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Abstract

Multimodal data fusion has emerged as a key approach in recent years for enhancing diag-
nosis and prognosis in many medical applications. With the advent of transformer-based
methods, it is now possible to combine information from different modalities that pro-
vide complementary insights. However, most existing methods rely on symmetric fusion
schemes, assuming equal importance for information carried by each modality—a strong
assumption that may not always hold true. In this study, we propose an alternative fusion
strategy based on an asymmetric scheme. Starting with a primary modality that offers
the most critical information, we integrate secondary modality contributions by disentan-
gling shared and modality-specific information. The proposed model was validated on a
dataset of 239 patients for characterizing hypertension severity by fusing time series auto-
matically extracted from echocardiographic image sequences and tabular data from patient
records. Results show that our approach outperforms existing unimodal and multimodal
approaches, achieving an AUC score over 90% - a crucial benchmark for clinical use.

Keywords: Multimodal fusion, transformers, tables, echocardiography, hypertension.

1. Introduction

Artificial Intelligence (AI) and deep learning have significantly improved computer-aided
diagnosis (CADx) over the last decade (Tsehay et al., 2017; Yi et al., 2022; Xu et al., 2023).
This paper focuses on the characterization of cardiac hypertension (HT). Physicians inte-
grate complementary data from diverse sources, including time-series features derived from
echocardiographic sequences and Electronic Health Records (EHRs), to build a comprehen-
sive assessment of the patient’s condition (Mancia et al., 2023). Additional measurements,
such as 24-hour systolic and diastolic blood pressures (SBP/DBP), are often collected to
eliminate ambiguities regarding the severity of the disease. However, this process can be
burdensome for patients. In this work, we propose a method to efficiently integrate a tab-
ular representation of minimally invasive EHR data with cardiac time series automatically
extracted from apical two and four chamber views (A2C and A4C) using the segmenta-
tion framework described in (Ling et al., 2023). This approach aims to enable effective
stratification of hypertension while improving patient care.

© 2025 CC-BY 4.0, J. Stym-Popper, N. Painchaud, C. Rambour, P.-Y. Courand, N. Thome & O. Bernard.

https://creativecommons.org/licenses/by/4.0/


Stym-Popper Painchaud Rambour Courand Thome Bernard

Combining heterogeneous modalities, such as tabular data and time series, is a non-
trivial challenge. For tabular data, tree-based models, e.g., gradient boosting (Chen and
Guestrin, 2016), remain the dominant approach (Grinsztajn et al., 2022). However, a naive
fusion strategy that employs XGBoost on both tabular and echocardiographic inputs results
in a significant drop in performance compared to using tabular data alone, as observed in
related contexts (Wang et al., 2024). This can be attributed to the asymmetry of our fusion
problem: the primary modality (tabular data) serves as the main source of information,
while the secondary modality (time series) provides complementary details but is insufficient
for accurate diagnosis on its own. Consequently, there is a need for refined and specialized
multimodal fusion methods.

In the recent wave of attentional models and transformers, significant efforts have been
devoted to performing multimodal fusion for medical diagnosis. The FT-Transformer (Gor-
ishniy et al., 2021; Zhu et al., 2023) employs a self-attention mechanism and an advanced
tokenizer specifically designed for tabular data. This approach has been extended to com-
bine multimodal tabular and echocardiographic inputs in (Painchaud et al., 2024). Recently,
symmetric cross-attention has been explored in IRENE (Zhou et al., 2023), enabling each
modality to be sequentially contextualized by the other, as it is classically done in vision
and language models (Tan and Bansal, 2019). Although these multimodal fusion methods
show improvements over the FT-Transformer trained on tabular data alone, they process
the different modalities symmetrically, assuming equal relevance between them. This as-
sumption does not align with the inherent asymmetry of our problem, where tabular data
is the primary modality, and echocardiographic time series provide complementary but sec-
ondary information. Finally, an alignment loss inspired by CLIP (Radford et al., 2021) has
been used in MMCL (Hager et al., 2023) to merge tabular data and medical images. While
aligning tabular and echocardiographic representations is relevant in our context, applying
a global alignment across all features from both modalities is overly restrictive, since tabular
data contains information that is not present in echocardiographic videos.

This paper introduces a method for the characterization of cardiac hypertension that
explicitly addresses multimodal fusion with asymmetric modalities, i.e., , a primary source
of information – tabular data – and a secondary source – time series extracted from echocar-
diographic image sequences. The approach shown in Fig 1 is devoted to effectively merge
the primary and second multimodal inputs. Starting from a unimodal processing of each
modality, we learn a relevant and structured latent space (middle in Fig 1) and introduce a
fusion operator dedicated to asymmetric fusion (right in Fig 1). Our contributions can be
summarized as follows:

• We separate tabular data into specific information and information shared with echocar-
diographic time series. This is done using specialized loss functions that differentiate
information types and use label supervision for self-regularization. This method en-
ables better multimodal data integration by organizing the latent space into shared
and modality-specific attributes.

• We introduce an asymmetric fusion scheme based on interleaved cross-attention, that
prioritizes one modality while gradually contextualizing it with the secondary comple-
mentary information. By emphasizing one modality and using the other for enhance-
ment, we achieve a nuanced and effective integration of multimodal information.
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2. Methodology: Decoupling information and fusing asymmetric
modalities

Figure 1: Overview of our model’s global architecture. Tabular and echocardiographic
data are first processed and tokenized separately. Each modality is encoded using a FT-
Transformer (Gorishniy et al., 2021) before entering the decoupling module. The primary
modality (tabular data) is then split into shared and modality-specific components. Finally,
a multimodal fusion scheme is implemented, accounting for the asymmetric contribution of
the two modalities. The primary modality drives core information processing, while the
secondary modality provides contextual refinement.

In this section, we present the key contributions of the proposed method. First, a de-
coupling module re-expresses the primary modality (tabular data) into a modality-specific
representation and a shared representation with the complementary modality (time series).
Given the asymmetry in information content between tabular data and echocardiographic
videos, where the former may include details not visually apparent in the latter, it is rea-
sonable to consider this multimodal data as inherently imbalanced in terms of information
richness. Our approach is to decouple tabular data into two components: shared features,
such as left ventricular mass, which are represented in tabular data and time series, and spe-
cific tabular features, such as demographic attributes (e.g. age, sex), which are not present
in time series. Our insight is to learn a space in which shared features are aligned, while
keeping information from the specific and complementary information in tabular data. Sec-
ondly, the rich tabular-specific representations are re-contextualized using the shared and
time-series embeddings through an asymmetric fusion scheme.

2.1. Decoupling module

In the multimodal framework, effectively integrating diverse data sources remains a critical
challenge. A naive fusion may be suboptimal as one modality could be less informative. In
our case, tabular data provide diverse and efficient information to characterize hypertension,
while time series can offer additional valuable insights. To efficiently fuse these sources of
information, we propose to decouple the tabular data into tabular-specific tokens and tokens
that share common information with time series. To do so, an information decoupling
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module (see Figure 1) is introduced after the unimodal processing of the two modalities
and before the fusion scheme.

Let denote t and s the embedded tabular data and time series respectively. The dataset
consists of tabular data and time series for each patient, along with their corresponding
labels y. We further introduce gtθ and gsϕ, the decoupling functions that project the modal-
ities into modality-specific and shared latent spaces. We chose to use linear projections for
the decoupling functions, as this approach demonstrated superior performance compared
to alternative methods we evaluated. The resulting embeddings are defined as follows:
zs = gsϕ(s) for time-series and (zsp

t , zsh
t ) = gtθ(t) for specific and shared tabular modality re-

spectively. To enforce the information decoupling, we employ the following decoupling loss
which enhances the alignment of shared information representations while simultaneously
distinguishing modality-specific elements:

ls,ti = − log

(
exp{sim(zsi , z

sh
ti )/τ}∑N

k=1 exp{sim(zsi , z
sp
tk

)/τ}

)
, (1)

where sim(u, v) = u⊤v/||u|| ||v|| is the cosine similarity. As illustrated in 2-a, this
contrastive loss uses the projected time-series representation vector zs as the anchor point,
toward which the representation zsh

t is drawn, as they encapsulate similar information.
Conversely, zsp

t should be mapped far from the anchor point to preserve specific information
from the primary modality. To maximize this contrastive effect, we aim to minimize the
SHared-Specific Decoupling (SHSD) loss, defined as the sum of 1 and its symmetrical
counterpart:

LSHSD(zs , z
sh
t , zsp

t ) =
1

2N

N∑
i=1

(
ls,ti + lt,si

)
. (2)

Following the approach of Yeh et al. (2022), our method removes positive pairs from the
denominator of the decoupling contrastive loss, addressing the negative-positive coupling
problem where positive samples in the denominator are inadvertently repelled.

To reinforce the overall coherency of the latent space, we introduce a secondary loss
that brings closer the representations sharing the same labels, while pushing apart the
embeddings of other samples in the batch:

rt,si = − 1

Si

N∑
j=1

1{yj = yi} log

(
exp

{
sim

(
zsp
ti
, zsj

)
/τ
}∑N

k=1 exp
{

sim
(
zsp
ti
, zsk

)
/τ
}) , (3)

where 1{yj = yi} is an indicator function and Si =
∑N

j=1 1{yj = yi}.

The expected organization of the latent space following the minimization of this loss
is illustrated in 2-b. This loss acts as a regularization and ensures that specific tabular
information zspt is positioned closer to the time-series representations zs of patients within
the same label group.
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Figure 2: Decoupling module scheme in DAFTED. The SHSD loss enforces the tabular
information separation by pushing the specific information away from time series while
pulling the shared tabular information closer to it. Simultaneously, the regularization loss
behaves similarly to the CLIP loss (Radford et al., 2021) but with label supervision (Khosla
et al., 2020). It specifically pulls together the specific tabular and time-series data belonging
to the same class while pushing apart information from different classes

Figure 3: Asymmetric fusion scheme architecture. The tabular modality containing specific
information is the prevailing modality that serves as the query tokens in all blocks, while the
shared tabular and time-series information collaboratively enrich the primary modality. The
cross-attention blocks employ shared weights, following Jaegle et al. (2021), strategically
enforcing an asymmetric relationship between modalities. The [CLS] token serves as the
class aggregate representation for the final prediction head as in Devlin et al. (2019)

Again, to equivalently update the model with respect to each modality, we use the sum
of the loss 3 and its symmetrical. The regularization loss can thus be formulated as follows:

Lreg(zs , z
sp
t , y) =

1

2N

N∑
i=1

(
rt,si + rs,ti

)
. (4)

Finally, the total decoupling loss denoted LDecoupling is defined as the sum of the SHSD
and regularization loss:

LDecoupling(zs , z
sp
t , zsh

t , y) = LSHSD(zs , z
sh
t , zsp

t ) + Lreg(zs , z
sp
t , y). (5)

To improve the merging process, we propose in the following section an asymmetric
fusion scheme that leverages the decoupling module to hierarchically integrate specific tab-
ular information as the primary modality and shared tabular information with time series
as sources of contextual refinement
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2.2. Fusion scheme: interleaved attention modules

Building on our earlier insight that modalities contribute asymmetrically to information
content, we design a fusion scheme that prioritizes tabular data while using time series for
contextual refinement. The Transformer architecture (Vaswani et al., 2017), leveraging self-
and cross-attention mechanisms, provides an efficient framework for processing asymmetri-
cal information by treating the most informative modality as the query Q, and the other
as the context key K and value V , as shown in Fig. 3.

In the fusion scheme, self-attention processes the primary tabular data, while cross-
attention integrates context from shared tabular and time-series tokens. Self-attention
and cross-attention blocks alternate, where the cross-attention blocks use shared weights,
establishing an asymmetry between the primary tabular data and the contextual refinement
from time-series and shared tabular information. A class token (Devlin et al., 2019) is
appended to the specific tabular tokens at the first stage of the architecture and serves as
input to a prediction head at the final stage to perform classification. The entire pipeline
is optimized by minimizing the final loss defined in Eq. 6:

L(ŷ, y, zs , z
sh
t , zsp

t ) = LCrossEntropy(ŷ, y) + λLDecoupling(zs,z
sp
t , zsh

t , y), (6)

where λ is a unique hyperparameter that balances the cross-entropy and decoupling terms.

3. Experimental setup

Dataset CARDINAL is a valuable dataset combining echocardiographic image sequences
from A2C and A4C views with comprehensive tabular data including demographics, lab
results, and clinical exam measurements. (Ling et al., 2023). This multimodal data was
collected on 239 patients at the Hospices Civils de Lyon, France, with the approval of
the local ethics committee. The tabular data corresponds to 64 numerical and categorical
descriptors, extracted from the EHR server. We used the hyper-tension severity (HT-
severity) descriptor as the target to predict for each patient. It consists of three labels:
wht (White Coat Hypertension), for subjects with no positive diagnosis of hypertension;
controlled, for patients where the hypertension is managed to meet recommended blood
pressure levels; and uncontrolled, for patients who remain above these levels. Additional
information regarding the data used in our study is provided in Appendix F.

Implementation Details Training was conducted for 1000 epochs for DAFTED and all
baseline models, the model exhibiting the lowest validation loss being selected for evaluation
on the test dataset. All results utilized a temperature of τ = 0.1 for the decoupling losses.
We employed the Adam optimizer (Kingma and Ba, 2015) with a batch size of 128. The
models were trained on 171 samples, evaluated on 20 samples, and tested on 48 samples,
with a balanced distribution of the three target labels across these subsets. For the tabular
modality, we selected 13 statistically independent features that are highly correlated with
HT severity and easily measurable and accessible (unlike 24-hour measurements), while
for the echocardiographic data, we retained the 7 measurements per view proposed by
Painchaud et al. (2024), resulting in 14 times-series automatically extracted from the two
apical views using the segmentation framework described in (Ling et al., 2023). The FT-
Transformer was configured to follow the XTab model by Zhu et al. (2023), optimized for
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tabular data processing and featuring 3 transformer blocks with 8 heads of Self-Attention
(MSA) and an embedding size of 192. To ensure fair comparisons, we maintained a uniform
embedding size across all models. Given the class imbalance, we used ROC AUC metrics
(one-vs-rest, averaged across the three target labels) for comparison.

4. Results

Baselines The performance of our model was compared with XGBoost, a leading algo-
rithm for tabular data analysis, in both single-modality and multimodal scenarios. For uni-
modal cases, we also present results of the FT-Transformer (Gorishniy et al., 2021) trained
separately on tabular and time-series data. Among unimodal models, FT-Transformer was
trained separately on tabular (Tab) and time-series (TS) data. XGBoost is characterized
by its complexity rather than a specific number of parameters, making its size irrelevant for
comparison with other models. We evaluate several state-of-the-art models that integrate
tabular and imaging clinical data within a multimodal fusion framework, namely Hager
et al. (2023), Zhou et al. (2023), and Painchaud et al. (2024), alongside a naive fusion
baseline that concatenates the modalities before feeding them into a two-layer perceptron.

Table 1: Comparison of our method with
SOTA models. Mean and std are computed
across 10 training runs with different seeds.
FT-T refers to the FT-Transformer[3].

Model ROC AUC # parameters

Unimodal models

XGBoost [1] 87.4 N/A
FT-T Tab 85.8 ± 4.8 863K
FT-T TS 52.2 ± 2.3 1.0M

Multimodal fusion models

XGBoost 79.7 N/A
MLP 81.8 ± 1.3 391K
MMCL [5] 77.4 ± 2.1 1.6M
IRENE [23] 86.7 ± 2.8 102.9M
FT-T [11] 88.9 ± 1.4 1.1M

DAFTED (ours) 91.0± 0.7 3.0M

Table 2: Impact of the decoupling mod-
ule (Decoupling) and the asymmetric fusion
scheme (Asym. fusion)

Decoupling Asym. fusion ROC AUC

✗ ✗ 89.4 ± 2.2

✗ ✓ 90.4 ± 1.0

✓ ✓ 91.0± 0.7

Figure 4: Sensitivity of λ in our loss function.

State-of-the-art comparison Results are presented in Table 1. XGBoost remains a
strong competitor, demonstrating the best results in unimodal scenarios, while time-series
data alone lacks consistent predictive power. Naive concatenation of tabular and time-
series data in MLP and XGBoost models underperforms compared to unimodal tabular
models or more advanced fusion approaches. Our method excels by prioritizing tabular data
complemented by echocardiographic time series with a ROC AUC more than 2pt superior to
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top models equally weighting both modalities. Our results were achieved without complex
measurements like 24-hour systolic and diastolic blood pressure, demonstrating effective
performance using simpler data acquisition methods. The paired t-tests in Appendix B show
that our method significantly outperforms state-of-the-art baselines, with a 1% significance
threshold for each comparison.

Ablations and model analysis We conducted ablation studies to evaluate the contribu-
tion of the decoupling loss and the asymmetric fusion scheme. Results presented in Table 2
show that our decoupled asymmetric fusion scheme significantly increases the performance
of diagnosis by more than 2pt. We also evaluated various fusion schemes and contrastive
losses within our framework. Fig. 7 compares alternative fusion schemes, while Fig. 8 ex-
plores different decoupling loss mechanisms. Classical approaches, such as InfoNCE (Sohn,
2016) and Triplet loss (Weinberger and Saul, 2009) fail to match the performance of our
proposed fusion scheme, highlighting the innovative nature of our multimodal representa-
tion learning strategy. We report paired t-tests in Appendix B to quantitatively assess the
significance of our method’s performance. Fig. 4 investigates the influence of the hyperpa-
rameter λ in our loss function. Results show the robustness of our method, with an optimal
value of λ = 1. Fig. 5 and 6 further investigate the sensitivity of our method to the weights
of the SHSD and regularization losses. This process involved setting one weight to a value
of 1, while varying the other weight across a range of values from 0 to 4. Interestingly, this
approach inherently includes an ablation study when one weight is set to 0 while the other
remains at 1. The results demonstrate the synergistic effect of the two components of the
decoupling loss. In particular, it shows the robustness of the decoupling loss across a broad
range of the regularization weights, from 1 to substantially higher values. In contrast, the
SHSD loss appears to be most effective in guiding the model to its optimal performance
when set at a value of 1. This suggests that while the regularization component of our
approach is flexible, the SHSD loss plays a crucial role in fine-tuning the model’s capabili-
ties, with its impact being most pronounced at this specific weighting. Finally, these results
confirm that both components are essential for the decoupling module to be effective, with
the best outcomes achieved when the weights are set to 1.

Figure 5: Sensitivity of the SHSD loss
weight

Figure 6: Sensitivity of the reg loss weight
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Figure 7: Impact of DAFTED fusion module
vs SOTA fusion schemes

Figure 8: Impact of DAFTED decoupling
module vs contrastive baselines

Figure 9: PacMAP representation of latent
vectors before fusion without decoupling

Figure 10: PacMAP representation of la-
tent vectors before fusion with decoupling

Latent space structuration To visualize the structure of the latent space, we reduce
the dimension of the latent vectors of each modality (tabular specific, tabular shared and
time series) with the PacMAP method (Wang et al., 2021) before fusion. We observe that
without decoupling the tabular information, tabular and time-series modalities are slightly
intertwined (Fig. 9). Furthermore, Fig. 10 shows that the decoupling loss forces the shared
tabular information to be closer to the time-series representations, while specific tabular
embeddings are well separated from the time series.

5. Conclusion

In this study, we propose a new fusion strategy based on an asymmetric scheme. A first de-
coupling module separates the primary tabular modality into tokens specific to this modality
and tokens shared with the secondary modality. A dedicated fusion scheme is then employed
to integrate the secondary modality as a contextual refinement. Results show significant
improvement compared to SOTA models, as well as stability across different parameters
and architectural configurations. This study demonstrates that the characterization of HT
severity can be achieved using a limited amount of easily measurable patient data, which
can ultimately improve patient care.
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Appendix A. Hyperparameter sensitivity test

Figure 11: Hyperparameter τ sensitivity test, results averaged across 10 seeds

Figure 11 presents our analysis of the hyperparameter τ , associated with the contrastive
losses in equations (1) and (3). We observe that performance metrics remain relatively stable
for τ values above 0.1, demonstrating our model’s robustness to temperature scaling.

Figure 12: Batch size sensitivity test, results averaged across 10 seeds

Appendix B. Statistical Tests

Paired-samples t-Test In Table 4, we conducted multiple paired t-tests on related sam-
ples to evaluate whether our proposed model, DAFTED, significantly outperforms the other
baseline models and alternative approaches. These statistical analyses aim to assess the
comparative effectiveness of DAFTED against existing methodologies in the field.

14



DAFTED: Decoupled Asymmetric Fusion of Tabular and Echocardiographic Data

Table 3: Related-paired t-test Results Comparing DAFTED ROC metrics against baselines

Models Mean Difference t-statistic p-value

Relevance of our method against SOTA baselines

FT-Transformer 2.05 4.62 0.0014
IRENE 4.31 4.53 0.0014
MLP 9.22 23.88 ≪ 0.001
MMCL 13.57 24.01 ≪ 0.001

Impact of our decoupling asymmetric fusion scheme (DAF)

Our method without DAF 2.11 3.46 0.0071

Table 4: Related-paired t-test Results Comparing DAFTED ROC metrics
against alternative decoupling modules and fusion schemes

Models Mean Difference t-statistic p-value

Alternative fusion modules (with decoupling)

FT-Transformer 1.59 3.22 0.0104
Bi-directional (IRENE) 1.92 2.66 0.0259
LXMERT 1.93 2.87 0.0184

Alternative decoupling modules (with our DAFTED fusion scheme)

InfoNCE/CLIP 1.84 1.93 0.0856
Triplet/CLIP 2.15 3.14 0.0119

Appendix C. Additional results

Table 5: Other metrics to compare our model DAFTED againt baselines and SOTA models

AUROC AUPRC F1-score

XGBoost 87.4 77.6 65.4
MLP 81.8 ± 1.3 59.8 ± 2.0 52.2 ± 6.8
FT-Transformer 88.9 ± 1.1 79.6 ± 2.7 68.7 ± 3.6

DAFTED (ours) 91.0± 0.7 82.2± 4.8 69.9± 5.1
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Appendix D. Loss details

Table 6: Loss details

Name Symbol Equation

Cross-entropy LCrossEntropy(y, ŷ)
∑N

i=1 yi log(ŷi)

Shared-Specific Decoupling (SHSD) LSHSD(zs , z
sh
t , zsp

t ) ls,ti = − log

(
exp{sim(zsi ,z

sh
ti

)/τ}∑N
k=1 exp{sim(zsi ,z

sp
tk

)/τ}

)

Regularization (reg) Lreg(zs , z
sp
t , y) rt,si = − 1

Si

∑N
j=1 1{yj = yi} log

(
exp

{
sim

(
zsp
ti

,zsj

)
/τ

}
∑N

k=1 exp
{
sim

(
zsp
ti

,zsk

)
/τ

}
)

Appendix E. Hyperparameters

We detail here the hyperparameter choices for training both our model and the baselines.
We experimented with various values for the decoupling loss weight, temperature scale, and
batch size, selecting the configuration that yielded the best performance for our model.
The number of layers in the transformer unimodal encoders was kept fixed to align with
state-of-the-art architectures that have demonstrated strong results across multiple tasks.
For each hyperparameter, we specify the final value used in our model training.

Table 7: Hyperparameter details

Hyperparams. Role Value

λ
Balances the decoupling loss, adjusting its weight

comparing the classification cross-entropy loss
λ = 1

τ
Denotes the temperature scale parameter

for the contrastive decoupling losses
τ = 0.1

batch size Number of samples processed per batch in the dataset bs = 128
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Appendix F. Data specification

Table 8: List of 13 patient descriptors for the CARDINAL dataset extracted from Electronic
Health Records (EHRs)

Abbreviation Unit/Labels Description

age years Age

sbp tte mmHg
Systolic Blood Pressure (SBP) dur-
ing TTE

pp tte mmHg Pulse Pressure (SBP) during TTE

diastolic dysfunction 0–4

1 point per parameter of dias-
tolic dysfunction: dilated la, re-
duced e prime, d dysfunction ratio,
ph vmax tr

pw d cm
Left ventricular Posterior Wall
(PW) thickness at end-Diastole (D)

lvm ind g/m2 Left Ventricular Mass (LVM) in-
dexed to BSA

e e prime ratio – Ratio of E velocity over e’: E/e’

gfr mL/min/1.73m2
Glomerular Filtration Rate (GFR)
indexed to standard body surface
area

lateral e prime cm/s Lateral mitral annular velocity (e’)

septal e prime cm/s Septal mitral annular velocity (e’)

a velocity m/s
A-wave (active blood flow caused
by atrial contraction) velocity

ddd –
Defined Daily Dose (DDD) of blood
pressure medication

la volume mL/m2 Left Atrial (LA) volume indexed to
body surface area (BSA)
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Table 9: List of 7 patient descriptors extracted from segmentations of transthoracic echocar-
diogram (TTE) for the CARDINAL dataset, extracted frame-by-frame, available for apical
4 chamber (A4C) and apical 2 chamber (A2C) views

Abbreviation Unit/Labels Description

lv area cm2 Surface area of the LV

lv length cm
Distance between the LV’s apex
and midpoint at the base

gls % Global Longitudinal Strain (GLS)

ls left %

Regional Longitudinal Strain (LS)
at the base of the left wall A4C left
wall : septum / A2C left wall : infe-
rior

ls right %

Regional Longitudinal Strain (LS)
at the base of the right wall A4C
right wall : lateral / A2C right wall :
anterior

myo thickness left cm

Average myocardial thickness at
the base of the left wall A4C left
wall : septum / A2C left wall : infe-
rior

myo thickness right cm

Average myocardial thickness at
the base of the right wall A4C right
wall : lateral / A2C right wall : an-
terior
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