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Abstract

The Mixture-of-Experts (MoE) architecture
plays a crucial role in scaling Large Language
Models to trillions of parameters without incur-
ring excessive computational costs. Although
utilizing these powerful models for Multi-Task
Learning (MTL) is an attractive objective, train-
ing a single model on diverse tasks without
proper consideration can often result in per-
formance degradation due to task interference
and negative transfer. To tackle this issue, we
came up with Complexity-Aware Expert Merg-
ing (CAEM), a novel strategy that uses the en-
tropy of expert utilization as an indicator of task
complexity. This approach allows for a strate-
gic allocation of expert resources, overcom-
ing common MTL bottlenecks. Our method
achieves a significant improvement over stan-
dard MTL baselines, exemplified by a 6.47%
ROUGE-L gain on the complex XSum task
with only negligible trade-offs on other simpler
tasks (8-experts case) because of the superior
starting point in the loss landscape and path
dependency in optimization. This observation
led us to identify a more general principle: a
"Founder Effect" in model merging. CAEM not
only provides a resource-efficient path to high-
performance MTL but also provides insights
into the mechanisms of model merging.

1 Introduction

In recent years, the scaling of large language mod-
els has become a central factor in the development
of artificial intelligence capabilities. A significant
component of this trend is the Mixture-of-Experts
(MoE) architecture (Shazeer et al., 2017), such as
the Switch Transformer model proposed by Fedus
et al. (2022). This architecture primarily increases
the total parameter capacity of the model through
sparse conditional computation, while not signifi-
cantly raising the number of floating-point opera-
tions (FLOPs) needed for inference. Additionally,
this approach has led to the creation of many highly

specialized models that are fine-tuned for specific
tasks. This trend of model specialization naturally
makes people try to integrate dispersed expertise to
fit more complex and diverse real-world demands.
Task Arithmetic (Ilharco et al., 2023), a pioneer-
ing research direction, posits that one can combine
or remove model capabilities through simple arith-
metic operations on task vectors, the weight differ-
ence between fine-tuned and pre-trained models.

However, subsequent research found that a di-
rect linear combination of task vectors often leads
to performance degradation due to destructive in-
terference from issues such as parameter conflicts.
To address this, later studies have proposed more
sophisticated strategies, such as Hi-Merging (Yuan
et al., 2024), which relieves parameter conflicts
through pruning and scaling specific parameters,
or AdaMerging (Jiang et al., 2024), which auto-
matically learns the merging coefficients A. Re-
cent work, such as FedMoE (Mei et al., 2024), has
also demonstrated the great potential of modular
approaches, successfully achieving efficient, per-
sonalized federated learning by intelligently com-
bining expert subsets for different clients.

Beyond these strategies, Multi-Task Learning
offers a valuable framework, aiming to solve multi-
ple related tasks with a single model, thereby using
inter-task commonalities to improve learning ef-
ficiency and generalization (Caruana, 1997; Liu
et al., 2019). A common approach is to jointly fine-
tune a general-purpose MoE pre-trained model on a
mixture of data from all target tasks. However, this
approach often neglects the intrinsic differences be-
tween tasks, potentially leading to negative transfer
(Yosinski et al., 2014) or parameter conflicts, which
force experts to achieve less optimal specialization
for specific tasks. The other extreme, training a
complete MoE model independently for each task
while ensuring optimal task specialization contra-
dicts the ethos of MTL and results in a tremendous
waste of resources.



Therefore, the core of this research focuses
on an efficient merging strategy to integrate the
knowledge from multiple single-task MoE models
into a single multi-task model and, through fine-
tuning, achieve performance that surpasses a stan-
dard from-scratch training baseline. More impor-
tantly, we also explore the underlying mechanism.

To solve this problem, this study proposes the
Complexity-Aware Expert Merging strategy. Our
core insight is the use of the entropy of expert uti-
lization as a quantitative indicator of task complex-
ity. The intuition behind this is that more complex
tasks, such as summarization, require the model to
master more diverse and detailed sub-skills. This
phenomenon causes the router to invoke a more
diverse set of experts when processing inputs, re-
sulting in a more uniform usage pattern with higher
entropy. Conversely, simpler tasks, like text classi-
fication, may rely on a few key experts, leading to
a concentrated, low-entropy usage pattern. Based
on this metric, CAEM reframes the model merging
from a simple performance maximization problem
to a strategic resource trade-off process, thus ac-
complishing a bottom-up, task-driven allocation of
expert capacity.

Our main contributions are as follows.

* We propose and validate the CAEM strategy,
demonstrating its ability to achieve an im-
provement by significantly boosting perfor-
mance on bottleneck tasks with minimal trade-
offs on simpler ones.

* We show that both the CAEM model and the
standard baseline model exhibit high paramet-
ric compatibility after fine-tuning, with a func-
tional decoupling: encoder representations ho-
mogenize, while decoder representations have
a capacity-dependent divergence.

* We demonstrate that the optimization trajec-
tory of a merged model is constrained by its
initial position in the loss landscape, resulting
in the model’s final representational character-
istics being dominated by those of its original
components.

2 Background

2.1 Mixture of Experts

The core strategy of MoE is to assign input tokens
to a set of experts dynamically by a router to re-
duce the FLOPs for inference. A popular example

of an MoE architecture is the Switch Transformer
(Fedus et al., 2022). This architecture modifies
the standard Transformer by replacing the Feed-
Forward Network with the MoE layer. Its most
distinctive feature is the adoption of a top-1 rout-
ing strategy. Compared to other MoE models that
select multiple experts at once, which significantly
reduces computational complexity while maintain-
ing model performance.

A common finding is that during the training of
MoE models, different experts exhibit functional
specialization (Du et al., 2022). Consequently, each
expert develops proficiency for different sub-tasks,
and the router’s objective is to learn how to dis-
patch the current input token to the suited experts
accurately. This characteristic provides a potential
solution for multi-task learning and offers a solid
foundation for the ever-growing field of generative
general-purpose Al

2.2 Multi-Task Learning

The core idea of MTL is to enable a single model
to learn multiple different tasks simultaneously,
with the expectation that knowledge can be shared
across related tasks during training to improve the
model’s performance on each task. In standard
Transformer architectures, MTL often develops a
shared encoder to build a common understanding
of input tokens while using task-specific decoders
to handle diverse generation formats (Zhang and
Yang, 2022). The success of MTL hinges on effec-
tive knowledge transfer, where features learned for
one task provide useful inductive biases for others
(Sodhani et al., 2021).

Despite its potential, MTL still faces signifi-
cant challenges, with task interference and neg-
ative knowledge transfer. These issues arise when
learning objectives conflict (e.g., their gradient di-
rections are opposite), causing shared parameters to
degrade performance (Yu et al., 2020). The sparse
activation of experts in MoE architectures strategi-
cally solves this problem by distributing the compu-
tational load of different sub-tasks across distinct
experts, thus reducing direct parameter conflicts.
However, while this relieves interference, the ques-
tion of how to best allocate resources (i.e., experts)
in a MTL setting remains largely unexplored. This
question led us to a core motivation for our re-
search: to investigate whether the knowledge of
several highly specialized experts can be effectively
combined and handle several tasks perfectly.



2.3 Model Similarity and the Loss Landscape

The loss landscape of neural networks directly in-
fluences the training process and results. Previ-
ously, people believed that optimal solutions found
from different random initializations were isolated
in separate loss basins, separated by high loss bar-
riers. However, Garipov et al. (2018) demonstrated
that low-loss paths often connect these disparate
solutions. This discovery induced new research in
model merging, including the influential empiri-
cal work on Model Soups (Wortsman et al., 2022).
They found that when models fine-tuned from the
same pre-trained weights are averaged, the result-
ing model is often more robust and performant,
implying these solutions likely reside within the
same connectable low-loss basin.

However, these studies usually focused on struc-
turally identical, single-task dense models. While
they provide a valuable method for probing weight-
space symmetries, MTL on MoE has greater com-
plexity with its modular architecture and diverse
task-specific initializations. Therefore, in addition
to applying the concept of Model Soups as a macro-
scopic test to probe whether different models in-
habit compatible solution spaces, we also analyze
the internal mechanisms of models using Centered
Kernel Alignment (CKA) to quantify representa-
tional similarity (Kornblith et al., 2019). CKA is a
method for comparing representations across net-
work layers, as it is invariant to feature rotation and
isotropic scaling, making it more reliable than nor-
mal vector similarity. These two analytical tools,
model-averaged fusion and CKA, allow us to sys-
tematically investigate the intrinsic properties of
multi-task learning on MoE models from both the
weight and representation space perspectives.

3 CAEM-MoE

3.1 Overview

The purpose of CAEM is to merge a set of source
models, S = {51, 5, ...,Su}, into a single MTL
MoE model, My7;.. Each S; is a standard encoder
or decoder of Switch Transformer, with n4 experts
per MoE layer, which has been fine-tuned on a
single task. The resulting M7y is also a Switch
Transformer architecture with n,,, experts per layer.
The entire procedure is detailed in Algorithm 1 and
illustrated schematically in Figure 1. It is important
to note that we perform the CAEM process inde-
pendently for the encoder and the decoder, treating
them as separate modules to be merged.

Algorithm 1: Complexity-Aware Expert
Merging (CAEM) for Encoder and Decoder
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3.2 Complexity-Aware Expert Allocation

The primary purpose of this section is to allocate
expert capacity based on the intrinsic complexity
of each task. To achieve this, we first run inference
with each source model S; on its corresponding
validation dataset to record the expert usage counts.
These counts are then transformed to a probability
distribution Pi(l) = [pgq , pgg, . ,pgz)ls] for each
MoE layer [. Next, we compute the normalized
entropy of this distribution, H Igo)ml ;- A value close
to 1 signifies a uniform distribution of expert us-
age, indicating high task complexity, while a value
approaching 0 implies a skewed distribution, sug-
gesting lower complexity. The normalized entropy
is calculated as:

O]
— Z] 1 pw O8P;,;

log(ns)

[0

norm,;

€[0,1) @)

With Hélo)rm , for each layer, we proportionally
allocate the n,, target experts among the source

models (Algorithm 1, Line 7). Subsequently, an
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Figure 1: An illustration of the Complexity-Aware Expert Merging (CAEM) process. The case with M = 3 source
models (S, S2,S3) and a target MTL model (M), where ng = n,,, = 8 and Nyjoc = [1, 3, 4]. The color hue
represents different tasks, and the color intensity represents its usage frequency (darker indicates higher).

adjustment function, AdjustAlloc(), is applied to
handle integer rounding and boundary conditions.
If there are remaining experts, we allocate them
based on the decimal part before rounding. (e.g.
ensuring each task contributes between 1 and n,
experts and the total number of allocated experts
precisely equals n,,) (Algorithm 1, Line 8).

3.3 Selective Expert Merging

A standard MoE layer of the Switch Transformer
operates as follows: a router, with weight matrix
Wiouter = [ril), e r,(ll” , maps an input token x
to a vector of logits. These logits are then passed
through a softmax function to produce a probability
distribution over the experts, g(x). Subsequently,
the expert E( ) corresponding to the highest proba-
bility g(x) is selected to process the token.

With the number of experts to be allocated from
each source model S; determined for each layer /,
we proceed with the selection. Based on the expert
usage frequencies calculated during the allocation
phase, we employ the TopKlIndices() function to

identify the indices of the top- Na(uz)”. most fre-

quently used experts for each .5;. Subsequently, the
selected expert modules E (lj)

@ -

ing weight vectors r; ; in router are copied from
S; and placed into their new positions within the
target model M7y (Algorithm 1, Lines 11-16).
For the remaining non-MoE, shared parameters
0, we employ a weighted averaging scheme. The
weight vector, w € RM s determined by the to-
tal proportion of experts that each source model
S; contributed across all MoE layers, denoted by
Niotar (Algorithm 1, Line 17-19). This ensures
that source models contributing more experts also

and their correspond-

have a greater influence on the shared backbone
of the final architecture. This concludes the whole
initialization process for our CAEM process.

4 Experiments

4.1 Datasets and Preprocessing

We evaluate our CAEM method on three differ-
ent types of English NLP tasks: classification (AG
News; Zhang et al., 2015), extractive question an-
swering (SQuAD v1.1; Rajpurkar et al., 2016), and
summarization (XSum; Narayan et al., 2018). To
ensure a unified input-output format for the Switch
Transformer, all instances are converted into a
seq2seq format, prepended with a task-specific
prompt—"Classify:", "Question:"(and "Context:"),
and "Summarize:". For AG News, we map the
original labels to their string representations (e.g.
"World", "Sports") and evaluate performance using
accuracy. For SQuAD, we adapt the task by requir-
ing the model to generate the full answer text rather
than predicting start and end indices, and evaluate
using the standard exact match (EM) score. Finally,
performance on XSum is evaluated using ROUGE-
L (Lin, 2004). See Appendix A.1 for details.

4.2 Models and Baselines

For our experiments, we benchmark CAEM against
a standard MTL baseline at two distinct expert ca-
pacities. Furthermore, to validate our design, we
conduct two ablation studies. Table 1 summarizes
these seven experimental configurations.

Baseline Cases. These models are initialized
with the google/switch-base-{8, 16} pretrained
weights and then fine-tuned on the multi-task data
mixture, as described in Section 4.3.



Configuration Name Source Models (n;) Target Model (n,,,) Allocation Method
Baseline-8 N/A (Directly fine-tuned) MTM (8) N/A

Baseline-16 N/A (Directly fine-tuned) MTM (16) N/A

CAEM-8 3 x STM (8) MTM (8) Entropy-based (Ours)
CAEM-8-to-16 3 x STM (8) MTM (16) Entropy-based (Ours)
CAEM-16 3 x STM (16) MTM (16) Entropy-based (Ours)
CAEM-8-Avg 3 x STM (8) MTM (8) Fixed Ratio (2:3:3)
CAEM-16-Avg 3 x STM (16) MTM (16) Fixed Ratio (5:5:6)

Table 1: An overview of the seven experimental configurations. Models include baselines, our proposed CAEM,
and ablations with fixed allocation ratios. STM: Single-Task Model. MTM: Multi-Task Model.

CAEM Cases. Before the CAEM process, we
use the same pretrained weights to fine-tune single-
task models on each of the three tasks indepen-
dently. The resulting three models are then merged
using the CAEM algorithm to create the initial
multi-task model, which is subsequently fine-tuned
with the same procedure as the baselines.

Ablation Cases. To test the effectiveness of our
entropy-based expert allocation, we include two
ablation variants that use a uniform-like allocation
ratio (2:3:3 for 8 experts; 5:5:6 for 16 experts)
instead of the complexity-aware allocation.

4.3 Implementation Details

All models are based on the Switch Transformer
architecture. For optimization, we use AdamW
with a constant learning rate of 3 x 10~%. Further
hyperparameters are detailed in Appendix A.3.

Training Procedure. For all multi-task fine-
tuning, we adopt a mixed-batch strategy. Each
optimization step processes three batches (one per
task, with a batch size of 24), and gradients are
accumulated, yielding an effective batch size of
72. In addition, due to the different dataset sizes,
we define an epoch as a fixed number of 87,599
training samples extracted from each task, match-
ing the size of the smallest dataset (SQuAD). Data
is sampled alternately across epochs to ensure that
all samples are utilized throughout the training pro-
cess. Finally, we train for 10 epochs and report the
performance from the epoch that achieves the best
Overall Performance on the validation datasets.

Overall Performance Metric. To provide a sin-
gle, normalized score across the three distinct tasks,
we define the Overall Performance as follows:

Scoremr; 2

| M
0] 1IPerf = —
verallPer i ; Scorest.

where M = 3 is the number of tasks, Scoremr,;
is the multi-task model’s score on task 7, and
Scoresr,; is the best score achieved by a single-task
model of the same expert capacity on that task.

5 Results and Analysis

5.1 Performance Comparison

Table 2 presents the performance results of all
seven configurations, demonstrating the efficacy of
our CAEM method. All three core CAEM models
(CAEM-8, CAEM-16, and CAEM-8-to-16) con-
sistently and significantly outperform their corre-
sponding baselines in Overall Performance.
Focusing on the 8-expert setup, CAEM-8
achieves the highest overall performance among all
models, marking a substantial 1.97% relative im-
provement over Baseline-8. This success highlights
our method’s ability to perform strategic resource
trade-offs, which achieves a remarkable 6.47% gain
on the complex bottleneck task, XSum, at the cost
of only a negligible 0.16% decrease on AG News.
A similar pattern of superiority over the baseline
is observed in the 16-expert case. The results of
our ablation study (CAEM-8-Avg) further validate
our approach. Although the case also surpasses
the baseline, its 1.9% performance drop on XSum
compared to CAEM-8 confirms that allocating ex-
perts based on task complexity (entropy-based) is
crucial for maximizing MTL performance.
Interestingly, we found that the performance
of the CAEM-8-to-16 case falls between that of
CAEM-8 and CAEM-16 for all tasks. Among
these, the performance trend CAEM-8 > CAEM-
8-to-16 > CAEM-16 is particularly evident on the
Overall and XSum metrics. We attribute this phe-
nomenon to the efficiency of expert utilization dur-
ing the inference process. Table 3 shows the av-



Configuration Name Overall Perf. AG News (Acc.) SQuAD (EM) XSum (ROUGE-L)
Baseline-8 0.9862 94.72 76.50 29.36
Baseline-16 0.9881 94.33 76.64 29.88
CAEM-8 1.0056 94.57 76.51 31.26
CAEM-8-to-16 1.0012 94.37 76.90 31.02
CAEM-16 1.0007 94.03 77.15 30.98
CAEM-8-Avg 0.9986 94.20 76.59 30.68
CAEM-16-Avg 0.9990 94.39 76.58 30.94

Table 2: Performance comparison of experimental configurations. The Overall Performance is normalized by
single-task performance (>1.0 is better). The best result is in bold and the second-best is underlined.

erage normalized entropy of expert utilization in
the final models. The performance trend directly
correlates with it. CAEM-8, with the highest en-
coder and decoder entropy, utilizes its experts more
collaboratively and effectively. In contrast, the
lower entropy of CAEM-16 suggests that its router
adopts a more conservative strategy, concentrating
computation on fewer proportions of experts. For
CAEM-8-to-16, although its encoder entropy is
the lowest of the three, its decoder entropy, which
we argue is more critical for these muti-task mod-
els (Section 5.2), remains significantly higher than
the CAEM-16 case. These results suggest that a
smaller pool of experts with uniform used can be
more effective than a larger pool of experts sparsely
used in a multitasking setting.

Model En-Entropy De-Entropy
CAEM-8 0.4524 0.5923
CAEM-8-to-16 0.3345 0.5312
CAEM-16 0.3966 0.4677

Table 3: Average normalized entropy of expert usage.
Higher values indicate more uniform expert utilization.

5.2 Analysis of Inter-Model Similarity

To understand the internal mechanisms of differ-
ent MTL models, we first investigate the functional
similarity between our CAEM models and the base-
lines. We employ CKA to compare the layer-wise
representations of the models before and after fine-
tuning, as shown in Figure 2. We can find that
in both {8, 16}-expert configurations, the encoder
CKA similarity between CAEM and baseline mod-
els systematically increases after fine-tuning. This
demonstrates that, regardless of their different ini-
tializations, the models are guided towards a homo-

geneous subspace for semantic understanding. In
contrast, the decoder exhibits a capacity-dependent
dynamic. In the constrained 8-expert setting, the
decoders also become similar. However, in the
high-capacity 16-expert setting, the decoders show
significant divergence, particularly for the simple
AG News task. This indicates that sufficient expert
capacity allows the models to explore and develop
distinct, specialized pathways for text generation.
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Figure 2: Layer-wise CKA similarity between CAEM
and Baseline models, before (Initial, dashed lines) and
after (Final, solid lines) multi-task fine-tuning.

To further validate whether this representational
similarity corresponds to functional compatibility
in the weight space, we adopt the "Model Soup"
methodology (Wortsman et al., 2022). As shown
in Table 4, averaging the weights of any two mod-
els within the same expert capacity (e.g., CAEM-8
and Baseline-8) still maintains good performance.
This provides strong evidence that these models,
despite their different initialization strategies, ulti-
mately converge into the same broad, functionally
connected low-loss basin.



Model Pair for Averaging  Overall Perf.
CAEM-8, Baseline-8 0.8531
CAEM-8, CAEM-8-Avg 0.8880
CAEM-8-Avg, Baseline-8 0.8592
CAEM-16, Baseline-16 0.9035
CAEM-16, CAEM-16-Avg 0.9337
CAEM-16-Avg, Baseline-16 0.8678

Table 4: Overall Performance after applying model soup
(averaging weights) between pairs of models with the
same architecture. The highest result is in bold.

Finally, an analysis of the expert routing pat-
terns in the CAEM-8 model reveals a key insight
(Figure 3). We found that the fine-tuned model
develops a task-agnostic expert utilization strategy,
activating a shared pool of experts for all tasks.
Therefore, the primary role of CAEM is not to
enforce a static, specialized architecture, but to pro-
vide a superior starting point. This initial assembly
of high-quality specialists enables the multi-task
fine-tuning to discover a more optimal and syner-
gistic general-purpose solution than the baseline.

Heatmap of expert usage (CAEM-8)
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Figure 3: Expert utilization frequency for the CAEM-8
model across all MoE layers and tasks. Color inten-
sity represents the routing frequency (darker indicates
higher) for each expert (x-axis) at each layer (y-axis).

Additionally, a notable finding is that, despite
the encoders of CAEM-8 and Baseline-8 achiev-
ing near-perfect functional equivalence (CKA ap-
proaching 1.0 in Figure 2), their performance on
XSum differs by a substantial 6.47% (cf. Table 2).
This performance gap can be attributed almost en-
tirely to the crucial divergences in their decoder
strategies. This confirms that while multi-task
learning fosters a shared understanding (Encoder),
the ultimate performance on complex generative
tasks is dictated by the specialized generation strate-
gies developed in the decoder.

5.3 The Founder Effect

Having investigated the representation similarity
of models within the same architecture, we now
analyze the special CAEM-8-to-16 configuration
to probe the principles of cross-capacity merging.
We use CKA to compare the final representations
of this model with the CAEM-8 and CAEM-16
models. As illustrated in Figure 4, we found an
interesting pattern. Despite undergoing the same
multi-task fine-tuning process (mixed-batch), the
CAEM-8-to-16 model’s encoder representations
remain almost perfectly aligned with the model,
CAEM-8, achieving CKA scores exceeding 0.999
for tasks like XSum. Conversely, its similarity to
the native CAEM-16 model is significantly lower,
in fact, than its similarity to the Baseline-16 model
(cf. Figure 2).
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Figure 4: Layer-wise CKA similarity between CAEM-8-
to-16 and CAEM-8, CAEM-16 models after multi-task
fine-tuning.

In the same manner, we performed model soup
experiments. We averaged the weights of the
CAEM-8-to-16 model with all other 16-expert
models (Baseline-16, CAEM-16, and CAEM-16-
Avg) separately. The results presented in Table 5
indicate that all fusion leads to a catastrophic per-
formance collapse, with overall performance ap-
proaching zero.

Model Pair for Averaging Overall Perf.
CAEM-8-to-16, Baseline-16 0.0000
CAEM-8-to-16, CAEM-16 0.0011
CAEM-8-to-16, CAEM-16-Avg 0.0010

Table 5: Overall Performance after applying model soup
(averaging weights) between CAEM-8-to-16 and other
16-expert configurations. The highest result is in bold.



Taken together, these findings provide unequivo-
cal evidence for what we term the "Founder Effect".
The CKA analysis reveals a strong representational
inertia, where the functional patterns of the source
modules are inherited. The model soup experi-
ment proves that this inertia is not merely a su-
perficial similarity but a fundamental constraint; a
formidable loss barrier separates the solution basin
occupied by the 8-to-16 model from the basin of
other 16-expert models, rendering them incompati-
ble in weight space.

This inherited representational structure also per-
fectly explains the performance interpolation of the
CAEM-8-to-16 model. It effectively inherits the en-
coder’s "thinking mode" from the 8-expert model,
but its generation process requires adapting a new
16-expert decoder architecture. This architectural
mismatch and the compromises made to accommo-
date it during fine-tuning result in performance that
is naturally between the CAEM-8 and CAEM-16.

In conclusion, the Founder Effect is a manifes-
tation of profound path dependence in the opti-
mization of merged models. The initial weight
configuration, dominated by the more coherent and
composable "founder" modules from the §-expert
source, creates a powerful basin of attraction in the
loss landscape. This basin constrains the model’s
entire optimization trajectory, ensuring the inher-
itance of the founder’s functional properties, irre-
spective of the target architecture’s capacity.

6 Related Work
6.1 Task Interference on MTL

A central challenge in MTL is managing the con-
flicts among tasks. Prevailing solutions focus on
in-training dynamics, either through direct gradi-
ent manipulation (Yu et al., 2020) or by dynami-
cally balancing task loss weights. Using heuristics
based on uncertainty (Kendall et al., 2018), gradi-
ent norms (Chen et al., 2018), or finding Pareto
optimal solutions (Sener and Koltun, 2018). In
contrast, our work addresses this challenge from a
different dimension: model initialization. CAEM
is a one-shot merging strategy that provides a supe-
rior starting point to enable more efficient MTL.

6.2 Model Merging and the Loss Landscape

Recent interest in model merging is grounded in
the understanding that optimal solutions often re-
side within a connectable low-loss basin. Follow-
ing foundational work by Garipov et al. (2018)

and Frankle et al. (2020), which demonstrated that
low-loss paths connect different optimal solutions,
Model Soups (Wortsman et al., 2022) empirically
verified that averaging models from the same loss
basin can lead to better and more robust solutions.
To achieve more sophisticated merging, the field
has developed advanced techniques such as Fisher-
weighted averaging (Matena and Raffel, 2022),
interference resolution via TIES-Merging (Yadav
et al., 2023), and model editing through Task Arith-
metic (Ilharco et al., 2023). However, these studies
focus on parameter-level merging of dense models.
We extends this to the module-level reorganiza-
tion of sparse MoE architectures and discovers the
"Founder Effect" on multi-task model merging.

6.3 Representation Similarity on MoE

Understanding the internal mechanisms of large
models is a core research topic. While prior work
has analyzed expert specialization in MoE models
(Du et al., 2022) and the hierarchical functions of
Transformers using tools like RSA (Kriegeskorte
et al., 2008), probing (Tenney et al., 2019), and
CKA (Kornblith et al., 2019), BERTology (Rogers
et al., 2020), these analytical tools have mostly
been applied to dissect a single model after fine-
tuning. A key methodological contribution of our
work is the application of these tools to tracking
the representational trajectories of different models
(CAEM vs. Baseline) before and after merging
and fine-tuning, revealing the learning dynamics
of convergence and divergence in the encoder and
decoder from a novel perspective.

7 Conclusion

We propose CAEM, a complexity-aware frame-
work for merging MoE models that provides a su-
perior starting point for efficient multi-task learn-
ing. Our method acts as a strategic resource trade-
off, it boosts performance on complex bottleneck
tasks via minimal trade-offs on simpler ones, and
our analysis uncovers a Founder Effect, where
a merged model’s optimization trajectory is con-
strained by its source modules. Future work could
validate CAEM’s generalizability on a wider range
of tasks and explore its applicability to different
MOoE architectures. Another direction is to refine
the merging strategy, for instance by normalized its
weights while merging, to better adapt the inherited
features to models of varying sizes and overcome
the scaling limitations observed in this study.



Limitations

Our study is subject to some limitations. First, the
generalizability of our findings across tasks and
languages could be further explored. Although our
experiments cover three diverse NLP tasks, the ef-
ficacy of CAEM on other task types (e.g., machine
translation) or in non-English contexts remains an
open question. Second, our analysis is confined to
a specific model architecture and scale. This work
focuses exclusively on Switch Transformers with
top-1 routing, and our experiments are conducted
on models with up to 16 experts. The behavioral
patterns of CAEM on models with different routing
strategies or at a significantly larger scale may be
more complex and warrant further investigation.
Finally, while we found the "Founder Effect", our
work does not propose a solution to its associated
scaling problem. More fundamentally, how the in-
herited representational patterns from the founder
modules can be optimally adapted to unlock the
full potential of a new, higher-capacity architecture
is a highly valuable avenue for future work.

Ethical Considerations

While our CAEM approach enhances the efficiency
of building powerful multi-task models, we have
considered its potential ethical implications. On
the side of potential risks, our discovery of the
Founder Effect offers a critical perspective on bias
propagation. If a founder module inherits some
biases from its source data, our findings suggest
these biases could be stubbornly inherited and exert
a dominant influence in the merged model, even
after it has undergone extensive multi-task fine-
tuning. This underscores the critical importance
of auditing source models for bias prior to merg-
ing. Conversely, on the positive side, CAEM offers
a more economical path for resource-constrained
institutions to build high-performance multi-task
models, thus helping to democratize access to Al
technology. Additionally, the one-shot nature of
our merging strategy is potentially more computa-
tionally efficient than iterative tuning, reducing the
environmental footprint of model development.
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A Appendix

A.1 Dataset Preprocessing

The public datasets used in this research adhere to
their original licensing terms. Both the SQuAD
vl.1 and XSum datasets are released under the
Creative Commons Attribution-ShareAlike 4.0 (CC
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BY-SA 4.0) license. The AG News corpus does not
have a separate explicit license but is widely made
available by its creators for academic research. As
for the detailed train, validation, and test splits for
the datasets used in our experiments are provided
in Table 6.

To adapt the three distinct tasks for a single
model within a multi-task learning framework, we
reformatted the AG News and SQuAD datasets into
a sequence-to-sequence format.

For the AG News dataset, which only provides
an official training and test set, we follow standard
practice and create our own validation set by ran-
domly sampling 10% of the 120k training samples.
The remaining 90% is used for training, and the
original, untouched test set is used for final eval-
uation. Each input text was prepended with the
prompt "Classify: " and appended with an end-
of-sequence token (</s>) to signify the end of the
input. For the accuracy calculation, a prediction
is considered correct only if it is an exact match
with one of the four predefined category strings:
"World", "Sports", "Business", or "Science and
Technology".

For the SQuAD dataset, following the common
academic convention due to the absence of a pub-
lic test set, we use the official development (val-
idation) set for both model selection (i.e., choos-
ing the best epoch) and for reporting the final EM
scores. As for the input, which consists of a ques-
tion and a context, was structured as follows: the
prompt "Question: " was added before the ques-
tion, followed by the prompt "Context: " separat-
ing the question and the context. The </s> token
was appended to the end of the context. During
evaluation, all scores were computed using the
official SQuAD script within the Hugging Face
evaluate library (v0.4.4), which we accessed via
evaluate.load("squad") (Lhoest et al., 2021).

For the XSum dataset, which is inherently a
seq2seq task, we use the official splits and simply
prepended the prompt "Summarize: " to the input
document and appended the </s> token at the end.
The performance was evaluated using the ROUGE-
L score between the generated summary and the
reference summary.

A.2 Details of the AdjustAlloc() Function

This section elaborates on the AdjustAlloc() func-
tion from Algorithm 1. The primary objective of
this function is to ensure that each task is allocated
at least one expert, while the total number of allo-
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Dataset Train Validation Test
AG News 108,000 12,000 7,600
SQuAD vl1.1 87,599 10,570 N/A
XSum 204,045 11,332 11,334

Table 6: Statistics for the datasets used in our study.

cated experts does not exceed the expert capacity
of the source model (ns). The allocation process
begins by proportionally assigning experts based
on the normalized entropy of each task. The initial
allocation, Nyjjoc, is determined by taking the floor
of these proportional values, and the correspond-
ing fractional remainders are stored in an array,
R. Next, we iterate through each task’s alloca-
tion. If a task has been allocated zero experts, its
allocation is adjusted to 1. Conversely, if a task’s
allocation exceeds ng, it is capped at ns. After
the constraint enforcement, the sum of experts in
Napioc (3 Nalioe,;) may be greater or less than the
target number of experts for the merged model, n,,.
Therefore, we deal with the following two cases
separately.

* Case 1: X Nyjioc,i > N (Excess):

To reduce the count, we iteratively remove ex-
perts. In each iteration, we identify the task(s)
with the maximum number of allocated ex-
perts. Among these, we select the one with
the smallest remainder in R and decrement its
expert count by one. This process is repeated
until X Ngjioc,; equals ny,.

» Case 2: X Nyiioc; < N, (Insufficient):

To distribute the remaining experts, we iden-
tify tasks that have not yet reached their expert
capacity. If only one task has available capac-
ity, all remaining experts are assigned to it.
If two tasks have available capacity, the re-
maining experts are split. The task with the
higher remainder in R receives the larger por-
tion ([remaining/2]), and the other receives
the smaller portion (|remaining/2|). If all
three tasks have available capacity, we em-
ploy an iterative, round-robin approach. In
each round, one expert is assigned to the task
with the current highest remainder in R. To
prevent re-selection, this task’s remainder in
R is then set to zero. This continues until all
deficit experts are allocated.



A.3 Training Details

Detailed training hyperparameters are provided in
Table 7. The multi-task learning setup utilized an
effective batch size of 72. This was achieved by
constructing each batch from three smaller batches
(24), with each smaller batch drawn from one of
the three respective tasks.

All experiments were conducted on a server with
an NVIDIA RTX A6000. The total estimated com-
putation time for all experiments, including single-
task fine-tuning and all multi-task runs, was ap-
proximately 600 GPU hours. The number of pa-
rameters for the Switch Transformer models are
approximately 619.34M for the 8-expert version
and 1072.40M for the 16-expert version.

Hyperparameter Value

Pretrained Model google/switch-base-{8, 16}
Optimizer AdamW

Learning Rate 3x 1074 (constant)

Batch Size (per task) 24
Batch Size (MTL) 72

Max Epochs 10
AdamW Optimizer Settings
Adam £ 0.9
Adam (2 0.98
Adam € 1x107'°
Weight Decay 0.005

Training Details

Max Input Length 1000 tokens
Max Target Length 200 tokens

Software and Versions

Tokenizer TS5TokenizerFast
Transformers Hugging Face 4.46.3
Evaluate Hugging Face 0.4.4

Table 7: Hyperparameter settings used for all experi-
ments, which were chosen based on common practices
for fine-tuning Switch Transformer models and were
not extensively tuned via a large-scale search due to
computational constraints.
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