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Abstract

Diffusion models have achieved remarkable progress in universal image restoration.
However, existing methods perform naive inference in the reverse process, which
leads to cumulative errors under limited sampling steps and large step intervals.
Moreover, they struggle to balance the commonality of degradation representations
with restoration quality, often depending on complex compensation mechanisms
that enhance fidelity at the expense of efficiency. To address these challenges, we
introduce DGSolver, a diffusion generalist solver with universal posterior sampling.
We first derive the exact ordinary differential equations for generalist diffusion
models to unify degradation representations and design tailored high-order solvers
with a queue-based accelerated sampling strategy to improve both accuracy and
efficiency. We then integrate universal posterior sampling to better approximate
manifold-constrained gradients, yielding a more accurate noise estimation and
correcting errors in inverse inference. Extensive experiments demonstrate that
DGSolver outperforms state-of-the-art methods in restoration accuracy, stability,
and scalability, both qualitatively and quantitatively. Code and models are publicly
available at https://github.com/MiliLab/DGSolver|

1 Introduction

Universal image restoration (UIR) strives to achieve a versatile model capable of discerning and
mitigating various degradation types. Capitalizing on the superior attributes of the restored details with
high fidelity, it has emerged as a promising approach for enabling applications such as autonomous
driving [37]], remote sensing [44], and other related fields [[73} 126, 158 59,71} 168! 154} 55} 156].

Owing to the substantial advancements in deep learning, a surge of universal image restoration
frameworks has emerged. Typically, the existing methods can be delineated into two categories based
on the dependency of representations across varied degradation distributions [[64, [74, 9], namely
blend-representation-based methods and distinct-representation-based methods, as displayed in Fig.
The former approaches promote the commonality among degradation representations by projecting
diverse degradation distributions into a shared representation space, where the commonality mea-
sures the degradation-agnostic extent of representations within the shared representation space [34].
However, the complexity of restoration escalates as the commonality of degradation representations
intensifies [10} 28} [29]]. DiffUIR [75] reaches a compromise by projecting the disparate distributions
onto an impure Gaussian distribution, retaining partial degradation conditions. FoundIR [23]] further
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Figure 1: Overview of mainstream UIR methods. (a) These methods typically train generic models to
learn a shared distribution with compensation mechanisms for quality refinement. (b) Conversely,
distinct-representation-based methods integrate task-specific modules into generic models to handle
diverse degradations, forcing the generic model to learn different distributions.

implements a mixture-of-experts system to mitigate the diminished performance resulting from the
pursuit of commonality. Consequently, the compensation systems that are incurred significantly re-
duce efficiency. The latter approaches utilize multi-encoder architectures or prompts from foundation
models to acquire distinct representations tailored for specific degradation distributions [27}, 42, [13].
Afterwards, customized conditional guidance is incorporated into a shared decoder to reconstruct the
distorted information [[7 [11]. Nevertheless, their performance is constrained by the limited explo-
ration of degradation correlations, as different tasks may potentially share complementary information
that could augment the efficacy of individual tasks [25]]. For instance, low light conditions and noise
frequently coexist, while rain and raindrops are often interlinked.

In this paper, we aim to develop a precise and efficient method for universal image restoration. It
is observed that the existing methods are plagued by two major drawbacks: One is the dilemma
between the commonality of degradation representations and restoration quality, and the other is
the lack of a versatile and effective compensatory mechanism for quality refinement. To this end,
we propose DGSolver, a diffusion generalist solver with universal posterior sampling for image
restoration, as presented in Fig. [2] It amalgamates the merits of ordinary differential equation (ODEs)
solvers for high-precision inference and leverages diffusion posterior sampling as universal accuracy
compensation for refinement under high commonality conditions. Specifically, we adopt the diffusion
generalist models (DGMs) [75, 29] to unify diverse degradation types into a purely degradation-
agnostic latent distribution. Subsequently, we tackle the alternative sampling from DGMs by solving
the corresponding semi-linear ODEs to alleviate the discretization error accumulated in the multi-
step inference process. Benefiting from the analytical structure, the solutions can be equivalently
simplified to a linearly weighted integral of the neural networks with an accelerated sampling strategy.
Furthermore, we seamlessly integrate the underlying mechanism of generalist modeling with Bayesian
posterior sampling, thereby universally serving as manifold-constrained gradients for restoration
guidance without incurring computational expenditures. Consequently, high-order ODEs numerical
approximation and universal posterior sampling are combined to effectively improve the solution
accuracy and stability in a training-free manner. Extensive experiments on natural and remote sensing
scenes are conducted to verify the superior performance of our method, showcasing its remarkable
restoration capability across different application scenes. Our key contributions are as follows:

1. We reformulate the generalist diffusion process using ODEs and derive its analytical solution
form. Besides, high-order solvers equipped with an accelerated sampling strategy are customized
to mitigate accumulated discretization errors and boost efficiency during inverse inference.

2. To further enhance the accuracy and stability of restoration, we introduce a universal posterior
sampling strategy to offer manifold-constrained gradient guidance for noise estimation. It is
seamlessly integrated into generalist diffusion solvers requiring no training.
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Figure 2: Illustration of the DGSolver. In the forward process, we utilize a diffusion generalist model
to uniformly represent diverse degradation categories into degradation-agnostic distributions. In the
inverse inference, we employ a k**-order solver to alleviate the discretization error accumulated in
the multi-step sampling process. Simultaneously, universal posterior sampling is used to stabilize the
solution and further minimize the discrepancies with the ideal one generated by a co'”-order solver.

2 Background

2.1 Diffusion-based Image Restoration Model

Grounded in solid mathematical foundations, diffusion models [[14,/50} [51]] have emerged as powerful
frameworks for image restoration (see Appendix [A)). Initially, lots of works focus on structural
improvements to facilitate the restoration of details [62), 40, 49] by simply treating degraded images
as conditional inputs of the denoising network. Afterwards, InDI [10] and I>SB [28] pioneer pro-
found theoretical and practical improvements in the reverse process, opting for estimating the target
image or its linear transformation term to replace the noise estimation. RDDM [29] extends beyond
the single diffusion paradigm to independent double diffusion processes corresponding to residual
and noise estimations, respectively. Consequently, the residual prioritizes certainty to restore the
major structures while the noise emphasizes diversity to retrieve the dismissed details. Furthermore,
DiffUIR [75]] incorporates partially degraded information into the forward process and constructs a
non-pure Gaussian distribution representation of different degradation types. Nevertheless, the com-
monality of degradation representations and the performance of restoration are mutually constrained,
with no versatile and effective approach available to simultaneously enhance both.

2.2 Diffusion Posterior Sampling

To tackle the ill-posed attributes of linear inverse problem [19], diffusion posterior sampling has been
developed as a novel approximation tool to reduce the solution uncertainty [[11} 45]]. Specifically,
it leverages the Bayesian framework to accurately estimate the clear image Iy from its degraded
observation I;,, = Al + n, where A is a measurement operator and 7 is usually the Gaussian noise.
The stochastic differential equations (SDEs) of diffusion probabilistic models [51]] with diffusion
term f(I¢,t) and drift term g(¢) can be formulated as:

where w; is the standard Wiener process. The reverse SDE of this process can be:
dI, = [f(I;,t) — ¢*(t)V1, log i (1y)]dt + g(t)dw, 2)

where V1, log ¢:(I;) defines the predicted score functions. In the case of inverse problems, we want
to generate the posterior distribution ¢; (13|, A). Leveraging Bayesian rule, Eq. (2) becomes:

Al = [f (I, t) — g*(t)(V1, log qi (1) + V1, log q(Lin |1¢))dt + g(t)deo;. (3)
Nevertheless, V, log ¢(I;,]1)) can be computationally intractable. Chung et al. [7] first approxi-
mate gradient of the log likelihood by assuming p(I;, |I;) ~ q(I;in|Io := E[lo|L]) = N (Lin; 0 =



AE[Iy|I,], X = o7 I). Essentially, they substitute the unknown clean image Iy with its condi-
tional expectation E[IO|I ;] and known operator A, making the term p(I;,, |I;) tractable. Afterwards,
PSLD [48] extends pixel-level posterior sampling into latent space, showing provable sample recovery
in a low-dimensional subspace. Furthermore, BlindDPS [6] introduces multiple diffusion models
to construct a parallel reverse procedure to jointly estimate the operator kernel and clear image. In
summary, existing posterior sampling relies on known or estimated degradation operators. The former
still suffers from ill-posedness in the practical scene due to the availability of measurement operators,
while the latter only fits well in kernel-based degradation modeling with extensive computational
overhead and cannot be generalized to more complex degradation scenarios.

3 Methodology

3.1 Diffusion Generalist Formulations

Assume that a clear image Iy € R” is obtained by sampling from an unknown distribution gq (/).
We define a forward process {1 }c[o,r] starting with Iy, such that for any ¢ € [0, T, the distribution
of I; is conditioned on Iy, I;,,, and I,..s, which satisfies:

dor(Te\To, Iress Iin) = N (I Io + @(t) Ires — 3(t)Iin, B (1)), )

where @(t), 6(t), BQ(t) € R are differentiable functions of ¢ with bounded derivatives, and I,.. is
the residual items equal to I;,, — Iy. Whent — T, @(T) — 1,6(T) — 1, the endpoint I; = B(¢)I is
merely represented by a pure Gaussian distribution with a 3(¢)-modulated variance. Therefore, we
refer to the linear noise schedule [14] to generate parameter series and modify the value of @(T"), §(T)

to 1. Consequently, these variables are monotonic, and we denote them as @;, d;, 5, for simplicity.
We prove that the following stochastic differential equation (SDE) possesses an identical transition
distribution qot (I¢| o, Lres, Iin) as in Eq. (4) for any ¢ € [0, T'] (proof in Appendix |A.15):

dly = f(t)Iresdt + h(t) Lindt + g(t)dwe, Io ~ qo(lop), (5)
2
_ da, &, B

ft)= o M=-g 9 (t) = T (6)

To accelerate the sampling process, we consider the associated probability flow ODE with the same
marginal distribution at each time ¢ as that of the SDE, which can be formulated as:

dl 1
o = T Ohes + h(t)lin — 56> (V1 logae(L), I ~ ar(Ir). ™

Apparently, the h.s of Eq. (7) comprises two indeterminate variables, i.e. residual components
I and score functions V7, log ¢;(I), necessitating estimation via neural networks conditioned on
the temporal variable ¢. Pursuant to the Tweedie formula, the score functions V, log g;(I;) can be

equivalent to noise prediction, implying that e = — 3, V1, log ¢;(I;). Hence, the optimal sample can
be obtained by solving the following ODE from T’ to O:
dIt g9°(t)

ST f( ) res('[t’IZn’ ) + h(t)‘[’bn + QB EQ(IDIin?t)? It ~ qT(IT)7 (8)

t

where T

I, I, t) and €9 (1¢, I;y, t) are the residual estimator and noise predictor, respectively In
res

(It, 1in,t) and % ( ) typically
exhibit nonlinear dependencies on I; because of neural networks. Previous works are lgnorant of this
semi-linear structure by decorating the entire Eq. (8) into a black-box ODE solver, which not only
increases the complexity of the solution but also exacerbates the discretization errors of both linear
and nonlinear terms. Given an initial value I, at time s > 0, the solution I; at time s < ¢ < T" can be
precisely formulated as follows:

t da,
It:IS+/ = If%(IT,Im,T)dT—Im/ —d +/ a5,

Such a taxonomy decouples the origin of discrete error, where the linear part can be accu-
rately computed, but the integrals of the nonlinear parts are still complicated. As @, d¢, 3, are

Tes

Eq. 15) h(t)I;, is a linear function of I;,, while the other two parts I?

T Lna )d (9)




strictly monotonic function of ¢, there exist inverse functions ts(-), t5(-), and t5(-) satisfying
t=tA\(\1)),\ € {@,6 5} respectively. We change the subscripts of I?,. and ¢g from t to \ and
denote 12, (I, Iin, 7) = 1%, (I, Iin, @), €9(Iy, Iin, T) = 69( , Iin, B). For each ), Eq. @) can be

res
reformulated as:

Proposition 1 (Exact solution of ODEs for diffusion generalist models, proof in Appendix|[B). Given
an initial value I at time s > 0, the solution I at time s < t < T of that ODEs in Eq. (@) is
B N

It - I - <6t 55) in +/ /Ires(Ioquua)d;"'/ (IE> IzruB)dB (10)
a Bs

s

In consequence, Eq. (I0) provides a new perspective for approximating the optimal solution, where
estimating the solution at time ¢ is equivalent to directly approximating the integral of ITes (Ia7 Lin, @)
from @ to @;, and € (15, Lin, B) from B, to 3,. In light of such formulation, we are capable of

customizing diffusion generalist solvers to improve the convergence and accuracy of solutions.

3.2 Diffusion Generalist Solvers

To enhance the precision in solving Eq. @, we propose high-order solvers for the ODEs with a
convergence order guarantee. Specifically, given an initial point Ir attime T' and total M + 1 time
steps {t;} M, decreasing from to = T to tp; = 0. Let {I;, }; be the sequence iteratively computed
at time steps {t; },éo using the presented solvers. To mitigate the cumulative effect of significant
errors, we endeavor to minimize the inaccuracy for the solution I, at each step. Starting with the
previous solution I, , at time ¢;_1, the exact solution I;, ,_,;, at target time ¢; is:

— — Oit ﬁt ~ . —
I =Dy = On =B o+ [ el T)da + [ @(F, L, )5 (1)
Xt _q ti—1
We utilize the Taylor expansion to make k orders approximation to calculate the integral of both
1% (Ix, In, @) from &, _, to o, and € (I3, Iin, B) from B, to B3,

k-1, n
o — O, ~
Ires(IOuIznva) Z Mﬁes(‘[atiil7‘[in7ati—l) +O((a_ati71)k)7 (12)

n!
n=0

P
€o(I5, Iin, B) = Z 769(15”_1 Lin, By, ) + OB = By, _,)")- (13)

!
oy n!
Substituting the above Taylor expansions into Eq (TT), yields:

(@, =@, )" ) 2
Iti—1_>ti = Iti 1 (5751 515; 1 Im+ E Ires (Iti—17Iin7ti_l)
— (n+1)!

(14)

— 5t . n+1 n) - o
*Z n+1) &0y Do tid) T O((@ T, )+ O((B— By, ).

By d1scard1ng the approximation errors terms O(-), we can approximate the n-th order total derivatives

ffé?) () and Eén)() for n < k — 1 with finite difference [38]]. In the case of k = 1, Eq. becomes:

Iti:Iti—l_((St (St ) Zn+(at )Ifes(lti71>jln7 bie ) (Bt Bt 1)69(It1 17[”“ = 1) (15)

Notably, prior works [75} 23] are a spec1al case of the first-order solver within our methods by
omitting the discrete error. For k = 2, the calculation of the first derivative requires additional
intermediate time points ¢,, =7¢;+(1—7)t;_; in the range of [¢;, ¢;_1]| with controllable parameters r,
and we have:

Ifi, = Ifi—l - (gtz _Sti—l )[”l + (ati _ati—l )[fes (Iti—l ) Iinv ti—l)"— (EQ _Bti,l )E@ (Iti,—l ) Iinv ti—l) +

(Bti 7Bti,1 )
2r

(ati —0t )
2r

(Ifes(ftu,fm, tu) — Ife.s([t,;_l s Lin, t¢71)) + . (69(Itu, Iin,ty) — 69(Iti_1,f¢n,tif1))-
(16)

For k > 2, the technical derivation details and algorithms are deferred to Appendix
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Figure 3: Different sampling strategies of diffusion generalist solvers (k = 2).

3.3 Universal Posterior Sampling

DPS [7] circumvents the intractability of posterior sampling in diffusion models via a novel ap-
proximation, which is generally applicable to inverse problems with accessible kernels. Inspired
by this, we propose universal posterior sampling from the perspective of residual modeling. Under
well-defined conditions, Eq. (@) adequately unifies diverse degradations into a degradation-agnostic
representation, facilitating the perception of commonalities while exacerbating the restoration bur-
den for discriminability reduction. Eq. (3) offers insights that V', log ¢(I;,|I;) can be adapted to
prevent samples from deviating from the generative manifolds when the measurements are dete-
riorated, as illustrated in Fig.[2] In contrast to linear inverse modeling, we endeavor to leverage
the underlying mechanism of generalist modeling by universally formulating the degradation as
Lin = Ih+1 fes -+n. Such a model exhibits versatility across various degradation scenarios. In order to
seek a tractable approximation for ¢(I;,, |I;), we utilize surrogate functions to maximize the likelihood,
yielding approximations of universal posterior sampling (UPS). Specifically, given the formulation

q(Iin|ly) = ]EIO,Iqu(IOJfEJIt)[q(Im\Io,Ifes)], we can make approximations by replacing the

outer expectation of q(I;,|Io, Ifes) over the posterior distribution with inner expectations:
Q(Lin| 1) ~ q(Lin|To := E[Io| I, 1%, ,], IC,, := E[I,,|L,]). (17)

rTres TES

As the clean images are continuously disrupted by Gaussian noise in the diffusion process, we can
derive the closed-form upper bound of the Jensen gap for the general degradation modeling.

Theorem 1 For the measurement model I, = Iy + I.cs + n in linear verse problem with n ~
N(0,0%I), we have (proof in Appendix@:

q(Lin| 1) =~ q(Iin| o, Tres), (18)

the approximation error can be quantified with the Jensen gap, which is upper bounded by:

J(o, M) < (19)

4 (Y
V2ro? P 202 7
where M := f ”(IO + Ires) - (j;) + fres)”Q(IOa Iresut)dlodlres-

Note that M is finite for most of the distribution in practice, which can be considered as the generalized
absolute distance between the observed reference and estimated data. 7 (o, M) can approach 0 as
o — 0 or oo, suggesting that the approximation errors reduce with extreme measurement noise.

Specifically, if the predictions of Iy and I,..s are accurate, the upper bound 7 (o, M)|5—0,—0 shrinks
due to the low variance and distortion. Oppositely, if the predictions lack accuracy, the upper bound
of the 7 (0, M)| pms00,M—M,,,,., Shrinks as well for large variance and limited distortion. According to
Theorem[I] universal posterior sampling can stabilize the multi-step inverse sampling process and
provide the tractable gradient approximations of log-likelihood, as measurement distribution is given:

Vi, log q(Lin|1t) = V7, log Q(fmlfm frees) = 7]‘/02v1t [ Lin — (E) + frf’e)HQ (20)

It serves as a compensatory mechanism to furnish reliable gradient guidance for optimization in the
latent manifold, thereby mitigating the restoration burden and efficiency deterioration. Notably, our
method is formed through the collaboration of diffusion generalist solvers and universal posterior

sampling. Both components exclusively depend on [, fes and ¢y predictors, which are intended for



Table 1: Quantitative comparisons of five image restoration tasks. The FLOPS is calculated in the
inference stage with 256256 resolution. The best results of task-specific models and universal
models are shown in blue and red, respectively.

Deraining Enhancement Desnowing Dehazing Deblurring Average Complexity

Method ‘Yea' PSNRT SSIM{ | PSNRT SSIM{ | PSNRT SSIM{ | PSNRT SSIM{ | PSNRT  SSIM? | PSNRT  SSIM? | Params(M) FLOPs(G)

Task-specific Method

SwinIR 2021 27.81 0.845 17.49 0.715 25.90 0913 24.22 0.886 28.01 0.839 - - 0.87 58.71
Restormer 2022 | 30.02 0878 | 23.07 0774 | 3324 0958 | 32.04 0969 | 32.87  0.939 - - 26.12 140.99
MAXIM [53] 2022 | 2936 0.875 | 2373 0.893 | 2993 0954 | 2850  0.931 3286 0.939 - - 22.14 158.16
IR-SDE 2023 | 24.37 0.782 18.76 0.625 19.78 0.866 16.36 0.826 2791 0.865 - - 137.13 379.33
RDDM 2024 | 25.61 0.919 19.94 0.727 26.79 0.891 27.87 0.941 27.87 0.848 - - 15.47 65.87
Universal Method

Restomer 2022 | 2854  0.847 | 2175 0742 | 2853 0919 | 2654 0924 | 2644 0799 | 27.61 0.869 26.09 140.99
AirNet [22] 2022 | 2478  0.774 1305 0485 | 2580  0.885 18.53  0.827 | 2576 0782 | 2401  0.809 5.76 301.27
Prompt-IR [42] 2023 | 28.97 0.856 20.97 0.733 29.52 0.938 25.80 0.929 26.25 0.797 27.89 0.878 32.96 158.14
ProRes 2023 | 2242 0.752 20.31 0.741 24.53 0.859 24.81 0.888 26.08 0.792 24.08 0.814 370.26 97.17
IDR 2023 | 28.40 0.844 20.95 0.706 27.77 0911 24.48 0.914 26.33 0.799 26.96 0.863 6.19 32.16
AutoDIR 18] 2024 | 2932 0.863 1565  0.707 1531 0.706 1901 0.829 | 2847  0.864 | 2243  0.799 115.86 63.38
DA-CLIP [33] 2024 | 28.63  0.854 | 19.50  0.730 | 2823 0934 | 2726 0941 | 2647 0818 | 2754  0.881 32.96 158.14
DiffUIR [75] 2024 | 30.67 0.887 21.21 0.769 30.70 0.943 30.29 0.944 29.00 0.877 29.93 0.907 7.73 32.93
Ours-T - 28.10 0.841 19.48 0.719 26.47 0.896 22.03 0.875 25.82 0.784 25.95 0.849 0.45 5.74

Ours-S - 28.99 0.852 20.36 0.749 26.98 0.905 25.73 0.906 25.89 0.785 26.93 0.861 1.07 8.01
Ours-B - 29.50  0.874 | 20.85  0.747 | 31.04 0948 | 2812 0937 | 27.74 0850 | 29.16  0.898 3.65 23.97
Ours-L - 3146 0.896 | 23.84  0.801 | 32.69 0955 | 31.68 0.946 | 30.15 0.899 | 3136  0.920 7.73 32.93

DA — CLIP

Figure 4: Visualization comparison with state-of-the-art methods on different restoration tasks.

inverse inference. Once the neural networks are adequately optimized, restoration improvements can
be achieved without re-training. For the different solvers in Eq. (I4), we employ universal posterior
sampling to modify the noise €y(-) predicted by neural networks as follows (See Appendix:

(L, Lin,ti) = eo(It,, Iin, t:) + By, 07V 1, | Lin — (Io + 100y (I, Lin, t:) . 21)

Our computational overhead primarily originates from the total derivatives of o (), €(9”) (+), and the
approximation of V, log q(I;|I;). To accelerate the inverse inference, we introduce a queue-based
sampling strategy to improve efficiency, as illustrated in Fig. 3] Specifically, we precompute the
items of intermediate time points during the initial sampling, and subsequent sampling operations
will use these items of intermediate time points as their starting points. Furthermore, each sampling
iteration solely necessitates the calculation of updated intermediate time points to obtain the final
results. In this context, for a k-order solver, naive sampling from time s to ¢ requires interpolating
k — 1 intermediate points within the interval, resulting in £ number of function evaluations (NFEs)
per step and O(nk) computational complexity for n steps. In contrast, the queue-based sampling
precomputes k — 1 time points and caches them for reuse in subsequent steps, reducing total
complexity to O(n + k — 1). In conclusion, this approach improves efficiency by effectively reducing
the consumption of computational resources. For more details, please refer to the Appendix [D}

4 Experiment

4.1 Benchmarks and Implementations

Extensive experiments are conducted on five image restoration tasks, encompassing deraining
[31 24}, low-light enhancement [61}, 30, 36|, desnowing [4] [3T]], dehazing [8 and
deblurring [39, 46]]. Datasets details are summarized in Appendix [E.I| and we use PSNR [16] and
SSIM [60Q] to evaluate the performance on RGB space. For fairness, five task-specific methods
[53],32] are trained separately on task-related datasets and all universal methods [67} 42} 33|
[33] [75]] except for [18]) are re-implemented on the mixed datasets.



Table 2: Effects of universal posterior sampling and solver orders of our method.

Configurations Deraining Enhancement Desnowing Dehazing Deblurring Average
Order UPS PSNRT SSIMt PSNRT SSIMT PSNRfT SSIMT PSNRT SSIMt PSNRT SSIMtT PSNRT SSIM?T

i k= 30.69 0.886 23.04 0.795 32.06 0.952 31.47 0.947 29.33 0.887 30.70 0.913
(i) k 31.10 0.892 23.07 0.798 3232 0.954 31.54 0.947 29.80 0.895 31.01 0.918
(iii) &k 31.31 0.894 23.08 0.798 32.51 0.955 31.62 0.948 30.07 0.897 31.20 0.919
Giv) k 31.46 0.896 23.84 0.801 32.69 0.955 31.68 0.946 30.15 0.899 31.36 0.920
k
k

) 31.33 0.894 23.13 0.799 32.52 0.955 31.71 0.948 30.09 0.898 31.23 0.919
(vi) 3145 0.896 23.84  0.801 32.69 0.955 31.67 0.946 30.15 0.899 3136 0.920

@ L N B =
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Figure 5: Visualization effects of varied solver and universal posterior sampling.

Our method is trained using 8 Nvidia A800 40GB GPUs with PyTorch framework for 210h.
Adam optimizer and L1 loss are employed for 500k iterations with a learning rate of le-4. We set
the batch size as 20 and distribute it evenly to each task. We randomly crop patches with a size of
256 x 256 from the original image as network input for training and use 8 timesteps for full-resolution
testing. Additionally, we offer an adaptation for the Ascend 910B 64GB NPUs, aligned with our
GPU settings. We use U-Net [47] architecture and change the channel number of the hidden layers C
to obtain different versions with varied parameter quantities: Ours-T(C = 32, 32, 32, 32), Ours-S(C =
32, 64, 64, 128), Ours-B(C = 64, 128, 128, 256), Ours-L(C = 64, 128, 256, 512).

4.2 Comparative Experiments

Quantitative results are presented in Tab. [T} In contrast to universal methods, we achieve substantial
performance improvement across all tasks, indicating our highest accuracy. Compared with task-
specific methods, we still achieve competitive results with the lowest number of parameters and
computational overhead. Evidently, the performance of our method gets better as the network capacity
increases, fully validating its scalability. Visual comparisons are shown in Fig.[d] and for more results
please refer to Appendix [E.2} Our method outperforms others and is the most similar to ground-truth.

4.3 Ablation Study

To thoroughly harness the effectiveness of each component, we conduct ablation studies that include
three categories: (i) Effects of varied solver orders and universal posterior sampling, (ii) influence of
the value of d, and (iii) impact of the sampling steps.

Effects of varied solver orders and universal posterior sampling. We present the qualitative
comparisons and quantitative analysis in Fig. [5] and Tab. respectively. Obviously, metric
assessments improve as order increases and the performance of our method reaches saturation in
configuration (iv). Besides, the activation of UPS can steadily enhance the solution accuracy and its
effect weakens as solver order increases. Therefore, we select £ = 2 with UPS enabled as our default
settings to strike a balance between performance and efficiency.

Table 3: Quantitative results of our method with different values of d.

Deraining Enhancement Desnowing Dehazing Deblurring Average
PSNRT SSIM{ | PSNRT SSIM{ | PSNRT SSIM?T | PSNRT SSIM?T | PSNRT  SSIM?T | PSNRT  SSIM?T
0.1 29.44 0.875 21.03 0.751 32.24 0.955 29.11 0.942 29.31 0.883 29.99 0.908
025 | 29.44 0.877 21.75 0.765 32.25 0.956 29.57 0.945 29.36 0.884 30.10 0.910
0.5 30.83 0.887 22.56 0.786 32.12 0.953 31.58 0.944 30.13 0.897 30.91 0.915
0.75 | 31.37 0.896 22.46 0.786 32.32 0.955 31.52 0.948 30.26 0.899 31.15 0.919
0.9 31.40 0.896 23.75 0.807 32.34 0.954 32.05 0.946 30.13 0.897 31.26 0.919

1 31.46 0.896 23.84 0.801 32.69 0.955 31.68 0.946 30.15 0.899 31.36 0.920

or




Table 4: Restoration performance of different sampling steps.

Steps Deraining Enhancement Desnowing Dehazing Deblurring Average
PSNRT SSIM?T | PSNRT SSIM?T | PSNRT SSIMt | PSNRT SSIM? | PSNRT SSIM? | PSNRT  SSIM?T
4 31.35 0.895 2330  0.801 32.56 0.956 31.70 0.948 30.09  0.898 31.25 0.920
7 31.33 0.894 2322 0.800 32.52 0.956 31.66 0.948 30.08 0.898 3122 0919
8 31.46 0.896 23.84  0.801 32.69 0.955 31.68 0.946 30.15 0.899 3136 0.920
9 31.31 0.894 22.99 0.798 32.46 0.955 31.67 0.948 30.05 0.897 31.18 0.919
10 31.28 0.893 23.09 0.799 32.46 0.955 31.57 0.948 30.04  0.897 31.16 0919

Nighttime-haze

Figure 6: Results of low-light enhancement and dehazing for five iterations on NHRW [[70].
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Figure 7: Visualization of real-world scenes generalization.

Influence of the value of §1. J determines the commonality of degradation representation in a
positively correlated manner. We show the restoration performance with various 07 settings in Tab.
Clearly, the optimal commonality ratio varies across different tasks, and the performance under low
commonality is markedly inferior to that under high commonality. To fully verify that our method
can handle complicated distribution conditions, we perform image restoration with 6 = 1.

Impact of the sampling steps. Restoration performance and efficiency of the inverse inference
depend on sampling steps, as shown in Tab. [4]and Tab.[A4] respectively. As a result, increasing the
number of sampling steps beyond a certain point leads to a decline in PSNR/SSIM. This counter-
intuitive phenomenon may stem from two main factors. (1) Our approach for image restoration
is motivated by the principle of commonality, aiming to handle diverse degradation types within
a unified framework. The model tends to first remove the primary degradation before addressing
secondary ones. Consequently, in cases where samples from the deraining or deblurring datasets also
suffer from additional degradations (e.g., low-light conditions), the restored output may diverge from
the available reference, leading to reduced evaluation metrics despite better perceptual quality, as
presented in Appendix [E33] (2) The stochasticity in both the forward and reverse processes, combined
with network estimated errors, can cause slight influence on performance. Considering the balance
between efficiency and performance, we select 8 as the optimal number of sampling steps.

4.4 Compound Image Restoration

To demonstrate that our method can handle more complex restoration tasks where various degradations
occur in one image, we repeatedly perform our method on the degraded images, as displayed in Fig.[6]
Evidently, our method eliminates the former degradation before the latter one within its capability
range. It incurs no additional information interference for well-restored data, ensuring high fidelity.
For more visualization, please refer to Appendix [E-3]



Flgure 8. V1suahzat10n of typlcal remote sensmg restoratlon tasks.

Table 5: Performance comparison of our method with other universal image restoration methods in
remote sensing image restoration tasks. The best results are highlighted in bold.

Denoising Enhancement Deblur Decloud Super-resolve Average
PSNRT SSIMft | PSNRT SSIM?T | PSNRT SSIMT | PSNRT  SSIM?T | PSNRT  SSIMt | PSNRT  SSIM?T

Restomer [67] | 2022 | 29.21 0.773 32.61 0.976 28.14 0.781 20.13 0.520 28.58 0.809 28.97 0.810
AirNet [22] 2022 | 2837 0.770 25.91 0.881 26.00 0.684 20.04 0.516 28.06 0.798 26.58 0.761
Prompt-IR [42] | 2023 | 30.06 0.796 33.03 0.982 25.72 0.639 19.54 0.498 27.97 0.788 28.56 0.778
ProRes [35] 2023 | 28.30 0.769 30.73 0.932 25.63 0.654 20.28 0.508 27.95 0.793 27.57 0.764
IDR 2023 | 27.56 0.695 30.32 0.967 25.32 0.625 18.98 0.476 27.81 0.784 27.07 0.740

Method ‘ Year

DA-CLIP [33] | 2024 | 29.98 0.780 33.69 0.986 27.80  0.747 19.06 0.463 27.11 0.762 29.01 0.793
DiffUIR [75] | 2024 | 29.59 0.740 35.28 0.988 30.01 0.837 20.34 0.554 28.63 0.818 30.17 0.821
Ours-T - 25.57 0.671 28.34  0.963 24.78 0.610 17.40 0.425 27.63 0.786 2579  0.725
Ours-S - 27.38 0.713 31.59 0976 26.97 0.711 18.12 0.462 28.49 0.809 27.78 0.772
Ours-B - 29.22 0.748 32.00  0.980 29.48 0.829 18.96 0.510 28.75 0.823 29.10  0.817
Ours-L - 31.83 0.802 35.52 0.988 | 31.84 0.875 | 21.35 0.597 | 2947  0.839 3152 0.854

4.5 Zero-shot Generalization in Real-world Scenes

To evaluate the generalization ability, we conduct the zero-shot restoration on real-world scenes.
We generalize all methods to the degradation scene that matches our task specification. Due to the
absence of ground-truth, we merely provide the qualitative results, as shown in Fig.|7} Obviously, we
outperform others and achieve the best visual effects. More comparisons are placed in Appendix [E.4]

4.6 Remote Sensing Image Restoration

Remote sensing imaging possesses different depth attributes and degradation types. To further validate
the superiority of our method, we adapt all universal methods to remote sensing image restoration
tasks, including denoising, illumination adjustment, deblurring, cloud removal, and super-resolution.
Metric evaluations and visual comparisons are presented in Tab. [5|and Fig.[8] respectively. We achieve
the best quantitative and qualitative results (See more details in Appendi)%

5 Conclusion

In this paper, we introduced DGSolver, a diffusion generalist solver with universal posterior sampling
for image restoration. We derived exact ODE formulations for diffusion generalist models and
developed customized high-order solvers with a queue-based sampling strategy to reduce cumulative
discretization errors and enhance efficiency. Additionally, our universal posterior sampling improves
the approximation of manifold-constrained gradients, leading to more accurate noise and residual
estimation. Extensive experiments across natural and remote sensing datasets demonstrate that
DGSolver consistently outperforms state-of-the-art methods in accuracy, stability, and scalability.
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attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix [F}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]
Justification: See Appendix [B]and Appendix|[C]
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Code is attached in the supplemental materials.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: We use the public datasets.
Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We report our model, hyperparameter settings and related evaluation metrics in the paper.
Our solver and strategy are training-free and have no additional hyperparameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:
Justification: Our method has almost no randomness, once the random seed is determined.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: The GPU type and amount is detailed in Section[4.1]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read and obey the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: High-order solvers increase the computational overhead, but the introduction of queue-
based sampling significantly reduces that, making their efficiency competitive compared to existing
methods. Universal posterior sampling increases the memory overhead, but it avoids training an
additional systems for quality refinement. Consequently, a lightweight model can achieve performance
comparable to that of larger models, thereby reducing overall resource consumption. Besides, since
our solver and strategy are training-free, we believe that they can potentially be extended to other
diffusion-based methods with appropriate modifications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks

Guidelines:
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12.

14.

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: we cite the related assets and follow their license and terms.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

e If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: We include our code in the supplemental materials.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: Our method does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Mathematical Theory of Diffusion Models

Diffusion models that are most pertinent to our methods are theoretically discussed as follows, including diffusion
probabilistic models (DPMs), diffusion residual models (DRMs), and diffusion generalist models (DGMs). For
each category, we analyze their discrete formulations of perturbed generation process [14] and deterministic
implicit sampling [50]], and continuous formulations of score-based stochastic differential equations (SDEs).

A.1 Forward Process of Diffusion Probabilistic Models

Diffusion probabilistic models consist of a non-parametric noise addition forward process and a denoising
reverse process. In the forward process, it gradually disrupts the original image content by adding the Gaussian
noise. The sampling distribution in a markovian manner between the adjacent time step, i.e. I; and I;_1, can be
defined as q(I¢|It—1) = N (atli—1, B ), which is equivalent to:

It = Oét.[tfl + 5t€, (22)

where o and 8¢ = /1 — o are predefined coefficients over time ¢ to modulate the image content and noise
intensity, respectively. € is a random variable following the normal Gaussian distribution A/(0, I).

A.2 Perturbed Generation Process of Diffusion Probabilistic Models

By the property of the markovian chain, Eq. (22) can be converted to the below formula that DPMs can diffuse
from the clean image I to any intermediate variable I; at time step ¢ in just one step:

_It = atlo +Bt67 (23)
where a; = szo a; and B, = /1 — @2 are denoted for simplicity. Based on Bayesian formula, we have:
q(ltut—l) = N(Oétft—l, BtI), q(It—1\Io) = N(at—IIO»Bz—1I), Q(ItHO) = N(at107BtI)~ (24)

I |1 I+ |1
q(Ii—1|1t, Io) = q(Le|It—1)q(Li-11o)

= exp{log q(It|ls—1)+log q(1s—1|1lo) —log q(I:|Io) }

reny)
(I — auIi—1)®  (Im1 —@w—100)® (I — @lo)?
X exp { - 252 — — + —3 (25)
t 28,1 28,
1 of 1 I | a1l
x exp{ — 5(0% + T)If_l — 2It71(at2t n Ozi21 o) 4+ C(ft,fo)}-
Pi Bi—1 Bi t—1
Apparently, Eq. can be supposed as a general Gaussian distribution N (p;—1, 31 1):
P1 L BB
SPa(TeaL do) = (55 + ——) 7' = ==, (26)
t B By
acly | @eilo\fiBi 1 _ B @1
— — t — —
pe1 (Tl Io) = (21t tdoy PPy _ 0Py Q1B g @7

& B B B B,

Consequently, the inverse process is regarded as sampling from the following Gaussian distribution step by step:

—2 —2
af_ @152 2B,
G|, Io) = N(—==L T, + L;ﬂt I, 61; 1), (28)
t t t
—2 o 2 2 2
« _ _ _
I = tf; 1It + at,;ﬁt Io + Bt,s Le. (29)
t ﬂt Bt

A.3 Deterministic Implicit Sampling of Diffusion Probabilistic Models

Discarding the markovian modeling g(I;|I:—1) in the forward process and assuming that the sampling distribu-
tion still follows the Gaussian distribution in the reverse process, we can obtain:

a(IIo) = N(I;;@do, BoI) — I = o + B,er, (30)
q(Ii—1]lo) = N(It—l;at—lfo,ﬁf,lf) = i1 =110 + B,_, €2, (31)
q(It71|Io, It) = ./\/’(It71; Kkelt + Aelo, O’?I) — Ii—1 = Kedy + Medo + ores. 32)

21



Substituting Eq. (30) into Eq. (32)) and comparing the coefficients with Eq. (3T)), we have:

Iy = (keti + M) o + keBre1 + oves = (ke + M) Lo + \/ H%B? + oZe, (33)
@o1 = m + i, Beoy = KBy + 0%, (34)

these parameters can be calculated as:
\/ B t—1 \/ ﬁ t—1

(35

Consequently, a common reverse process in the non-markovian manner is:

Kt , A= Qo1 —

—2 _ —2

Bi1 _Ut2 _ O‘t\/ﬁt—l _0t2 2

q(It_1|I(),It) 7./\/’(*7]%4*(&,5_1 — 37)10,0}1-). (36)
t

If we set the variance o equal to PiBi—1 Bf L Eq. (36) holds the identical distributions with Eq. . Typically, we

can derive another representative samphng distribution by setting variance o equal to 0:

8 af,_
q(Ie=1|T0, It) =0 = N(E+ 1o + (@1 — —=— )10, 07 1), 37)
B B
in this way, the inverse process is deterministic for ignoring the random noise:
By _ af.
Lo = 225+ (@ — —=2) . (38)
B B,

A.4 Training Objective of Diffusion Probabilistic Models
The training objective for the noise estimators ep in DPMs is calculated as follows:

L =En.ellle = eo(@lo + B,e)|*]. 39)
A.5 Stochastic Differential Equations of Diffusion Probabilistic Models

The formulation of SDEs of DPMs’ forward process can be reformulated from a continuous perspective with
diffusion term f¢(I;) and drift term g, as follows:

dl; = fi(I)dt + gedws, (40)
where wy is the standard Wiener process. Its formulation of inverse SDEs can be proved as follows [20]:
dl, = [fi(It) — g¢ V1, log pr, (It)]dt + gedw;. (“4n
Similarly, we modify the formulas in Eq. - and consider the linear solution fi([¢) = f¢ly:
q(Itracllo) = N(It+At;at+AtIO,Bf+AtI) = Lipae = Arpacdo + Byy g, (42)
a(Ie|To) = N (Ii;aio, B, I) — Iy = alo + Byeo, (43)
q(Levnelle) = N(Tipar; (1+ fid) I, i AT) = Liiar = (1+ L ADL + gV Ales.  (44)
We can obtain:
Qrar = (14 fillt)ay, (45)
Briar = (L+ fudt)°B] + g At (46)

By setting At — 0, we can derive:
PN _
1 day d o _od [ B _ = d (B
fo=ga — qWa g=ag <a$ e g \ @ “n

A.6 Forward Process of Diffusion Residual models

Diffusion residual models additionally incorporate a residual term /.. to assist the forward process. The forward
process between adjacent steps is defined as:

QUL 1, Ires) = N(Ii; I -1 + @i Lves, B2, (48)
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It = Ii—1 + aidres + Bre, (49)
where I.es = I;, — Io. By the properties of Markov Chain and reparameterization, we have:

Ao, Iyes) = N (L Io + Gl res, B 1), (50)
L =11+ oudres + Bree = [Li—o + qt1lres + Bror60-1] 4 arlres + Brer

=l 2+ [atfl + Oét]lres + \/ [ﬂthl + B?]G (51)

— I[) +at-['res +Et€7
where @, = ', a; and B, = \/ﬂ

A.7 Perturbed Generation Process of Diffusion Residual Models

Evidently, if &; — 1, the forward process makes the representations of Io be the degraded version with additive
noise Iy = I;, + B,e. Similarly, we can obtain:

G| L=, Tres) = N (Ii; i1 + culres, BT, (52)
Q(It—1|107lres) = N(It—1§10 “!‘at—ljresvgfflI)’ (53)
q(Ii\To, Ires) = N (Ii; o + @i Ires, B ). (54)

Suppose the form of q(I;—1|l¢, Io, Ires) belongs to Gaussian distribution family as all the distributions are
Gaussian, we can denote:

q(It71|It, IO, Ires) = N(It71|/11t71(1t, IO; ITES)7 Et—l(Lﬁ, 107 I’res))- (55)

To derive the expressions of variables pit—1(I¢, Io, Ires) and X¢—1(I¢, Io, Ires ), we take the logarithm directly
and ignore the constant term:

q(It‘[t—ly IOa [res)q(It—1|IO7 Ires)

Lia|Ie, Io, Ires) = ; 56
q( t 1| ty 10, ) q(It|IO,ITes) (56)
q(It—l |It, IO, Ires) =exp { log q(lt|It—1, IO, Ires) + log q(It—l |[()7 I’res) - 10g q(It ‘107 I’res)}
(It - (Itfl + Olt-[res))2 (]tfl - (IO +at71]res))2 (-[t - (IO +at-[res))2
x expy — Y — — + — 67
t 26,4 28,
1/,1 1 It — atlres | To+ Qit—1lres
x exp{ -3 ((? + ) - 2L (2 55 I g C(It,fo,fms))}-
t t—1 t Bz
Comparing the coefficients, we can derive the variables as below:
—2 —2
BiBe_y _ BiB,_
SPa T do, Ires) = 5t = S (58)
By 4 Bia B
—2
It — ailres | To+@i-1lres\ BB :
)u't—l(Ii,IOyITES) - ( ¢ O;t 0 ft; ! ) ti; ! = It - atjrcs - Eft& (59)
Bi Bia By By
A.8 Deterministic Implicit Sampling of Diffusion Residual Models
For generality, we discard the assumptions that the forward process follows a Markov Chain and denote:
q(It—1|ID, Ires) = N(Lﬁ—l% IO + at—ljre&gf—l]')’ (60)
Q(Itumlres) :N(Iﬁ[O‘f'atIres’BfI)y (61)
then the conditional distribution g(I;—1|lo, I) can be defined as:
q(Te-1|To, I, Tres) = N (Te—1; Aelo + ke Iy + i Tres, 07 ). (62)
we can reformulate the probability formulas into algebraic expressions:
Itfl = IO +at71]7‘es +Bt7167 (63)
It = IO + atI'res + Btea (64)
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L1 = Aedo + kedy + Milres + o€
= )\zI()+I€t(Io+azlres+gt€)+77tlres+0't€. (65)

_ —2 1
= (>\t +Fit)10+(’/‘:tat +nt)1res+(/ffﬂt +Jt2) 2e.
By comparing the coefficients of Eq.(63) and Eq.(63), we can get the following quadratic equation:

)\t + KRt = 1,
KtQit + Mt = Qie—1, (66)

252 2 -2
kB +or = Bi_q-

To complete the derivation, we treat o} as a predefined parameters:

(67

Consequently, the inverse process can be formally simplified as:

pi1 =TIt — arlres — (B, — \/ Bi_1 —02)e. (68)

Obviously, the mean of q(I;—1|Io, It, Ires) is manipulated by the variance intensity o;. If we make o7 equals
that of Eq. , then the value of p;—1 in Eq. equals that of Eq. . Besides, if we make o7 equals to 0,
then the deterministic inverse process can be denoted as:

Itflzl-t - atIres - (Bt - Bt—l)e' (69)

A.9 Training Objective of Diffusion Residual Models

The training objective of DRMs is calculated as follows:

2 /62
L= 11«:{ It — lres — =26 — (I — o I8, — Zhep) } (70)
B
Leveraging Eq.[51] then Eq.[70]can be simplified into two equivalent formulas:
L =E[Aves||[Ires = Ies(It, Lim, 1)]]], an
L =E[X||e — ea(Is, Iin, t)]|] (72)

where the weights, i.e., Ares, Ac € {0, 1}, are the balance coefficients.

A.10 Stochastic Differential Equations of Diffusion Residual Models

Like the derivation from Eq. #2) to Eq. (#6), we have:

q(Lillo, Ires, Iin) = N' (It Io + G pes, B ), (73)
q(Le+atllo, Iress Iin) = N (Tt ae; Io + at+AtIr5S7Bf+AtI)7 74)
q([t+At|It7 IreS7 ]zn) = N(It+At§ (1 + f(t)At)[t + h(t)AtIre& 92 (t)AtI)7 (75)
the marginal distribution [ q(Zt4a¢|l¢)q(1¢|Io)dI; can be computed as:
Iivar = (14 f()A)To + Qlres + Brer) + h(t) Atl es + g(t)V Atea. (76)
Comparing the undetermined coefficients in Eq. [74 with Eq. [76}
1+ f(t)At =1, (77)
h(t)AL + (1 + f(t)At)a: = Crtat, (78)
—2 —=2
(L+ F()A)B, +g* ()AL = By ars (79
then the above four functions can be solved as follows:
a @ B, B,
= _ QepAr T 20y Pear T P
F) =0, )= A g2y = Deeat 2B (50)
Let At — 0, then:
., _
da, o dB; _ 57 4By
= = —_— = — = 2 _ 1
F0=0, ht)="D0 g2y =W — 95,2 @
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A.11 Forward Process of Diffusion Generalist Model
Based on the formulation of DGMs, diffusion generalist models additionally incorporate the degraded image
manipulated by J; in the forward process:
q(Lel =1, Ires, Iin) = N'(It; L1 + e lres — 8elin, B71), (82)
Iy = L1 + o¢lres + Bree — 6¢lin, (83)
Leveraging the property of Markov Chain and reparameterization, we have:
Iy = L1 + aelres + Bres — 6¢1in
=[Li—2+a1lres + Broret-1 — 6t—1Lin)| + Qlres + Brer — 8elin

=Ii_2+ I:atfl + at] Lres + [,3,52,1 + ﬂtZ]e + [6t71 + 6t]lin (84)

=Io+ Qilres + Bre — 0ilin
= (@ — V)lres + Bre + (1 = 04) Lin,
wherea: = ' o, B, = /> r_, B2 and &, = S°_, 8. If @ — 1, clean images are diffused as:
It = (1 = 6)1in + Bie. (85)
Thus, we obtain an expression for degraded image representation, in which d; plays a role in controlling the

commonality. If §, — 0, Eq. degrades to the pattern of diffusion residual models; whereas if §, — 1, all
representations are unified into a pure Gaussian distribution.

A.12 Perturbed Generation Process of Diffusion Generalist Models

By repeating the aforementioned derivation process, akin to Eq. (52)-Eq. (57), we have:

Q(LelTe—1, Tres, Tin) = N (Iis Ty + aelres — 6:Lin, BET), (86)
q(1t71|10, -I’V‘657 L,n) - N(Itfl; IO + a1571-[7”55 - gtfllinyﬁffll')y (87)
q(It|107IT657Iin) = N(It, -[0 +atlres _gt-[znagf‘[) (88)

q(ltflllty Ires, Izn) =exp { log q(lt‘Itfly ]'r557 Izn) + 1Og q(It71|Ir657 I’Ln) - 10g q([t|17‘857 Izn)}

{ (It - (Itfl + atI7'es - 6tji7L))2 (Itfl - (atfl - 1)[7'65 - (1 - Stfl)jin)2
X exp —

2 —2
20; 28,1
L (=@ =Dl - (1 —&)L-n)?}
—2
20,
1/, 1 1 Li—oilres+0edin | (@1 —1)Ires + (1 — 0t—1)Iin
O(eXp{fg((?+T)It2_lf2It71( t t 62 t +( t—1 ) - ( t 1) )+C(It7[0717‘65))}-
i By t Bi—1
(89
Comparing the coefficients of each term, we can obtain:
—2 —2
Bi By BB,
fol(lhlinylres) - 2t 121 - tf; 17 (90)
B+ Bia B
— —2
Li—ailves+0Lin _To+ @—1lres — 01—1Lin\ Bi By
Mtfl(.[t,linp[res):( i tBQ + 0 i 172 it ) ti; !
t Bia B,
1 — _ _ _
= = (/33—1It - O‘tﬂf—1bes + 5t/3?_11in + ﬁtzfo + at—lﬁtzfres — 5t—15z21m)
T o
ai—18; —a — 04— -
= /Bigljt"' ! 15t72 tﬁtil]res"’ tﬂt7172 ‘ 16t I’Ln"’%(lt_atjres_5t5+5tIin)
/Bt ﬂt /Bt /Bi
2
=1 — atdres + 0tlin — ée,
t
the inverse process can be considered as sampling from the following distribution:
) _
q(Itfl‘Ih IO, I7'€S7 Izn) ~ N’(Itfl‘[t - atIT'es + 6tlin - %6, %I) (92)
t t
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A.13 Deterministic Implicit Sampling of Diffusion Generalist Models

A common forward process can be determined as follows:

q(Ii—1|To, Ires, Tin) = N'(Ii—1; To + @e—1Ires — 8e—1Tin, B I), (93)
a0, Ires, Iin) = N'(It; Io + @I yes — 8¢1in, Bo1). (94)
For simplicity, we still define the formula of the conditional distribution q(I¢—1|lo, I+) as:
q(LialTi, Io, Ires, Tin) = N'(Ie—1s 6Ly + e Lres + yelo + Celin, 07 ), 95)
then we can reformulate the probability formulas into algebraic expressions:
L1 =To+@-1lres — 6e—1Lin + B,_ €1, (96)
Ie = Io + @lres — 6lin + Be2, 97)

It 1 = kedy +nedres + yido + Celin + otes3

= Rt (IO +at-[res - 3tL,'rL +Bt62> + ntlres + ’tho + Ctlin + ote3 (98)

~ —2 1
= (kt +v¢)lo + (ke@s + ne) Ires — (Kedt — Ce) Lim + (Féfﬁt + 0752)2 €.
By comparing the coefficients of Eq. (96) and Eq.(98)), we have:

ke +ye =1, (99)
K@y + M = Qz—1, (100)
Kebs — Ct = 01, (101)

—2 —2
KkeBy + 07 =By (102)

To complete the derivation, we treat o2 as a known variable:

—2
B — o2 - B 2
Rt = | e = Qa1 — O , (103)
B
—2
Bi1—of
N (104)
By
The inverse process in Eq.(98) can be reformulated as:
Iy =
(105)

Furthermore, Eq. (105) can be simplified and decomposed into mean p—1(It, lo, Ires) and variance
2 1(It, Io, Ires ), which can be denoted as:

_ - — —2
pi—1(It, Loy Ires) = It — (Gr — @p—1) Ires + (8¢ — 6p—1) Lin — (5,5 —\/ B — U?) €. (106)
Similarly, we set the variance to zero for deterministic inverse inference:

Loy =1 — (@ — Q1) Ires + (6t — 0e—1)Tin — (B, — By_1)e. (107)

A.14 Training Objective of Diffusion Generalist Models

The training objective of DGMs is calculated as follows:

2 2
t

It - atjres + 5tIzn - %E - (It — CKtI,O-eS + 575[”1 — %Eg)

J

=k

:E[

)

(108)

0o BE (e~
at([res Ires) + B (69 6)
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Leveraging the Eq. [84] then Eq.[T08]can be simplified into the following formula:

1- ai)ﬁt

EZE[Hat(ITES _Ifes(-[tvlinyt))"_ ( (Ires Ifes It7 zn, H

B (109)
= ]E[H)\'res(-[res - prg It7 zn; H

where the coefficient A..s is a constant. The detailed training algorithm is summarized in Alg.

Algorithm 1: Training of diffusion generalist model.
Input: I;,, Io Jres = Lin — o, {Oét }1 =0 {ﬂt i=0> {515 i= Oa {t

repeat
Io ~ q(Io)
i~ Uniform(l,...,T)
e~N(0,I)
Iy = IO +af/,iIT‘ES +Btie - gtllzn
Take the gradient descent step on
vé‘”I'res - Ifes(-[tﬁ Iin; tz)”l
until;

Output: I;,.

A.15 Stochastic Differential Equations of Diffusion Generalist Models

The forward process is not only constrained by time-related variables I; but also limited by I,.s and I;y.
Therefore, the stochastic differential equations and the inverse equations can be denoted as:

dly = f(Ie, t)dt + h(Ires, t)dt + 1(Iin, t)dt + g(t)dw:, Io ~ qo(lo), (110)
dl

i [f(Te,t) + h(Ires, t) + 1(Iin,t) — g° () V1og e ()] + g(t)dwr, I ~ qr(I1), (111

where f(It,t) = f(t)It,h(Ires,t) = h(t)Ires, and [(Iin,t) = I(t)Iin. According to the definitions of
Eq. (84), we can derive:

q(It|107 I’I‘CS7 [zn) - N(It, [O + atI'res - gtIiTL:B?I)v (112)
q(Iegatllo, Ires, Iin) = N(It+At; Io +Qipntlres — gt+AtIin,Bf+AtI)a (113)

we assume that the general form of the one-step forward process is:
qLesaellt, Ires, Iin) = N((1 + fF(OAD T, + h(t) AtLes + L) Atlin, g° () ALT), (114)

similarly, we compute its marginal distribution [ q(I:1a¢|l+)q(I¢]|lo)dIy:

It+At = (1 + f(t)At)(IO + at[res - Stjin + Bt€1) + h(t)AtIres + l(t)AtIl’!L + g(t) \% Ate% (1 15)
comparing the undetermined coefficients in Eq.[TT3| with Eq.[II3] we have:

1+ f(t)At =1, (116)
h(t)At + (1 + f(t)At)a: = Qryat, (117)
L)AL = (1+ f(H)At)d: = —derae, (118)
(1+ F(OA)?B; + ¢° ()AL = By ar, (119)
then the above four functions can be solved as follows:
_ —2 —2
_ Oy Ar — O 0 —0erar 2, Biyar— By
) = 0,h(t) = === 1(1) = =10 () =~ (120)

let At — 0, then we get:

da, o, 4B

f(t) = Ovh(t) = ﬁv (t) = 7%7920/) = W

(121)

B Customized Solver for Diffusion Generalist Model

B.1 Reverse ODEs Formulation of Diffusion Generalist Model

For generality, we follow the notations in Section[3} The inherent parameters are time continuous satisfying
@(t) = @, d(t) = &, B(t) = B,. The inverse ordinary differential equations can be concretely formulated
as [51]]:

ar,  dey ds, 1dB;

@ e T T e Y s (122
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Given an initial value [ at time s > 0, the solution I; at each time s < ¢t < " can be computed as:

t 3= t J%5
1t=15+/ daTL.ESdT—/ @fmdf—/ dﬂTVloqu( I,)dr. (123)
s dr s dr R

According to Tweedie’s Formula in Lemma Given a Gaussian variable z ~ N (z; iz, Zﬁ) the estimated
parameters (i, can be computed as follows:

pe =z 4+ X2V log P(2). (124)
For forward process in Eq.(94), there exists:

Io +@ilyes — 8:Lin = It + B, Viog P(I)) = I, — B,e, (125)
Vlogg:(1:) = —Bi. (126)
t
Hence, substituting the relationships between score functions and noise into Eq.(T23), we have:
t
L=1I,+ / i [ Crpar s / a5, (127)
. dr s dr
Furthermore, we have:
! da, b ds, tdp
IL=1I,+ / C%Ifes(ft, Ty 1) = Tin |57 / dﬂ; (It Lin, 7)dr, (128)

where I,.s = Ifes(lt, Iin,t) and €p(Iy, I;n,t) are time-relevant, I;, is input degraded image and can be
considered as constant. Since the above inherent parameters are time continuous and monotonic for linear
noise schedule, there must exist inverse functions satisfying ¢t = tz(a(t)) = tz(8(t)) = t5(5(t)). We denote
Iz = I (a) L0es (Ir Tin, 7) = Ifey (I, Iin, @) and I := I yeo(Lr, Iin, 7) := € (I3, Iin, B), and then
we have: _
_ CUPRPN By ~ _
I =15 — (8¢ — ) Lin —|—/ Ies(Ix, Im,a)cﬁ—k/i eo(Ig, Iin, B8)dB. (129)
ag s
With the simplicity of the continuous formula of Eq. @) we can propose high-order solvers that correspond to
the ODEs. Specifically, glven an initial point /7 at time 7" and total M + 1 time steps {t 1M, decreasing from

to =T toty = 0. Let {1y, M » be the sequence iteratively computed at time steps {tz}l o using the presented
solvers. Starting with the prev1ous solution [, , attime ¢;_1, the exact solution [y, , ¢, at target time ¢; is:

s,

_ _ ~ B, _
L, e, =L, — (30, — 8¢, Vin +/ (I, Iin,a)da+ﬁ ¢o(Ty, Iin, B)dB.  (130)
Xty q Bii_y
We need to approximate the integral of both ff.es (Ia, Iin, @) from @, , to oy, and €g (I%, Iin, B) from Btiﬂ

to Bti. We utilize the Taylor expansion to make k orders approximation:

E
[un

(@— Q;_y )" 70

ffes(fay L«naa) = nl Ires(fatiflalin7at7‘,—1)+O((aiati—1)k)7 (131)
n=0 :
. B k—1 (6 ,3 ) N - o
(T3, i, B) = > @Dy, LBy, ) + OB =By, )b, (132)

n=0
substituting the above Taylor expansion into Eq. (T30), we can obtain:

_ _ k_l/\g =R g, (a_at’_ 1)n
Iy e, = Itﬂi—l7(517‘,75ti—1)1’in+zITES(Iatifl’Iin’ati—l)/ 7;76@
o e (133)
kil/\ el B (B_Bti—l)n 3 S k+1 2 7 k+1
+ @, B [ O, ) )+ O((B B, ) ).
n=0 B, 4 :
since the integral is linear, its analytical expression can be easily written as:
Iy e, = Tty — (84, — 0y, Im-FZMﬁM)(E- Iin,ti—1)
i—1 i i—1 i i— 1 n+1 res i—19 9
(134)

_ /87 )n+l . - o
+Z T4 N(Bors, Tins ti1)+ O((@—,_, ) )+ O((B—F,, ).
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Therefore, to approximate Itl . — 1Ii;, we only need to approximate the n-th order total derivatives
[fé?)(ftifl,lm,t,-,l) and 59 )(In 13 Lin,ti—1) forn < k — 1. In the case of k = 1, Eq. 1i becomes:
Iti = Itzi—l - (St1 73751'71 )I"L + (at{, 75751,71 )Ire'es (Iti—l ’ IiTH ti—1)+ (BQ 7Bt,i,1 )69(1%;1 ’ Ii”v ti—l)' (135)

By dropping the high-order error term O(- - - ), we can obtain the first-order approximation for Iy, , — It,. As
k = 1, we call this Diffusion Generalist Solver-1, and the detailed algorithm is as follows.

First-order Diffusion Generalist Solver Given an initial value I and M + 1 time steps {t; };2, decreasing
from to = T to tpr = 0. Starting with Iy, = I'r, the sequence {1, } 2, is computed iteratively as follows:

Iy=1;, _(Sti _Sti—l)‘[i”—’_(ati _ati—l)Ing(Itz—l s Lin, tia)+ (5t Bt i1 Jeo(It;y s Lin,tit). (136)

Apparently, it is consistent with Eq. [I07] which is a special case of first-order solver within our methods by
omitting the discrete error. The overall algorithm for first-order diffusion generalist solver is presented in Alg. |Zl

Algorithm 2: First-order Diffusion Generalist Solver.
Input: I, I7,,, €0, {@n, }, {Be, } {00}, {ti} 1o
Ii, = It NN( ,BtOI)
for i =1to M do
IT&S Ires(Itq‘,—uIinati 1)
€= (Iti 1 (atl 1 - 1)Ires - (1 - 5t1 1) m)//Btl 1
IO - It - res Bt 6 + 5151-,1 mn
Iti = [ti—l - (Jtz - 5151:71)17'/% + (ati - at1171)ITes =+ (ﬂt,, - Bti_l)g
Output: I;,,.

For k = 2, we need an auxiliary time variable ¢, = 7¢; + (1 — r)t;—1, where 7 is the controllable variable
measuring the intermediate points in the range of [¢;, ¢;—1]. Then Eq. (133) becomes:

gii—l)Ii” + (ati 7ati—l)Ifes(Ei—17Ii"“ti_l) + (Et 7Bti,l)E@(Eifle«'nvti—l)

_ _ 1,
(aii 7af11—1) I’fe(i)(lq 17]in7ti—1)+ i(ﬁtl Btl 1)2 (1)(1"51 17Iin7t’i—1)v

Iti—l_>t1i =1I_ (
1
2

137)
leveraging the finite-difference methods [52], we can approximate the derivative part:

Ife(i)(j . 17[in7ti—1) ~ Ifes(fauylin7au) - Irees(fai,pliwuaifl) 1 [res(ltu7jzn,tu) - [res(ltl 1)Il7l7tl 1)7

at, — Qg T Qi — Qit;_y
(138)
6(1)(ft"*171in,ti,1) ~ 69( n Iin, B,,) — Ei( in, Bi 1) _ lee(Itu,Im,tZ) - Ei(]ti—l’ji"“ti*l).
ﬂtu_ﬁtifl T ’Bti_ﬁti—l
(139)

Therefore, the simplified result of Eq. (T37) is:

Iti :‘Iti—l - (gtl - gti—l )Iin+(ati —0t )Ifﬁs(‘/fti—l s Lin, tifl)""_(gti _Bti_l )69(‘/[;1‘71 s Lim, tifl)

1, _

+ %(ati - atifl)(lfes(ltuylzrm ) Ifes(]tz 19 Zn7ti71)) (140)
1 — _ ~ ~

+ Z(Btl - ﬁt,;_l)(eg('[fu’ I’L’ﬂvtu) - 69(It171a1’i’n7ti71))~

Second-order Diffusion Generalist Solver Given an initial value I and M + 1 time steps {t; }}, decreasing
from to = T to tpr = O, starting with I;—o = I, the sequence {1, }ﬁo is computed iteratively as follows:
Iy, =1,  — (gtl —gti_l )Iin + (ati —Qi,; )Ifes (Ei—l s Lin, ti*1)+ (Btl _Bti_l )69 (fti—l 3 i, tifl)
1

+ Z(atl _atifl)(lfes(ﬁualinvtu) - Ifes(j;iflvlinytifl)) (141)
1 — ~ ~
+ 27“(5% =By, eo(ty, Lin, tu) — €0(Lt; o, Lin, ti—1))-

The overall algorithm for second-order diffusion generalist solver is presented in Alg.[3]
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Algorithm 3: Second-order Diffusion Generalist Solver.

Input: I, I}, eo, {@s, }, {8y, 3, {00}, {ti} o,
I, < It NN( ﬁto )

fori =1to M do

tu =7t + (1 —1)tiy

Iis' =10 (It; ,,Lin,tiz1)

€y =L, — (at 1)Iﬁes (1 — 0t )Min) /By,

f(t)FI =1, , —ay, Ires' 5t +5t1 Lin

L, =TIty — (81, = e, ) Iin + (Oétu — @y, )t + By, — Be, e,

Iﬁgs Irees(lt Izna u)

€, = (I, — (@, — DI, — (1= 8,,)1in)/By,

Iv =1, —ay, Ite, — By, €, + 04, Lin

It =1, , — (0, — 6t ) Lin + (@, —ati,l)ﬁgl + (Bt —Bti,l)ai,l + 3 (o, —
B )(Iﬁes LN+ B, — By )@, — @)

Output: Iy, .

For k = 3, Eq. (I33) becomes:

Iti_l*?ti = Iti_l - (Stl 73@‘,_1)12'71 + (ati 7at7‘,_1)lfes(fti—17]7/ﬂ7 ) (ﬁt Bti,l)EG(Ei—le’inati*I)

1 1

+ 5@, —a_,) Iy Tin tien) + 2(5 — B, e (Tt Tin, i)
1 1 - ~

+ g(aiq‘, — Qi ) Ifé?(h 17[in7ti*1) + g(ﬂt, - Bti,l)se((f)(lti_uIinvtifl)a

(142)

we need two additional points to obtain the second-order derivative. Suppose the Taylor expansion of function

f(x) atx + h1 and x 4 h2 can be:

2
Flat he) = @)+ b @)+ 57 (@) + O,
2
Fla -+ ha) = f(2) + haf'(2) + "2 (@) + O(h3),
Then, we can derive the formulations by eliminating f’(x):

f//(z) = m [hlf(m + h2) — hgf(x + hl) + (hz — ]’Ll)f(x)] .

(143)

(144)

(145)

Similarly, two time variables ¢, = rit; + (1 — r1)ti—1 and ts = rot; + (1 — r2)t;—1, satisfying ¢ > s > u >

i — 1. Therefore, we can compute that:

2@, —ay,_,)°
rira(re — r1)

2@, —ay, ) °

rira(re — r1)

I’fe(z (‘/I\ti—17li7l7ti*1) = [Tllf‘;s - 7'2]:‘7;3 + (TQ - Tl)Ifes(-/[\ti,17Iin7tifl)}7

69(2)(fti,17lin,ti71) = [rier, —raer, + (12 — Tl)fa(j;i,l,lin7ti—l)]-

(146)

(147)

where Léés = ]fes(j;s,[’inyts)vlvt‘gs = [fes(ftuvli'rutu) and €ty = 69(E37[in7ts)76tu = EG(Eu7Iinatu)-

Consequently, we can derive the formula as follows:

Ly =T, — (gt'i - gti—l )Iin_'_(ati — Q4 )Ifes (j\t'i—l 2 Lin, ti—1)+(Bti _Bti,l )eo (j\ti—l yin, tio1)

1 ~ ~
+ ;(aii - at1171)([fes(ltualinvtu) - Ifes(lti71 ) Iim ti—l))
1
1 — _ ~ ~
+ Tﬁ(/@tl - 5ti71)(69(1tu, [znytu) - 69(Iti,1>[in7ti71))

(ati - ati—l)
37“17’2 (Tz — 7‘1)
(ati - ati—l)
3T17‘2(T2 — 7‘1)

[lefes (fts P Iin, ts) - TQIfes (ﬂu 5 Iin7 tu) + (TQ - Tl)[fes (Ei—l ) Iiﬂv ti—l)]

[7'160(fts71in7 ts) — raco(Try, Tin, tu) + (12 — Tl)ee(fzi,l,fimti—l)].

The overall algorithm for second-order diffusion generalist solver is presented in Alg. 4]
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Algorithm 4: Third-order Diffusion Generalist Solver.

Input: I, I, €0, {@, }, {8y, } {00}, {ti 1o, 71, 72
I, < It NN( ﬁto )
for i = 1to M do
ty =711t + (L —r1)tim1, ts = oty + (1 — r2)ti—1
It = I (Lt Linyticn)s €y = (I, — (00, — 1)1?‘@5 — (1 =0, ) in) /By,
f(t)l*l =1 , — ati,lfrtieé - Eti,lﬁti,l + 6, Lin
Iy, =T, — (60, — 00, ) Lin + (@, — @, ):ffé;l + (Be, — Br, e,
If"es prs(jtmjlnv tu)s &, =1, *(at — DIt — (1=30,)Lin) /By,
I()u =I, —o,l /;Ees By, €, + 01,1
It =TIy, , — (6¢, — 0y, ) in + (at ati_l)ftrieél + (B, = By ety + 3= (@, —

)(L’fesffrésl) 32 (B, = Br,_ )@, —€y)

Iﬁ;gfffpg(lts,lm,t ). &, =L, — (@, — DIty — (1= 06,,)1in)/By..
j\t =1, —a Il 5,& €, + 01, Iin

Dres - If’es - fﬁlesl ’ 1 = Etu Eti—l

Dy = s (e, — ralle + (r2 — ) 11

D5 = m(rlets — o€y, + (ra — 1), _ 1)

Iti = Itl 1 (Et _Sti—l)lin + (ati _ati—l) res (6751 Bti71)€ti—1 + Til(ati -
| G )DI + 5 (By, = B, )Di + g(@, — @, )D5 + §(By, — B, )D5
Output: I,,.

B.2 Cumulative Error Bound of Diffusion Generalist Solvers

For k-order diffusion generalist solvers, we make the following assumptions:

. _ A N G
Assumption 1. The total derivatives Ife?)(la Iin,a) = L res Uy Lin @)
B t ) da(n)
d"Me(Tg JinB)
d§<">

and Eén> (IEt s Iin, E) =
exist and are continuous for 0 < n < k + 1.

Assumption 2. The function I, (I, , Iin, @) and eo (I , I;n, B) are Lipschitz with respect to I;.

Assumption 3. The step sizes for @ and 3 are limited by max (@, — a,_,) = O(1/Mz) and max(Bti —
By,_,) = O(1/Mz), respectively. Besides, 1/Mg < 1/M and 1/M7 < 1/M.
Proof of k = 1. Takingn = 0, ¢t = t;, s = ¢;—1 in Eq. (I34), we obtain:
Iy = Tty o — (81, — 0, Vin + (@, — @ty ) fes(Ttiy s Tin, tie1) + O((@ — @,)?)
+ By, = Be,_ eoTt,_y, Lins tio1) + O((B, — B..)%),
Based on the Assumptions and Eq. @, we can derive:
Ei = Ei,l — (8¢, = 0t,_ ) in + (@, — atifl)lfes(ﬂi,17Iinyti—l) + (BtL - Bti,l)ﬁe(fti,l s Lin,ti—1)

(149)

=T,y — (O, = 00, ) in + (@0 — Gty ) Ifes(Iey_yy Tins tio1) + O(T,_, — I, )
+(Br, = Bu_ oIty Tinsti) + O(T1y — Iy _y))
= Iy, + O(max(@, —ar,_,)") + O(max(B,, — B, )*) +OT,_, — Ir,_,).
(150)
By repeating the process recursively M times, we get:
IAtM = Iy + O(M max (@, —a,_,)*) + O(M max(Bti — Bti,l)Q) ash
= Iy + O(max(as, —a,_,)) + O(max(8,, — B, ,))-
Proof of k = 2. We consider the following update for 0 < s < u < r < M in Alg.3}
L, = 1y = (e = 8e)lin + @, = @) es(Ly Tins ts) + By, = By )eo(Ieg Tinsts), (152)

31



ft,,. - [t‘S - (St,,. _gt ) in +( at,. — Oét )Ifes([tsvjinyts) + (Etr _Bts)ee([tsvlinyts)

1
+ ?(atr 7ats)([£es(lfu7linvtu) - [fes(ltwlinats)) (153)
1 _ ~
ta — (B, — B ) (eo(Tty, Iiny tu) — €01, , Lin, t5)).

Taking n = 1, we can obtain:

Iy, = I, — (gtT - gts)[in + (atr - ats)Ifes([ts7Iin7ts) + (Btr - BtS)GG([ts»IinvtS)
2
2
1 _ _ L
+ 5B, = B,)°e (U5,  Tin, B,) + O((B, = B,)°).
From Eq. (I533), we have:

Ifes(]tuvlinatu) = Ifes(-ltsw[invts) + (atu — O, )fféi)(lat alinaat ) + O((atu _afs)Q)a (155)

@, — ) I (Is,, Lin @) + O((@0 — @, )?) (154)

€o(Teu Tins tw) = eo(Tias Tins ts) + (B, = B, )& (I5, T, B,,) + O((B,, = B,)"),  (156)
j\tr = ]ts - (gtr - gts)lin + (atr _ats)lfevs([ts7[in7t5) + (Etr - ﬂt5)60(1t571in7t5)
1 ~
+ Z(atr - ats)(lfcs(]tu7 Iina tu) - I’fes(]tuali’ru tu) + (atu - atb)ﬁé;)(lats ) Iin7at5) + O((atu

t o By = Bu) (€0 (Fons Ty t) = 0T, Tins ) + By, = B V& (F5,  Tin, Br) + OB, ~ B, )

157)
According to the Lipschitzness of I%., and ey and the conclusion from Eq. (150), we can compute:

Hlfes(ftu7[in7tu) - Irees(Itu7[in7tu)|| = O(Hfiu _ItuH) = O((atu _ats)Q) + O((Btu _Bts)Q)v (158)
leo(Te, s Tins tu) = €6(Ly, Lins tu) | = O(| Tz, = I, [I) = O((@e, —@+,)%) + O((B,, — B,,)%).  (159)
As (q, —0,) = r(ou, —au,) and (B,, — B,.) = (B, — B,,) for linear generation schedule, we subtract

ftr in Eq. |i from Iy, in Eq. (154) :

- o, — O ay, —a :
L, — I, = (0w, —ats)(( o 3 t) _ (@ o tS))j\fe(;)(Iats7Iin7ats) +O((a, —@,)?)

+ @, (PP Va2 Budyan 1 B,0) + 0B, - B

= O((ar, —ar,)”) + O((B,, — Be,)").
Proof of k = 3. We consider the following update fori — 1 < s < u < v < r < i in Alg.[d] and we can obtain:
L, = I, = (e, = 8e,) Tin + (@1, — @) ea (It Lins ts) + (B, — By, )eo(Tr,, Tins ts)

1
+ 2 (atr - ats)(Ifes (Iat,u ) I’in7atu) - I’fes (Iat,s ) Ii’fhats))
1

+ 5By, — Bu)ealls, T Br,) = colls,  TinsBy,)

(G, — @)
3rira(re —r1)
(Btr 73@;)
+ m(rleﬂ( Y zn,ﬁtv) TQEG( N zn7/6tu) ( T2 — 7'1)59( ’LTM/Bt ))

+ O((Btr _Bts) ) + O((atr - ats)4)'

(160)

(rl-[f‘es(jatu iny@r,) = 1oLl (I, Iin, G,) + (12 — 11) Les (Isy, i, G2,))

1e1)

Similar to aforementioned proof, we have:
L, =T, + O((B,, — B,.)") + O((@:,. —a@.)?), (162)
I, =1, + O((B,, — B,.)") + O((@, —aw.)?), (163)

L, = I, — (6t, — 0¢,)Lin + (@, — ats)ffes(ltg,fm, ts) + (B, — By )eo(It,, Tin, ts)

1
+ 5(@r — @, ) 1Y (Is, , Tim Gn,) + g(at,’ ) I (Is,,, Lin, @,) + O((@ — @, )*) (164)

+ %(Btr - Bts)Qﬁe(l)(-’Ets Ains By,) + é(BtT - Bts)3€0(2)(IEtS ins By,) + O((B, — B.,)")-

By applying Taylor expansion, we can get the conclusion as follows:

L, =L, = O((B,, - B,)") + O((@:, —aw.)"). (165)
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C Universal Diffusion Posterior Sampling

Lemma 1 Tweedie’s formula. Let q(y|n) be the exponential family distribution:

alyln) = qo(y) exp(n” (y) — ¢(n)), (166)

among them, n is called the natural parameter, o(n) is called the cumulant generating function for normalizing
the density, and qo(y) is the density up to the scale factor when ) = 0. Then, the posterior mean 7 := E[n|y]
should satisfy:

(VyT(y) 5 = Vylogq(y) — Vy log qo(y). (167)

Proof. Marginal distribution ¢(y) could be expressed as:

q(y) = /Q(yln)q(n)dn = /qo(y) exp (nTT(y) - w(n)) q(n)dn, (168)

Then, the derivative of the marginal distribution ¢(y) with respect to y becomes:

Vyaly) = quo(y)/exp(nTT(y) —@(n))a(n)dn + /(VyT(y))anO(y) exp(n” T(y) — ¢(n))a(n)dn

N %Z()y)/q(ywqm)d’” (VyT(y))T/W(yln)q(n)dn
- %(;()y)q(y) + (VyT(y))T/nq(y,n)dn-
(169)
Therefore: _— —
y4d _ y40 T
aty)  ao(y) +(VyT(y)) /an(n\y)dm (170)
which is equivalent to:
Vyloga(y) = Vylogao(y) + (VT (y)) " E(nly). (171)

This concludes the proof.

Proposition 2 Jensen gap upper bound [12)]. Define the absolute centered moment as myp := {/E[|| X — p||?],
and the mean as p = E[X]. Assume that for a > 0, there exists a positive number K such that for any x € R,

1f(c) = f(w)] < K|z — pl®. Then:

B(1(X) ~ FELD] < [ 17() - F0)lda(x)
(172)
<K [ o= ul" da(x) < Mo,

where M is an upper bound estimator constant that can be taken as K or other constants related to the function
f and the distribution q(X).

Lemma 2 Let ¢(-) be a univariate Gaussian density function with mean p and variance o, there exists a
Lipschitz constant L such that:

lp(x) — o(y)| < Llz —yl, (173)
where L = ﬁ exp (—#)

Proof. As ¢’ is continuous and bounded, we use the mean value theorem to get:

Y(z,y) € R%, |¢(x) — d(y)] < [1¢[|oc|z — ¥l (174)

Since L is the Lipschitz constant, we have that L < ||¢'|| . Taking the limit y — = gives ||¢’|| < L, and thus
|¢'|loc < L. Hence:

L= ¢l = | = = 6(@) . (175)
Since the derivative of ¢’ is given as:
¢" =072 (1— 0 %(z — p)*)o(x), (176)
Setting ¢ = 0, we get 0 %(1 — o~ 2(x — p)?) = 0, which gives = = p & o, and we have:
—1/202
L=1¢lle = S=- a77)
V2ra?
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Lemma 3 Let ¢(-) be an isotropic multivariate Gaussian density function with mean p and variance o’I.
There exists a constant L such that Vz,y € R%:

lp(x) — d(y)| < Llz —yl, (178)
where L = \/7 exp ( 202)
Proof.
[6(2) = o) < max |V-0()] - [ = vl = s exp(—gog)- o=yl (7)

each element of d dimensions V. ¢(z) are bounded by \/% exp(—g23)-

Proposition 3 For the measurement model I;,, = Aly + n in linear verse problem with n ~ N(O, O'ZI), we
have:

q(Lin1e) = q(Tin| o), (180)
where the approximation error can be quantified with the Jensen gap, which is upper bounded by:
1
7= o (g5 ) VA, sy

where |V 1 A(D)| := max; ||V, A(Lo)|| and m1 := [ ||Io — Iollq(To|I)dIo.

Proof. The measurement model I;, = Aly + n can be formulated as:

1 Izn - -AI 2
(Tinlo) ~ N (Alo, 0°T) = ——s exp (- %)
1 Alo . (Aly)® I,
= o exp (*Im i )exp ( - 20_2) (182)
1 2, Alo . (Alo)®
- {\/27rg2 P (= 5gn) | oxp (5 Tin = 5 57).

Hence, as a member of the exponential family distribution ¢(y|1) = qo(¥) exp(n™ (y) —¢(n)), the undetermined
functions are:

1 2.1 r Al Al (Alo)®
qo(Lin) = Nor exp ( — 202)}, n (Lin) = ?Im, w(lo) = exp( o2 Lin — 997 ) (183)
In order to exploit the measurement model q(I;r |Io), we factorize q(I;n|I¢) as follows:
(Iin|It) = /q(fm|10)q(]0|1t)dfo = Erynqo11) [f (0)], (184)

here, f(-) := h(A(+)), where A is the measurement operator and h(-) is the multivariate normal distribution
with mean A(Io) and the covariance o> I. Therefore, we have:

T (f,q(lo|I)) =|E[f(1o)] — f(E[L])| = [E[f(Io)] — f(ﬂ)”v (185)
= [E[h(A(10))] = h(A(To))], (186)
/‘h IO ( (ﬂ))”dQ(IOHt), (187)
s \/ﬁe_?/HA(IO)_A(IO)”dQ(IO\It), (188)
d 1 -
< e ||V10A(IO)H/||IO L1dQTo|12). (159
: Vzi?eiﬁ”m“““(“)”mh (190)

where dQ(Io|I+) = q(Io|It)d1o.

Proposition 4 For the measurement model I;, = Io + Ires + n in linear inverse problem with n ~ N(O, 021),
we have: o

q(['Ln|It) :q(Iln|IO,['res)7 (191)
the approximation error can be quantified with the Jensen gap, which is upper bounded by:

d 1 Io+1res
TS s exp (—ﬁ) motires, (192)
Where m{0+1res = f ||(IO + Ires) - (ﬁ) + f’res)Hq(IO7Ires‘jt)dlodlres-
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Proof. The measurement model [;,, = Ip + Ires + n can be formulated as:

1 (Iin - (IO + I’res))2
Tin|Io) ~ N ((Io + Ires), 0°T) = -
q( |0) N((0+ )U ) Wexp( 202 )
_ 1 (IO + I’res) . (([O + [res))Q Izzn
== exp ( o (O 557 )exp (— 202) (193)
_ 1 11271, (IO+I'res) ((IO +Ires))2
B [\/27102 exp(f 202)} exp( o2 Fm = 202 )

In order to exploit the measurement model ¢(I;»|Io), we factorize q(Iir |I;) as follows:

(T I) = / / (Tl To, Tres)a(To, Ires| It dTod s, (194)

here, f(-) := h(lo + Ires), and h(-) is the multivariate normal distribution with mean Iy + I, and the
covariance o> I. Therefore, we have:

J(f,q(Io| 1)) =|E[f (Io)] — f(ElL])| = [E[f(Io)] — f (o), (195)
|E[A(To + Lres)] — h(Io + Lres), (196)

/ |h IO + Ires - h(ﬂ) + ﬁ“es)'dQ(Im ]resut)7 (197)

W // H IO + I’res) (IO + I’res)|lq(107 'reslIt)dIUdIrES7 (198)

<4 e~ 30% lotires (199)

T V2mo?

where ¢(Io, Ires|I¢) is the distribution of the clean image Iy and the residual components Ires. 1 is
considered as a generalized absolute distance loss because it measures the mean absolute error between the
predicted values and ground-truth values.

0.18 s
02 m= 016
5 014 012

Io+Ires

Upper Bound Error

Upper Bound Error

0
2 15 1 05 0o 05 1 15 2 0 02 04 06 08 1 12 14 16 18 2 2 45 4 05 0 05 1 15 5 m

@J-—o (b) J — miotires ©) J = 2102 6*ﬁm{0+lms

Figure A1: Relationships among the upper bound error 7 and its variables o and m = m{ﬁI res,

Notably, m I"“ 7¢s is finite for most of the distribution in practice once the predicted networks are optimized
well. It can be regarded as generalized absolute distance between the observed reference and estimated data. The

Jensen gap J(f,m H 0“ es) can approach to 0 as o — 0 or oo, suggestlng that the approximation error reduces

with extreme measurement noise. Specifically, if the predictions of 2 o and ITes are accurate, the upper bound

J (o, m{‘)“res ) |U omlotres shrinks due to the low variance and distortion. Oppositely, if the predictions
My

lack accuracy, the upper bound of the J (o, M )| Io+Tres To+Tres shrinks as well for large variance
1

o—00,m —max(m]
and limited distortion. We further illustrate the relationships among the upper bound error J and its variables
in Fig.[AT] Evidently, the results support the aforementioned analysis. For the universal measurement model
Iin = Io + Ires + n, we can derive the probability formulation as:

1 (L,n - (IO + I’res))2
exp[—
V2mo? 202
Consequently, the formulation of universal posterior sampling is:
V1, log g(Iinl 1) = Vi, log a(TinlTo, Tres) = =1/0" Vi, [Tin = (To + Iea(Fe, T, ), 20D)

according to the DPS [[7], the value of o varies with time ¢ and can be calculated as || Iin, — (To+ 1% (11, Lin, 1))]|-

q(Iin|jE),fres) ~ N(Izn‘IO + Ires,U2I) = ], (200)
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D Diffusion Generalist Solvers with Universal Posterior Sampling

The inverse process ordinary differential equations of diffusion generalist model are:

= —2
dl;  dog ddy 1 dg;
— = —Ires — —Iin — -—=V1 Iy). 202
at ~ dt dt 2 ¥ e all) (202)
According to the Bayes’ theorem, we can derive:
It)q(Iin| I
Vi loga(lullin) = Vi, log WM _ g hog (1) 491 t0gq(rialr), @203

Q(Iin)

where V7, log P(1;) is the score representing the gradient direction of inverse process and the discarded item
P(I;y) is irrelevant to I;. By incorporating the universal posterior sampling as conditional guidance, we can get:

— —2
d]t _ dat d(St . 1 d/Bt .
dt - dt Lres — dt Lin — 5 dt (Vlt loth(It) + vlt IOgQ(ImUt))
= —2
da, do, 1dB; . eo(It, Lin, t) 2 0
:7Ire577 n T 5 T 3, ——— 1 Ilnf 1 I’r"e.s I? iny 204
i oo = G T = 5 g S 1ot (ot (B B ) 209
 da, dd; B, _ o _ 0
- dt I’res dt I’Ln + dt (EG(It7[Z7’L7t) + /Bt/a v[tHI’Ln (IO + Ire.s(It, in, ))H)

Eq. (204) is the detailed description of our method. Based on the proposed algorithms in Alg. 2] Alg.[3and
Alg. |4 we can further present varied orders with universal posterior sampling, as depicted in Alg.[5] Alg.|[6]and
Alg.|/| From the ablation experiment results in the paper, our method has the best balance between restoration
performance and efficiency when k£ = 2 and universal posterior sampling is activated. Therefore, we customize
an accelerated algorithm for this configuration.

Algorithm 5: First-order Diffusion Generalist Solvers with Universal Posterior Sampling.

Input: i, I, €0, {@s, }. {By, } {01, }. {t:i 1o

1 Ity = Ir ~ N(0,B,,I)

2 fori— 1to M do

3 ves = I0es(Tt, s Tiny tic 1)

(It;_y — (@, fl)Im (1=06¢,_)in) /By, _,

I,y — i,y Ires Bt ? 6t1 in

‘ e+ Bop /Min — (o + Tre)) Vi, M = (o + Tres)

7 Iy, =1y, — (Sh _Eti—l)li"l + (Eti - O‘tlfl) res (ﬁt Bti,l)g
Output: [;,,.

4

I,
€=
s | Io=
¢

Algorithm 6: Second-order Diffusion Generalist Solvers with Universal Posterior Sampling.

Input: Iiny Ifesy EGL{Eti}’ {Eti}’ {gt } {t }7{‘/10’ r.
1 Iy Ir ~ N(0, B, 1)
2 fori =1to M do
3 tuw =1t + (1 — T)tz‘_1
-t

4 ITégl = Iges(Iti—leinytifl)
5 €,y = (It'i—l - (ati—l - 1)3«65 - (1- 5tL 1) i”)/Bti,l

6 f(t)l;l =1I_, —ati,lﬁégl _Bti,letia + 5tl Lin

7| Gy =@+ (B, 1/I\Im—(f3‘1+ﬁes WV, i =I5 = T |

s | L, =1, — (B, — 80,)Iin + (@, — G, ) Itis + By, — Be,)e,

o | Tite = Iles(ley tu, Lin)

w | &, =, (@ t — DIt — (1= 8e,)Iin) /B,

1 v =1, —a, I — B, & Etu + 06, Lin

v | &, =6, + B i — @5 + T )V, Lo — I — T |

13 [ti = [ti—l (675 - 5t1 1) in T (O‘tz‘ - ati—l)]”'ésl (ﬂtl _Bti,l)gti—l + %(ati -

Tt

— Ttu - ~ ~
L atifl)([res _ITES ) Qr(ﬂt 5ti_1)(€tu _Gti—l)
Output: I;,,.
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Algorithm 7: Third-order Diffusion Generalist Solver with Universal Posterior Sampling.

Input: I, IS,,, €, {a, }, {8, 3. {00}, r1. 7o

Ito It NN( 7ﬁtoI)

fori=1to M do

ty =riti + (1 —r1)tiz1, ts = rats + (1 — r2)tiz1

f’lte.s - Ifes(jtl 17[in7ti 1) al 1= (It - (atL 1 1)f7tea (1 - 6tl 1 zn /Bt1 1°
IOI b= Iy, —ou, L&t ﬂt ti 1 +6tz din

~ e — i ~t;

€y =€ty 1 (By,_ 1/Hfzn—(fo f et Ires )||)V1t i = 197 = Ines™ |

Iy = It; — (66, — 66, ) in + (0, —atu) ris + By, — Bi e
ﬁeSZIfes(ftuaIimt ), €, =(Ie, — @, — VItts — (1= 80,)1in) /B,
féu :It“ ay,, I /?»eb ,3,5 €, + 5t“ in
=+ Bu M in — (I3 + TV, 1T — T — Tt
L, =1Ti,_y — (66, — 0, _ 1)Iin + @, — @y )it + By, — By, ety + & 20 (@, —
atifl)(fﬁlfs - ftré;l) er (/Btg ﬂ ti_ 1)(Etu _Eti—l)
ﬁés:Ifes(Itsvjm,ts) €ty = (Its - (atb - 1)325 - (1 - Sts)Iin)/Bty
j?)s:It Oét5 res ﬁt €, + 01, Lin
€ =@, + B /i — (I + Tz) )V, |1 Tin — T — T
Dy =TI, ~ I\ Df =&, — &
Dy = mé(,ﬁ(ijﬁes 17‘21??«?3 + (r2 *jl)ftri?)
D5 = =y (M€, — rad, + (ra =), )
I, =1L ,— (Stb _Sti—l)lin + (Eti — Qi 1)ﬁégl (Bt _Bt )g% 1T i(ati -
L ati—l)DIes + i(?tl _Bti—l)DT + %(aii Qi 1)Dres +3% (ﬁ /Bt )
Output: [;,,.

i—1

Algorithm 8: Queue-Based Second-order Solvers with Universal Posterior Sampling.

Input: I, I, €0, {@1, }. {By, }. {00, }.{t: 3 or

Ity < It ~ N(0, 5, 1),

R=1,

(I, , It &, fgl) = 1%"-order Solver(¢;) in Alg.

R = queue_push(Iy,, ﬁés,al , fgl),i =t

while i < tp; do

tp =ti—t,tu = ti,tg = tiy1, 7 = (tu — tp)/(tg — tp)

(Itp,ﬁé’s,gtp,ft ) = queue_pop(R, tp)

(Itu,ff.gb,'é“,ft ) = 1%-order Solver(tu) in Alg. I

Itq = Itp (575(1 — 6tp) in + (Oétq - Oltp) res (Bt - ﬂ )ap + %«(atq - atp)(ﬁgs - fﬁgs) +
%(th - ﬂtp)(etu - Etp)

| R = queue_push([,, f,’f},ﬁs,au, ./TE“), 1=1q

Output: [;,,.

Queue-Based Accelerated Strategy. The introduction of variables pertaining to the intermediate time point
t. incurs additional computational overhead, making the process inefficient. To alleviate this problem, we
construct a queue-based accelerated strategy by collecting the previous solutions, as illustrated in Fig. B]in the
paper. Specifically, for the initial sampling from ¢;_1 to ¢;, we introduce the intermediate step ., to assist the
approximation at time point ¢;. Subsequently, ¢; is regarded as the intermediate time point of the sampling from
t. to t;41 iteratively. In this context, the sampling steps are controlled by the predefined parameters r without
introducing extra calculation. Relevant implementation details are summarized in Alg.[§]

37



E Experiment Supplementary

E.1 Summary about the Datasets
We evaluate the proposed method on five natural image restoration tasks, including deraining, low-light en-
hancement, desnowing, dehazing, and deblurring. We select the most widely used datasets for each task, as

summarized in Tab.[AT]

Table Al: Summary of the natural image restoration datasets utilized in this paper.

Task Dataset Synthetic/Real  Train samples  Test samples
DID [69] Synthetic - 1,200
DeRaindrop [43]] Real 861 307
Rain13K [17] Synthetic 13,711 -
Deraining Rain_100H [66] Synthetic - 100
Rain_100L [66] Synthetic - 100
GT-Rain [3]] Real 26,125 2,100
RealRain-1k-H [24]] Real 896 224
RealRain-1k-L [24] Real 896 224
. LOL [61] Real 485 15
Erﬁ:;‘:lcl:itn . MEF [36] Real - 17
VE-LOL-L [30] Synthetic/Real 900/400 100/100
NPE [57] Real - 8
Desnowing CSD [4] Synthetic 8,000 2,000
Snow100K-Real [31] Real - 1,329
SOTS [21]] Synthetic - 500
ITS_v2 [21]] Synthetic 13,990 -
Dehazing D-HAZY [8]] Synthetic 1,178 294
NH-HAZE [2] Real - 55
Dense-Haze [[1]] Real - 55
NHRW [70]] Real - 150
Deblur GoPro [39] Synthetic 2,103 1,111
RealBlur [46] Real 3,758 980

Image deraining. We use the merged datasets mentioned in Rain13K [[17] and DeRaindrop [43] as training
parts, which cover a wide range of different rain streaks and rain densities. We test our model on both deraining
and deraindrop scenes using the mixed datasets [[66, 69 |43]. Furthermore, we perform zero-shot generalization
on real-world datasets such as GT-Rain [3]], RealRain-1k-H [24]], and RealRain-1k-L [24]].

Low-light enhancement. We utilize the LOL [61] and VE-LOL-L [30] datasets with real and synthetic paired
images as the benchmark, which consist of a large number of indoor and outdoor scenes with different levels
of light and noise. Furthermore, we generalize our method on the MEF [36] dataset with images of multiple
exposures to conduct the compound restoration experiments.

Image desnowing. We use the CSD [4]] dataset as the desnowing benchmark and employ the Snow100K-
Real [31] to perform real-world generalization.

Image dehazing. We use the ITS_v2 [21]] and D-HAZY [8]] datasets as the dehazing benchmark, which are
widely used synthetic fog datasets with different levels of fog and various scenes. Besides, the outdoor fog dataset
SOTS [21] is selected for quantitative evaluations. The real-world fog datasets Dense-Haze [1], NHRW [70]],
and NH-HAZE (2] are utilized for generalization validation on real-world scenes.

Image deblurring. We use the GoPro [39] dataset as the deblurring benchmark, which contains 2,103 training
pairs and 1,111 testing pairs. The dataset contains various levels of blur obtained by averaging the clear images
captured in very short intervals. To further validate the generalization ability of our model, we perform zero-shot
generalization on the RealBlur [46] dataset.

E.2 More Visual Comparisons on Comparable Experiments

We show the visualization results of other degradation categories in Fig.[A2]to further demonstrate our superiority.
Evidently, Our method generates more stable image samples with high fidelity than other universal image
restoration methods. Benefiting from the accuracy of diffusion generalist solvers and stable guidance of universal
posterior sampling, we achieve the outstanding reconstruction of the missing details.
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Figure A2: Visualization results of other degradation categories.

Nighttime-blur (€Y) ) 3)

GroundTruth
Figure A3: Results of low-light enhancement and deblurring for five iterations on RealBlur [46].

multi-exposure 1 2) - (3) - “® - [©)]
Figure A4: Results of multi-exposure restoration for five iterations on MEF [36].

E.3 Compound Restoration on Real-world Scenes

To demonstrate that our method can handle the more complex restoration tasks that various degradation occurs
in one image. We generalize our well-optimized model on RealBlur [46] datasets for low-light enhancement
and deblurring, and NHRW [70] datasets for low-light enhancement and dehazing, and MEF [36]] datasets for
multi-exposure restoration. Specifically, we repeatedly perform our method on the degraded images for five
times, and the visual comparisons are displayed in Fig.[A3] Fig.[6|and Fig.[A4] respectively. As a result, as our
method is trained on multiple degraded datasets, it is capable of excellently accomplishing relevant composite
tasks. Furthermore, it possesses the ability to eliminate the former degradation and subsequently the latter
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degradation within its capability range. For well-restored samples, our method incurs no additional information
interference, thus ensuring the high fidelity of the restored images.

E.4 Real-world Scene Generalization

Except for the desnowing on the real-world scene, other restoration results of different degradation types
are illustrated in Fig. @ We utilize the RealRain-1k dataset for deraining, NPE [57]] dataset for low-
light enhancement, Snow100k_real [31] dataset for desnowing, Dense-Haze [1]] dataset for dehazing, and
RealBlur [46] dataset for deblurring. The results show that our method can generalize to real-world scenes and
achieve competitive visual results.

Rainy image Restormer PromptiR ProRes IDR AutoDIR DA - CLIP DiffUIR

Restormer AirNet AutoDIR DA - CLIP DffUIR

Hazy image Restormer AirNet PromptiR ProRes IDR AutoDIR DA - CLIP DiffUIR

Figure AS5: Visual effects of zero-shot generalization on real-world image restoration.

E.5 Generalization on Remote Sensing

Table A2: Summary of the utilized remote sensing image restoration datasets.

Task Dataset Synthetic/Real  Train samples  Test samples
Cloud Removal Sen2_MTC [13] Real 9,784 467
Denoise AID [63] Synthetic 38,173 1,827
Deblur NWPU-RESISC45 [3] Synthetic 10,000 1,094
Super-resolve Second Synthetic 22,603 1,141
Light Enhancement PatternNet [[76] Synthetic 28,905 1,495

We further validate the scalability of our method on remote sensing image restoration tasks, including cloud
removal, denoising, deblurring, super-resolution, and low-light enhancement. Except for the cloud removal task,
there are no existing real-world datasets for other restoration tasks [44], so we adopt a synthetic data generation
approach to simulated the datasets, as presented in Tab. Specifically: i) Cloud Removal: We use the
Sen2_MTC dataset [13] as the benchmark, which contains paired cloudy and cloud-free images. ii) Denoising:
Due to the lack of real-world noisy remote sensing images, we synthesize a noisy dataset based on the AID
dataset [63]], considering three mainstream noise types (Gaussian noise, stripe noise, and speckle noise) and their
random combinations. iii) Deblurring: We primarily simulate Gaussian blur, motion blur, and defocus blur, and
conduct experiments on the NWPU-RESISC45 dataset [3]]. iv) Super-Resolution: We generate low-resolution
images using a four-fold downsampling degradation model with Gaussian blur and construct paired images
on the Second dataset [63]]. v) Low-Light Enhancement: We simulate low-light imaging conditions on the
PatternNet dataset [76] through linear transformation, gamma correction, and additive Gaussian noise. The
visual comparisons of each method are presented in Fig.[A€|and Fig.[8] and quantitative evaluations are reported
in Tab. 5] of this paper. All methods have been re-implemented except for AutoDIR, as no training code has been
released for it. Evidently, our visual effect surpasses that of others and achieves the best metric evaluations.

Table A4: Time efficiency of different strategies.

1 2 3 4 5 6 7 8 9 10

Steps NFE Time(s) NFE Time(s) NFE Time(s) NFE Time(s) NFE Time(s) NFE Time(s) NFE Time(s) NFE Time(s) NFE Time(s) NFE Time(s)
Naive(k=1) 1 0.063 2 0.129 3 0.194 4 0.263 5 0.322 6 0.401 7 0.466 8 0.529 9 0.596 10 0.661
Naive (k=2) 2 0.120 4 0.247 6 0.393 8 0.523 10 0.644 12 0.769 14 0.910 16 0.989 18 1.147 20 1.251
Queue (k=2) 2 0.127 3 0.191 4 0.262 5 0.320 6 0.399 7 0.476 8 0.533 9 0.598 10 0.659 11 0.728
Naive (k=3) 3 0.201 6 0.401 9 0.578 12 0.769 15 0.977 18 1.169 21 1.322 24 1.446 27 1.585 30 1.814
Queue (k=3) 3 0.197 4 0.258 5 0318 6 0410 7 0.479 8 0.528 9 0.594 10 0.657 11 0.719 12 0.806
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Table A3: Efficiency comparisons among universal methods. ’-’ means out of memmory.

256%x256 512x512 1024 x 1024

Method Mem.(G) Time(s) FPS Mem.(G) Time(s) FPS Mem.(G) Time(s) FPS
Restomer 1.959 0.105 9.563 6.670 0.381 2.622 25.419 1.773  0.564
AirNet 1.039 0.194 5.159 3.480 0.738 1.355 11.244  20.499 0.049
PromptIR 2.544 0.111 8.981 7.255 0.399 2.508 26.005 1.845 0.542
ProRes 2.027 0.318 3.149 2.514 0.766  1.305 6.025 1.715 0.583
IDR 1.340 0.052 19.253 4.313 0.136  7.373 16.110 0.615 1.626
AutoDIR 7.023 6.266 0.160 11.021 11.986 0.083 - - -
DA-CLIP 2.119 2.585 0.387 6.775 7937 0.126 58.548  60.893 0.016
DiffUIR(n=3) 1.563 0.118 8.450 3.528 0.206 4.862 18.060 0911 1.098
Ours-L(n=3) 1.561 0.112 8.908 3.528 0.199 5.014 18.059 0.907 1.103
Naive (n=8), £ = 1, xUPS

Ours-T 0.777 0.277 3.605 2.291 0.385 2.594 15.306 1.705  0.587
Ours-S 0.787 0.290 3.450 2.300 0401 2.494 15.316 1.755 0.570
Ours-B 0.942 0.291 3.431 2.907 0492 2.033 17.438 2280 0.439
Ours-L 1.562 0.293 3.407 3.527 0.529 1.889 18.058 2402 0416
Naive (n=8), k£ = 1, vUPS

Ours-T 1.764 0.500 1.998 5.793 0.829 1.206 32.581 4454  0.225
Ours-S 1.905 0.502 1.993 6.265 0.865 1.156 34.237 4.545 0.220
Ours-B 2.762 0.520 1.923 9.645 1.078 0.928 41.357 5.770 0.173
Ours-L 3.613 0.535 1.868 10.593 1.144 0.874 43.815 6.022 0.166
Naive (n=8), k = 2, xUPS

Ours-T 0.784 0.535 1.869 2.297 0.717 1.395 15.313 3.194 0.313
Ours-S 0.794 0.548 1.824 2.308 0.747 1.339 15.323 3296 0.303
Ours-B 0.948 0.555 1.802 2913 0.924 1.082 17.444 4279 0.234
Ours-L 1.563 0.571 1.751 3.527 0989 1.011 18.059 4.522  0.221
Naive (n=8), £ = 2, v UPS

Ours-T 1.770 0.974 1.027 5.800 1.559 0.641 32.587 8.150 0.123
Ours-S 1.933 0.987 1.013 7.508 1.871 0.535 33.586 10.482  0.095
Ours-B 2.803 0.990 1.010 9.688 2.089  0.479 41.399 11.276  0.089
Ours-L 3.829 1.019 0.981 10.679 2219 0451 44.154 11.723  0.085
Queue (n=8), k = 2, xUPS

Ours-T 0.780 0.303 3.301 2.294 0431 2.321 15.310 1.905 0.524
Ours-S 0.791 0.321 3.115 2.304 0460 2.174 15.320 1.980 0.505
Ours-B 0.946 0.323 3.096 2911 0.547 1.823 17.442 2.573  0.388
Ours-L 1.563 0.324 3.086 3.527 0.598 1.673 18.059 2.694 0.371
Queue (n=8), k = 2, vUPS

Ours-T 1.771 0.557 1.795 5.800 0.925 1.081 32.587 5.012  0.200
Ours-S 1.920 0.561 1.782 6.279 0961 1.041 34.250 5.101  0.196
Ours-B 2.892 0.590 1.695 9.677 1.201  0.833 41.388 6.472  0.155
Ours-L 3.816 0.600 1.667 10.601 1.273  0.786 44.074 6.741 0.148
Naive (n=8), k = 3, xUPS

Ours-T 0.790 0.759 1.317 2.303 1.053  0.950 15.319 4.687 0.213
Ours-S 0.799 0.775 1.290 2.312 1.099 0.910 15.328 4.836  0.207
Ours-B 0.954 0.780 1.283 2919 1.347 0.742 17.450 6.253  0.160
Ours-L 1.562 0.801 1.248 3.527 1.446  0.692 18.058 6.586 0.152
Naive (n=8), k = 3, v UPS

Ours-T 1.782 1414 0.707 5.812 2.338 0.428 32.599 12.384  0.081
Ours-S 1.958 1.428 0.700 6.318 2474  0.404 34.288 13.238 0.076
Ours-B 2.909 1.433 0.698 9.694 3.100 0.323 41.405 16.755  0.060
Ours-L 4.048 1.496 0.668 11.050 3.302  0.303 48.273 17.461  0.057
Queue (n=8), k = 3, xUPS

Ours-T 0.777 0.338 2.959 2.290 0481 2.077 15.306 2.132  0.469
Ours-S 0.787 0.364 2.744 2.301 0.502 1.991 15.316 2.195 0.455
Ours-B 0.942 0.366 2.730 2.907 0.615 1.626 17.438 2.845 0.351
Ours-L 1.562 0.369 2.710 3.527 0.657 1.522 18.058 2.999 0.333
Queue (n=8), k = 3, vUPS

Ours-T 1.765 0.624 1.602 5.794 1.060 0.943 32.581 5.664 0.177
Ours-S 1.907 0.646 1.547 6.267 1.090 0917 34.238 5.789 0.173
Ours-B 2.765 0.661 1.512 9.648 1.369 0.730 41.359 7.339 0.136
Ours-L 3.613 0.695 1.440 10.593 1.470  0.680 43.814 7.656 0.131
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Figure A6: Visual results of remote sensing image restoration.

E.6 Efficiency Comparisons

For fairness, we collect and mix the datasets used by comparison methods, with image resolution ranging
from 256 to 1024 pixels. Accordingly, we evaluate model efficiency under three representative resolution
settings, as summarized in Tab.[A3] Let k denote the solver order and n be sampling steps. Obviously, our
method (n = 3) and baseline DiffUIR remain competitive in computational cost and efficiency. As n increases,
memory consumption remains stable while time cost grows proportionally. Activating UPS that requires gradient
backpropagation introduces per-step computational overhead and additional memory usage. Hence, we adopt the
queue-based sampling strategy that significantly improves efficiency by reducing the computational complexity
from O(nk) to O(k + n — 1). Tab. also proves that queue-based solver achieves approximately a 2x
efficiency improvement over naive solvers when k£ = 2, and around a 3x improvement when k = 3.

F Discussions, Limitations, and Future Work

Limitations and broader impact. The main challenge lies in improving the precision and robustness of a
unified restoration model when handling highly mixed representations. While we have theoretically proposed a
general formulation for a k-order solver, our experiments are limited to first-, second-, and third-order solvers
due to GPU memory constraints. This is because unified posterior sampling requires storing the gradient map

during inference to compute V', log ¢(Iin |ﬁ), ffes) and more time points are needed to compute derivatives. In
addition, it is observed that the second order solver with universal posterior sampling reach the performance
bottleneck. However, it remains unknown whether it will be saturated in more complex scenes or using larger
models. Besides, our solver and strategy are training-free and can potentially be extended to other methods after
appropriate modifications. Future work could explore more efficient network architectures to reduce memory
usage, enabling larger batch sizes, higher-order solvers, and better task-specific training strategies, such as
adaptive learning rate schedules. Despite current limitations, we believe our unified model offers a strong
foundation for advancing image restoration.

Future Work. There are several promising directions to enhance our method: (1) With the rise of high-resolution
imagery (e.g., 4K, 8K) driven by advances in sensor technology, developing an interpretable multi-dimensional
latent diffusion model is crucial to address the computational demands that current architectures struggle with.
(2) Apply model distillation to reduce memory overhead and parameter size. (3) Introduce additional single
or compound degradation types, expand parameter ranges, and enhance model versatility. (4) Design adaptive
learning rate schedules to reduce sampling steps and improve restoration quality.
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