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Abstract001

The Mixture-of-Experts (MoE) architecture002
plays a crucial role in scaling Large Language003
Models to trillions of parameters without incur-004
ring excessive computational costs. Although005
utilizing these powerful models for Multi-Task006
Learning (MTL) is an attractive objective, train-007
ing a single model on diverse tasks without008
proper consideration can often result in per-009
formance degradation due to task interference010
and negative transfer. To tackle this issue, we011
came up with Complexity-Aware Expert Merg-012
ing (CAEM), a novel strategy that uses the en-013
tropy of expert utilization as an indicator of task014
complexity. This approach allows for a strate-015
gic allocation of expert resources, overcom-016
ing common MTL bottlenecks. Our method017
achieves a significant improvement over stan-018
dard MTL baselines, exemplified by a 6.47%019
ROUGE-L gain on the complex XSum task020
with only negligible trade-offs on other simpler021
tasks (8-experts case) because of the superior022
starting point in the loss landscape and path023
dependency in optimization. This observation024
led us to identify a more general principle: a025
"Founder Effect" in model merging. CAEM not026
only provides a resource-efficient path to high-027
performance MTL but also provides insights028
into the mechanisms of model merging.029

1 Introduction030

In recent years, the scaling of large language mod-031

els has become a central factor in the development032

of artificial intelligence capabilities. A significant033

component of this trend is the Mixture-of-Experts034

(MoE) architecture (Shazeer et al., 2017), such as035

the Switch Transformer model proposed by Fedus036

et al. (2022). This architecture primarily increases037

the total parameter capacity of the model through038

sparse conditional computation, while not signifi-039

cantly raising the number of floating-point opera-040

tions (FLOPs) needed for inference. Additionally,041

this approach has led to the creation of many highly042

specialized models that are fine-tuned for specific 043

tasks. This trend of model specialization naturally 044

makes people try to integrate dispersed expertise to 045

fit more complex and diverse real-world demands. 046

Task Arithmetic (Ilharco et al., 2023), a pioneer- 047

ing research direction, posits that one can combine 048

or remove model capabilities through simple arith- 049

metic operations on task vectors, the weight differ- 050

ence between fine-tuned and pre-trained models. 051

However, subsequent research found that a di- 052

rect linear combination of task vectors often leads 053

to performance degradation due to destructive in- 054

terference from issues such as parameter conflicts. 055

To address this, later studies have proposed more 056

sophisticated strategies, such as Hi-Merging (Yuan 057

et al., 2024), which relieves parameter conflicts 058

through pruning and scaling specific parameters, 059

or AdaMerging (Jiang et al., 2024), which auto- 060

matically learns the merging coefficients λ. Re- 061

cent work, such as FedMoE (Mei et al., 2024), has 062

also demonstrated the great potential of modular 063

approaches, successfully achieving efficient, per- 064

sonalized federated learning by intelligently com- 065

bining expert subsets for different clients. 066

Beyond these strategies, Multi-Task Learning 067

offers a valuable framework, aiming to solve multi- 068

ple related tasks with a single model, thereby using 069

inter-task commonalities to improve learning ef- 070

ficiency and generalization (Caruana, 1997; Liu 071

et al., 2019). A common approach is to jointly fine- 072

tune a general-purpose MoE pre-trained model on a 073

mixture of data from all target tasks. However, this 074

approach often neglects the intrinsic differences be- 075

tween tasks, potentially leading to negative transfer 076

(Yosinski et al., 2014) or parameter conflicts, which 077

force experts to achieve less optimal specialization 078

for specific tasks. The other extreme, training a 079

complete MoE model independently for each task 080

while ensuring optimal task specialization contra- 081

dicts the ethos of MTL and results in a tremendous 082

waste of resources. 083
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Therefore, the core of this research focuses084

on an efficient merging strategy to integrate the085

knowledge from multiple single-task MoE models086

into a single multi-task model and, through fine-087

tuning, achieve performance that surpasses a stan-088

dard from-scratch training baseline. More impor-089

tantly, we also explore the underlying mechanism.090

To solve this problem, this study proposes the091

Complexity-Aware Expert Merging strategy. Our092

core insight is the use of the entropy of expert uti-093

lization as a quantitative indicator of task complex-094

ity. The intuition behind this is that more complex095

tasks, such as summarization, require the model to096

master more diverse and detailed sub-skills. This097

phenomenon causes the router to invoke a more098

diverse set of experts when processing inputs, re-099

sulting in a more uniform usage pattern with higher100

entropy. Conversely, simpler tasks, like text classi-101

fication, may rely on a few key experts, leading to102

a concentrated, low-entropy usage pattern. Based103

on this metric, CAEM reframes the model merging104

from a simple performance maximization problem105

to a strategic resource trade-off process, thus ac-106

complishing a bottom-up, task-driven allocation of107

expert capacity.108

Our main contributions are as follows.109

• We propose and validate the CAEM strategy,110

demonstrating its ability to achieve an im-111

provement by significantly boosting perfor-112

mance on bottleneck tasks with minimal trade-113

offs on simpler ones.114

• We show that both the CAEM model and the115

standard baseline model exhibit high paramet-116

ric compatibility after fine-tuning, with a func-117

tional decoupling: encoder representations ho-118

mogenize, while decoder representations have119

a capacity-dependent divergence.120

• We demonstrate that the optimization trajec-121

tory of a merged model is constrained by its122

initial position in the loss landscape, resulting123

in the model’s final representational character-124

istics being dominated by those of its original125

components.126

2 Background127

2.1 Mixture of Experts128

The core strategy of MoE is to assign input tokens129

to a set of experts dynamically by a router to re-130

duce the FLOPs for inference. A popular example131

of an MoE architecture is the Switch Transformer 132

(Fedus et al., 2022). This architecture modifies 133

the standard Transformer by replacing the Feed- 134

Forward Network with the MoE layer. Its most 135

distinctive feature is the adoption of a top-1 rout- 136

ing strategy. Compared to other MoE models that 137

select multiple experts at once, which significantly 138

reduces computational complexity while maintain- 139

ing model performance. 140

A common finding is that during the training of 141

MoE models, different experts exhibit functional 142

specialization (Du et al., 2022). Consequently, each 143

expert develops proficiency for different sub-tasks, 144

and the router’s objective is to learn how to dis- 145

patch the current input token to the suited experts 146

accurately. This characteristic provides a potential 147

solution for multi-task learning and offers a solid 148

foundation for the ever-growing field of generative 149

general-purpose AI. 150

2.2 Multi-Task Learning 151

The core idea of MTL is to enable a single model 152

to learn multiple different tasks simultaneously, 153

with the expectation that knowledge can be shared 154

across related tasks during training to improve the 155

model’s performance on each task. In standard 156

Transformer architectures, MTL often develops a 157

shared encoder to build a common understanding 158

of input tokens while using task-specific decoders 159

to handle diverse generation formats (Zhang and 160

Yang, 2022). The success of MTL hinges on effec- 161

tive knowledge transfer, where features learned for 162

one task provide useful inductive biases for others 163

(Sodhani et al., 2021). 164

Despite its potential, MTL still faces signifi- 165

cant challenges, with task interference and neg- 166

ative knowledge transfer. These issues arise when 167

learning objectives conflict (e.g., their gradient di- 168

rections are opposite), causing shared parameters to 169

degrade performance (Yu et al., 2020). The sparse 170

activation of experts in MoE architectures strategi- 171

cally solves this problem by distributing the compu- 172

tational load of different sub-tasks across distinct 173

experts, thus reducing direct parameter conflicts. 174

However, while this relieves interference, the ques- 175

tion of how to best allocate resources (i.e., experts) 176

in a MTL setting remains largely unexplored. This 177

question led us to a core motivation for our re- 178

search: to investigate whether the knowledge of 179

several highly specialized experts can be effectively 180

combined and handle several tasks perfectly. 181
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2.3 Model Similarity and the Loss Landscape182

The loss landscape of neural networks directly in-183

fluences the training process and results. Previ-184

ously, people believed that optimal solutions found185

from different random initializations were isolated186

in separate loss basins, separated by high loss bar-187

riers. However, Garipov et al. (2018) demonstrated188

that low-loss paths often connect these disparate189

solutions. This discovery induced new research in190

model merging, including the influential empiri-191

cal work on Model Soups (Wortsman et al., 2022).192

They found that when models fine-tuned from the193

same pre-trained weights are averaged, the result-194

ing model is often more robust and performant,195

implying these solutions likely reside within the196

same connectable low-loss basin.197

However, these studies usually focused on struc-198

turally identical, single-task dense models. While199

they provide a valuable method for probing weight-200

space symmetries, MTL on MoE has greater com-201

plexity with its modular architecture and diverse202

task-specific initializations. Therefore, in addition203

to applying the concept of Model Soups as a macro-204

scopic test to probe whether different models in-205

habit compatible solution spaces, we also analyze206

the internal mechanisms of models using Centered207

Kernel Alignment (CKA) to quantify representa-208

tional similarity (Kornblith et al., 2019). CKA is a209

method for comparing representations across net-210

work layers, as it is invariant to feature rotation and211

isotropic scaling, making it more reliable than nor-212

mal vector similarity. These two analytical tools,213

model-averaged fusion and CKA, allow us to sys-214

tematically investigate the intrinsic properties of215

multi-task learning on MoE models from both the216

weight and representation space perspectives.217

3 CAEM-MoE218

3.1 Overview219

The purpose of CAEM is to merge a set of source220

models, S = {S1, S2, . . . , SM}, into a single MTL221

MoE model, MMTL. Each Si is a standard encoder222

or decoder of Switch Transformer, with ns experts223

per MoE layer, which has been fine-tuned on a224

single task. The resulting MMTL is also a Switch225

Transformer architecture with nm experts per layer.226

The entire procedure is detailed in Algorithm 1 and227

illustrated schematically in Figure 1. It is important228

to note that we perform the CAEM process inde-229

pendently for the encoder and the decoder, treating230

them as separate modules to be merged.231

Algorithm 1: Complexity-Aware Expert
Merging (CAEM) for Encoder and Decoder

1 Initialize Ntotal ← 0
2 for each MoE layer l ∈ LMoE do
3 for each source model Si ∈ S do
4 P

(l)
i ← GetUsageDist(Si, l)

5 H
(l)
norm,i ← CalcNormEntropy

(
P

(l)
i

)
6 H

(l)
norm, total ←

∑M
i=1H

(l)
norm,i

7 N
(l)
alloc ←

[
nmH

(l)
norm,1

H
(l)
norm, total

, . . . ,
nmH

(l)
norm,M

H
(l)
norm, total

]
8 N

(l)
alloc ← AdjustAlloc

(
N

(l)
alloc, nm, ns

)
9 Ntotal ←Ntotal +N

(l)
alloc

10 target_idx← 1
11 for each source model Si ∈ S do
12 top_idxs← TopKIndices

(
Si, l,N

(l)
alloc

)
13 for each source_idx in top_idxs do
14 E′(l)

target_idx ← E
(l)
i,source_idx

15 r′
(l)
target_idx ← r

(l)
i,source_idx

16 target_idx← target_idx + 1

17 w ←Ntotal/
∑

(Ntotal)
18 for each non-MoE parameter θ in MMTL do
19 θMMTL ←

∑M
i=1wi · θSi

20 return MMTL

3.2 Complexity-Aware Expert Allocation 232

The primary purpose of this section is to allocate 233

expert capacity based on the intrinsic complexity 234

of each task. To achieve this, we first run inference 235

with each source model Si on its corresponding 236

validation dataset to record the expert usage counts. 237

These counts are then transformed to a probability 238

distribution P
(l)
i =

[
p
(l)
i,1, p

(l)
i,2, . . . , p

(l)
i,ns

]
for each 239

MoE layer l. Next, we compute the normalized 240

entropy of this distribution, H(l)
norm,i. A value close 241

to 1 signifies a uniform distribution of expert us- 242

age, indicating high task complexity, while a value 243

approaching 0 implies a skewed distribution, sug- 244

gesting lower complexity. The normalized entropy 245

is calculated as: 246

H
(l)
norm,i =

−
∑ns

j=1 p
(l)
i,j log p

(l)
i,j

log(ns)
∈ [0, 1] (1) 247

With H
(l)
norm,i for each layer, we proportionally 248

allocate the nm target experts among the source 249

models (Algorithm 1, Line 7). Subsequently, an 250
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Figure 1: An illustration of the Complexity-Aware Expert Merging (CAEM) process. The case with M = 3 source
models (S1, S2, S3) and a target MTL model (MMTL), where ns = nm = 8 and Nalloc = [1, 3, 4]. The color hue
represents different tasks, and the color intensity represents its usage frequency (darker indicates higher).

adjustment function, AdjustAlloc(), is applied to251

handle integer rounding and boundary conditions.252

If there are remaining experts, we allocate them253

based on the decimal part before rounding. (e.g.254

ensuring each task contributes between 1 and ns255

experts and the total number of allocated experts256

precisely equals nm) (Algorithm 1, Line 8).257

3.3 Selective Expert Merging258

A standard MoE layer of the Switch Transformer259

operates as follows: a router, with weight matrix260

Wrouter =
[
r
(l)
1 , . . . , r

(l)
nm

]
, maps an input token x261

to a vector of logits. These logits are then passed262

through a softmax function to produce a probability263

distribution over the experts, g(x). Subsequently,264

the expert E(l)
i,j corresponding to the highest proba-265

bility g(x) is selected to process the token.266

With the number of experts to be allocated from267

each source model Si determined for each layer l,268

we proceed with the selection. Based on the expert269

usage frequencies calculated during the allocation270

phase, we employ the TopKIndices() function to271

identify the indices of the top-N (l)
alloc,i most fre-272

quently used experts for each Si. Subsequently, the273

selected expert modules E(l)
i,j and their correspond-274

ing weight vectors r
(l)
i,j in router are copied from275

Si and placed into their new positions within the276

target model MMTL (Algorithm 1, Lines 11-16).277

For the remaining non-MoE, shared parameters278

θ, we employ a weighted averaging scheme. The279

weight vector, w ∈ RM , is determined by the to-280

tal proportion of experts that each source model281

Si contributed across all MoE layers, denoted by282

Ntotal (Algorithm 1, Line 17-19). This ensures283

that source models contributing more experts also284

have a greater influence on the shared backbone 285

of the final architecture. This concludes the whole 286

initialization process for our CAEM process. 287

4 Experiments 288

4.1 Datasets and Preprocessing 289

We evaluate our CAEM method on three differ- 290

ent types of English NLP tasks: classification (AG 291

News; Zhang et al., 2015), extractive question an- 292

swering (SQuAD v1.1; Rajpurkar et al., 2016), and 293

summarization (XSum; Narayan et al., 2018). To 294

ensure a unified input-output format for the Switch 295

Transformer, all instances are converted into a 296

seq2seq format, prepended with a task-specific 297

prompt—"Classify:", "Question:"(and "Context:"), 298

and "Summarize:". For AG News, we map the 299

original labels to their string representations (e.g. 300

"World", "Sports") and evaluate performance using 301

accuracy. For SQuAD, we adapt the task by requir- 302

ing the model to generate the full answer text rather 303

than predicting start and end indices, and evaluate 304

using the standard exact match (EM) score. Finally, 305

performance on XSum is evaluated using ROUGE- 306

L (Lin, 2004). See Appendix A.1 for details. 307

4.2 Models and Baselines 308

For our experiments, we benchmark CAEM against 309

a standard MTL baseline at two distinct expert ca- 310

pacities. Furthermore, to validate our design, we 311

conduct two ablation studies. Table 1 summarizes 312

these seven experimental configurations. 313

Baseline Cases. These models are initialized 314

with the google/switch-base-{8, 16} pretrained 315

weights and then fine-tuned on the multi-task data 316

mixture, as described in Section 4.3. 317
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Configuration Name Source Models (ns) Target Model (nm) Allocation Method

Baseline-8 N/A (Directly fine-tuned) MTM (8) N/A
Baseline-16 N/A (Directly fine-tuned) MTM (16) N/A

CAEM-8 3 × STM (8) MTM (8) Entropy-based (Ours)
CAEM-8-to-16 3 × STM (8) MTM (16) Entropy-based (Ours)
CAEM-16 3 × STM (16) MTM (16) Entropy-based (Ours)

CAEM-8-Avg 3 × STM (8) MTM (8) Fixed Ratio (2:3:3)
CAEM-16-Avg 3 × STM (16) MTM (16) Fixed Ratio (5:5:6)

Table 1: An overview of the seven experimental configurations. Models include baselines, our proposed CAEM,
and ablations with fixed allocation ratios. STM: Single-Task Model. MTM: Multi-Task Model.

CAEM Cases. Before the CAEM process, we318

use the same pretrained weights to fine-tune single-319

task models on each of the three tasks indepen-320

dently. The resulting three models are then merged321

using the CAEM algorithm to create the initial322

multi-task model, which is subsequently fine-tuned323

with the same procedure as the baselines.324

Ablation Cases. To test the effectiveness of our325

entropy-based expert allocation, we include two326

ablation variants that use a uniform-like allocation327

ratio (2:3:3 for 8 experts; 5:5:6 for 16 experts)328

instead of the complexity-aware allocation.329

4.3 Implementation Details330

All models are based on the Switch Transformer331

architecture. For optimization, we use AdamW332

with a constant learning rate of 3× 10−4. Further333

hyperparameters are detailed in Appendix A.3.334

Training Procedure. For all multi-task fine-335

tuning, we adopt a mixed-batch strategy. Each336

optimization step processes three batches (one per337

task, with a batch size of 24), and gradients are338

accumulated, yielding an effective batch size of339

72. In addition, due to the different dataset sizes,340

we define an epoch as a fixed number of 87,599341

training samples extracted from each task, match-342

ing the size of the smallest dataset (SQuAD). Data343

is sampled alternately across epochs to ensure that344

all samples are utilized throughout the training pro-345

cess. Finally, we train for 10 epochs and report the346

performance from the epoch that achieves the best347

Overall Performance on the validation datasets.348

Overall Performance Metric. To provide a sin-349

gle, normalized score across the three distinct tasks,350

we define the Overall Performance as follows:351

OverallPerf =
1

M

M∑
i=1

ScoreMT,i

ScoreST,i
(2)352

where M = 3 is the number of tasks, ScoreMT,i 353

is the multi-task model’s score on task i, and 354

ScoreST,i is the best score achieved by a single-task 355

model of the same expert capacity on that task. 356

5 Results and Analysis 357

5.1 Performance Comparison 358

Table 2 presents the performance results of all 359

seven configurations, demonstrating the efficacy of 360

our CAEM method. All three core CAEM models 361

(CAEM-8, CAEM-16, and CAEM-8-to-16) con- 362

sistently and significantly outperform their corre- 363

sponding baselines in Overall Performance. 364

Focusing on the 8-expert setup, CAEM-8 365

achieves the highest overall performance among all 366

models, marking a substantial 1.97% relative im- 367

provement over Baseline-8. This success highlights 368

our method’s ability to perform strategic resource 369

trade-offs, which achieves a remarkable 6.47% gain 370

on the complex bottleneck task, XSum, at the cost 371

of only a negligible 0.16% decrease on AG News. 372

A similar pattern of superiority over the baseline 373

is observed in the 16-expert case. The results of 374

our ablation study (CAEM-8-Avg) further validate 375

our approach. Although the case also surpasses 376

the baseline, its 1.9% performance drop on XSum 377

compared to CAEM-8 confirms that allocating ex- 378

perts based on task complexity (entropy-based) is 379

crucial for maximizing MTL performance. 380

Interestingly, we found that the performance 381

of the CAEM-8-to-16 case falls between that of 382

CAEM-8 and CAEM-16 for all tasks. Among 383

these, the performance trend CAEM-8 > CAEM- 384

8-to-16 > CAEM-16 is particularly evident on the 385

Overall and XSum metrics. We attribute this phe- 386

nomenon to the efficiency of expert utilization dur- 387

ing the inference process. Table 3 shows the av- 388
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Configuration Name Overall Perf. AG News (Acc.) SQuAD (EM) XSum (ROUGE-L)

Baseline-8 0.9862 94.72 76.50 29.36
Baseline-16 0.9881 94.33 76.64 29.88

CAEM-8 1.0056 94.57 76.51 31.26
CAEM-8-to-16 1.0012 94.37 76.90 31.02
CAEM-16 1.0007 94.03 77.15 30.98

CAEM-8-Avg 0.9986 94.20 76.59 30.68
CAEM-16-Avg 0.9990 94.39 76.58 30.94

Table 2: Performance comparison of experimental configurations. The Overall Performance is normalized by
single-task performance (>1.0 is better). The best result is in bold and the second-best is underlined.

erage normalized entropy of expert utilization in389

the final models. The performance trend directly390

correlates with it. CAEM-8, with the highest en-391

coder and decoder entropy, utilizes its experts more392

collaboratively and effectively. In contrast, the393

lower entropy of CAEM-16 suggests that its router394

adopts a more conservative strategy, concentrating395

computation on fewer proportions of experts. For396

CAEM-8-to-16, although its encoder entropy is397

the lowest of the three, its decoder entropy, which398

we argue is more critical for these muti-task mod-399

els (Section 5.2), remains significantly higher than400

the CAEM-16 case. These results suggest that a401

smaller pool of experts with uniform used can be402

more effective than a larger pool of experts sparsely403

used in a multitasking setting.404

Model En-Entropy De-Entropy

CAEM-8 0.4524 0.5923
CAEM-8-to-16 0.3345 0.5312
CAEM-16 0.3966 0.4677

Table 3: Average normalized entropy of expert usage.
Higher values indicate more uniform expert utilization.

5.2 Analysis of Inter-Model Similarity405

To understand the internal mechanisms of differ-406

ent MTL models, we first investigate the functional407

similarity between our CAEM models and the base-408

lines. We employ CKA to compare the layer-wise409

representations of the models before and after fine-410

tuning, as shown in Figure 2. We can find that411

in both {8, 16}-expert configurations, the encoder412

CKA similarity between CAEM and baseline mod-413

els systematically increases after fine-tuning. This414

demonstrates that, regardless of their different ini-415

tializations, the models are guided towards a homo-416

geneous subspace for semantic understanding. In 417

contrast, the decoder exhibits a capacity-dependent 418

dynamic. In the constrained 8-expert setting, the 419

decoders also become similar. However, in the 420

high-capacity 16-expert setting, the decoders show 421

significant divergence, particularly for the simple 422

AG News task. This indicates that sufficient expert 423

capacity allows the models to explore and develop 424

distinct, specialized pathways for text generation. 425

0.0
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CKA Similarity Score: CAEM-8 vs. Baseline-8
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Figure 2: Layer-wise CKA similarity between CAEM
and Baseline models, before (Initial, dashed lines) and
after (Final, solid lines) multi-task fine-tuning.

To further validate whether this representational 426

similarity corresponds to functional compatibility 427

in the weight space, we adopt the "Model Soup" 428

methodology (Wortsman et al., 2022). As shown 429

in Table 4, averaging the weights of any two mod- 430

els within the same expert capacity (e.g., CAEM-8 431

and Baseline-8) still maintains good performance. 432

This provides strong evidence that these models, 433

despite their different initialization strategies, ulti- 434

mately converge into the same broad, functionally 435

connected low-loss basin. 436
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Model Pair for Averaging Overall Perf.

CAEM-8, Baseline-8 0.8531
CAEM-8, CAEM-8-Avg 0.8880
CAEM-8-Avg, Baseline-8 0.8592

CAEM-16, Baseline-16 0.9035
CAEM-16, CAEM-16-Avg 0.9337
CAEM-16-Avg, Baseline-16 0.8678

Table 4: Overall Performance after applying model soup
(averaging weights) between pairs of models with the
same architecture. The highest result is in bold.

Finally, an analysis of the expert routing pat-437

terns in the CAEM-8 model reveals a key insight438

(Figure 3). We found that the fine-tuned model439

develops a task-agnostic expert utilization strategy,440

activating a shared pool of experts for all tasks.441

Therefore, the primary role of CAEM is not to442

enforce a static, specialized architecture, but to pro-443

vide a superior starting point. This initial assembly444

of high-quality specialists enables the multi-task445

fine-tuning to discover a more optimal and syner-446

gistic general-purpose solution than the baseline.447

Figure 3: Expert utilization frequency for the CAEM-8
model across all MoE layers and tasks. Color inten-
sity represents the routing frequency (darker indicates
higher) for each expert (x-axis) at each layer (y-axis).

448

Additionally, a notable finding is that, despite449

the encoders of CAEM-8 and Baseline-8 achiev-450

ing near-perfect functional equivalence (CKA ap-451

proaching 1.0 in Figure 2), their performance on452

XSum differs by a substantial 6.47% (cf. Table 2).453

This performance gap can be attributed almost en-454

tirely to the crucial divergences in their decoder455

strategies. This confirms that while multi-task456

learning fosters a shared understanding (Encoder),457

the ultimate performance on complex generative458

tasks is dictated by the specialized generation strate-459

gies developed in the decoder.460

5.3 The Founder Effect 461

Having investigated the representation similarity 462

of models within the same architecture, we now 463

analyze the special CAEM-8-to-16 configuration 464

to probe the principles of cross-capacity merging. 465

We use CKA to compare the final representations 466

of this model with the CAEM-8 and CAEM-16 467

models. As illustrated in Figure 4, we found an 468

interesting pattern. Despite undergoing the same 469

multi-task fine-tuning process (mixed-batch), the 470

CAEM-8-to-16 model’s encoder representations 471

remain almost perfectly aligned with the model, 472

CAEM-8, achieving CKA scores exceeding 0.999 473

for tasks like XSum. Conversely, its similarity to 474

the native CAEM-16 model is significantly lower, 475

in fact, than its similarity to the Baseline-16 model 476

(cf. Figure 2). 477

0.0

0.2

0.4

0.6

0.8

1.0

Encoder Decoder

CKA Similarity Score: CAEM-8-to-16 vs. CAEM-8

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D120.0
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0.8

1.0

Encoder Decoder

CKA Similarity Score: CAEM-8-to-16 vs. CAEM-16

AG News (Final) SQuAD (Final) XSum (Final)

Figure 4: Layer-wise CKA similarity between CAEM-8-
to-16 and CAEM-8, CAEM-16 models after multi-task
fine-tuning.

In the same manner, we performed model soup 478

experiments. We averaged the weights of the 479

CAEM-8-to-16 model with all other 16-expert 480

models (Baseline-16, CAEM-16, and CAEM-16- 481

Avg) separately. The results presented in Table 5 482

indicate that all fusion leads to a catastrophic per- 483

formance collapse, with overall performance ap- 484

proaching zero. 485

Model Pair for Averaging Overall Perf.

CAEM-8-to-16, Baseline-16 0.0000
CAEM-8-to-16, CAEM-16 0.0011
CAEM-8-to-16, CAEM-16-Avg 0.0010

Table 5: Overall Performance after applying model soup
(averaging weights) between CAEM-8-to-16 and other
16-expert configurations. The highest result is in bold.

7



Taken together, these findings provide unequivo-486

cal evidence for what we term the "Founder Effect".487

The CKA analysis reveals a strong representational488

inertia, where the functional patterns of the source489

modules are inherited. The model soup experi-490

ment proves that this inertia is not merely a su-491

perficial similarity but a fundamental constraint; a492

formidable loss barrier separates the solution basin493

occupied by the 8-to-16 model from the basin of494

other 16-expert models, rendering them incompati-495

ble in weight space.496

This inherited representational structure also per-497

fectly explains the performance interpolation of the498

CAEM-8-to-16 model. It effectively inherits the en-499

coder’s "thinking mode" from the 8-expert model,500

but its generation process requires adapting a new501

16-expert decoder architecture. This architectural502

mismatch and the compromises made to accommo-503

date it during fine-tuning result in performance that504

is naturally between the CAEM-8 and CAEM-16.505

In conclusion, the Founder Effect is a manifes-506

tation of profound path dependence in the opti-507

mization of merged models. The initial weight508

configuration, dominated by the more coherent and509

composable "founder" modules from the 8-expert510

source, creates a powerful basin of attraction in the511

loss landscape. This basin constrains the model’s512

entire optimization trajectory, ensuring the inher-513

itance of the founder’s functional properties, irre-514

spective of the target architecture’s capacity.515

6 Related Work516

6.1 Task Interference on MTL517

A central challenge in MTL is managing the con-518

flicts among tasks. Prevailing solutions focus on519

in-training dynamics, either through direct gradi-520

ent manipulation (Yu et al., 2020) or by dynami-521

cally balancing task loss weights. Using heuristics522

based on uncertainty (Kendall et al., 2018), gradi-523

ent norms (Chen et al., 2018), or finding Pareto524

optimal solutions (Sener and Koltun, 2018). In525

contrast, our work addresses this challenge from a526

different dimension: model initialization. CAEM527

is a one-shot merging strategy that provides a supe-528

rior starting point to enable more efficient MTL.529

6.2 Model Merging and the Loss Landscape530

Recent interest in model merging is grounded in531

the understanding that optimal solutions often re-532

side within a connectable low-loss basin. Follow-533

ing foundational work by Garipov et al. (2018)534

and Frankle et al. (2020), which demonstrated that 535

low-loss paths connect different optimal solutions, 536

Model Soups (Wortsman et al., 2022) empirically 537

verified that averaging models from the same loss 538

basin can lead to better and more robust solutions. 539

To achieve more sophisticated merging, the field 540

has developed advanced techniques such as Fisher- 541

weighted averaging (Matena and Raffel, 2022), 542

interference resolution via TIES-Merging (Yadav 543

et al., 2023), and model editing through Task Arith- 544

metic (Ilharco et al., 2023). However, these studies 545

focus on parameter-level merging of dense models. 546

We extends this to the module-level reorganiza- 547

tion of sparse MoE architectures and discovers the 548

"Founder Effect" on multi-task model merging. 549

6.3 Representation Similarity on MoE 550

Understanding the internal mechanisms of large 551

models is a core research topic. While prior work 552

has analyzed expert specialization in MoE models 553

(Du et al., 2022) and the hierarchical functions of 554

Transformers using tools like RSA (Kriegeskorte 555

et al., 2008), probing (Tenney et al., 2019), and 556

CKA (Kornblith et al., 2019), BERTology (Rogers 557

et al., 2020), these analytical tools have mostly 558

been applied to dissect a single model after fine- 559

tuning. A key methodological contribution of our 560

work is the application of these tools to tracking 561

the representational trajectories of different models 562

(CAEM vs. Baseline) before and after merging 563

and fine-tuning, revealing the learning dynamics 564

of convergence and divergence in the encoder and 565

decoder from a novel perspective. 566

7 Conclusion 567

We propose CAEM, a complexity-aware frame- 568

work for merging MoE models that provides a su- 569

perior starting point for efficient multi-task learn- 570

ing. Our method acts as a strategic resource trade- 571

off, it boosts performance on complex bottleneck 572

tasks via minimal trade-offs on simpler ones, and 573

our analysis uncovers a Founder Effect, where 574

a merged model’s optimization trajectory is con- 575

strained by its source modules. Future work could 576

validate CAEM’s generalizability on a wider range 577

of tasks and explore its applicability to different 578

MoE architectures. Another direction is to refine 579

the merging strategy, for instance by normalized its 580

weights while merging, to better adapt the inherited 581

features to models of varying sizes and overcome 582

the scaling limitations observed in this study. 583
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Limitations584

Our study is subject to some limitations. First, the585

generalizability of our findings across tasks and586

languages could be further explored. Although our587

experiments cover three diverse NLP tasks, the ef-588

ficacy of CAEM on other task types (e.g., machine589

translation) or in non-English contexts remains an590

open question. Second, our analysis is confined to591

a specific model architecture and scale. This work592

focuses exclusively on Switch Transformers with593

top-1 routing, and our experiments are conducted594

on models with up to 16 experts. The behavioral595

patterns of CAEM on models with different routing596

strategies or at a significantly larger scale may be597

more complex and warrant further investigation.598

Finally, while we found the "Founder Effect", our599

work does not propose a solution to its associated600

scaling problem. More fundamentally, how the in-601

herited representational patterns from the founder602

modules can be optimally adapted to unlock the603

full potential of a new, higher-capacity architecture604

is a highly valuable avenue for future work.605

Ethical Considerations606

While our CAEM approach enhances the efficiency607

of building powerful multi-task models, we have608

considered its potential ethical implications. On609

the side of potential risks, our discovery of the610

Founder Effect offers a critical perspective on bias611

propagation. If a founder module inherits some612

biases from its source data, our findings suggest613

these biases could be stubbornly inherited and exert614

a dominant influence in the merged model, even615

after it has undergone extensive multi-task fine-616

tuning. This underscores the critical importance617

of auditing source models for bias prior to merg-618

ing. Conversely, on the positive side, CAEM offers619

a more economical path for resource-constrained620

institutions to build high-performance multi-task621

models, thus helping to democratize access to AI622

technology. Additionally, the one-shot nature of623

our merging strategy is potentially more computa-624

tionally efficient than iterative tuning, reducing the625

environmental footprint of model development.626
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BY-SA 4.0) license. The AG News corpus does not800

have a separate explicit license but is widely made801

available by its creators for academic research. As802

for the detailed train, validation, and test splits for803

the datasets used in our experiments are provided804

in Table 6.805

To adapt the three distinct tasks for a single806

model within a multi-task learning framework, we807

reformatted the AG News and SQuAD datasets into808

a sequence-to-sequence format.809

For the AG News dataset, which only provides810

an official training and test set, we follow standard811

practice and create our own validation set by ran-812

domly sampling 10% of the 120k training samples.813

The remaining 90% is used for training, and the814

original, untouched test set is used for final eval-815

uation. Each input text was prepended with the816

prompt "Classify: " and appended with an end-817

of-sequence token (</s>) to signify the end of the818

input. For the accuracy calculation, a prediction819

is considered correct only if it is an exact match820

with one of the four predefined category strings:821

"World", "Sports", "Business", or "Science and822

Technology".823

For the SQuAD dataset, following the common824

academic convention due to the absence of a pub-825

lic test set, we use the official development (val-826

idation) set for both model selection (i.e., choos-827

ing the best epoch) and for reporting the final EM828

scores. As for the input, which consists of a ques-829

tion and a context, was structured as follows: the830

prompt "Question: " was added before the ques-831

tion, followed by the prompt "Context: " separat-832

ing the question and the context. The </s> token833

was appended to the end of the context. During834

evaluation, all scores were computed using the835

official SQuAD script within the Hugging Face836

evaluate library (v0.4.4), which we accessed via837

evaluate.load("squad") (Lhoest et al., 2021).838

For the XSum dataset, which is inherently a839

seq2seq task, we use the official splits and simply840

prepended the prompt "Summarize: " to the input841

document and appended the </s> token at the end.842

The performance was evaluated using the ROUGE-843

L score between the generated summary and the844

reference summary.845

A.2 Details of the AdjustAlloc() Function846

This section elaborates on the AdjustAlloc() func-847

tion from Algorithm 1. The primary objective of848

this function is to ensure that each task is allocated849

at least one expert, while the total number of allo-850

Dataset Train Validation Test

AG News 108,000 12,000 7,600
SQuAD v1.1 87,599 10,570 N/A
XSum 204,045 11,332 11,334

Table 6: Statistics for the datasets used in our study.

cated experts does not exceed the expert capacity 851

of the source model (ns). The allocation process 852

begins by proportionally assigning experts based 853

on the normalized entropy of each task. The initial 854

allocation, Nalloc, is determined by taking the floor 855

of these proportional values, and the correspond- 856

ing fractional remainders are stored in an array, 857

R. Next, we iterate through each task’s alloca- 858

tion. If a task has been allocated zero experts, its 859

allocation is adjusted to 1. Conversely, if a task’s 860

allocation exceeds ns, it is capped at ns. After 861

the constraint enforcement, the sum of experts in 862

Nalloc (ΣNalloc,i) may be greater or less than the 863

target number of experts for the merged model, nm. 864

Therefore, we deal with the following two cases 865

separately. 866

• Case 1: ΣNalloc,i > nm (Excess): 867

To reduce the count, we iteratively remove ex- 868

perts. In each iteration, we identify the task(s) 869

with the maximum number of allocated ex- 870

perts. Among these, we select the one with 871

the smallest remainder in R and decrement its 872

expert count by one. This process is repeated 873

until ΣNalloc,i equals nm. 874

• Case 2: ΣNalloc,i < nm (Insufficient): 875

To distribute the remaining experts, we iden- 876

tify tasks that have not yet reached their expert 877

capacity. If only one task has available capac- 878

ity, all remaining experts are assigned to it. 879

If two tasks have available capacity, the re- 880

maining experts are split. The task with the 881

higher remainder in R receives the larger por- 882

tion (⌈remaining/2⌉), and the other receives 883

the smaller portion (⌊remaining/2⌋). If all 884

three tasks have available capacity, we em- 885

ploy an iterative, round-robin approach. In 886

each round, one expert is assigned to the task 887

with the current highest remainder in R. To 888

prevent re-selection, this task’s remainder in 889

R is then set to zero. This continues until all 890

deficit experts are allocated. 891
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A.3 Training Details892

Detailed training hyperparameters are provided in893

Table 7. The multi-task learning setup utilized an894

effective batch size of 72. This was achieved by895

constructing each batch from three smaller batches896

(24), with each smaller batch drawn from one of897

the three respective tasks.898

All experiments were conducted on a server with899

an NVIDIA RTX A6000. The total estimated com-900

putation time for all experiments, including single-901

task fine-tuning and all multi-task runs, was ap-902

proximately 600 GPU hours. The number of pa-903

rameters for the Switch Transformer models are904

approximately 619.34M for the 8-expert version905

and 1072.40M for the 16-expert version.906

Hyperparameter Value

Pretrained Model google/switch-base-{8, 16}
Optimizer AdamW
Learning Rate 3× 10−4 (constant)
Batch Size (per task) 24
Batch Size (MTL) 72
Max Epochs 10

AdamW Optimizer Settings

Adam β1 0.9
Adam β2 0.98
Adam ϵ 1× 10−16

Weight Decay 0.005

Training Details

Max Input Length 1000 tokens
Max Target Length 200 tokens

Software and Versions

Tokenizer T5TokenizerFast
Transformers Hugging Face 4.46.3
Evaluate Hugging Face 0.4.4

Table 7: Hyperparameter settings used for all experi-
ments, which were chosen based on common practices
for fine-tuning Switch Transformer models and were
not extensively tuned via a large-scale search due to
computational constraints.
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