- 477

cantly worse on. Therefore, the models mostly has 478

a higher precision than recall when their perfor- 479

mance is not so good, suggesting they are slightly 480

more likely to predict “false” on claims that they 481

are not confident about. 482

A limitation of our subgraph retrieval methods is 483

that they never include nodes that are more than one 484

step away from an entity node, while the trained 485

approach from Kim et al. (2023) is dynamic and 486

may include more. This might make the hypothe- 487

sis that the simple subgraph retrieval methods will 488

7



perform worse on multi-hop claims than the dy-489

namically trained, however, we see the exact op-490

posite behavior. The best BERT and QA-GNN491

models score 80.32% and 74.72% at the multi-492

hop claims respectively, while the dynamic GEAR493

model scores 68.84%, even lower than the models494

not using the subgraphs at all. We do however see495

that the best performing BERT model clearly per-496

forms the worst on the multi-hop claims compared497

to the other claim types, indicating that even bigger498

subgraphs might be beneficial.499

While the sample size for the ChatGPT metrics500

were small, it does indicate that non-fine-tuned501

LLMs can achieve adequate few-shot performance502

compared to a fine-tuned claim-only BERT. The503

performance does not seem to be substantially com-504

promised when the amount of questions prompted505

increases, so with a bigger access to computational506

resources, it might be possible to prompt the full507

test-set at once. The removal of fine-tuning greatly508

improves the ease of use if one only needs to verify509

a few claims. While we are hesitant to make any510

conclusion with the small sample size, we believe511

that the results serve as an approximate benchmark512

of how difficult the dataset is.513

6 Conclusion and Future Work514

Our results show that with simple, yet efficient515

methods for subgraph retrieval, our models were516

able to improve fact verification with knowledge517

graphs with respect to both performance and effi-518

ciency. The fine-tuned BERT model with single-519

step subgraphs clearly achieves the best perfor-520

mance, while the QA-GNN models are more ef-521

ficient to train.522

This indicates that complex models can work523

well with simple subgraph retrieval methods. Since524

the single-step subgraphs mostly contain informa-525

tion not relevant for the claims, the models are526

themselves able to filter away irrelevant informa-527

tion, and complex subgraph retrieval methods may528

hence not be necessary for accurate fact verifica-529

tion. Additionally, since the best performing model530

performed the poorest with multi-hop claims, fu-531

ture research could explore simple subgraphs re-532

trieval methods allowing for bigger depths than533

one. Additionally, future work should also be534

directed towards running similar experiments on535

other datasets.536

We also encourage researchers that have access537

to bigger computational resources to further ex-538

plore the performance of LLMs for fact verification. 539

A core limitation of our ChatGPT prompting was 540

the inability to use the full test-set, and we consider 541

this crucial for further development. We also think 542

it would be especially interesting to make LLM and 543

KG hybrid models. Since our results indicate that 544

simple single-step subgraph retrievals outperform 545

more complex methods, a promising path of future 546

research would be to simply use both the claims 547

and the single-step subgraphs as input to the LLM. 548

If possible, the LLM could also be fine-tuned on 549

the dataset. We also encourage future work to cre- 550

ate fully reproducible results with LLMs, which 551

we were unable to do. 552

7 Limitations 553

Our experiments with ChatGPT were done on a 554

small sample of test questions, with a model that 555

was not possible to seed, and therefore is not repro- 556

ducible. Due to the small sample size, we are not 557

able to directly compare the performance to other 558

approaches. The lack of reproducibility, which 559

stems from the state-of-the-art model that was avail- 560

able to the author is not fully publicly available, 561

makes it impossible for other researchers to com- 562

pletely verify our findings. Additionally, the pro- 563

cess for creating prompts were not standardized, we 564

simply tried different configurations based on our 565

own experience with using LLMs until we could 566

not increase the validation accuracy further. Due 567

to these limitations, one should therefore be very 568

hesitant to make any confident conclusions based 569

on the experiments we performed with ChatGPT. 570

Because our intention was to specifically explore 571

different language models’ abilities of fact verifi- 572

cation with knowledge graphs on the FACTKG 573

dataset, we did not conduct any experiments on 574

other datasets. It is possible that our results will 575

not be consistent with other datasets. 576

Additionally, our selection of models and hy- 577

perparameter settings could be more diverse. Due 578

to computational constraints, we did not perform 579

a grid search for hyperparameters, but tuned hy- 580

perparameters one by one. Which parameters we 581

searched for were not decided in advance. A pre- 582

defined grid search might lead to a fairer and more 583

reproducible approach. We did not experiment with 584

different orderings of the knowledge triples for the 585

fine-tuned BERT models, which could influence 586

the performance. 587

8



References588

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama589
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,590
Diogo Almeida, Janko Altenschmidt, Sam Altman,591
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.592
arXiv preprint arXiv:2303.08774.593

Giannis Bekoulis, Christina Papagiannopoulou, and594
Nikos Deligiannis. 2021. A review on fact extraction595
and verification. ACM Computing Surveys (CSUR),596
55(1):1–35.597

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-598
ural language processing with Python: analyzing text599
with the natural language toolkit. " O’Reilly Media,600
Inc.".601

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan,602
and Xueqi Cheng. 2022. Gere: Generative evidence603
retrieval for fact verification. In Proceedings of the604
45th International ACM SIGIR Conference on Re-605
search and Development in Information Retrieval,606
pages 2184–2189.607

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai608
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and609
William Yang Wang. 2019. Tabfact: A large-610
scale dataset for table-based fact verification. arXiv611
preprint arXiv:1909.02164.612

S Cohen, C Li, J Yang, and C Yu. 2011. Computational613
journalism: A call to arms to database researchers,614
148-151. In 5th Biennial Conference on Innovative615
Data Systems Research, CIDR.616

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and617
Kristina Toutanova. 2018. Bert: Pre-training of deep618
bidirectional transformers for language understand-619
ing. arXiv preprint arXiv:1810.04805.620

Sushant Gautam. 2024. Factgenius: Combining zero-621
shot prompting and fuzzy relation mining to im-622
prove fact verification with knowledge graphs. arXiv623
preprint arXiv:2406.01311.624

Andreas Hanselowski, Avinesh PVS, Benjamin Schiller,625
Felix Caspelherr, Debanjan Chaudhuri, Christian M626
Meyer, and Iryna Gurevych. 2018. A retrospective627
analysis of the fake news challenge stance detection628
task. arXiv preprint arXiv:1806.05180.629

Charles R Harris, K Jarrod Millman, Stéfan J Van630
Der Walt, Ralf Gommers, Pauli Virtanen, David Cour-631
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,632
Nathaniel J Smith, et al. 2020. Array programming633
with numpy. Nature, 585(7825):357–362.634

Naeemul Hassan, Bill Adair, James T Hamilton,635
Chengkai Li, Mark Tremayne, Jun Yang, and Cong636
Yu. 2015. The quest to automate fact-checking. In637
Proceedings of the 2015 computation+ journalism638
symposium. Citeseer.639

Christopher Hidey, Tuhin Chakrabarty, Tariq Alhindi,640
Siddharth Varia, Kriste Krstovski, Mona Diab, and641

Smaranda Muresan. 2020. Deseption: Dual sequence 642
prediction and adversarial examples for improved 643
fact-checking. arXiv preprint arXiv:2004.12864. 644

Matthew Honnibal and Ines Montani. 2017. spaCy 2: 645
Natural language understanding with Bloom embed- 646
dings, convolutional neural networks and incremental 647
parsing. To appear. 648

Sergey Ioffe and Christian Szegedy. 2015. Batch nor- 649
malization: Accelerating deep network training by re- 650
ducing internal covariate shift. In International con- 651
ference on machine learning, pages 448–456. pmlr. 652

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James 653
Thorne, and Edward Choi. 2023. Factkg: Fact veri- 654
fication via reasoning on knowledge graphs. arXiv 655
preprint arXiv:2305.06590. 656

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, 657
Dimitris Kontokostas, Pablo N Mendes, Sebastian 658
Hellmann, Mohamed Morsey, Patrick Van Kleef, 659
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul- 660
tilingual knowledge base extracted from wikipedia. 661
Semantic web, 6(2):167–195. 662

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 663
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 664
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 665
Roberta: A robustly optimized bert pretraining ap- 666
proach. arXiv preprint arXiv:1907.11692. 667

Ilya Loshchilov and Frank Hutter. 2017. Decou- 668
pled weight decay regularization. arXiv preprint 669
arXiv:1711.05101. 670

Shreyash Mishra, S Suryavardan, Amrit Bhaskar, Parul 671
Chopra, Aishwarya N Reganti, Parth Patwa, Amitava 672
Das, Tanmoy Chakraborty, Amit P Sheth, Asif Ekbal, 673
et al. 2022. Factify: A multi-modal fact verification 674
dataset. In DE-FACTIFY@ AAAI. 675

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019. 676
Combining fact extraction and verification with neu- 677
ral semantic matching networks. In Proceedings of 678
the AAAI conference on artificial intelligence, vol- 679
ume 33, pages 6859–6866. 680

Open AI. 2024. Hello gpt 4o. https://openai.com/ 681
index/hello-gpt-4o/, Accessed 30.05.2024. 682

Jungsoo Park, Sewon Min, Jaewoo Kang, Luke Zettle- 683
moyer, and Hannaneh Hajishirzi. 2021. Faviq: 684
Fact verification from information-seeking questions. 685
arXiv preprint arXiv:2107.02153. 686

Adam Paszke, Sam Gross, Francisco Massa, Adam 687
Lerer, James Bradbury, Gregory Chanan, Trevor 688
Killeen, Zeming Lin, Natalia Gimelshein, Luca 689
Antiga, et al. 2019. Pytorch: An imperative style, 690
high-performance deep learning library. Advances in 691
neural information processing systems, 32. 692

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021. 693
Get your vitamin c! robust fact verification with con- 694
trastive evidence. arXiv preprint arXiv:2103.08541. 695

9

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/


Tal Schuster, Darsh J Shah, Yun Jie Serene Yeo, Daniel696
Filizzola, Enrico Santus, and Regina Barzilay. 2019.697
Towards debiasing fact verification models. arXiv698
preprint arXiv:1908.05267.699

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,700
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.701
Dropout: a simple way to prevent neural networks702
from overfitting. The journal of machine learning703
research, 15(1):1929–1958.704

James Thorne and Andreas Vlachos. 2018. Automated705
fact checking: Task formulations, methods and future706
directions. arXiv preprint arXiv:1806.07687.707

James Thorne, Andreas Vlachos, Christos708
Christodoulopoulos, and Arpit Mittal. 2018.709
Fever: a large-scale dataset for fact extraction and710
verification. arXiv preprint arXiv:1803.05355.711

Petar Veličković, Guillem Cucurull, Arantxa Casanova,712
Adriana Romero, Pietro Lio, and Yoshua Bengio.713
2017. Graph attention networks. arXiv preprint714
arXiv:1710.10903.715

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien716
Chaumond, Clement Delangue, Anthony Moi, Pier-717
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,718
et al. 2020. Transformers: State-of-the-art natural719
language processing. In Proceedings of the 2020 con-720
ference on empirical methods in natural language721
processing: system demonstrations, pages 38–45.722

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-723
lut, Percy Liang, and Jure Leskovec. 2021. Qa-724
gnn: Reasoning with language models and knowl-725
edge graphs for question answering. arXiv preprint726
arXiv:2104.06378.727

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu,728
Lifeng Wang, Changcheng Li, and Maosong Sun.729
2019. Gear: Graph-based evidence aggregating730
and reasoning for fact verification. arXiv preprint731
arXiv:1908.01843.732

Dimitrina Zlatkova, Preslav Nakov, and Ivan Koy-733
chev. 2019. Fact-checking meets fauxtography:734
Verifying claims about images. arXiv preprint735
arXiv:1908.11722.736

A Hyperparameter Details737

We used an AdamW optimizer (Loshchilov and738

Hutter, 2017) and a linear learning rate scheduler739

with 50 warm up steps. We used the model from740

the epoch with lowest accuracy loss. The hyperpa-741

rameters were tuned in a line search, first testing742

different learning rates, and testing all the other743

hyperparameters with the best learning rate. We744

searched for learning rates in {1e− 3, 5e− 4, 1e−745

4, 5e − 5, 1e − 5} for all models. We initially set746

the batch size to 32, except for the BERT models747

with large subgraphs, which were set to 4 due to748

Model Learning Rate Batch Size Best Epoch
BERT (no subgraphs) 1e-4 32 6

BERT (direct) 1e-4 32 7
BERT (contextual) 5e-5 8 7
BERT (single-step) 5e-5 4 7
QA-GNN (direct) 1e-4 128 8

QA-GNN (contextual) 5e-5 64 17
QA-GNN (single-step) 1e-5 128 20

Table 5: Final hyperparameters for the different mod-
els. The direct QA-GNN model used GNN and classifier
dropout rates of 0.3 and 0.3, while both the two other
QA-GNN used 0.1 and 0.5.

memory constraints. After finding the learning rate, 749

we tried batch sizes in {32, 64, 128, 256}. For the 750

QA-GNN model, we initially set the GNN dropout 751

and the classifier dropout to 0.3, and tried values 752

in {0, 0.1, 0.3, 0.5, 0.6}. We also tried to freeze 753

some of the layers in the base model, and to use a 754

RoBERTa (Liu et al., 2019) instead of BERT (De- 755

vlin et al., 2018), but neither of these approaches 756

improved the validation loss. 757

The final hyperparameters can be found in Ta- 758

ble A. 759

B Scientific Artifacts 760

We conducted the experiments using several python 761

libraries, including PyTorch version 2.0.1 (Paszke 762

et al., 2019) with CUDA version 11.7, Hugging- 763

Face Transformers (Wolf et al., 2020), NumPy 764

(Harris et al., 2020), SpaCy (Honnibal and Montani, 765

2017) and NLTK (Bird et al., 2009). We will make 766

all the code used for this paper publicly available. 767

10


	Introduction
	Related Work
	Fact Verification
	The FactKG Dataset
	Question Answer Graph Neural Networks

	Methods
	Efficient Subgraph Retrieval
	Finetuning BERT
	QA-GNN Architecture
	ChatGPT Prompting
	Benchmark Models
	Further Experimental Details

	Results
	Improved Performance and Efficiency
	Successful Subgraphs Retrievals
	Competitive ChatGPT Performance

	Discussion
	Conclusion and Future Work
	Limitations
	Hyperparameter Details
	Scientific Artifacts

