
BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Yunlong Hou * † 1 Fengzhuo Zhang * † ‡ 1 Cunxiao Du * 2 Xuan Zhang * 3 Jiachun Pan 1 Tianyu Pang 2

Chao Du 2 Vincent Y. F. Tan 1 Zhuoran Yang 4

Abstract
Speculative decoding has emerged as a popular
method to accelerate the inference of Large Lan-
guage Models (LLMs) while retaining their supe-
rior text generation performance. Previous meth-
ods either adopt a fixed speculative decoding con-
figuration regardless of the prefix tokens, or train
draft models in an offline or online manner to
align them with the context. This paper proposes
a training-free online learning framework to adap-
tively choose the configuration of the hyperpa-
rameters for speculative decoding as text is being
generated. We first formulate this hyperparame-
ter selection problem as a Multi-Armed Bandit
problem and provide a general speculative de-
coding framework BANDITSPEC. Furthermore,
two bandit-based hyperparameter selection algo-
rithms, UCBSPEC and EXP3SPEC, are designed
and analyzed in terms of a novel quantity, the
stopping time regret. We upper bound this re-
gret under both stochastic and adversarial reward
settings. By deriving an information-theoretic
impossibility result, it is shown that the regret per-
formance of UCBSPEC is optimal up to univer-
sal constants. Finally, extensive empirical experi-
ments with LLaMA3 and Qwen2 demonstrate that
our algorithms are effective compared to existing
methods, and the throughput is close to the oracle
best hyperparameter in simulated real-life LLM
serving scenarios with diverse input prompts.

1. Introduction
A Large Language Model (LLM) is trained to predict the
probability of the next token conditioned on all previous

*Equal contribution † Work done as an associate member at Sea
AI Lab ‡Project Lead 1National University of Singapore 2Sea AI
Lab 3Singapore Management University 4Yale University. Cor-
respondence to: Cunxiao Du <cnsdunm@gmail.com>, Zhuoran
Yang <zhuoran.yang@yale.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Eagle-2

PLD

Rest

Suffix Tree

Step 1.
Prefix:

Eagle-2

Suffix Tree Accept
rate

Draft decoding is a

2/3
…….

Verify decoding via a

Step 2.
Prefix:

Eagle-2

Suffix Tree Accept
rate

Draft
a tree method

1/3…….

Verify

suffix tree way

Step 3.
Prefix:

Which model
should I choose？

Adaptive speculative _ _ _

Adaptive speculative decoding via _ _ _

Adaptive speculative
decoding via a _ _ _

Figure 1. Given the prefix tokens and the candidate hyperparam-
eter configurations (e.g., models), which configuration should be
selected to decode the next tokens? We formulate this problem as
a bandit problem and propose a general framework BANDITSPEC.

tokens (Brown et al., 2020; Touvron et al., 2023). This
autoregressive decoding approach involves multiple forward
passes, with each pass generating one token sequentially.
Consequently, this process can lead to significant latency
during inference.

Speculative decoding was introduced by Leviathan et al.
(2023); Chen et al. (2023) to accelerate the inference of
LLMs. The standard speculative decoding framework has
been extended with improved performance since then. A
thorough overview is presented at Appendix A. While the
existing speculative decoding methods are diverse, most
previous works adopt a fixed one across tasks, severely lim-
iting their potential. For instance, when dealing with code
debugging or grammar-checking tasks, the generated tokens
are expected to resemble most of the input tokens. There-
fore, retrieval-based speculative decoding techniques are
preferred (Hu et al., 2024). In contrast, for story generation
tasks, we expect the generated tokens to be more creative.
Thus, a draft model with a high-temperature parameter is
preferred over retrieval-based methods. The potential of
these speculative decoding methods can only be exploited
when the configuration of hyperparameters is well-aligned
to the given task. There are existing works that attempt to
achieve this goal, e.g., Zhou et al. (2024) distills the draft

1

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

model during inference. Furthermore, even when the choice
of the draft model is optimized, the associated hyperparam-
eters can still be refined. For instance, Liu et al. (2024)
and Huang et al. (2024) aim to optimize the speculation
length in a training and training-free manner. Based on
these observations, we ask the questions (see Figure 1) :
given prefix prompts and candidate configurations of hy-
perparameters, is there a theoretically sound framework to
model and solve the hyperparameters selection problem? Is
there any training-free method that can adaptively choose
the hyperparameters such that the latency of speculative
decoding can be minimized?

In this paper, we answer these questions affirmatively. We
adopt a bandit framework to leverage its adaptivity in un-
known environments to achieve this goal. Our contributions
can be summarized as follows.

• We formulate the hyperparameter selection problem in
speculative decoding as a bandit problem and propose a gen-
eral speculative decoding framework BANDITSPEC(ALG)
(see Algorithm 3), where the hyperparameter selection al-
gorithm ALG selects the hyperparameters to be deployed in
each round of speculative decoding. The objective is to min-
imize the stopping time regret, which measures the latency
of ALG compared to that of the best hyperparameter.

• Under mild stochastic and adversarial reward assumptions,
we devise two hyperparameter selection algorithms, UCB-
SPEC and EXP3SPEC, respectively. By deriving upper
bounds on the stopping time regret, we prove that the infer-
ence latency between the proposed algorithms and the best
hyperparameter under a given initial prompt vanishes asymp-
totically. In addition, we show, via deriving an information-
theoretic impossibility result, that the regret performance of
UCBSPEC is optimal up to constants.

• Extensive empirical experiments with LLaMA3 and
Qwen2 are conducted to demonstrate the efficacy of the
proposed framework. When the batch size is 1, the adap-
tive selection of models via UCBSPEC and EXP3SPEC
can greatly improve the latency, exhibiting competitive per-
formance against the existing methods. Under simulated
real-life scenarios where LLMs are implemented for diverse
prompts simultaneously, the adaptive selection of specula-
tion length via UCBSPEC achieves comparable throughput
with the oracle best.

2. Preliminaries
LLM Decoding We denote an LLM as P : X ∗ → ∆X ,
where X and X ∗ are the space of tokens and the space
of all token sequences, respectively. Most LLMs pre-
dict this conditional probability via predicting the log-
its of the next token. Concretely, the LLMs predict
logP (xt |x1:t−1), where xt ∈ X and x1:t−1 ∈ X ∗ are

Algorithm 1 CANONICAL DECODING

Inputs: initial prompt pt0 = pt ∈ X ∗, target model P .
Procedures:

1: Set t = 0.
2: while t ̸= 0 and xt ̸= EOS do
3: t = t+ 1.
4: xt ∼ P (· | ptt−1).
5: ptt = concat(ptt−1, xt).
6: end while
7: return t,ptt

respectively the t-th token and first t − 1 tokens. In the
inference stage, LLMs use an additional temperature pa-
rameter γ > 0 to predict the next token’s probability as
softmax(γ−1 logP (· |x1:t−1)), where softmax is the
softmax operator. The results in our work hold for any
γ > 0, and we just denote softmax(γ−1 logP) as P for
ease of notation. When γ > 0, we sample the next token
from the predicted distribution, which is called sampling
(sampling decoding). When γ ↓ 0, the next token will be
the token that corresponds to the highest logit value; this is
called greedy decoding. We note that the greedy decoding
is deterministic, i.e., the token is sampled from a degenerate
distribution. These two families of decoding methods can
be unified as Algorithm 1, where LLMs autoregressively
generate tokens until the EOS token.

Speculative Decoding As shown in Algorithm 1, the au-
toregressive decoding feature requires multiple forward in-
ferences of LLMs P sequentially. To reduce the number
of forward inferences, Leviathan et al. (2023); Chen et al.
(2023) proposed the vanilla speculative decoding algorithm
which implements a draft model Q to generate draft tokens
and let the target model P verify them in parallel. For
completeness, we present and describe the vanilla specu-
lative decoding algorithm in Appendix C.1. This vanilla
specualtive decoding is then extended by some existing
works, e.g., Miao et al. (2023); Cai et al. (2024) organizes
the draft tokens as a tree, which improves the number of
accepted tokens. The speculative decoding algorithm con-
tains many hyperparameters, e.g., the draft model Q, and
the tree structure in Miao et al. (2023); Cai et al. (2024).
Most existing works keep these hyperparameters fixed for
all the tasks. Some other works optimize the draft model
in an online or offline manner (Liu et al., 2023) and the
size of the tree (Chen et al., 2024), which are designed for
specific considerations. In contrast, our work aims to derive
a unified online hyperparameter selection algorithm that can
be applied for any type of hyperparameters.

Multi-Armed Bandits The Multi-Armed Bandit (MAB) is
a fundamental online decision-making problem (see Algo-
rithm 7 for its dynamics). In its classical stochastic form,
an agent chooses from K arms, each of which delivers a re-

2

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Algorithm 2 SPECUATIVE DECODING SUBROUTINE
(SPECDECSUB)
Inputs: pt ∈ X ∗, target model P , the hyperparameters S,
maximum speculation length L.
Procedures:

1: Call a standard speculative decoding algorithm with
(pt, P, S, L).

2: return the accepted and bonus tokens x1:τ , where τ≥1.

ward sampled i.i.d. from an unknown but fixed distribution
when pulled (Lattimore & Szepesvári, 2020). The goal is to
select arms over T rounds to maximize cumulative rewards.
Two primary classes of algorithms—UCB-type (Auer et al.,
2002b) and sampling-based methods (Russo et al., 2017)—
have been developed and proven optimal in this setting. In
the adversarial formulation, there are no assumptions on
the reward distributions; rewards can evolve arbitrarily over
time and may be correlated across arms (Auer et al., 2002a).
Several algorithms, such as EXP3 and EXP4 (Auer et al.,
2002a), are known to achieve optimal performance under
these conditions. In this work, we frame the hyperparameter
selection problem as an MAB problem and develop algo-
rithms tailored to both stochastic and adversarial settings.

Notations: Let [N] := {1, · · · , N}. For a finite set X , we
denote the set of distributions supported on it as ∆X = {P :
X → [0, 1] |

∑
x∈X P (x) = 1, P (x) ≥ 0 for all x ∈ X}.

The space of all finite length sequences whose components
belong to X is denoted as X ∗, and we use x1:L ∈ XL ⊆ X ∗

to denote a length-L sequence. The Kullback–Leibler (KL)
divergence between two distributions P and Q is denoted
as KL(P,Q).

3. Bandits for Adaptive Speculative Decoding
In the section, we formally formulate the hyperparameter
selection problem in speculative decoding using the parlance
of multi-armed bandits. The goal of this online decision-
making process is to decode as soon as possible, i.e., mini-
mizing the latency of the LLM decoding. Different from the
classical multi-armed bandit problem, this problem involves
two stochastic processes that march at various paces. In
fact, as described in Appendix C.1, each (vanilla) specula-
tive decoding subroutine produces several tokens, where the
number of accepted tokens itself is also a random variable.
Thus, the selection of hyperparameters of each speculative
decoding subroutine and the token generation processes are
evolving at different paces.

To put the problem in a mathematically sound way, we
first specify a general speculative decoding subroutine
(SPECDECSUB) in Algorithm 2. The input of this sub-
routine is a prompt pt ∈ X ∗, a target model P , a specifica-
tion of hyperparameters S, and the maximum speculation

Algorithm 3 SPECULATIVE DECODING WITH BANDITS
(BANDITSPEC)
Inputs: arm selection algorithm ALG, initial prompt pt0 =
pt ∈ X ∗, bandit configuration ν = (P,S = {Si}i∈[K], L).
Procedures:

1: t = 0,H0 = ∅, I0 = 1, xI0,0 = ∅.
2: while EOS /∈ xIt,t do
3: t = t+ 1.
4: Select a hyperparameter index It = ALG(Ht−1).
5: xIt,t = SPECDECSUB(ptt−1, P, SIt , L).
6: ptt = concat(ptt−1, xIt,t).
7: Ht = concat(Ht−1, (It, xIt,t)).
8: end while
9: return ST(ALG,pt, ν) = t, ptST(ALG,pt,ν) = ptt.

length L, and the output is the accepted token sequence
x1:τ ∈ X ∗. We provide two examples of the hyperparame-
ter sets here. (1) If we adopt the vanilla speculative decoding
(Algorithm 6) as Line 1, S can be different draft models
Q : X ∗ → ∆X , and S is the set of all the provided draft
models. We would like to choose a draft model according
to its training context, e.g. math, creative writing, to decode
the current prefix. Then the problem we consider is how
to adaptively select a proper draft model for speculative de-
coding via bandit algorithms. (2) If we adopt Medusa (Cai
et al., 2024) as Line 1, S can be different tree structures, and
S is the set of plausible tree structures. In this problem, we
would like to adaptively adjust the speculation tree structure
according to the context.

With the help of SPECDECSUB, the speculative decoding
with a bandit framework, BANDITSPEC, can be specified in
Algorithm 3 and as illustrated in Figure 1. The bandit config-
uration ν = (P,S = {Si}i∈[K], L) consists of three com-
ponents: the target model P , the set of K candidate hyper-
parameter specifications S, and the maximum speculation
length L. Each hyperparameter specification Si ∈ S corre-
sponds to an arm in the bandit problem. Given a prompt pt
and an arm selection algorithm ALG, a hyperparameter spec-
ification is chosen according to the history Ht−1 in Line 4.
Then SPECDECSUB is invoked with selected hyperparam-
eters SIt as input. The output of SPECDECSUB, xIt,t,

1 is
then adopted to update the prompt (Line 6) and the history
information (Line 7). The whole process stops when the
EOS token appears in the prompt. We denote the number
of calls to SPECDECSUB (the stopping time) and the gen-
erated token sequence as ST(ALG,pt, ν) and ptST(ALG,pt,ν),
respectively. To minimize the decoding latency, we aim to
design ALG to minimize ST(ALG,pt, ν). Since the position
of the EOS token itself is a random variable, we would like

1We abbreviate the notation xIt,t,1:τt as xIt,t to represent the
accepted tokens generated by SIt at time step t.

3

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

to minimize the expectation of ST(ALG,pt, ν). The perfor-
mance of ALG is measured via the stopping time regret

Reg(ALG,pt, ν) := E
[
ST(ALG,pt, ν) | pt, ν

]
(1)

− E
[
ST(ALGi∗(pt,ν),pt, ν) | pt, ν

]
,

where ALGi is the arm selection algorithm which adopts
Si in all rounds, i.e., i = ALGi(Ht) for all Ht and t,
and i∗(pt, ν) = argmini∈[K] E [ST(ALGi,pt, ν) | pt, ν]
denotes the index of the best hyperparameter for prompt
pt under bandit configuration ν.

For ease of notation, when ν and pt are clear from the con-
text, ST(ALG,pt, ν), Reg(ALG,pt, ν), and i∗(pt, ν) will be
abbreviated as ST(ALG),Reg(ALG), and i∗, respectively.
We will use BANDITSPEC(ALG) to specify the choice of
ALG in Algorithm 3. For simplicity, we regard the bonus
token as the last accepted token. Thus, the length of the ac-
cepted tokens xIt,t at each round, yIt,t, is between [1, L+1].

Before going to the algorithm design and the theoretical
analysis, we would like to specify some important properties
that are shared for any arm selection algorithm ALG and clar-
ify the intuitions about our theoretical analysis. We denote
the stopping time of the canonical decoding (Algorithm 1)
and the generated sequence as τc and ptτc , respectively.

Proposition 3.1. For any arm selection algorithm ALG

that selects an arm according to the history, the generated
prompt ptST(ALG) is equal to ptτc in distribution, i.e.,

ptST(ALG)
d
= ptτc , and len(ptST(ALG))

d
= len(ptτc). (2)

The stopping time ST(ALG) can be bounded as

len(ptST(ALG))

L+ 1
≤ ST(ALG) ≤ len(ptST(ALG)), a.s. (3)

The proof of Proposition 3.1 is provided in Appendix D.1.
This proposition states that the distribution of the generated
prompt is the same as that of the prompt generated by Algo-
rithm 1. The stopping time ST(ALG) is equal to the length
of the generated prompt up to a constant. To facilitate our
theoretical understanding, we pose the following question.

Question: Whether it is possible to devise an arm selec-
tion algorithm ALG to achieve sublinear regret in terms
of the length of the generated token sequence, i.e., is
Reg(ALG,pt, ν) = o(E[len(ptST(ALG))])?

Interpretation of the Desired Result. Given a prompt pt
and bandit configuration ν, BANDITSPEC adpatively se-
lects the hyperparameter via ALG and learns the context.
The stopping time regret (1) measures how the stopping
time of BANDITSPEC(ALG) compared to that of the (ag-
nostic) best one BANDITSPEC(ALGi∗). By minimizing

Step t Prefix:

Adaptive speculative decoding via a bandit algorithm is an idea that that aims to strike a _ _ _

Draft decoding is a

2/3

Verify decoding via a

Accept
rate

History Information:

Accept
rate

Draft

1/3

Verify

suffix tree way
a tree method

Accept
rate ….

….

UCB EXP3
Confidence
interval

Cumulative
risk

….

I will select
draft model
according to
UCB or EXP3.

Eagle-2
3 times

Suffix Tree
2 times

Accept 7 tokens Accept 2 tokens

Decision Making Statistics:

Figure 2. Illustration of our bandit model for choosing configura-
tions to decode the next token, where UCB and EXP3 refer to
UCBSPEC and EXP3SPEC, repectively.

Reg(ALG,pt, ν), we want to devise an ALG to (approxi-
mately) match the performance of ALGi∗ . In particular,
if Reg(ALG,pt, ν) = o(E[len(ptST(ALG))]), it implies that
BANDITSPEC(ALG) requires the same number of specula-
tive decoding rounds as BANDITSPEC(ALGi∗) asymptoti-
cally even though the information about Si∗ is not revealed
at the beginning. In order words, BANDITSPEC(ALG) learns
the identity of Si∗ quickly and the price for this learning
process can be amortized over time. Additionally, when
BANDITSPEC(ALG) is deployed over diverse prompt inputs,
we expect a significant acceleration of token generation
compared to any fixed single speculative decoding method.

Why do we consider stochastic and adversarial settings?
To derive efficient algorithms and meaningful theoretical
analysis, it is necessary to make certain plausible assump-
tions of the problem. For the BANDITSPEC problem, we
need to model the stochasticity of the number of accepted
tokens for each hyperparameter specification. We highlight
that in real-world applications, they are far from identically
and independently distributed. The stochastic case (Sec-
tion 4) models it as random variables and only assumes that
each hyperparameter will have a stationary mean accep-
tance length (Assumption 4.1) without the independence
assumption. The adversarial case (Section 5) removes this
stationarity assumption and does not make any distributional
assumption of the number of accepted tokens for each hyper-
parameter. We highlight that there is no explicit adversary
in the speculative decoding, but we model the stochasticity
of the number of accepted tokens as the randomness from
an (imaginary) adversary.

4. Modeling Tokens Stochastically
In this section, we model the length of the accepted tokens
as random variables.

Assumption 4.1 (Stationary Mean Values). There exist K
values {µi}i∈[K]⊂ [1, L+1], such that conditioned on the

4

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Algorithm 4 UCBSPEC

Inputs: number of hyperparameter specifications K, history
Ht =

(
(Is, XIs,s)

)t
s=1

, confidence parameter δ.
Procedures:

1: if t ≤ K − 1 then return It+1 = t+ 1.
2: Compute the lengths YIs,s = len(XIs,s) for all s ∈ [t].
3: Set the statistics {µ̂i,t}i∈[K], {UCBi,t}i∈[K], where

ni,t =

t∑
s=1

1{Is = i}, µ̂i,t =

∑t
s=1 Yi,s1{Is = i}

ni,t
,

cri,t =
L

2

√
1 + ni,t

n2
i,t

(
1 + 2 log

Kt2(1 + ni,t)
1
2

δ

)
,

UCBi,t = µ̂i,t + cri,t.

4: return index It+1 = argmaxi∈[K] UCBi,t.

history Ht−1 and the chosen arm It at time t, the expected
number of the accepted tokens E[YIt,t |Ht−1, It]=µIt .

This assumption assumes that the conditional expectation
of the number of accepted tokens for each hyperparame-
ter is equal to a fixed number conditioned on the previous
tokens. We emphasize that this assumption does not re-
quire independence between the number of accepted tokens
across implementations of SPECDECSUB, which would be
unrealistic in real-world applications. More discussions are
provided in Appendix B.1.

4.1. Upper Bounds for the Stochastic Case

Algorithm Design We design a UCB-type arm selec-
tion algorithm UCBSPEC, as shown in Algorithm 4. To
avoid additional terms, we call the aggregated algorithm,
BANDITSPEC(UCBSPEC), as UCBSPEC. The full version
of UCBSPEC is detailed in Algorithm 8.

This aggregated algorithm, UCBSPEC, is adapted from the
classical UCB-1 algorithm in Auer et al. (2002b). The main
differences are the confidence radius design cri,t and the
stopping rule. We highlight that the form of cri,t is designed
to fit the weak assumption of the number of accepted to-
kens. In fact, the proof of the regret of UCB-1 assumes
that the values of each arm are generated before the pull of
arms (Auer et al., 2002b; Lattimore & Szepesvári, 2020),
which bifurcates from practical LLM inference scenarios.
In contrast, we remove this strong restriction. The stop-
ping rule of UCBSPEC makes the analysis of our algorithm
rather different from that of UCB-1. The stochasticity of the
total number of arm pulls requires a novel regret decompo-
sition analysis that is not presented in previous works.

Theoretical Analysis We first state an assumption.
Assumption 4.2 (Finite Generation Length). Given any

prompt pt ∈ X ∗, the expected length of the output sequence
of the canonical decoding algorithm (Algorithm 1) is finite,
i.e., E[len(ptτc)] < ∞.

This assumption states that the expected length of the gener-
ated prompt is finite. In real-world applications, the length
of the generated prompt is always finite due to the limits of
computation and storage.

To state our main result, we denote the suboptimality gap
between the best arm i∗ := argmaxi∈[K] µi and arm
i as ∆i := µi∗ − µi. Define the hardness parameter
H(pt, ν) :=

∑
i ̸=i∗ 1/(µi∗∆i), which captures the diffi-

culty of acceleration given the initial prompt pt and bandit
configuration ν.

Theorem 4.3 (Upper Bound). Under Assumptions 4.1
and 4.2, given any prompt pt ∈ X ∗ and bandit configura-
tion ν = (P,S = {Si}i∈[K], L), the expected stopping time
regret of Algorithm 3 with ALG =Algorithm 4 (UCBSPEC)
is upper bounded as

Reg(ALG,pt, ν) = O
(
H(pt, ν) · L2 logE[len(ptτc)]

)
.

Theorem 4.3 answers the proposed question in Section 3
in the affirmative under Assumptions 4.1 and 4.2. To inter-
pret the results of the theorem, for each hyperparameter Si,
it requires ni = O(L2 logE[len(ptST(ALG))]/∆

2
i)) pulls to

identify that Si is suboptimal under the current prompt pt
and bandit configuration ν, resulting in ni∆i token loss com-
pared to the case where Si∗ had been adopted. Additionally,
this loss could be compensated by ni∆i/µi∗ pulls of Si∗ ,
which constitutes the final stopping time regret bound. The
proof is postponed to Appendix D.2 with more discussions
in Appendix B.2.

4.2. Lower Bound for the Stochastic Case

We further provide an information-theoretic lower bound of
the regret under the greedy decoding strategy to indicate
how the upper bound is in Theorem 4.3. More details and
the proof of Theorem 4.4 are deferred to Appendix D.4.

Theorem 4.4 (Lower Bound). Given any sequence of initial
prompts (ptm)∞m=1 ⊂ X ∗

init with len(ptmτc) → ∞,m → ∞
and a bandit configuration ν = (P,S = {Si}i∈[K], L),
under Assumption D.4, the greedy decoding strategy and
the dynamics represented in Algorithm 3, for any non-
anticipatory and consistent arm selection algorithm ALG,
the expected regret satisfies

lim inf
m→∞

Reg(ALG,pt, ν)

log(len(ptmτc))
≥

∑
i ̸=i∗

∆i

µi∗
· 1

kli
,

where kli := infS∈S{KL(PSi , PS) : EX∼PS
[X] > µi∗}.

5

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

To provide a more concrete example of the lower bound,
consider the truncated geometric distribution (TGD) on
[1, L+ 1] with parameter p ∈ (0, 1), i.e.,

PS(x) =

{
px−1(1− p), x = 1, 2, . . . , L,

pL, x = L+ 1.
(4)

This TGD was considered in the seminal works on specula-
tive decoding (Leviathan et al., 2023; Chen et al., 2023).

Proposition 4.5 (Tightness Result). Let STGD = {S :
PS satisfies (4)}. Let {Si}Ki=1 ⊂ STGD and Si satisfies (4)
with pi (Line 5 in Algorithm 2), then

lim inf
m→∞

Reg(ALG,ptm, ν)

log(len(ptmτc))
≥ H(pt, ν) · pi

∗(1− pLi∗)

(1− pi∗)
.

Therefore, the upper and lower bound match up absolute
constants and a L2(1−pi∗)

pi∗ (1−pL
i∗)

factor. In particular, if pi∗ ∈(
2−1/L, 1

)
, they match up to absolute constants and L.

The proof is deferred to Appendix E.3. Proposition 4.5 in-
dicates UCBSPEC is optimal up to constants and L when
considering the TGD. In other words, the additional spec-
ulative decoding rounds of UCBSPEC not only achieves
O(logE[len(ptτc)]) compared to ALGi∗ , but is also among
the best possible for any arm selection algorithm (up to
constants).

For the tightness of our algorithm, according to Note 15.3
in Lattimore & Szepesvári (2020), kli = O(∆2

i) when
∆i is small. This indicates the dominating terms in the
upper bound in Theorem 4.3 match the lower bound in
Theorem 4.4 up to (possibly instance-dependent) constants.
Futherfmore, because the truncated geometric distribution
is more close to a sub-exponential family distribution, es-
pecially when L is large, bandit algorithms built upon
UCB1 (Auer et al., 2002b) are generally loose in some fac-
tors. In order to close the gap between the upper and lower
bounds completely, KL-UCB (Garivier & Cappé, 2011) can
possibly be adapted to this problem out of theoretical in-
terest. However, on the practical side, KL-UCB demands
solving an optimization problem at each round, which can
be time-consuming during implementations. Thus, it does
not perfectly align with our ultimate goal of LLM inference
acceleration.

5. Modeling Tokens Adversarially
In this section, we weaken Assumption 4.1 in Section 4 and
consider a more general case. Specifically, we make the
following assumption on the number of accepted tokens.

Assumption 5.1 (Adversarial Mean Values). Let the num-
ber of accepted tokens generated by hyperparameter Si at

Algorithm 5 EXP3SPEC

Inputs: number of hyperparameter specifications K, history
Ht=

(
(Is, XIs,s)

)t
s=1

.
Procedures:

1: Compute the lengths YIs,s = len(XIs,s) for all s ∈ [t].

2: Set the statistics for all i ∈ [K]

Ẑi,t = 1{i = It} ·
L+ 1− Yi,t

L · pt,i
. (6)

3: Set learning rate ηt =
√
logK/(t ·K).

4: Set probability vector pt ∈ ∆[K] with for all i ∈ [K]

pt,i =
exp

(
− ηt

∑t−1
s=1 Ẑi,s

)
∑K

j=1 exp
(
− ηt

∑t−1
s=1 Ẑj,s

) .
5: return hyperparameter index It+1 ∼ pt.

time step t be yi,t = len(Xi,t). We assume {yi,t}i∈[K],t∈N
is fixed by the environment before the algorithm starts.

The bandits problem with this assumption is often referred
to as the oblivious adversarial bandits in the online learning
works (Auer et al., 2002a; Lattimore & Szepesvári, 2020).
It admits more general and practical setups compared to
the stochastic MAB. We find the greedy decoding strategy
aligns more closely to this setup in the sense that the gen-
erated tokens by the models are (potentially) fixed given
the initial prompt. Hence, we present our result under the
greedy decoding strategy in this section.2 Given a prompt
pt ∈ X ∗ and a bandits configuration ν, the stopping time
regret (1) of an arm selection algorithm ALG becomes

Reg(ALG) := E[ST(ALG)]− min
i∈[K]

ST(ALGi) (5)

It is worth pointing out that under the greedy decoding
strategy, the stopping time of any proposed algorithm can
still be random due to the internal randomness embedded in
the algorithm. For instance, the choice of hyperparameter
SIt in Line 5 in Algorithm 5.

Algorithm Design We present our arm selection algorithm
in Algorithm 5, which is an abridged version of the full ver-
sion BANDITSPEC(EXP3SPEC) delineated in Algorithm 9.
This algorithm modifies the anytime EXP3 algorithm (Latti-
more & Szepesvári, 2020) to suit the speculative decoding
application. In terms of the algorithm design, the main dif-
ference lies in the change of the stopping rule. We highlight
that while the stopping time of the algorithm is random,

2Our analysis can also be extended to cover the sampling de-
coding strategy (see Remark D.3).

6

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

the anytime feature of Algorithm 5 does not require any
information about the time horizon. This is achieved by
the vanishing sequence of learning rates {ηt}t∈N which can
be elegantly adapted to the unknown stopping time. With
regard to the analysis, previous works (Auer et al., 2002a;
Bubeck et al., 2012; Lattimore & Szepesvári, 2020) only
consider the gap between the cumulated rewards over the
same fixed horizon T , i.e., maxi∈[K] E[

∑
t∈[T] yi,t − yIt,t].

In contrast, we need to upper bound the stopping time regret
in (5) where the baseline ALGi and any proposed algorithm
ALG have different termination times in general. Thus, the
analysis is much more involved.

Theoretical Analysis To ease the analysis, we make an
assumption on the stopping time of Algorithm 5.

Assumption 5.2 (Stopping Time assumption). Given
a prompt pt ∈ X ∗ and configuration ν, let i∗ :=
argmini∈[K] ST(ALGi). We assume that ST(ALG) >
ST(ALGi∗) almost surely.

In speculative decoding, when the initial prompt is given,
there generally exists a hyperparameter that has the highest
acceptance rate in most rounds compared to the rest of
the hyperparameters. As bandit algorithms will explore
those suboptimal hyperparameters, the termination time
falls behind that of the optimal hyperparameter. Therefore,
Assumption 5.2 is satisfied in practical applications.

Theorem 5.3. Under Assumptions 4.2, 5.1 and 5.2, given
any prompt pt ∈ X ∗ and bandit configuration ν = (P,S =
{Si}i∈[K], L), the expected stopping time regret of Algo-
rithm 3 with ALG =Algorithm 5 (EXP3SPEC),

Reg(ALG,pt, ν) ≤ 2L ·min

{√
len(ptτc)K logK,

2LK logK +
√

min
i∈[K]

ST(ALGi)K logK

}
.

Theorem 5.3 also provides an affirmative answer to the
question posed in Section 3. The first term in the minimum
provides a worst-case guarantee. Even if all hyperparame-
ters in S are not good or K is large, EXP3SPEC will stop
at no more than O(

√
len(ptτc)) time steps after Si∗ termi-

nates. The second term is an instance-dependent bound in
terms of hyperparameters S. Specifically, when the best
hyperparameter Si∗ has small stopping time, EXP3SPEC
will scale as ST(ALGi∗) + O(

√
ST(ALGi∗)). This upper

bound suggests that the number of speculative decoding
rounds of EXP3SPEC is almost the same as that of the best
hyperparameter configuration ALGi∗ .

6. Experiments
In this section, we conduct two sets of experiments to
demonstrate the efficacy of the proposed bandit framework

BANDITSPEC, along with UCBSPEC and EXP3SPEC. In
the first experiment, the candidate hyperparameters are dif-
ferent draft models. In the second experiment, the candidate
hyperparameters are different speculation lengths, where
real-life LLM serving scenarios are simulated with diverse
input prompts. Additional experimental results on memory
utilization and additional experiments on larger models and
different hardwares are provided in Appendix G. The code
is accessible via https://github.com/sail-sg/
BanditSpec.

6.1. Experiment with Draft Models

Experimental Setups We adopt the open-sourced
LLaMA3-8B-Instruct (Dubey et al., 2024) and Qwen2-
7B-Instruct (Yang et al., 2024) as the target models.
The commonly-used existing speculative decoding meth-
ods PLD (Saxena, 2023), Rest (He et al., 2024), Suffix
Tree (Oliaro et al., 2024; Hu et al., 2024) and Eagle-2 (Li
et al., 2024b) are adopted as the baselines. Among these
baselines, PLD, Rest, and Suffix Tree represent the non-
parametric (or model-free) speculative decoding methods,
whereas Eagle-2 represents the speculative decoding meth-
ods that utilize smaller draft models. Each of these methods
corresponds to an arm in our problem.

The experiments are carried out on Spec Bench (Xia et al.,
2024), Alpaca (Taori et al., 2023), Code Editor (Guo et al.,
2024) and Debug Bench (Tian et al., 2024). Among these
benchmarks, Spec Bench and Alpaca encompass multiple
topics, while Code Editor and Debug Bench focus on coding
tasks, a representative scenario for specialized models.

We record the number of accepted tokens for each specu-
lative decoding step, as well as the wall-time for generat-
ing each complete response. The Mean Accepted Tokens
(MAT) and the throughput (Tokens/s) are computed. These
two metrics are widely adopted in the speculative decoding
community and are positively correlated (Xia et al., 2024).
In particular, Tokens/s measures the actual latency during
decoding. The experiments are conducted on a single A100
and set batch size as 1.

Experimental Results We report the results of our experi-
ments in Table 1. The proposed adaptive speculative decod-
ing framework BANDITSPEC exhibits superior performance
compared to existing methods in the datasets we consider.
In particular, the best performance measured by Token/s is
always achieved by the proposed framework. We note that
although the non-parametric methods are worse than Eagle-
2 in average, they are effective on a portion of prompts. Our
proposed methods, UCBSPEC and EXP3SPEC, automati-
cally adapt to different prompts, i.e., suffering from a small
stopping time regret on each prompt. Thus, they achieve
better performance than all the methods that only use a fixed
model. On Debug Bench, UCBSPEC can even achieve

7

https://github.com/sail-sg/BanditSpec
https://github.com/sail-sg/BanditSpec

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Table 1. Empirical Comparison between the proposed algorithms and the existing works, measured by Mean Accepted Tokens (MAT) (↑)
and Tokens/s (↑). The best result is highlighted in bold, while the second best result is underlined. The proposed algorithms demonstrate
unequivocal superior performance compared with the existing methods.

Methods Spec Bench Alpaca Code Editor Debug Bench

MAT(↑) Tokens/s(↑) MAT(↑) Tokens/s(↑) MAT(↑) Tokens/s(↑) MAT(↑) Tokens/s(↑)

LLaMA3-8B-Instruct

Vanilla 1.00 35.73 1.00 35.92 1.00 36.32 1.00 36.89
PLD 1.46 43.96 1.53 53.06 2.13 82.61 1.67 82.76
Rest 1.29 40.67 1.48 52.40 1.33 51.32 1.29 48.49
Suffix Tree 1.83 55.10 1.71 64.02 2.30 90.21 2.13 77.56
Eagle-2 3.94 98.15 4.04 110.00 4.79 128.76 4.78 119.12
EXP3SPEC 3.65 102.10 4.23 120.38 4.36 137.29 4.50 132.25
UCBSPEC 3.98 105.72 4.35 125.78 4.83 138.27 4.60 135.34

Qwen2-7B-Instruct

Vanilla 1.00 38.71 1.00 39.32 1.00 39.30 1.00 39.57
PLD 1.55 52.44 1.42 58.41 1.89 64.56 2.15 70.49
Rest 1.31 46.42 1.47 59.01 1.31 53.79 1.22 50.51
Suffix Tree 1.96 68.42 1.46 62.60 2.18 85.75 2.49 101.47
Eagle-2 3.64 97.82 3.61 104.43 4.88 138.58 4.79 126.01
EXP3SPEC 3.76 107.36 3.83 113.90 4.90 160.41 4.86 151.73
UCBSPEC 4.13 112.33 3.93 114.20 4.92 161.35 5.10 151.37

improvements of 13% for LLaMA3 and 19% for Qwen2.
Moreover, as UCBSPEC demonstrates better performance
under almost all benchmarks with both two target models,
this suggests that speculative decoding in real-life environ-
ments tends to be closer to the stochastic (Assumption 4.1)
compared to the adversarial reward case (Assumption 5.1).

Remark 6.1. The adversarial setting can be regarded as a
means of comparison to the stationary setting. Prior to this
work, it was a priori unclear how to use MAB to improve
speculative decoding. Should one employ a stochastic, ad-
versarial or even more generalized model? We consider a
range of such MAB models and do a comparison among
them to provide the community with a guide on which MAB
model is best suited to the speculative decoding problem.
As the empirical performance of UCBSPEC is better than
EXP3SPEC (Table 1), it implies that real-life scenario tends
to be benign and may be more aligned with the stationary
mean assumption.

6.2. Experiment with Speculation Lengths

Experimental Setups In addition to improving the latency
when batch size is 1, our proposed algorithms also improve
the throughput in real LLM serving scenarios with different
batch sizes. In practical serving environments, speculative
decoding does not always yield performance gains due to
variations in batch size and acceptance rate. As the batch
size increases, the system rapidly becomes compute-bound,

while a lower acceptance rate can lead to wasted compu-
tation resources of GPU. Additionally, the execution time
of the draft model contributes to an overall decrease in
throughput. Given these confoundingly interrelated fac-
tors, along with latent variables such as the acceptance rate
(which is unknown before verification and depends on the
input prompts), we adopt a bandit-based approach to model
the current throughput as the reward. Specifically, we em-
ploy UCBSPEC to dynamically adjust the hyperparameter
γ, the speculation length, to maximize the throughput, i.e.,
the number of generated tokens per second. We set the
maximum speculation length L as 4, and γ takes values
in {0, . . . , 4} where γ = 0 corresponds to the canonical
decoding (Algorithm 1). As the first experiment suggests
UCBSPEC is more in line with the real-life speculative
decoding environment than EXP3SPEC, we only evaluate
UCBSPEC in this experiment. The experiments are con-
ducted on a single A100.

Specifically, we use LLaMA3-8B-Instruct and Qwen2-7B-
Instruct as the target models and adopt Eagle-1 (Li et al.,
2024a), the current state-of-the-art model, as the draft model.
We do not use Eagle-2 (Li et al., 2024b) because it does
not support batch inference. For evaluation, we adopt Al-
paca (Taori et al., 2023) as the test set, as it covers various
topics, thereby simulating a realistic setting with diverse
acceptance rates. To approximate real-world conditions, we
randomly sample prompts from the test set to form a batch
for inference, with batch sizes ranging from 1 to 50. As

8

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

0.8

1

1.2

1.4

1.6

1.8

2

0 40 80 120 160 200 240 280 320 360 400 440 480Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t

Sample Index (sorted)

γ=1 γ=2 γ=3 γ=4
γ=0 oracle best worst UCBSpec

(a) Target model: LLaMA3

0.8

1

1.2

1.4

1.6

1.8

2

0 40 80 120 160 200 240 280 320 360 400 440 480

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t

Sample Index (sorted)

γ=1 γ=2 γ=3 γ=4
γ=0 oracle best worst UCBSpec

(b) Target model: Qwen2
Figure 3. We compare throughtput improvements with different
speculative decoding lengths γ ∈ [4] and the canonical decoding
(γ = 0). The performance of UCBSPEC approaches that of the
best hyperparameter across all samples for both target models
LLaMA3 and Qwen2. The sample indices are sorted according to
the best arm improvement for a clear demonstration.

our evaluation metric, we measure the throughput improve-
ment relative to the canonical decoding (non-speculative)
baseline. Our result is averaged over 16 independent runs
to smoothen the hardware-dependent factors.

Experimental Results The results are presented in Figure 3,
where we reorder the 500 sample indices in ascending order
of the performance of the best hyperparameter (blue line)
for easy comparison. Otherwise, the lines in this figure will
not be largely monotonic. Here the “worst” and “best” lines
are calculated among results of γ ∈ {1, · · · , 4} in hindsight.
Thus, we call the “best” line as the oracle best. Firstly,
since the optimal hyperparameter γ varies with different
input prompts for either target model, fixing a single hy-
perparameter is suboptimal, e.g., in Figure 3 (b), the best
hyperparameter changes from γ = 1 (light green) to γ = 2
(green) at sample index around 80; and the original Eagle-
1 (Li et al., 2024a) (γ = 4 in purple) is even inferior to the
canonical decoding (γ = 0 in grey) for sample indices less
than 80. This necessitates the use of adaptive hyperparam-
eter selection. Next, UCBSPEC demonstrates competitive
throughput performance, outperforming the second-best hy-
perparameter in most cases and closely approaching the
(varying) oracle best across experiments. These benefits are
obtained thanks to the adaptivity of BANDITSPEC.

7. Conclusions and Discussions
In this work, we propose a MAB framework together with
two hyperparameter selection algorithms that adaptively

choose appropriate hyperparameters to accelerate LLM in-
ference under realistic assumptions. Both theoretical guaran-
tees and extensive experiments are provided to demonstrate
that adaptive speculative decoding via bandit algorithms can
boost the performance of existing methods in a training-free
manner. For future work, we would like to point some direc-
tions, improving the performance of the current algorithms.

Therefore, another direction is to design hyperparameter
selection algorithms that can achieve the (near) optimal
balance between these two goals based on practical needs.

Structured Bandits Our current framework is based on
the standard K-armed bandit model. However, broader
classes of bandit problems with additional structures—such
as linear bandits (Abbasi-yadkori et al., 2011) and Lipschitz
bandits (Magureanu et al., 2014)—can also be considered.
This aligns more closely with practical scenarios, where the
number of hyperparameters can be large, and the value of K
may be very high when modeling the problem as a K-armed
MAB. By leveraging such structures in MABs, we can
expect to identify better hyperparameters more efficiently,
thereby further accelerating the optimization process.

Robust bandits and Non-stationary bandits As indicated
by the experimental result, the real-life speculative decoding
environment is closer to the stochastic reward case (Assump-
tion 4.1) than the adversarial reward case (Assumption 5.1).
Therefore, one direction for future work is to consider the
settings “in between”, e.g., robust bandits in the presence
of adversarial corruptions (Ding et al., 2022; Zhong et al.,
2021), or non-stationary bandits (Cao et al., 2019; Besbes
et al., 2014; Hou et al., 2024) where the mean number of
accepted tokens can vary across time. These settings are
more benign than the adversarial reward assumption and
can be exploited to accelerate the inference.

Contextual Bandits Another direction is to explore con-
textual bandits, where the environment reveals additional
information that can be leveraged to reduce the learning
burden (Luo et al., 2018; Kato & Ariu, 2021).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements: This work is supported by funding
from the Singapore Ministry of Education Academic Re-
search Fund (AcRF) Tier 1 grants under grant numbers
A-8002934-00-00 and A-8000980-00-00. This research is
also supported by the National Research Foundation, Singa-
pore under its AI Singapore Programme (AISG Award No:
AISG2-PhD-2023-08-044T-J), and is part of the programme
DesCartes which is supported by the National Research

9

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Foundation, Prime Minister’s Office, Singapore under its
Campus for Research Excellence and Technological Enter-
prise (CREATE) programme.

References
Abbasi-yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, volume 24, pp.
2312–2320, 2011.

Agrawal, S. and Goyal, N. Analysis of thompson sampling
for the multi-armed bandit problem. In Conference on
learning theory, pp. 39–1. JMLR Workshop and Confer-
ence Proceedings, 2012.

Agrawal, S. and Goyal, N. Near-optimal regret bounds for
thompson sampling. Journal of the ACM (JACM), 64(5):
1–24, 2017.

Antos, A., Grover, V., and Szepesvári, C. Active learning
in heteroscedastic noise. Theoretical Computer Science,
411(29-30):2712–2728, 2010.

Arora, R., Dekel, O., and Tewari, A. Online bandit learning
against an adaptive adversary: from regret to policy regret.
In Proceedings of the 29th International Coference on
International Conference on Machine Learning, pp. 1747–
1754, 2012.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1):48–77, 2002a.

Auer, P., Fischer, P., and Cesa-Bianchi, N. Finite-time
analysis of the multi-armed bandit problem. Machine
Learning, 47:235–256, 2002b.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-
bandit problem with non-stationary rewards. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K. (eds.), Proceedings of the 27th Advances
in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Ka-
plan, J., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., teusz Litwin, M., Gray, S., Chess,
B., Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., and Amodei, D. Language mod-
els are few-shot learners. ArXiv, abs/2005.14165,
2020. URL https://api.semanticscholar.
org/CorpusID:218971783.

Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends® in Machine Learning, 5
(1):1–122, 2012.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Cao, Y., Wen, Z., Kveton, B., and Xie, Y. Nearly optimal
adaptive procedure with change detection for piecewise-
stationary bandit. In Proceedings of the 22nd Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 418–427. PMLR, 2019.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chen, Z., May, A., Svirschevski, R., Huang, Y.,
Ryabinin, M., Jia, Z., and Chen, B. Sequoia:
Scalable, robust, and hardware-aware speculative
decoding. ArXiv, abs/2402.12374, 2024. URL https:
//api.semanticscholar.org/CorpusID:
267751265.

Ding, Q., Hsieh, C.-J., and Sharpnack, J. Robust stochastic
linear contextual bandits under adversarial attacks. In
Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, Proceedings of Ma-
chine Learning Research, pp. 7111–7123. PMLR, 28–30
Mar 2022.

Du, C., Jiang, J., Yuanchen, X., Wu, J., Yu, S., Li, Y., Li, S.,
Xu, K., Nie, L., Tu, Z., et al. Glide with a cape: A low-
hassle method to accelerate speculative decoding. arXiv
preprint arXiv:2402.02082, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Garivier, A. and Cappé, O. The kl-ucb algorithm for
bounded stochastic bandits and beyond. In Proceedings
of the 24th Annual Conference on Learning Theory, vol-
ume 19 of Proceedings of Machine Learning Research,
pp. 359–376. PMLR, 09–11 Jun 2011.

Gordon, G. J. Regret bounds for prediction problems. In
Proceedings of the 12th Conference on Learning Theory,
pp. 29–40, 1999.

Guo, J., Li, Z., Liu, X., Ma, K., Zheng, T., Yu, Z., Pan, D.,
LI, Y., Liu, R., Wang, Y., Guo, S., Qu, X., Yue, X., Zhang,
G., Chen, W., and Fu, J. Codeeditorbench: Evaluating
code editing capability of large language models, 2024.

10

https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:267751265
https://api.semanticscholar.org/CorpusID:267751265
https://api.semanticscholar.org/CorpusID:267751265

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

He, Z., Zhong, Z., Cai, T., Lee, J., and He, D. REST:
Retrieval-based speculative decoding. In Proceedings of
the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp.
1582–1595. Association for Computational Linguistics,
June 2024.

Hou, Y., Tan, V., and Zhong, Z. Almost minimax optimal
best arm identification in piecewise stationary linear ban-
dits. Advances in Neural Information Processing Systems,
37:128967–129041, 2024.

Hu, Y., Wang, K., Zhang, J., Li, C., and Chen, H. Sam
decoding: Speculative decoding via suffix automaton.
arXiv preprint arXiv:2411.10666, 2024.

Hu, Z. and Huang, H. Accelerated speculative sampling
based on tree monte carlo. In Forty-first International
Conference on Machine Learning, 2024.

Huang, K., Guo, X., and Wang, M. Specdec++: Boost-
ing speculative decoding via adaptive candidate lengths.
arXiv preprint arXiv:2405.19715, 2024.

Kato, M. and Ariu, K. The role of contextual information
in best arm identification, 2021. arXiv:2106.14077.

Khisti, A., Ebrahimi, M. R., Dbouk, H., Behboodi, A.,
Memisevic, R., and Louizos, C. Multi-draft speculative
sampling: Canonical architectures and theoretical limits.
In The Thirteenth International Conference on Learning
Representations, 2025.

Kveton, B., Szepesvari, C., Vaswani, S., Wen, Z., Latti-
more, T., and Ghavamzadeh, M. Garbage in, reward
out: Bootstrapping exploration in multi-armed bandits.
In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 3601–3610. PMLR, 09–15 Jun
2019.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics, 6(1):
4–22, 1985.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Y., Wei, F., Zhang, C., and Zhang, H. Eagle: Speculative
sampling requires rethinking feature uncertainty. arXiv
preprint arXiv:2401.15077, 2024a.

Li, Y., Wei, F., Zhang, C., and Zhang, H. EAGLE-2: Faster
inference of language models with dynamic draft trees.
In Empirical Methods in Natural Language Processing,
2024b.

Liu, X., Hu, L., Bailis, P. D., Stoica, I., Deng, Z.,
Cheung, A., and Zhang, H. Online speculative de-
coding. ArXiv, abs/2310.07177, 2023. URL https:
//api.semanticscholar.org/CorpusID:
263835233.

Liu, X., Daniel, C., Hu, L., Kwon, W., Li, Z., Mo, X., Che-
ung, A., Deng, Z., Stoica, I., and Zhang, H. Optimizing
speculative decoding for serving large language models
using goodput. arXiv preprint arXiv:2406.14066, 2024.

Luo, H., Wei, C.-Y., Agarwal, A., and Langford, J. Ef-
ficient contextual bandits in non-stationary worlds. In
Proceedings of the 31st Conference On Learning Theory,
volume 75 of Proceedings of Machine Learning Research,
pp. 1739–1776. PMLR, 06–09 Jul 2018.

Magureanu, S., Combes, R., and Proutiere, A. Lipschitz
bandits: Regret lower bound and optimal algorithms. In
Conference on Learning Theory, pp. 975–999. PMLR,
2014.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang,
Z., Wong, R. Y. Y., Chen, Z., Arfeen, D., Ab-
hyankar, R., and Jia, Z. Specinfer: Accelerat-
ing generative llm serving with speculative inference
and token tree verification. ArXiv, abs/2305.09781,
2023. URL https://api.semanticscholar.
org/CorpusID:258740799.

Oliaro, G., Jia, Z., Campos, D., and Qiao, A. Suffixdecoding:
A model-free approach to speeding up large language
model inference. arXiv preprint arXiv:2411.04975, 2024.

Robbins, H. Some aspects of the sequential design of exper-
iments. Bulletin of the American Mathematical Society,
58:527–535, 1952.

Russo, D., Roy, B. V., Kazerouni, A., and Osband, I. A tu-
torial on thompson sampling. ArXiv, abs/1707.02038,
2017. URL https://api.semanticscholar.
org/CorpusID:3929917.

Saxena, A. Prompt lookup decoding, November 2023.
URL https://github.com/apoorvumang/
prompt-lookup-decoding/.

Sun, H., Chen, Z., Yang, X., Tian, Y., and Chen, B. Tri-
force: Lossless acceleration of long sequence generation
with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024a.

11

https://api.semanticscholar.org/CorpusID:263835233
https://api.semanticscholar.org/CorpusID:263835233
https://api.semanticscholar.org/CorpusID:263835233
https://api.semanticscholar.org/CorpusID:258740799
https://api.semanticscholar.org/CorpusID:258740799
https://api.semanticscholar.org/CorpusID:3929917
https://api.semanticscholar.org/CorpusID:3929917
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Sun, Z., Mendlovic, U., Leviathan, Y., Aharoni, A., Beirami,
A., Ro, J. H., and Suresh, A. T. Block verification ac-
celerates speculative decoding. In Workshop on Efficient
Systems for Foundation Models II@ ICML2024, 2024b.

Sun, Z., Suresh, A. T., Ro, J. H., Beirami, A., Jain, H.,
and Yu, F. Spectr: Fast speculative decoding via optimal
transport. Advances in Neural Information Processing
Systems, 36, 2024c.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Tian, R., Ye, Y., Qin, Y., Cong, X., Lin, Y., Liu, Z., and
Sun, M. Debugbench: Evaluating debugging capability
of large language models, 2024.

Touvron, H., Martin, L., Stone, K. R., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D. M., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A. S., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I. M., Korenev, A. V., Koura,
P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D.,
Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X., Tang, B., Taylor, R., Williams, A.,
Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A.,
Kambadur, M. H. M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv, abs/2307.09288,
2023. URL https://api.semanticscholar.
org/CorpusID:259950998.

Wan, R., Wei, H., Kveton, B., and Song, R. Multiplier
bootstrap-based exploration. In Proceedings of the 40th
International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
35444–35490. PMLR, 23–29 Jul 2023.

Wang, J., Wang, J., Athiwaratkun, B., Zhang, C., and Zou,
J. Mixture-of-agents enhances large language model
capabilities. arXiv preprint arXiv:2406.04692, 2024.

Xia, H., Yang, Z., Dong, Q., Wang, P., Li, Y., Ge, T., Liu,
T., Li, W., and Sui, Z. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of spec-
ulative decoding. In Ku, L.-W., Martins, A., and Sriku-
mar, V. (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 7655–7671, Bangkok,
Thailand and virtual meeting, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.

findings-acl.456. URL https://aclanthology.
org/2024.findings-acl.456.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H.,
Lin, H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J.,
Ma, J., Yang, J., Xu, J., Zhou, J., Bai, J., He, J., Lin,
J., Dang, K., Lu, K., Chen, K., Yang, K., Li, M., Xue,
M., Ni, N., Zhang, P., Wang, P., Peng, R., Men, R., Gao,
R., Lin, R., Wang, S., Bai, S., Tan, S., Zhu, T., Li, T.,
Liu, T., Ge, W., Deng, X., Zhou, X., Ren, X., Zhang,
X., Wei, X., Ren, X., Liu, X., Fan, Y., Yao, Y., Zhang,
Y., Wan, Y., Chu, Y., Liu, Y., Cui, Z., Zhang, Z., Guo,
Z., and Fan, Z. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Yin, M., Chen, M., Huang, K., and Wang, M. A theoretical
perspective for speculative decoding algorithm. arXiv
preprint arXiv:2411.00841, 2024.

Zhong, Z., Cheung, W. C., and Tan, V. Probabilistic sequen-
tial shrinking: A best arm identification algorithm for
stochastic bandits with corruptions. In Proceedings of the
38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research,
pp. 12772–12781. PMLR, 18–24 Jul 2021.

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal, R.
Distillspec: Improving speculative decoding via knowl-
edge distillation. In The Twelfth International Conference
on Learning Representations, 2024.

12

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456
https://arxiv.org/abs/2407.10671

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

A. Related Works
Speculative Decoding Speculative decoding is proposed in Leviathan et al. (2023); Chen et al. (2023), where the draft model
only generates a single chain of draft tokens. Then a line of works extends the chain structure to the tree structure (Miao
et al., 2023; Cai et al., 2024; Du et al., 2024; Li et al., 2024a; Hu & Huang, 2024). In these works, the draft tokens are
organized as a connected tree. To further improve the number of accepted tokens, previous works propose to generate tokens
in a batch manner, i.e., the draft tokens are organized as multiple disconnected parts. SpecTr (Sun et al., 2024c) views this
problem from the optimal transport perspective and derives the algorithm that is optimal up to a multiplicative constant.
Khisti et al. (2025) derives the canonical form of this problem and design the relaxed optimization algorithms. All these
algorithms verify the draft tokens in a token by token manner. Sun et al. (2024b) proposes to verify all the draft tokens as a
whole block, which further boosts the acceleration ratio. Sun et al. (2024a) proposes to fit the speculative deciding into
a hierarchical structure, which multiple draft models with various sizes are generating and verifying tokens. The smaller
model will generate more tokens. This fine-grained behavior improve the overall performance of the system. Liu et al.
(2023) design algorithms to update the draft model parameters in an online manner, which makes the draft model adaptive
to the current context. Liu et al. (2024) and Huang et al. (2024) aim to optimize the speculative length in a training and
training-free manner (more discussions on SpecDec++ (Huang et al., 2024) are provided in Appendix B.4). Chen et al.
(2024) optimizes the hyperparameters related to the hardware by dynamic programming in an offline manner. We also note
that there are a series of non-parametric speculative decoding algorithms (Hu et al., 2024; Oliaro et al., 2024), i.e., the draft
model itself does not require any training procedures. Yin et al. (2024) derives the theoretical analysis of the speculative
decoding.

Multi-Armed Bandit The multi-armed bandit problem is a fundamental topic in decision theory and reinforcement learning,
with various algorithms developed to address the exploration-exploitation trade-off. The standard stochastic K-armed
bandit problem is firstly introduced by Robbins (1952) and then studied by Lai & Robbins (1985). There has been a major
theoretical advancement with the introduction of Upper Confidence Bound (UCB) algorithms (Auer et al., 2002b). Various
algorithms have been proposed to achieve improved theoretical guarantees and practical performance since then (Garivier
& Cappé, 2011; Bubeck et al., 2012). Beyond UCB-type algorithms, sampling-based algorithms, such as Thompson
Sampling (Agrawal & Goyal, 2012; 2017; Russo et al., 2017) and sampling via bootstrap (Kveton et al., 2019; Wan et al.,
2023), have also exhibited strong empirical performance with provable regret bounds. Furthermore, the problem has been
extended to the adversarial settings where the rewards are no longer stochastic (Auer et al., 2002a; Bubeck et al., 2012). We
refer to Lattimore & Szepesvári (2020) for a comprehensive introduction of the Multi-Armed Bandit problem.

B. Additional Discussions and Remarks
B.1. Discussion on the Assumptions

On the theoretical side, the stationary mean assumption (Assumption 4.1) is strictly weaker than the i.i.d. assumption.
In particular, the number of accepted tokens can depend on the generated tokens. Therefore, this assumption is aligned
with real-world scenarios in which different decoding steps are correlated. Furthermore, the basic Multi-Armed Bandits
(MAB) model can be generalized to contextual bandits and non-stationary bandits. The proposed BANDITSPEC framework
provides a basic template to apply these more general MAB setups to speculative decoding. Our formulations under the
stationary/adversarial mean assumptions are just basic setups and we leave the more general/elaborate setups as future
research.

On the experimental side, our experimental results (Table 1) indicate, the performance of UCBSPEC significantly outperforms
one of the best speculative decoding methods, Eagle-2 (Li et al., 2024). This corroborates the stationary mean assumption in
our formulation.

B.2. Discussion on UCBSPEC

We comment that UCBSPEC is among the simplest UCB-type algorithms in the sense that only the empirical means and
UCB’s need to be maintained, and the hyperparameter to be selected can be directly determined via the UCB’s.

In contrast, Thompson Sampling (Agrawal & Goyal, 2012) and KL-UCB (Garivier & Cappé, 2011) generally achieve better
empirical regret bounds than UCB1 (Auer et al., 2002b). However, Thompson Sampling requires maintaining the posterior
distribution and sampling from it to select the arm to pull; whereas KL-UCB involves solving an optimization problem for
arm selection. These steps add additional complexity to the algorithms.

1

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Given our goal of accelerating LLM inference, the simplicity of UCB1 is more in line with this objective. Therefore, we
propose UCBSPEC, which redesigns the confidence radius and the stopping rule of UCB1 to adapt specifically to the
speculative decoding application.

B.3. Discussion on Adaptive Adversary

We consider the oblivious adversary in this paper where the numbers of accepted tokens generated by all hyperparameters at
all time steps, i.e., {yi,t}i∈[K],t∈N, are fixed before the decoding process starts. One may be interested in considering the
adapative adversary, where the environment (adversary) can choose the number of accepted tokens generated by SIt based
on (part of) the history information Ht−1 and It (Arora et al., 2012). This adversary is more malicious than the oblivious
one and the regret is expected to be even larger than the current one in Theorem 5.3. As our empirical experiments suggest
that the practical scenario aligns more closely with the stochastic reward assumption (Assumption 4.1) and deviates from the
oblivious adversarial reward assumption (Assumption 5.1), we believe it is unnecessary to consider the adaptive adversarial
reward.

B.4. Discussion on SpecDec++ (Huang et al., 2024)

We compare the proposed methods with an existing adaptive speculative decoding method, SpecDec++ (Huang et al., 2024),
in this section.

SpecDec++ (Huang et al., 2024) is adaptive in choosing the speculation length, achieving good performance compared
to the vanilla speculative decoding method (Leviathan et al., 2023; Chen et al., 2023). It trains an acceptance probability
prediction head and stops drafting new tokens when the predicted rejection probability reaches certain threshold.

We compare it with the proposed methods as follows:

• Firstly, we highlight that our proposed method is training-free which can be deployed easily along with existing
off-the-shelf methods. In contrast, SpecDec++ focuses on training of an acceptance prediction head. Currently,
SpecDec++ is only available when using LLaMA-2-Chat-7B as the draft model and LLaMA-2-Chat-70B as the target
model (bfloat 16).

• Secondly, the proposed BANDITSPEC framework considers the more general hyperparameter selection problem
that goes beyond merely the speculation length. Therefore, it is ”orthogonal” to SpecDec++ in the sense that any
methods with (or without) SpecDec++ can also be candidates for the hyperparameter in our framework, e.g., {Eagle-2,
LLaMA-2-Chat-7B} with SpecDec++ can also be regarded as arms (if they are available).

C. Additional Details
In this section, we provide more details that complement the main paper.

C.1. Vanilla Speculative Decoding

For completeness, we present and describe the vanilla speculative decoding algorithm (Leviathan et al., 2023; Chen et al.,
2023) in Algorithm 6 in this section.

We introduce some notations first. For any nonnegative function f : X → R+ with
∑

x∈X f(x) > 0, we define
the distribution induced by it as Norm(f(·)) = f(·)/

∑
x′∈X f(x′). The positive part of a function f is denoted as

[f(·)]+ = max{0, f(·)}.

Speculative decoding implements a draft model Q to generate draft tokens and let the target model P verify them in parallel.
In practice, the draft model is much smaller than the target model. Thus, the draft token generation (Line 1) can be achieved
in a short time. Then we let the target model only forward inference once with these draft tokens as inputs (Line 2). The
verification procedures (Lines 4 to 9) are designed to guarantee that the output tokens x1:τ+1 is distributed as the target
model P . Here, the additional (τ + 1)-st accepted token is also called the bonus token.

2

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Algorithm 6 Vanilla Speculative Decoding
Inputs: base model P , draft model Q, prefix pt, maximum speculation length L
Procedures:

1: Generate L draft tokens x̃1:L via x̃i ∼ Q(· |pt, x̃1:i−1) for i ∈ [L].
2: Set τ = 0, and calculate the values of P (x̃i |pt, x̃1:i−1) for i ∈ [L] in parallel.
3: for k = 1, . . . , L do
4: Sample ri ∼ Unif([0, 1]).
5: if ri ≤ min{1, P (x̃i |pt, x̃1:i−1)/Q(x̃i |pt, x̃1:i−1)} then
6: Set τ = i and xi = x̃i.
7: else
8: Sample xi∼Norm

([
P (· |pt, x̃1:i−1)−Q(· |pt, x̃1:i−1)

]
+

)
.

9: break.
10: end if
11: end for
12: if τ = L then sample xL+1 ∼ P (· |pt, x1:L).
13: return x1:τ+1.

C.2. Dynamics of MAB

We provide a description of the dynamics of MAB in Algorithm 7.

Algorithm 7 Dynamics of MAB
Inputs: K arms, time horizon T .

1: H0 = ∅.
2: for t = 1, 2, . . . , T do
3: Agent adopts an algorithm to select It based on Ht−1.
4: Environment reveals the reward XIt,t to the agent.
5: Ht = concat(Ht−1, (It, XIt,t)).
6: end for

The goal is to minimize the cumulative regret

max
i∈[K]

E
[T∑

t=1

Xi,t

]
− E

[T∑
t=1

XIt,t

]
,

where the expectation is taken w.r.t. the randomness in the rewards (for the stochastic setup) and the possible internal
randomness in the arm selection algorithm.

C.3. Full Description of BANDITSPEC with UCBSPEC

We provide the full description of BANDITSPEC(ALG) with ALG = UCBSPEC in Algorithm 8.

3

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Algorithm 8 BANDITSPEC(UCBSPEC) (Full version of UCBSPEC)
Inputs: initial prompt pt0 = pt ∈ X ∗, bandit configuration ν = (P,S = {Si}i∈[K], L).
Procedures:

1: t = 0,H0 = ∅, I0 = 1, xI0,0 = ∅.
2: while EOS /∈ xIt,t do
3: t = t+ 1
4: if t ≤ K then
5: It = t. (Round-Robin)
6: else
7: Select index It = argmaxi∈[K] UCBi,t−1.
8: end if
9: Observe XIt,t = xIt,t = SPECDECSUB(ptt−1, P, SIt , L) and YIt,t = yIt,t = len(XIt,t).

10: ptt = concat(ptt−1, XIt,t), Ht = concat(Ht−1, (It, XIt,t)).
11: Update the statistics {µ̂i,t}i∈[K], {cri,t}i∈[K], where

ni,t =

t∑
s=1

1{Is = i}, µ̂i,t =

∑t
s=1 Yi,s1{Is = i}

ni,t
,

cri,t =
L

2

√
1 + ni,t

n2
i,t

(
1 + 2 log

Kt2(1 + ni,t)
1
2

δ

)
,

UCBi,t = µ̂i,t + cri,t.

12: end while
13: return t,ptt

C.4. Full Description of BANDITSPEC with EXP3SPEC

We provide the full description of BANDITSPEC(ALG) with ALG = EXP3SPEC in Algorithm 9.

Algorithm 9 BANDITSPEC(EXP3SPEC) (Full version of EXP3SPEC)

Inputs: initial prompt pt0 = pt ∈ X ∗, bandit configuration ν = (P,S = {Si}i∈[K], L), learning rates ηt =
√

logK
t·K , t ∈ N.

Procedures:
1: t = 0,H0 = ∅, I0 = 1, xI0,0 = ∅.
2: while EOS /∈ xIt,t do
3: t = t+ 1
4: Set probability vector pt ∈ ∆[K] with

pt,i =
exp

(
− ηt

∑t−1
s=1 Ẑi,s

)
∑K

j=1 exp
(
− ηt

∑t−1
s=1 Ẑj,s

) ,∀i ∈ [K].

5: Select a hyperparameter index It ∼ pt.
6: Observe XIt,t = xIt,t = SPECDECSUB(ptt−1, P, SIt , L) and yIt,t = len(XIt,t).
7: ptt = concat(ptt−1, XIt,t), Ht = concat(Ht−1, (It, XIt,t)).
8: Set the statistics

Ẑi,t = 1{i = It} ·
L+ 1− yi,t

L · pt,i
, ∀i ∈ [K].

9: end while
10: return t,ptt

4

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

D. Proofs of Main Results
D.1. Proof of Proposition 3.1

To prove Proposition 3.1, we note that we only need to prove

ptST(ALG)
d
= ptτc , and

len(ptST(ALG))

L+ 1
≤ ST(ALG) ≤ len(ptST(ALG)), a.s.

The other results are implied by these two results. For equality, we note that this is already proved by Theorem 1 in Yin
et al. (2024), where the equality holds for any specification of the hyperparameters. For the inequality, we note that each
implementation of SPECDECSUB generates at least one token and at most L+ 1 tokens. Thus, the inequality holds almost
surely.

D.2. Proof of Theorem 4.3

Theorem 4.3 (Upper Bound). Under Assumptions 4.1 and 4.2, given any prompt pt ∈ X ∗ and bandit configuration
ν = (P,S = {Si}i∈[K], L), the expected stopping time regret of Algorithm 3 with ALG =Algorithm 4 (UCBSPEC) is upper
bounded as

Reg(ALG,pt, ν) = O
(
H(pt, ν) · L2 logE[len(ptτc)]

)
.

Proof of Theorem 4.3. Our proof of Theorem 4.3 consists of three steps.

• Reward and Stopping time decomposition.

• Construction of the high probability event.

• Concluding the proof.

As we mentioned in Section 4, the main difference lies at the two aspects:
Firstly, the stopping time is now a random, which depends on the generated tokens. This cause trouble when we decompose
the reward/regret, as both the rewards and time horizon depend on the history. We tackle this problem in Step 1 by making
use of the martingale structure of the rewards sequence.
Secondly, we consider the problem under Assumption 4.1, where the number of accepted tokens can be dependent. This
is practical as LLM generates tokens in an autoregressive manner. In contrast, under the commonly seen assumption for
the K-armed MAB, the rewards are i.i.d. and can be regarded as they have been sampled before the algorithm starts (see
Chapter 4 in Lattimore & Szepesvári (2020)). Thus, Chernoff-Hoeffding bound (Lemma F.2) can be directly applied, which
cannot be used under Assumption 4.1. We solve this problem in Step 2, by adopting the so-called self-normalized confidence
bounds (Abbasi-yadkori et al., 2011).

Step 1: Reward and Stopping time decomposition.

By the property of speculative decoding in (2) and (11), for any algorithm ALG, 3

E
[
len(ptτc)

]
= E[len(ptST(ALG))] = E

[ST(ALG)∑
t=1

YIt,t

]

We wish to decompose the expected total token sequence in terms of each hyperparameter i ∈ [K] in the first step, i.e.,

E
[ST(ALG)∑

t=1

YIt,t

]
=

K∑
i=1

µi · E
[
ni,ST(ALG)

]
.

3We clarify that only the tokens up to the EOS token will be appended to the prefix token sequence in practice. Therefore, the actual
number of accepted tokens is between [1, YIST(ALG),ST(ALG)]. While this mismatch can be solved, using YIST(ALG),ST(ALG) as the number of
accepted tokens in the last round will introduce an error of at most L to the token sequence length len(ptST(ALG)), which is an error of at
most 1 to the stopping time ST(ALG). This error is negligible compared to the other values in the stopping time regret. Therefore, we
assume the EOS token only appears at the end of accepted tokens for the sake of simplicity.

5

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

The standard regret analysis adopts Wald’s equation to decompose the expected cumulative regret, or equivalently the
stopping time. However, as both the stopping time ST(ALG) and YIt,t depends on the history under our problem setup,
Wald’s equation fails. We propose a new and general approach to decompose the reward.

• Step 1.1: We first prove that Mn :=
∑n

t=1 YIt,t − µIt , n = 0, 1, 2, . . . is a martingale with respect to {Fn}∞n=0, where
M0 := 0,Fn := σ(Hn).

By the definition of martingale, we only need to show (1) E[|Mn|] < ∞, and (2) E[Mn+1|Fn] = Mn.

(1) E[|Mn|] < ∞: As the number of the accepted tokens at each round is bounded as YIt,t ∈ [1, L+ 1] almost surely and
µIt ∈ [1, L + 1], we have |YIt,t − µIt | ≤ L. Then the triangular inequality |Mn| ≤

∑n
t=1 |YIt,t − µIt | ≤ L · n < ∞

indicates that

E[|Mn|] < ∞. (7)

(2) E[Mn+1|Fn] = Mn: The conditional expectation of Mn+1 can be calculated via tower property as

E[Mn+1 | Fn] = Mn + E
[
E
[
YIn+1,n+1 − µIn+1

| Hn, In+1

]
| Hn

]
= Mn, (8)

where the last equality results from Assumption 4.1.

Based on (7) and (8), Mn, n = 0, 1, 2, . . . is a martingale with respect to {Fn}∞n=0.

• Step 1.2: We then prove E[MST(ALG)] = 0 via Doob’s optional stopping lemma (Lemma F.1).

We have already showed that
∑n

t=1 YIt,t − µIt , n = 1, 2, . . . is a martingale with respect to {Hn}∞n=0. In order to apply
Lemma F.1, we firstly verify the prerequisites listed in Lemma F.1 condition (b): (1) E[ST(ALG)] < ∞, and (2) there exists
c ∈ R, such that E[|Mt −Mt−1| | Ft−1] ≤ c almost surely for t ≤ ST(ALG).

(1) E[ST(ALG)] < ∞: According to the property of speculative decoding (3) and Assumption 4.2, we have that
E[ST(ALG)] ≤ E[len(ptτc)] < ∞.

(2) E[|Mt −Mt−1| | Ft−1] ≤ c: As Mt −Mt−1 = YIt,t − µIt and |YIt,t − µIt | ≤ L almost surely, it holds that E[|Mt −
Mt−1| | Ft−1] ≤ L. Taking c = L finishes the verification.

Therefore, condition (b) in Lemma F.1 is satisfied and we obtain

E
[ST(ALG)∑

t=1

YIt,t − µIt

]
= 0. (9)

Step 1.3: We show that E
[∑ST(ALG)

t=1 YIt,t

]
=

∑K
i=1 µi · E

[
ni,ST(ALG)

]
.

We firstly note that

E
[∣∣∣∣ ST(ALG)∑

t=1

YIt,t

∣∣∣∣] ≤ (L+ 1)E[ST(ALG)] < ∞ and E
[∣∣∣∣ ST(ALG)∑

t=1

µIt

∣∣∣∣] ≤ (L+ 1)E[ST(ALG)] < ∞,

so the expectations of
∑ST(ALG)

t=1 YIt,t and
∑ST(ALG)

t=1 µIt exist and are finite (integrable).

Furthermore, we have

E
[ST(ALG)∑

t=1

µIt

]
= E

[K∑
i=1

ST(ALG)∑
t=1

1{It = i} · µi

]
=

K∑
i=1

µi · E
[
ni,ST(ALG)

]
, (10)

where ni,ST(ALG) =
∑ST(ALG)

t=1 1{It = i} by definition. Because
∑ST(ALG)

t=1 YIt,t and
∑ST(ALG)

t=1 µIt are integrable, (9) and
(10) imply

E
[ST(ALG)∑

t=1

YIt,t

]
= E

[ST(ALG)∑
t=1

YIt,t − µIt

]
+ E

[ST(ALG)∑
t=1

µIt

]
=

K∑
i=1

µi · E
[
ni,ST(ALG)

]
. (11)

6

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

This equality decomposes the cumulative reward (and stopping time) in terms of the arms.

Step 2: Construction of the high probability event.

We then derive the concentration property for the number of accepted tokens. Define the good events:

Et :=
{
µ̂i,t ∈ [µi − cri,t, µi + cri,t],∀i ∈ [K] at round t

}
.

Since random variables supported on [a, b] is (b− a)2/4-sub-Gaussian and 1− µIt ≤ YIt,t − µIt ≤ L+ 1− µIt under our
problem setup. According to Lemma F.3, we obtain

P
(
Et
)
≥ 1− δ

t2
and

∞∑
t=K+1

P
(
Ec
t

)
≤ π2δ

6
, (12)

where δ is a confidence parameter that will be specified later. We remark that Lemma F.3 from Abbasi-yadkori et al. (2011)
adopts a self-normalized concentration bound for the martingale sequence, which generalizes the standard i.i.d. reward
assumption in the K-armed MAB problem.

As a result, we can now bound the number of times arm i is pulled at any round t ≥ K. Conditional on the good event Et,
we have µ̂i,t ∈ [µi − cri,t, µi + cri,t] and arm i will not be pulled if cri,t < ∆i/2. By adopting Lemma F.4, when arm i is
selected at time t+ 1, it must hold that

ni,t ≤ 4 +
2L2

∆2
i

(
1 + 2 log

LK · t2

∆iδ

)
. (13)

Step 3: Concluding the proof.

According to Step 1,

E
[
len(ptτc)

]
= E[len(ptST(ALG))] = E

[ST(ALG)∑
t=1

YIt,t

]
=

K∑
i=1

µi · E
[
ni,ST(ALG)

]
.

Therefore,

Reg(ALG) =
1

µi∗

(∑
i∈[K]

µi · E
[
ni,ST(ALG)

]
+

∑
i∈[K]

∆i · E
[
ni,ST(ALG)

]
− µi∗ · E [ST(ALGi∗)]

)

=
∑
i̸=i∗

∆i

µi∗
· E[ni,ST(ALG)]. (14)

Under the UCBSPEC algorithm, we have∑
i̸=i∗

∆i

µi∗
· E

[
ni,ST(ALG)

]
=

∑
i ̸=i∗

∆i

µi∗
· E

[ST(ALG)∑
t=K+1

1

{
It = i, ni,t−1 ≤ 4 +

2L2

∆2
i

(
1 + 2 log

LKt2

∆iδ

)}]

+
∑
i̸=i∗

∆i

µi∗
· E

[ST(ALG)∑
t=K+1

1

{
It = i, ni,t−1 > 4 +

2L2

∆2
i

(
1 + 2 log

LK(t− 1)2

∆iδ

)}]
+K

≤
∑
i ̸=i∗

∆i

µi∗
· E

[
4 +

2L2

∆2
i

(
1 + 2 log

LK · (ST(ALG))2

∆iδ

)]
+ E

[ST(ALG)∑
t=K+1

1
{
Ec
t

}]
+K

≤
∑
i ̸=i∗

∆i

µi∗
·
(
4 +

2L2

∆2
i

(
1 + 2 log

LK · (E[ST(ALG)])2

∆iδ

))
+

∞∑
t=K+1

P
(
Ec
t

)
+K,

≤
∑
i ̸=i∗

∆i

µi∗
·
(
4 +

2L2

∆2
i

(
1 + 2 log

LK · (E[len(ptτc])
2

∆iδ

))
+

π2δ

6
+K,

7

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

where the first inequality results from (13), the second inequality utilizes Jensen’s inequality, and the last inequality adopts
the property of speculative decoding (3) and the upper bound on the error probability of good event (12) in Step 2. Taking
δ = 1/2 in the above bound concludes the proof of this theorem.

D.3. Proof of Theorem 5.3

Fix any b ∈ [K], the baseline algorithm is set to be ALGb, i.e., Algorithm 3 implements Line 4 of Algorithm 3 with
hyperparameter Sb only. Let ALG = EXP3SPEC. we assume the BANDITSPEC(ALG) repeats the while loop in Algorithm 3
until max{ST(ALG),ST(ALGb)}. To avoid any confusion, we restate the algorithm for the purpose of analysis in Algo-
rithm 10. Algorithm 10 takes ALG and ALGb as an input and stops until ptST(ALG) and ptST(ALGb)

are generated. The two
token sequences up to EOS token are output at the end of the algorithm.

Algorithm 10 BANDITSPEC(EXP3SPEC) (For analysis purpose)
Inputs: initial prompt pt0 = pt ∈ X ∗, speculative decoding configuration ν = (P,S = {Si}i∈[K], L), stopping time
τ = ∞, baseline hyperparameter Sb, initial prompt ptb0 = pt, stopping time τ b = ∞.
Procedures:

1: t = 0,H0 = ∅, I0 = 1, xI0,0 = ∅, xb
b,0 = ∅.

2: while τ = ∞ or τ b = ∞ do
3: t = t+ 1
4: // Procedures of the original EXP3SPEC
5: if τ = ∞ and EOS ∈ xIt−1,t−1 then
6: τ = t− 1 and ptτ = ptt−1.
7: end if
8: Set probability vector pt ∈ ∆[K] with

pt,i =
exp

(
− ηt

∑t−1
s=1 Ẑi,s

)
∑K

j=1 exp
(
− ηt

∑t−1
s=1 Ẑj,s

) with learning rate ηt =

√
logK

t ·K
, ∀i ∈ [K]. (15)

9: Select a hyperparameter index It ∼ pt.
10: Observe XIt,t = xIt,t = SPECDECSUB(ptt−1, P, SIt , L) and yIt,t = len(XIt,t).
11: ptt = concat(ptt−1, XIt,t), Ht = concat(Ht−1, (It, XIt,t)).
12: Set the statistics

Ẑi,t = 1{i = It} ·
L+ 1− yi,t

L · pt,i
, ∀i ∈ [K]. (16)

13: // Procedures of the baseline ALGb
14: if τ b = ∞ and EOS /∈ xb

It−1,t−1 then
15: τ b = t− 1 and ptbτb = ptbt−1.
16: end if
17: Observe Xb

b,t = xb
It,t

= SPECDECSUB(ptbt−1, P, Sb, L) and yb,t = len(Xb
b,t).

18: ptbt = concat(ptbt−1, X
b
b,t).

19: end while
20: return ST(ALG) = τ,ptST(ALG) = ptτ and ST(ALGb) = τ b,ptST(ALGb) = ptbτb .

Theorem 5.3. Under Assumptions 4.2, 5.1 and 5.2, given any prompt pt ∈ X ∗ and bandit configuration ν = (P,S =
{Si}i∈[K], L), the expected stopping time regret of Algorithm 3 with ALG =Algorithm 5 (EXP3SPEC),

Reg(ALG,pt, ν) ≤ 2L ·min

{√
len(ptτc)K logK,

2LK logK +
√

min
i∈[K]

ST(ALGi)K logK

}
.

8

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Algorithm 11 Dynamics of the OLO Problem with Full Information Feedback
1: H0 = ∅.
2: for t = 1, 2, . . . , T do
3: Selects pt ∈ ∆[K] based on Ht−1.
4: Observes the loss vector ℓt and suffers loss p⊤t ℓt.
5: Ht = concat(Ht−1, (pt, ℓt)).
6: end for

Proof of Theorem 5.3. For ease of presentation, we present Algorithm 10, where the while loop in BANDITSPEC is repeated
until max{ST(ALG),ST(ALGi)}.

Our analysis of Algorithm 10 is novel compared to the standard analysis of EXP3 algorithm (Auer et al., 2002a; Lattimore
& Szepesvári, 2020). It requires more technical manipulations due to the fact that the termination times of the baseline
algorithm ALGi and ALG are different and random, and that our goal is to minimize the stopping time regret (5).

For theoretical analysis, we regard Algorithm 10 as an instantiation of the Follow-the-Regularized-Leader (FTRL) algo-
rithm (Gordon, 1999; Lattimore & Szepesvári, 2020).

The proof is decomposed into 5 steps:

• Connection between FTRL and Algorithm 10: we firstly introduce FTRL and the problem where it is applicapable.
The shared features and differences are highlighted.

• Transformation of the stopping time regret: the stopping time regret is related to the regret under FTRL framework. In
this case, the minimized regret by FTRL can be translated to the stopping time regret.

• Regret decomposition: the FTRL regret is decomposed for easier processing.

• Upper bound each term in the decomposed regret: we upper bound each term in the decomposed regret. The main
difficulty is to deal with the difference in the time scales ST(ALG) and ST(ALGi) and the randomness in ST(ALG).
Specifically, because both the loss vectors {Ẑt}t∈N and the stopping time ST(ALG) are random, taking expectation of
the cumulative loss within [ST(ALGi),ST(ALG)] is non-trivial. We devise Lemma D.1 and Lemma D.2 to deal with
this problem.

• Conclusion of the stopping time regret: we aggregate the results in the previous steps and derive the final bound for the
stopping time regret.

Step 1: Connection between FTRL and Algorithm 5.

We denote ∆[K] as the K-dimensional probability simplex.

FTRL is often used in the Online Learning Optimization Problem (OLO). We firstly provide a brief introduction to OLO
that operates on ∆[K]. Let ℓ1, ℓ2, . . . ∈ RK be a sequence of unknown loss vectors. The dynamics of OLO problem is
stated in Algorithm 11. Given a time horizon T ∈ N, the agent (or algorithm) aims to minimize the (loss-based) regret

max
p∈∆[K]

T∑
t=1

(pt − p)⊤ℓt, (17)

where pt is the action taken by the agent at time step t, p is some fixed baseline action in ∆[K] and the maximum operator
indicates the agent is competing with the best fixed baseline. The FTRL algorithm minimizes (17) by taking the action
pt = argminp∈∆[K]

Φt(p) at time step t, where Φt : ∆[K] → R is defined as

Φt(x) := Ft(x) +

t−1∑
s=1

x⊤ℓs

and Ft : ∆[K] → R,∀t ∈ N, are some convex functions.

9

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

In the following, we illustrate the connection between FTRL and Algorithm 5 (or Algorithm 10). We let ℓt = Ẑt :=(
Ẑ1,t . . . , ẐK,t

)⊤
, Ft(x) = F (x)/ηt with F (x) : ∆[K] → R and F (x) :=

∑K
i=1(xi log xi−xi)+logK+1. Furthermore,

some calculation indicates the action taken by FTRL is exactly pt as in (15), i.e.,

pt = argmin
p∈∆[K]

Φt(p).

Therefore, Algorithm 5 is indeed an instantiation of FTRL in terms of the algorithm design.

Under our problem setup, the difference lies at the target of the algorithm. Instead of minimizing the corresponding regret

max
p∈∆[K]

E
[T∑

t=1

(pt − p)⊤Ẑt

]
,

we aim at minimizing the (loss-based) regret defined on two different time scales

R̃eg(ALG) := E
[ST(ALG)∑

t=1

p⊤t Ẑt

]
− min

i∈[K]
E
[ST(ALGi)∑

t=1

e⊤i Ẑt

]
, (18)

where ei ∈ RK is an one-hot vector with the ith coordinate being 1, and the expectation is taken w.r.t. the internal
randomness within ALG and Ẑt. We highlight again that ST(ALG) is random whereas ST(ALGi) is fixed under the greedy
decoding strategy.

Step 2: Transformation of the stopping time regret.

The stopping time regret (5) and R̃eg(ALG) in (18) may look different at first sight. We demonstrate that these two notions
of regret can be transformed into one another up to some constant factors.

We firstly simplify R̃eg(ALG). Let zi,t = 1− (yi,t − 1)/L. According to the definition of pt in (15) and Ẑt in (16),

ST(ALG)∑
t=1

p⊤t Ẑt =

ST(ALG)∑
t=1

L+ 1− yi,t
L

=
L+ 1

L
· ST(ALG)−

len(ptST(ALG))

L
.

Furthermore, note that Ẑt is an unbiased estimator for zt and ST(ALGi) is a fixed real number,

E
[ST(ALGi)∑

t=1

e⊤i Ẑt

]
=

ST(ALGi)∑
t=1

zi,t =
L+ 1

L
· ST(ALGi)−

len(ptST(ALGi))

L
. (19)

Hence, R̃eg(ALG) is simplified as

R̃eg(ALG) = E
[
L+ 1

L
· ST(ALG)−

len(ptST(ALG))

L

]
− min

i∈[K]

(L+ 1

L
· ST(ALGi)−

len(ptST(ALGi))

L

)
=

L+ 1

L
·
(
E[ST(ALG)]− min

i∈[K]
ST(ALGi)

)
where we adopt the property of speculative decoding (2) in the last equality. This indicates that

R̃eg(ALG) =
L+ 1

L
· Reg(ALG). (20)

Step 3: Regret decomposition.

Based on the previous two steps, we now upper bound R̃eg(ALG). This notion of regret distinguishes from the standard
regret analysis due to the difference in the time scales ST(ALG) and ST(ALGi).

10

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

For simplicity, we define the Bregman divergence induced by convex function f : ∆[K] → R+ as Df (·, ·) : ∆[K]×∆[K] →
R with Df (a, b) := f(a)− f(b)− (a− b)⊤∇f(b). Fix i ∈ [K], we now decompose this empirical regret w.r.t. i.

ST(ALG)∑
t=1

p⊤t Ẑt −
ST(ALGi)∑

t=1

e⊤i Ẑt.

=

ST(ALG)∑
t=1

(
(pt − pt+1)

⊤Ẑt

)
+

ST(ALG)∑
t=1

p⊤t+1Ẑt −
ST(ALGi)∑

t=1

e⊤i Ẑt

=

ST(ALG)∑
t=1

(
(pt − pt+1)

⊤Ẑt

)
+

ST(ALG)∑
t=1

(
Φt+1(pt+1)− Ft+1(pt+1)− Φt(pt+1) + Ft(pt+1)

)

−
(ST(ALG)∑

t=1

e⊤i Ẑt −
ST(ALG)∑

t=1

e⊤i Ẑt +

ST(ALGi)∑
t=1

e⊤i Ẑt

)

=

ST(ALG)∑
t=1

(
(pt − pt+1)

⊤Ẑt

)
+

ST(ALG)−1∑
t=0

(
Φt+1(pt+1)− Φt+1(pt+2)

)

+

ST(ALG)∑
t=1

(
Ft(pt+1)− Ft+1(pt+1)

)
+ FST(ALG)+1(ei)− F1(p1)

+ ΦST(ALG)+1(pST(ALG)+1)− ΦST(ALG)+1(ei) +
(ST(ALG)∑

t=1

e⊤i Ẑt −
ST(ALGi)∑

t=1

e⊤i Ẑt

)

≤
ST(ALG)∑

t=1

(
(pt − pt+1)

⊤Ẑt −
DF (pt+1, pt)

ηt

)
︸ ︷︷ ︸

(2)

+FST(ALG)+1(ei)− F1(p1)︸ ︷︷ ︸
(⋄)

+

ST(ALG)∑
t=1

(
Ft(pt+1)− Ft+1(pt+1)

)
︸ ︷︷ ︸

(†)

+ΦST(ALG)+1(pST(ALG)+1)− ΦST(ALGi)+1(ei)︸ ︷︷ ︸
(‡)

+
(ST(ALG)∑

t=1

e⊤i Ẑt −
ST(ALGi)∑

t=1

e⊤i Ẑt

)
︸ ︷︷ ︸

(¶)

(21)

where the last inequality adopts the fact that DΦt
(a, b) = DFt

(a, b) = DF (a, b)/ηt and the inequality

Φt(pt)− Φt(pt+1) = −DΦt(pt+1, pt)− (pt+1 − pt)
⊤∇Φt(pt) ≤ −DΦt(pt+1, pt).

Here (pt+1 − pt)
⊤∇Φt(pt) ≤ 0 results from the choice of pt = argminp∈∆[K]

Φt(p) and the first-order optimization
condition.

Step 4: Upper bound each term in the decomposed regret.

In this step, we upper bound each term in (21). We comment that (2) and (¶) require us to attend to the randomness in
ST(ALG) and the different time indeces. This issue will not be encountered in the conventional scenario where ST(ALG) =
ST(ALGi).

• Upper bound (2): we will show that E[(2)] ≤ E[K
∑ST(ALG)

t=1 ηt/2] almost surely.

Recall the definition of Ẑt in (6), Ẑt only has a positive value at the It coordinate. We divide the problem into two cases: (1)
pt,It − pt+1,It < 0, and (2) pt,It − pt+1,It ≥ 0.

11

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Case (1): pt,It − pt+1,It < 0. Because the Bregman divergence is always non-negative, hence,

(2) ≤ (pt,It − pt+1,It) · ẐIt,t − 0 ≤ 0 ≤ ηt
2pt,It

.

Case (2): pt,It − pt+1,It ≥ 0. Note that F (x) is a Legendre function on ∆[K]. By invoking Lemma F.8,

(pt − pt+1)
⊤Ẑt −

DF (pt+1, pt)

ηt
≤ ηt

2
∥Ẑt∥2H−1

t
,

where Ht = ∇2F (qt) and qt = α · pt + (1− α) · pt+1 for some α ∈ [0, 1]. Furthermore, ∇2F (qt) is a K ×K diagonal
matrix with

(
∇2F (qt)

)
i,i

= 1/qt,i,∀i ∈ [K]. Therefore,

ηt
2
∥Ẑt∥2H−1

t
=

ηt
2

·
z2It,t
p2t,It

· qt,It ≤
ηt
2

· 1

p2t,It
· pt,It =

ηt
2pt,It

.

To conclude the two cases, it holds almost surely that

(2) ≤
ST(ALG)∑

t=1

ηt
2pt,It

.

Lastly, by adopting Lemma D.1 which is proved in Appendix E.1, we obtain

E[(2)] ≤ K

2
· E

[ST(ALG)∑
t=1

ηt

]
.

Lemma D.1. Under Assumption 4.2, consider the learning rates ηt defined in Algorithm 5 (or Algorithm 10), it holds that

E
[ST(ALG)∑

t=1

ηt
pt,It

]
= K · E

[ST(ALG)∑
t=1

ηt

]
.

• Upper bound (⋄): Because F (x) is non-negative on ∆[K] and F (ei) = logK, hence,

(⋄) ≤ F (ei)

ηST(ALG+1)
=

logK

ηST(ALG)+1
=

logK

ηST(ALG)
.

where we manually set ηST(ALG)+1 = ηST(ALG).

• Upper bound (†): Recall that F (x) =
∑K

i=1(xi log xi − xi) + logK + 1, so F (x) is non-negative for any x ∈ ∆[K].
Additionally, ηt =

√
logK/(K · t), t ∈ [ST(ALG)] is a decreasing sequence. Therefore,

(†) =
ST(ALG)∑

t=1

(F (pt+1)

ηt
− F (pt+1)

ηt+1

)
≤ 0, a.s.

• Upper bound (‡): Since pST(ALG)+1 is the minimizer of ΦST(ALG)+1(p), we have (‡) ≤ 0.

• Upper bound (¶): Under Assumption 5.2, ST(ALG) ≥ ST(ALG1) almost surely. We further prove that E[(¶)] ≤
E[ST(ALG)]− ST(ALGi) for i = i∗, which we summarize in the following lemma with proof postponed to Appendix E.1.

Lemma D.2. Under Assumption 4.2 and 5.2, consider Ẑt defined in Algorithm 5, it holds that

E
[ST(ALG)∑
t=ST(ALGi∗)+1

e⊤i∗Ẑt

]
≤ E[ST(ALG)]− ST(ALGi∗).

12

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Step 5: Conclusion of the stopping time regret. Aggregating the upper bounds for each terms in (21) and taking
expectation,

R̃eg(ALG) ≤ K

2
E
[ST(ALG)∑

t=1

ηt

]
+ E

[
logK

ηST(ALG)

]
+ E[ST(ALG)]− ST(ALGi∗).

By substituting the learning rate values into the equation,

R̃eg(ALG) ≤ 2 · E
[√

ST(ALG) ·K logK
]
+ E[ST(ALG)]− ST(ALGi∗)

≤ 2 ·
√
E
[
ST(ALG)

]
·K logK + E[ST(ALG)]− ST(ALGi∗)

≤ 2 ·
√
len(ptτc) ·K logK + E[ST(ALG)]− ST(ALGi∗).

where the second inequality adopts Jensen’s inequality and the last equality holds due to ST(ALG) ≤ len(ptτc) almost surely
as in (3). According to the regret transformation in (20),

Reg(ALG) ≤ 2L ·
√
E
[
ST(ALG)

]
·K logK ≤ 2L ·

√
len(ptτc) ·K logK. (22)

Furthermore, by solving the quadratic function in terms of Reg(ALG), i.e.,

Reg(ALG) ≤ 2L ·
√(

Reg(ALG) + ST(ALGi∗)
)
·K logK,

we obtain

Reg(ALG) ≤ 4L2 ·K logK + 2L ·
√

min
i∈[K]

ST(ALGi) ·K logK. (23)

Aggregating (22) and (23) concludes the proof of this theorem.

Remark D.3 (Sampling Decoding under Adversarial Mean Values). Since the tokens can be regarded as fixed given the initial
prompt and the hyperparameter configurations under the greedy decoding strategy, we consider the greedy decoding strategy
under the adversarial mean values assumption (Assumption 5.1). If one wishes to consider the sampling decoding strategy,
the proof of Theorem 5.3 can be adapted to it. Specifically, this switch of decoding strategy mainly influences (19), the proofs
of Lemma D.1 and Lemma D.2. We can depend on Doob’s Optional Stopping Theorem (Lemma F.1) to solve this problem,
just like what we have done to prove (28) and replacing the condition (1) therein by E[ST(ALG)] ≤ E[len(ptτc)] < ∞. The
rest of the proof can go through in a similar manner. In the end, we can arrive at a similar result, i.e.,

Reg(ALG,pt, ν) ≤ 2L ·min

{
2LK logK +

√
min
i∈[K]

E[ST(ALGi)]K logK,
√

E[len(ptτc)]K logK

}
.

D.4. Proof of Theorem 4.4

Under the greedy decoding strategy, the problem is alleviated in two aspects. Firstly, given the target model P and the
initial prompt pt, the total length len(ptτc) is (potentially) determined. While the total length is determined, it is worth
noting that the number of accepted tokens at each round (Line 5 in Algorithm 3) is still random. Additionally, under the
dynamics presented in Algorithm 3 and given the history Ht, there is a one-to-one mapping between the accepted tokens
XIt,t and its length YIt,t.

Since the lower bound is established in terms of a class of algorithms over a set of initial prompts, we adopt X ∗
initial to

denote the set of initial prompts and adopt Sall to denote the set of all hyperparameter specifications that can be selected to
constitute S. To further ease the problem, we augment Assumption 4.1.

Assumption D.4. We assume that
• Given any bandit configuration ν = (P,S = {Si}i∈[K], L) and initial prompt pt ∈ X ∗

initial, conditional on the history
Ht−1 and the selected arm It at round t, the distribution of the length of the accepted tokens P(· | pt,Ht−1, It = i) =
PSi(·),∀i ∈ [K].
• For any two hyperparameter specifications S, S′ ∈ Sall, we have KL(PS , PS′) < ∞.

13

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

We consider the class of arm selection algorithms which are non-anticipatory and consistent.

Definition D.5 (Non-anticipartory Algorithm). An arm selection algorithm ALG is non-anticipatory if ALG(· | Ht) ∈
σ(Ht), ∀t ∈ N.

Definition D.6 (Consistent Algoirthm). An arm selection algorithm ALG is consistent over a class of bandit configurations
Λ and prompt set X ∗

initial if for all ν ∈ Λ and any sequence of initial prompts (ptm)∞m=1 ⊂ X ∗
inital with len(ptmτc) →

∞,m → ∞, and for all a ∈ (0, 1],

lim
m→∞

Reg(ALG,ptm, ν)

len(ptmτc)
a

= 0.

Theorem 4.4 (Lower Bound). Given any sequence of initial prompts (ptm)∞m=1 ⊂ X ∗
init with len(ptmτc) → ∞,m → ∞

and a bandit configuration ν = (P,S = {Si}i∈[K], L), under Assumption D.4, the greedy decoding strategy and the
dynamics represented in Algorithm 3, for any non-anticipatory and consistent arm selection algorithm ALG, the expected
regret satisfies

lim inf
m→∞

Reg(ALG,pt, ν)

log(len(ptmτc))
≥

∑
i ̸=i∗

∆i

µi∗
· 1

kli
,

where kli := infS∈S{KL(PSi
, PS) : EX∼PS

[X] > µi∗}.

Proof of Theorem 4.4. The proof consists of three steps:

• Divergence decomposition: similar to the reward decomposition in the upper bound proof, the divergence decomposition
cannot be done as the time horizon ST(ALG) is a random stopping time. We tackle this problem in the first step.

• Lower bound on Eν [ni,ST(ALG)]: we adapt the standard trick to lower bound the expected number of times arm i has
been chosen.

• Conclusion of the proof.

Step 1: Divergence decomposition. The divergence decomposition suffers from the same issue as the reward decomposition,
i.e., the stopping time ST(ALG) depends on the history. We adopt the same trick as in the reward decomposition step to
overcome this issue and the result is summarized in Lemma D.7 whose proof is postponed to App. E.

Lemma D.7. Under Assumption D.4, given two bandit configurations ν = (P,S = {Si}Ki=1, L) and ν′ = (P,S ′ =
{S′

i}Ki=1, L) which only differ in the hyperparameter specifications, for any pt ∈ X ∗
initial and algorithm ALG,

KL(PALG,pt,ν ,PALG,pt,ν′) =

K∑
i=1

EALG,pt,ν [ni,ST(ALG)]KL(PSi
, PS′

i
)

where PALG,pt,ν (resp. PALG,pt,ν) is the probability measure induced by (ALG,pt, ν) (resp. (ALG,pt, ν)) defined on the
σ-algebra {σ(Ht)}∞t=1.

Step 2: Establishment for the lower bound of Eν [ni,ST(ALG)]. Given algorithm ALG, bandit configuration ν ∈ Λ, prompt
pt ∈ (ptm)∞m=1 and any ε > 0, construct K − 1 alternative bandit configurations νi = (P,Si = {Si,j}Kj=1, L) for i ̸= i∗

with

Si,j = Sj · 1{j ̸= i}+ S′
i · 1{j = i},

where S′
i in νi satisfies that its mean µS′

i
> µi∗ with KL(PSi

, PS′
i
) ≤ kli + ε. In other words, under bandit configuration

νi, only Si changes into S′
i and arm i becomes the best arm. As the bandit configurations only differ in the hyperparameter

selection, we adopt the shorthand notation Pν ,Eν and Reg(ν) for PALG,pt,ν ,EALG,pt,ν and Reg(ALG,pt, ν) respectively when
there is no risk of confusion.

14

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

According to Lemma D.7, for any pt ∈ (ptm)∞m=1,

KL(Pν ,Pνi
) = Eν [ni,ST(ALG)] ·KL(PSi

, PS′
i
) ≤ Eν [ni,ST(ALG)] · (kli + ε).

By Lemma F.6, with Ai = {ni,ST(ALG) > ST(ALG)/2},

Pν [Ai] + Pνi
[Ac

i] ≥
1

2
exp

(
− Eν [ni,ST(ALG)] ·KL(PSi

, PS′
i
)
)

(24)

≥ 1

2
exp

(
− Eν [ni,ST(ALG)] · (kli + ε)

)
Thus, by adopting (14), the expected reward under ν can be lower bounded as

Reg(ν) ≥ ∆i

µi∗
· Eν [ni,ST(ALG)] ≥

∆i

µi∗
· Eν [ni,ST(ALG) | Ai] · Pν [Ai] (25)

≥ ∆i

µi∗
· 1
2
· Eν [ST(ALG) | Ai] · Pν [Ai] ≥

∆i

µi∗
·
len(ptτc)

2(L+ 1)
· Pν [Ai].

Similarly, under the alternative bandit configuration νi,

Reg(νi) ≥
µS′

i
− µi∗

µS′
i

· Eνi
[ni,ST(ALG)] ≥

µS′
i
− µi∗

µS′
i

·
len(ptτc)

2(L+ 1)
· Pνi

[Ac
i]. (26)

Combining (24), (25) and (26),

Reg(ν) + Reg(νi)

≥ min
{∆i

µi∗
,
µS′

i
− µi∗

µS′
i

}
·
len(ptτc)

2(L+ 1)
(Pν [Ai] + Pνi [A

c
i])

≥ min
{∆i

µi∗
,
µS′

i
− µi∗

µS′
i

}
·
len(ptτc)

4(L+ 1)
· exp

(
− Eν [ni,ST(ALG)] · (kli + ε)

)
which holds for any pt ∈ (ptm)∞m=1. Rearranging the terms, we have

lim inf
m→∞

Eν [ni,ST(ALG)]

log(len(ptmτc))

≥ 1

kli + ε
+ lim inf

m→∞

log
(
min

{
∆i

µi∗
,
µS′

i
−µi∗

µS′
i

})
− log

(
4(L+ 1)

)
− log(Reg(ν) + Reg(νi))

(kli + ε) · log(len(ptmτc))

=
1

kli + ε

where the last equality follows from the definition of consistent algorithm. Because ε > 0 is arbitrarily chosen, by sending
ε → 0, we obtain the lower bound for Eν [ni,ST(ALG)]

lim inf
m→∞

Eν [ni,ST(ALG)]

log(len(ptmτc))
≥ 1

kli
. (27)

Step 3: Conclusion of the proof. Aggregating (14) and (27),

lim inf
m→∞

Reg(ALG,ptm, ν)

log(len(ptmτc))
≥

∑
i ̸=i∗

∆i

µi∗
· 1

kli
.

This concludes the proof.

15

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

E. Supporting Propositions
E.1. Supporting Lemmas for Theorem 5.3

Lemma D.1. Under Assumption 4.2, consider the learning rates ηt defined in Algorithm 5 (or Algorithm 10), it holds that

E
[ST(ALG)∑

t=1

ηt
pt,It

]
= K · E

[ST(ALG)∑
t=1

ηt

]
.

Proof of Lemma D.1. Similar to the proof of Lemma D.2, we adopt Doob’s Optional Stopping Theorem (Lemma F.1) to
show

E
[ST(ALG)∑

t=1

ηt
pt,It

−K · ηt
]
= 0. (28)

According to condition (b) in Lemma F.1, we only need to show that (1) E[ST(ALG)] < ∞, and (2) there exists c ∈ R such
that for all t < ST(ALG), E

[∣∣ηt/pt,It −K · ηt|
∣∣Ht−1

]
< c.

Condition (1): Given Assumption 4.2, it holds that len(ptτc) < ∞ under the greedy decoding strategy. Therefore, we have
E[ST(ALG)] ≤ len(ptτc) < ∞.

Condition (2): Note that

E
[∣∣ ηt
pt,It

−K · ηt
∣∣ ∣∣∣ Ht−1

]
≤ E

[ηt
pt,It

∣∣∣ Ht−1

]
+K · ηt ≤ E

[K∑
i=1

ηt
pt,i

1{It = i}
∣∣∣ Ht−1

]
+K · ηt

≤ 2K · ηt ≤ 2
√

K logK.

Therefore, Condition (2) is satisfied and (28) is established.

In addition, by using Assumption 4.2,

E
[∣∣∣ ST(ALG)∑

t=1

K · ηt
∣∣∣] ≤ E

[
ST(ALG)

]√
K logK < ∞.

So E
[∑ST(ALG)

t=1 ηt
]

exists. Lastly,

E
[ST(ALG)∑

t=1

ηt
pt,It

]
= E

[ST(ALG)∑
t=1

ηt
pt,It

−K · ηt
]
+ E

[ST(ALG)∑
t=1

ηt

]

which indicates E
[∑ST(ALG)

t=1 ηt/pt,It
]

exists.

In conclusion, by adding K · E
[∑ST(ALG)

t=1 ηt
]

on both sides of (28), the desired result is obtained.

Lemma D.2. Under Assumption 4.2 and 5.2, consider Ẑt defined in Algorithm 5, it holds that

E
[ST(ALG)∑
t=ST(ALGi∗)+1

e⊤i∗Ẑt

]
≤ E[ST(ALG)]− ST(ALGi∗).

Proof of Lemma D.2. If the two expectations below exist and

E
[ST(ALG)∑

t=1

e⊤i Ẑt

]
= E

[ST(ALG)∑
t=1

zi,t

]
, (29)

16

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

then it holds that

E
[ST(ALG)∑

t=1

e⊤i Ẑt

]
− E

[ST(ALGi)∑
t=1

e⊤i Ẑt

]
= E

[ST(ALG)∑
t=1

zi,t

]
−

ST(ALGi)∑
t=1

zi,t

≤ E
[ST(ALG)∑
t=ST(ALGi)+1

zi,t

]
≤ E[ST(ALG)]− ST(ALGi).

The desired result can be obtained.

Therefore, we aim to prove (29). Since both ST(ALG) and Ẑt are random, the obstacle is that we cannot directly take
expectation of the summand. We will firstly prove

E
[ST(ALG)∑

t=1

e⊤i Ẑt − zi,t

]
= 0 (30)

by Doob’s Optional Stopping Theorem (Lemma F.1). According to condition (b) in Lemma F.1, we only need to show that
(1) E[ST(ALG)] < ∞, and (2) there exists c ∈ R such that for all t < ST(ALG), E

[
|e⊤i (Ẑt − zt)|

∣∣Ht−1

]
< c.

Condition (1) holds as shown in the proof Lemma D.1. We only need to show Condition (2). Note that E[Ẑ] = zt,

E
[
|e⊤i (Ẑt − zt)|

∣∣ Ht−1

]
≤ E

[
E
[
e⊤i Ẑt | Ht−1, It

] ∣∣∣ Ht−1

]
+ e⊤i zt = 2zi,t ≤ 2.

Therefore,
∑ST(ALG)

t=1 e⊤i Ẑt − zi,t is well-defined and (30) is established.

We then prove the two expectations exist. Note that all involved variables are positive, we only need to show

E
[ST(ALG)∑

t=1

zi,t

]
< ∞.

This can be obtained by noticing that zi,t ∈ [0, 1] for t ∈ N,

E
[ST(ALG)∑

t=1

zi,t

]
≤ E

[
ST(ALG)

]
< ∞.

Combining the above with Condition 2, we have

E
[ST(ALG)∑

t=1

e⊤i Ẑt

]
= E

[ST(ALG)∑
t=1

e⊤i Ẑt − p⊤zt

]
+ E

[ST(ALG)∑
t=1

e⊤i zt

]
which means E

[∑ST(ALG)
t=1 e⊤i Ẑt

]
exists.

In conclusion, by adding E
[∑ST(ALG)

t=1 zi,t
]

on both sides of (30),

E
[ST(ALG)∑

t=1

e⊤i Ẑt

]
= E

[ST(ALG)∑
t=1

zi,t

]
.

This finishes the proof of (29).

E.2. Proof of Lemma D.7

Lemma D.7. Under Assumption D.4, given two bandit configurations ν = (P,S = {Si}Ki=1, L) and ν′ = (P,S ′ =
{S′

i}Ki=1, L) which only differ in the hyperparameter specifications, for any pt ∈ X ∗
initial and algorithm ALG,

KL(PALG,pt,ν ,PALG,pt,ν′) =

K∑
i=1

EALG,pt,ν [ni,ST(ALG)]KL(PSi
, PS′

i
)

17

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

where PALG,pt,ν (resp. PALG,pt,ν) is the probability measure induced by (ALG,pt, ν) (resp. (ALG,pt, ν)) defined on the
σ-algebra {σ(Ht)}∞t=1.

Proof. As the two bandit configurations only differ in the hyperparameter specifications, we adopt the abbreviated notation
Pν and Pν′ for the induced probability PALG,pt,ν and PALG,pt,ν , respectively. We use PALG(·) to denote the output distribution
of the arm selection algorithm ALG in Line 4 in Algorithm 3.

With the bandit configuration ν = (P,S, L), the probability of HST(ALG) is

Pν(HST(ALG)) =

ST(ALG)∏
t=1

PALG(It | Ht−1,pt)P(YIt,t | Ht−1,pt, It) =

ST(ALG)∏
t=1

PALG(It | Ht−1,pt)PSIt
(YIt,t).

Similarly, under the bandit configuration ν′ = (P,S ′, L),

Pν′(HST(ALG)) =

ST(ALG)∏
t=1

PALG(It | Ht−1,pt)PS′
It
(YIt,t).

Therefore, it holds that

log
Pν(HST(ALG))

Pν′(HST(ALG))
=

ST(ALG)∑
t=1

log
PSIt

(YIt,t)

PS′
It
(YIt,t)

.

Because KL(PSi , PS′
i
) < ∞,∀i ∈ [K] under Assumption D.4, the divergence between Pν and Pν′ can be rewritten as

KL(Pν ,Pν′) = Eν

[
log

Pν(HST(ALG))

Pν′(HST(ALG))

]
= Eν

[ST(ALG)∑
t=1

log
PSIt

(YIt,t)

PS′
It
(YIt,t)

]
< ∞.

We then prove that

Eν

[ST(ALG)∑
t=1

log
PSIt

(YIt,t)

PS′
It
(YIt,t)

]
=

K∑
i=1

Eν [ni,ST(ALG)]KL(PSi , PS′
i
). (31)

The proof is composed by two arguments:

• Argument 1:

Eν

[ST(ALG)∑
t=1

(
log

PSIt
(YIt,t)

PS′
It
(YIt,t)

−KL(PSIt
, PS′

It
)
)]

= 0. (32)

• Argument 2:

Eν

[ST(ALG)∑
t=1

KL(PSIt
, PS′

It
)

]
=

K∑
i=1

Eν [ni,ST(ALG)]KL(PSi
, PS′

i
). (33)

If the two arguments are true, by summing up (32) and (33), we can obtain the desired result (31).

We prove the two above Arguments.

Argument 1. Let

Mn :=

n∑
t=1

log
PSIt

(XIt,t)

PS′
It
(XIt,t)

−KL(PSIt
, PS′

It
), n = 1, 2, . . .

18

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

and M0 := 0.

We firstly prove that (Mn)
∞
n=0 is a martingale w.r.t. (Hn)

∞
n=0: (1) Eν [|Mn|] < ∞, and (2) Eν

[
Mn+1 | Hn

]
= Mn.

(1) Eν [|Mn|] < ∞. According to Assumption D.4, for any i ∈ [K], KL(PSi
, PS′

i
) < ∞, this indicates there exists c ∈ R

such that

L+1∑
x=1

PSi(x)
∣∣∣ log PSi

(x)

PS′
i
(x)

∣∣∣ < c < ∞, ∀i ∈ [K]. (34)

This indicates

Eν [|Mn|] ≤
n∑

t=1

Eν

[∣∣∣ log PSIt
(XIt,t)

PS′
It
(XIt,t)

∣∣∣+ ∣∣∣KL(PSIt
, PS′

It
)
∣∣∣] < ∞. (35)

(2) Eν

[
Mn+1 | Hn

]
= Mn. By adopting the tower property.

Eν

[
Mn+1 | Hn

]
= Mn + Eν

[
Eν

[
log

PSIn+1
(YIn+1,n+1)

PS′
In+1

(YIn+1,n+1)
−KL(PSIn+1

, PS′
In+1

)
∣∣∣ Hn, In+1

] ∣∣∣ Hn

]
= Mn. (36)

From (35) and (36), (Mn)n∈N is a martingale w.r.t. (Hn)n∈N.

Additionally, we will adopt Doob’s Optional Stopping Theorem (Lemma F.1) on MST(ALG). The prerequisites are verified
as follows:

(1) E[ST(ALG)] < ∞: By Assumption 4.2, ST(ALG) is a stopping time w.r.t. (Hn)n∈N with E[ST(ALG)] ≤ len(ptτc < ∞.

(2) there exists c̄ ∈ R, such that E[|Mn+1 −Mn| | Hn] ≤ c̄ for any n ≤ ST(ALG): According to (34),

E[|Mn+1 −Mn| | Hn] ≤ Eν

[∣∣∣ log PSIt
(XIt,t)

PS′
It
(XIt,t)

∣∣∣ ∣∣∣ Hn

]
+ Eν

[
KL(PSIt

, PS′
It
)
∣∣∣] ≤ 2c < ∞.

Taking c̄ = 2c finishes the verification.

Therefore, the prerequisites in Lemma F.1 (b) are satisfied. By invoking Lemma F.1, (32) is established.

Argument 2. Firstly, by (34),

Eν

[∣∣∣ ST(ALG)∑
t=1

KL(PSIt
, PS′

It
)
∣∣∣] ≤ Eν

[
ST(ALG)

]
· c < ∞.

So
∑ST(ALG)

t=1 KL(PSIt
, PS′

It
) has finite expectation. Furthermore, it can be observed that

Eν

[ST(ALG)∑
t=1

KL(PSIt
, PS′

It
)

]
= Eν

[K∑
i=1

ST(ALG)∑
t=1

1{It = i}KL(PSi , PS′
i
)

]

=

K∑
i=1

Eν [ni,ST(ALG)]KL(PSi , PS′
i
).

Therefore, (33) is proved.

This concludes the proof of this divergence decomposition lemma.

19

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

E.3. Proof of Proposition 4.5

Proposition 4.5 (Tightness Result). Let STGD = {S : PS satisfies (4)}. Let {Si}Ki=1 ⊂ STGD and Si satisfies (4) with pi
(Line 5 in Algorithm 2), then

lim inf
m→∞

Reg(ALG,ptm, ν)

log(len(ptmτc))
≥ H(pt, ν) · pi

∗(1− pLi∗)

(1− pi∗)
.

Therefore, the upper and lower bound match up absolute constants and a L2(1−pi∗)

pi∗ (1−pL
i∗)

factor. In particular, if pi∗ ∈
(
2−1/L, 1

)
,

they match up to absolute constants and L.

Proof of Proposition 4.5. Given any S ∈ S with parameter p,

µS =

L+1∑
x=1

x · PS(x) =

L∑
x=1

x · px−1(1− p) + (L+ 1) · pL =
1− pL+1

1− p
.

Note that if µS ≥ µi, we have p > pi. Therefore,

µS − µi =
1− pL+1

1− p
− 1− pL+1

i

1− pi
=

(p− pi) + (pL+1
i − pL+1 + pip

L+1 − ppL+1
i)

(1− p)(1− pi)
(37)

≥ (p− pi) + (pL+1
i − pL+1)

(1− p)(1− pi)
≥ (p− pi)(1− pL)

(1− p)(1− pi)
.

In addition, for any i ∈ [K],

KL(PSi , PS) =

L+1∑
x=1

PSi(x) · log
PSi(x)

PS(x)
=

pi − pL+1
i

1− pi
· log pi

p
+ (1− pLi) log

1− pi
1− p

.

By utilizing log x ≤ x− 1 for x > 0,

KL(PSi
, PS) ≤

pi − pL+1
i

1− pi
· pi − p

p
+ (1− pLi)

p− pi
1− p

=
(1− pLi)(pi − p)2

p(1− pi)(1− p)
(38)

Combining (38) and (37),

KL(PSi , PS) ≤
(µS − µi)

2(1− pi)(1− p)(1− pLi)

p(1− pL)2
≤ (µS − µi)

2

p(1− pL)/(1− p)
.

According to the definition of kli in Theorem 4.4,

kli ≤
(µi∗ − µi)

2

pi∗(1− pLi∗)/(1− pi∗)
=

∆2
i

pi∗(1− pLi∗)/(1− pi∗)
.

Thus, the regret is lower bounded by

lim inf
m→∞

Reg(ALG,ptm, ν)

log(len(ptmτc))
≥

∑
i ̸=i∗

1

µi∗∆i
· pi

∗(1− pLi∗)

(1− pi∗)
.

Furthermore, if pi∗ ∈
(
2−1/L, 1

)
,

lim inf
m→∞

Reg(ALG,ptm, ν)

log(len(ptmτc))
≥

∑
i ̸=i∗

L/2

µi∗∆i
.

20

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

F. Supporting Lemmas
Lemma F.1 (Doob’s optional stopping, Theorem 3.8 in Lattimore & Szepesvári (2020)). Let F = (Ft)t∈N be a filtration
and (Xt)t∈N be an F-adapted martingale and τ an F-stopping time such that at least one of the following holds:

(a) There exists an n ∈ N such that P[τ > n] = 0.

(b) E[τ] < ∞, and there exits a constant c ∈ R such that for all t ∈ N, E[|Xt+1 −Xt| | Ft] ≤ c almost surely on the
event that τ > t.

(c) There exists a constant c such that |Xt∧τ | ≤ c almost surely for all t ∈ N.

Then Xτ is almost surely well-defined, and E[Xτ] = E[X0]. Furthermore, when (Xt) is a super/sub-martingale rather than
a martingale, then equality is replaced with less/greater-than, respectively.
Lemma F.2 (Chernoff-Hoeffding bound, Fact 1 in Auer et al. (2002b)). Let X1, . . . , Xn be random variables with common
range [0, 1] and E[Xn | X1, . . . , Xn−1] = µ. Let Sn = X1 + . . .+Xn. Then for all a ≥ 0,

P[Sn ≥ nµ+ a] ≤ exp

(
−2a2

n

)
and P[Sn ≥ nµ− a] ≤ exp

(
−2a2

n

)
Lemma F.3 (Confidence Intervals, Lemma 6 in Abbasi-yadkori et al. (2011)). Assuming that the noise ηt is conditionally
1-sub-Gaussian. With probability at least 1− δ,

∀i ∈ {1, 2, . . . ,K}, ∀t ≥ 0, |µ̂i,t − µi| ≤

√
(1 + ni,t)

n2
i,t

(
1 + 2 log

(
K(1 + ni,t)1/2

δ

))
.

Lemma F.4 (Lemma 8 in Antos et al. (2010)). Let a > 0. For any t ≥ (2/a)[log(1/a)− b]+, at+ b > log t.
Lemma F.5 (Exercise 3.7 in Lattimore & Szepesvári (2020)). Let F = (Ft)t∈N be a filtration, and τ be a stopping time
with respect to F. Then Fτ is a σ-algebra.
Lemma F.6 (Bretagnolle-Huber inequality, Theorem 14.2 in Lattimore & Szepesvári (2020)). Let P and Q be probability
measures on the same measurable space (Ω,F), and let A ∈ F be an arbitrary event. Then

P (A) +Q(Ac) ≥ 1

2
exp

(
KL(P,Q)

)
,

where Ac = Ω \A is the complement of A.
Lemma F.7 (Pinsker’s inequality, Equation (14.12) in Lattimore & Szepesvári (2020)). For measures P and Q on the same
probability space (Ω,F) that

dTV (P,Q) ≤
√

1

2
KL(P,Q).

Lemma F.8 (Theorem 26.13 in Lattimore & Szepesvári (2020)). Let η > 0 and f be Legendre and twice differentiable with
positive definite Hessian in A = int(dom(f)). Then for all x, y ∈ A, there exists a z ∈ [x, y] = {(1−α)x+αy : α ∈ [0, 1]}
such that

⟨x− y, u⟩ − Df (x, y)

η
≤ η

2
∥u∥2∇2f(z)−1 .

G. Additional Experimental Results
G.1. Additional Experimental Details

For the experiments stated in Section 6.1, we report the memory utilization in this section. As Ealge-2 (Li et al., 2024b) is
one of the best speculative decoding methods, we adopt it as the baseline. The Normalized Memory (NM) and Normalized
Memory Bandwidth (NMB) are presented in Table G.1. The result shows that the proposed methods do not incur additional
memory consumption compared to the baseline method.

We further remark that this result is achieved by our superior algorithm design, where several non-parametric models (PLD,
REST, Suffix Tree) to enhance a parametric SOTA model (Eagle-2). Specifically,

21

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Table 2. The memory and memory bandwidth utilized by our method. As Eagle-2 is one of the best SD methods, we adopt it as the
baseline to normalize the results of other methods. NM=Normalized Memory and NMB=Normalized Memory Bandwidth.

Methods Spec Bench Alpaca Code Editor Debug Bench

NM NMB NM NMB NM NMB NM NMB

LLaMA3-8B-Instruct

Eagle-2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
EXP3SPEC 0.9981 1.0171 0.9950 1.0170 1.0200 0.9980 1.0100 0.9960
UCBSPEC 1.0059 1.0093 1.0130 1.0090 0.9990 0.9820 1.0150 1.0020

Qwen2-7B-Instruct

Eagle-2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
EXP3SPEC 1.0043 1.0095 1.0050 0.9980 1.0400 0.9850 0.9890 0.9960
UCBSPEC 0.9929 1.0036 1.0080 0.9900 1.0270 0.9930 1.0320 0.9950

• “Non-parametric” means that these methods do not have any parameters in GPU, and directly predict the future tokens
based on the past tokens according to the data structures like Trie Tree, which are python objects and stored in CPU
RAM. All these show that the storage of the draft models will not increase the GPU memory. Our model only requires
approximately an additional 100MB of CPU RAM. Since CPU memory is typically much larger (1TB in our server)
and cheaper than GPU memory (40 GB in our server), this cost is negligible.

• All the draft models share the same verifier model, which is the target model (LLaMA3-8B-Instruct (Dubey et al.,
2024) and Qwen2-7B-Instruct (Yang et al., 2024) in our experiments). So that the storage of the verifier does not
increase the GPU memory.

• The reduction in memory usage comes from the fact that non-parametric models require fewer verification tokens
(e.g., 40 for Suffix Tree) compared to the baseline Eagle-2 (e.g., 64). As a result, when invoking these models, a
slight decrease in activation memory usage may be observed. Additionally, slight differences in GPU memory may be
observed, arising randomly from the short-lived activation tensors rather than from the method itself.

We note that the size of SpecBench is not large enough, i.e., the number of arms pulls is not large, to derive a statistically
sound result. We enable Mixture-of-Agent (Wang et al., 2024) on the prompts whose responses are shorter than 100 tokens
to increase the number of arm pulls.

G.2. Experiments on Larger Models

In addition to the two models in the main paper, we conduct an addtional set of experiment on a larger target model, namely
LLaMA-2-13B (Touvron et al., 2023). As Table 1 indicates Eagle-2 (Li et al., 2024b) is one of the best speculative decoding
methods, we adopt it as the baseline. The other setups are the same as the ones in Section 6.1.

From the result reported in Table G.2, the proposed methods, UCBSPEC and EXP3SPEC, demonstrate their efficacy on
larger models.

G.3. Experiments on Different Hardwares

In the main paper, the experiments are conducted on a single A100 GPU. In this section, we conduct an additional set of
experiment on GeForce RTX 4090. We adopt Eagle-2 (Li et al., 2024b) as the baseline and Spec Bench (Xia et al., 2024) as
the benchmark. The result is presented in Table G.3. We observe a similar trend as the result presented in Table 1. The
proposed method remains useful with a different hardware setup.

22

BANDITSPEC: Adaptive Speculative Decoding via Bandit Algorithms

Table 3. Empirical Comparison between the proposed algorithms and Eagle-2 (Li et al., 2024b) with LLaMA-2-13B as the target model,
measured by Mean Accepted Tokens (MAT) (↑) and Tokens/s (↑). The best result is highlighted in bold, while the second best result is
underlined. The proposed algorithms remain effective on larger models.

Methods Spec Bench Alpaca Code Editor Debug Bench

MAT(↑) Tokens/s(↑) MAT(↑) Tokens/s(↑) MAT(↑) Tokens/s(↑) MAT(↑) Tokens/s(↑)

LLaMA-2-13B

Eagle-2 4.35 91.94 4.32 96.59 5.19 107.57 5.16 108.45
EXP3SPEC 4.05 95.52 4.32 99.64 5.22 115.65 5.03 116.65
UCBSPEC 4.43 97.16 4.36 102.29 5.27 113.97 5.27 118.67

Table 4. Empirical comparison between Eagle-2 and the proposed algorithms on GeForce RTX 4090. We observe a similar trend as the
result presented in Table 1.

Methods Spec Bench

MAT Tokens/s

LLaMA3-8B-Instruct

Eagle-2 4.14 97.01
EXP3SPEC 3.95 102.24
UCBSPEC 4.16 107.38

Qwen2-7B-Instruct

Eagle-2 3.65 94.16
EXP3SPEC 3.96 111.74
UCBSPEC 4.17 112.21

23

