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ABSTRACT

Recently, denoising convolutional neural networks (CNN) have started to outperform
classical denoising algorithms. However, CNNs performance could be constrained
by the limited receptive field of regular convolution. To mitigate this problem, a
new modification for CNNs was proposed: Fast Fourier Convolution (FFC). Here, a
global receptive field is achieved by using Fourier Transform and convolving spectral
representation. The global perception field can help CNNs to better capture dependencies
in image regions that are far apart. In this work, we design multiple approaches for
incorporating FFC into self-supervised neural networks for image denoising. We evaluate
these approaches on three benchmark datasets and compare them with supervised and
self-supervised methods. We empirically show that an FFC-enhanced denoising network
achieves the state-of-the- art results on the character dataset and shows a comparable
level of performance for both grayscale and color natural images.

1 INTRODUCTION

Chi et al. (2020) proposed Fast Fourier Convolution (FFC) with non-local receptive field. Unlike a regular
convolution operating locally, FFCs can capture essential details of the image far apart in the spectral
domain. FFC blocks can be seamlessly imputed in place of vanilla convolutions.

An FFC block is divided into two branches with local and global receptive fields. The input tensor is split
channel-wise between the two paths (usually in halfs). The local branch works as a normal convolutional
layer. The global branch operates in the spectral domain and carries out global updates to the input.

Multiple state-of-the-art neural networks could benefit from the use of FFC for image recognition, super-
resolution (Zhang et al., 2022), segmentation (Farshad et al., 2022), large image inpainting (Suvorov et al.,
2022), etc. In this work, we integrate FFCs in a self-supervised denoising framework, Noise2Same (Xie
et al., 2020). We conduct an ablation study for the optimal FFC position in the U-Net (Ronneberger et al.,
2015) backbone and empirically find suitable data domains for FFC application.

2 ARCHITECTURE

We follow Xie et al. (2020) for the baseline U-Net implementation and explore different strategies to
replace normal convolutions with FFC. We aim to keep our implementations similar to the baseline in
terms of the number of parameters and overall U-shape for comparability.

FFC blocks are only reasonable to use if at least three of them are in a row (the first and last blocks are
used for splitting/merging local and global channels, and middle blocks perform spectral convolutions).
This conflicts with the original U-Net design with two convolutional blocks per level. We explore three
different FFC U-Net designs that solve this problem.
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In Vanilla design, we switch U-Net’s down- and upsampling convolutions also with FFC blocks to provide
us with three FFC blocks for each level. In Extra Layer design we keep the regular down- and upsampling
convolutions but add an extra convolutional layer to each level. In Twin Pass design, local and global
channels are not merged together at the end of every level. Both spatial and spectral information flow
through the network in parallel and so we do not need to worry about the number of convolutional blocks
in a level. All designs are summarized in Figure 4 and can be used in U-Net’s encoder/decoder (or both).

3 EXPERIMENTS

Ground Truth N2S baseline Our best

Figure 1: Visualization of testing results on HanZi dataset. We compare our best model (extra layer
design with FFC encoder and decoder) against vanilla Noise2Same baseline. We see that in our model, the
character is "diffusing" less to the background.

Table 1: Comparisons among denoising methods on different datasets, in terms of Peak Signal-to-Noise
Ratio (PSNR). Best metrics are highlighted in bold. The extended table is in appendix.

Datasets

Methods ImageNet HanZi BSD68

Input 9.69 6.45 20.19

Noise2Self-Donut [3] 8.62 13.29 28.20

Noise2Same [2] 22.26 14.38 27.95
Self-Supervised Noise2Same (our implementation) 22.84 14.83  28.14

Extra Layer (FFC encoder & decoder) 22.65 15.72 28.13

Twin Pass (FFC encoder) 22.34 15.28 28.16

We tested these designs on two natural image datasets, BSD68 (Martin et al., 2001) and ImageNet (Deng
et al., 2009), and also on the Chinese character dataset HanZi (C.-L. Liu, 2011). The image denoising
setup used is based on the setup used in Noise2Same paper (Xie et al., 2020).

We compare our best models with other methods in Table 1 and summarize our own results in Table 2.
Denoising examples for each dataset are shown in Figures 1, 2 and 3. On BSD68, FFC models match
baseline results or slightly exceed them. On ImageNet our model’s performance slightly declines compared
to the baseline. We compare our best-performing models to other denoising models in Table 1. We see that
on HanZi our models beat current state-of-the-art models including supervised models (Table 3).

4 CONCLUSION

We tested three different FFC neural network designs for image denoising on three datasets. We observed
state-of-the-art results on HanZi and comparable level of performance on natural image datasets. Among
our model designs, no design was superior in all experiments. Our results suggest that FFC can improve
denoising performance in some cases, and this topic is worth exploring further.
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A TRAINING SETUP

All neural networks were implemented in PyTorch Paszke et al. (2019) and were trained on Tesla V100-
PCIE-16GB or V100-SXM2-32GB GPUs. Training consisted of 80 000 iterations for BSD68 and
50 000 iterations for other datasets. We used batch size of 64 for each dataset and Adam optimizer
(Kingma & Ba, 2014) with learning rate of 4 x 10~%. Our code is available at ht tps: //github.com/
JoonasAriva/noise2same.pytorch.

For models where U-Net’s skip connection would merge global channels to local or vice versa, we added a
1 x 1 convolution so that model could better learn how to mix these channels. To address deviations from
the Noise2Same design, we also added different baseline models with an extra layer in residual block or
with 1 x 1 skip convolution (Table 2). The ratio of global channels o was fixed to 0.5 for the FFC models.

B DENOISING EXAMPLES

Ground Truth N2S baseline Our best

Noisy Image

Figure 2: Visualization of testing results on BSD68 dataset. We compare one of our best models (twin
pass without FFC decoder) against vanilla Noise2Same baseline. Visually, results look identical.

N2S baseline

Ground Truth Noisy Image Our best

Figure 3: Visualization of testing results on Imagenet dataset. We compare our best model (extra layer
design with FFC encoder and decoder) against vanilla Noise2Same baseline. In some cases, FFC models
tend to emphasise the red channel of the image while denoising. We hypothesise that models with FFCs
might have problems adapting to multichannel images.


https://github.com/JoonasAriva/noise2same.pytorch
https://github.com/JoonasAriva/noise2same.pytorch
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C ABLATION STUDY & EXTENDED COMPARISON WITH OTHER METHODS

Table 2: Ablation study among different denoising FFC designs on different datasets, in terms of Peak
Signal-to-noise Ratio (PSNR). Bold numbers indicate best performance for the dataset. Checkmarks
indicate what components are present in the network. Different designs are ordered into three groups:
designs which don’t need 1 x 1 skip convolution, designs which need it and finally extra layer designs
(also no need for 1 x 1 convolution). Baseline for each group is in top row. Parameter count and average
inference time for a single 64 x 64 image is also given for networks.
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ID © = — ImageNet Hanzi BSD68 Params Inference time (ms)
1 22.84 1483  28.14 5.8M 3.68
2 v 22.34 15.19  28.16 5.5M 10.04
3 v Vv v 22.19 1521  28.13 4.4M 17.38
4 v 22.81 14.84  28.13 6.0M 5.35
5 v Vv v 22.49 15.18  28.16 5.4M 14.20
6 Vv v o/ 22.34 1528  28.16 5.3M 11.46
7 v 23.06 1542  28.16 7.9M 6.39
8 v Vv Vv 22.65 15.72  28.13 7.6M 13.67
9 Vv v 22.39 15.04  28.09 7.6M 9.71

Noisy input 9.69 6.45 20.19 - -

Table 3: Comparisons among denoising methods on different datasets, in terms of Peak Signal-to-Noise
Ratio (PSNR). Noise2Self-Noise and Noise2Self-Donut refer to two masking strategies mentioned in
Batson & Royer (2019), where the original results presented in Batson & Royer (2019) are produced by
the noise masking. Bold numbers indicate the best performance among self-supervised methods.

Datasets

Methods ImageNet HanZi BSDG68

Input 9.69 6.45 20.19

Traditional NLM Buades et al. (2011) 18.04 8.41 22.73
BM3D Dabov et al. (2007) 18.74 1090  28.59

Supervised No?seZTru.e . 23.39 15.66 29.06
Noise2Noise Lehtinen et al. (2018) 23.27 14.30 28.86

Noise2Void Krull et al. (2019) 21.36 13.72  27.71
Noise2Self-Noise Batson & Royer (2019) 20.38 13.94 26.98
Noise2Self-Donut Batson & Royer (2019) 8.62 13.29 28.20

Self-Supervised Noise2Same Xie et al. (2020) 22.26 1438  27.95
Noise2Same (ours) 22.84 14.83 28.14

Extra Layer (enc&dec) 22.65 15.72 28.13

Twin Pass (enc) 22.34 15.28 28.16
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D FFC DESIGNS VISUALIZED
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Figure 4: (a) Vanilla FFC design. (b) Extra Layer design. (c) Twin Pass design. All are modified residual
blocks from U-Net encoder. Decoder designs are mirrored. Residual block shortcuts are not included in
the figures.
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