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Abstract

Training data attribution (TDA) methods aim to quantify the influence of individual
training data points on the model predictions, with broad applications in data-centric
AI, such as mislabel detection, data selection, and copyright compensation. How-
ever, existing methods in this field, which can be categorized as retraining-based
and gradient-based, have struggled with the trade-off between computational effi-
ciency and attribution efficacy. Retraining-based methods can accurately attribute
complex non-convex models but are computationally prohibitive, while gradient-
based methods are efficient but often fail for non-convex models. Recent research
has shown that augmenting gradient-based methods with ensembles of multiple
independently trained models can achieve significantly better attribution efficacy.
However, this approach remains impractical for very large-scale applications.
In this work, we discover that expensive, fully independent training is unnecessary
for ensembling the gradient-based methods, and we propose two efficient ensemble
strategies, DROPOUT ENSEMBLE and LORA ENSEMBLE, alternative to naive inde-
pendent ensemble. These strategies significantly reduce training time (up to 80%),
serving time (up to 60%), and space cost (up to 80%) while maintaining similar
attribution efficacy to the naive independent ensemble. Our extensive experimental
results demonstrate that the proposed strategies are effective across multiple TDA
methods on diverse datasets and models, including generative settings, significantly
advancing the Pareto frontier of TDA methods with better computational efficiency
and attribution efficacy. We conduct a theoretical analysis that provides insights
into the success of our empirical findings.

1 Introduction

Training data plays an increasingly crucial role in modern artificial intelligence (AI) models [18].
Consequently, data-centric AI emerges as a vital paradigm, emphasizing the collection, curation,
and understanding of training data. Training Data Attribution (TDA) is a family of methods that
assess the influence of each training sample on a model’s output. Numerous TDA methods have been
developed and applied to a wide range of data-centric AI applications, such as mislabel detection [19],
data selection [7], and copyright compensation [6], thereby gaining increasing popularity.

However, accurately attributing the training data influence on very large-scale AI applications remains
an open challenge. Existing TDA methods can be generally categorized into two groups: retraining-
based methods and gradient-based methods [11]. Retraining-based methods involve the systematic
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retraining of the model with and without specific training samples to observe changes in the model’s
output [9, 17, 8, 16, 31]. Such methods often require thousands of model retraining, sometimes
even growing with the size of the training data, to achieve satisfactory performance, which makes
them infeasible for moderately large models. Gradient-based methods, on the other hand, estimate
the influence by tracking the gradients of data samples [19, 32, 25]. These methods are typically
computationally more efficient as they do not require the training of multiple models. But empirically
they can be brittle in handling complex non-convex models [4, 2] and be sensitive to the randomness
associated with model initialization and training dynamics [27]. A more detailed review of related
work can be found in Appendix 2.

Recent studies have shown that gradient-based TDA methods can be significantly improved by
ensembling tens of models independently trained with different random seeds, leading to state-of-the-
art attribution efficacy on modern neural network models [27, 24]. Aggregating these independently
trained models helps to mitigate the randomness introduced by training dynamics, such as random
initializations and stochastic optimization. However, despite its impressive performance, scaling such
a naive independent ensemble approach further for very large models remains challenging due to the
significant computational costs associated with training multiple models.

In this work, we hypothesize that training models independently is unnecessary for the purpose of
TDA ensemble, and we propose two efficient ensemble strategies alternative to the naive independent
ensemble approach. Our first strategy, DROPOUT ENSEMBLE, is motivated by dropout [29], a
common deep learning module initially designed to efficiently approximate ensemble. DROPOUT
ENSEMBLE reduces the computational costs by replacing the independently trained models in the
naive ensemble approach with multiple dropout-masked models using the same original model. Our
second strategy, LORA ENSEMBLE, is motivated by an efficient fine-tuning technique, LoRA [14].
Similar to DROPOUT ENSEMBLE, LORA ENSEMBLE reduces the computational costs by replacing
the independently trained models with LoRA fine-tuned models from the same original model, which
is particularly suitable for generative Transformer models [30].

We evaluate the proposed DROPOUT ENSEMBLE and LORA ENSEMBLE with extensive experiments.
Our experiments span various datasets (MNIST [23], CIFAR [20], and MAESTRO [12]), model
architectures (Multi-Layer Perceptrons (MLP), Residual Neural Networks (ResNet) [13], and Trans-
formers [30]), and TDA methods (TRAK [24], Influence Function [19], and Grad-Dot/Grad-Cos [5]).
Compared to the naive independent ensemble approach, DROPOUT ENSEMBLE and LORA ENSEM-
BLE can significantly reduce the training time, serving time, and space costs by respectively up to
80%, 60%, and 80% while maintaining similar TDA efficacy.

We summarize the contributions of this work as follows:

• We demonstrate that fully independent training is not a strict requirement for effective TDA with
ensembles, which opens up a promising direction for developing more efficient and effective TDA
methods.

• We draw intriguing connections among dropout, LoRA fine-tuning, and ensemble, which leads to
two novel efficient ensemble strategies for TDA: DROPOUT ENSEMBLE and LORA ENSEMBLE.

• Our proposed DROPOUT ENSEMBLE and LORA ENSEMBLE achieve significant efficiency improve-
ment across a diverse range of machine learning models, datasets, and TDA methods, advancing
the state-of-the-art of TDA.

2 Related Work

TDA methods quantify the influence of each training sample on the model predictions by assigning
a TDA score to the sample. These methods can be categorized into retraining-based ones and
gradient-based ones [11], and our work focuses on the latter.
Retraining-based TDA methods. Retraining-based methods compute TDA scores by systematically
retraining the model with and without specific training samples to quantify their influence on the
model’s output. These methods are computationally expensive due to the requirement of the large
amount of model retrainings. For example, Leave-One-Out (LOO) influence [1] measures the
prediction difference between the model trained on the full training dataset and models trained
on subsets with only one specific sample dropped. Data Shapley [9, 17], Beta-Shapley [21], and
Data Banzhaf [31] extends the LOO idea to consider data interactions for more equitable TDA
scores, but they require retraining models on all possible subsets of the training dataset. Similarly,
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DataModels [16] tries to learn the model predictions when the model is trained on each subset of the
training dataset, which requires a nontrivial amount of model retraining. While, in practice, sampling
or approximation will be used to reduce the number of model retrainings, these methods typically
still require thousands of or more retrainings to achieve satisfactory attribution efficacy. In summary,
the high demand for retraining makes these TDA methods computationally inefficient and limits their
practical applicability to even moderately large models.
Gradient-based TDA methods. Gradient-based methods are another group of TDA methods
that usually provide closed-form TDA scores using gradients. Since the seminal work of influence
function by Koh and Liang [19], gradient-based methods have become increasingly popular due
to their scalability. The influence function [19] and subsequent studies [10, 3, 26, 22] obtain TDA
scores by approximating the effect of upweighting a training sample on the loss function. Moreover,
Representer Point Selection [32] decomposes the pre-activation of a neural network as a linear
combination of training samples. TracIn [25] traces the loss changes on the test points during
the training process. TRAK [24] uses the neural tangent kernel with random projection to assess
influence. These gradient-based methods significantly reduced the computational cost compared to
retraining-based methods. The downside is that they typically rely on the convexity assumption and
Taylor approximation to calculate TDA scores. These requirements lead to performance degradation
on non-convex neural networks and sensitivity to the randomness inherent in model initialization and
training.
Ensembling for gradient-based TDA methods. Recent studies have shown the effectiveness
of ensembling for improving TDA scores computed with gradient-based methods [27, 24], which
mitigates their typical issues associated with non-convexity and sensitivity to randomness. Ensembling
normally applies the TDA method to many independently trained models. Either averaging the
final TDA scores [27] or aggregating some intermediate terms for score calculation [24]. Besides
independently trained models, Park et al. [24] suggest that model checkpoints at different stages
of a single training can be used for ensembling as well. All these ensembling methods, though
effective, also require a non-trivial amount of ensembles to perform well. Empirical studies show
that their TDA performance suffers significantly when ensemble size is limited [24]. Consequently,
the ensemble size, and thus the cost associated with each ensemble, poses a significant barrier to the
effective use of ensembling in current TDA methods.

3 Method
Following our hypothesis that independently trained models are unnecessary for ensembling TDA
methods, we propose efficient ensemble strategies alternative to the naive independent ensemble.

3.1 Preliminaries

We start by formalizing the TDA problem and the naive independent ensemble method for TDA.
The TDA problem. We have a training set S = {x1, . . . , xn} where each xi ∈ Xtrain, a test
set T = {x1, . . . , xm} where each xi ∈ Xtest, and a trained model output function fΘ that is
parameterized by Θ. Here Xtrain and Xtest are the space of the training and test data respectively. We
consider both supervised learning and generative modeling settings. For the supervised learning
setting, Xtrain and Xtest are typically identical, and each element of them corresponds to a data point
with both the feature and label. For the generative modeling setting, Xtrain refers to the space of
training data (e.g., text sequence segments for autoregressive language models) while Xtest refers to the
space of model generation. For the model output function fΘ, typically we will use the model learned
from the training set S (i.e., the model parameters will be chosen as Θ∗ = argminΘ

∑
xi∈S L(xi; fΘ)

for some loss function L). However, this is not always the case in practice [25]. For a training set S
and any test sample x ∈ T , a TDA method τ derives the TDA scores τ(x,S; fΘ) ∈ Rn to quantify
the influence of each training data point in S on the model learned from S. More specifically, the
i-th element, τ(x,S; fΘ)i ∈ R, is a real-valued score indicating the importance of xi on the model
output on the test sample x. In the supervised classification setting, the “model output on x” usually
refers to the loss, (log-)likelihood, or logit for the model predicting the correct class of x [19, 24]; in
the generative setting, it typically refers to the (log-)likelihood for the model generating x [6].
The naive independent ensemble method for TDA. To mitigate the randomness led by the
training dynamics of non-convex deep learning models, the naive independent ensemble method
first trains a set of I independent models, {Θ(i)}Ii=1, and then derives ensembled TDA scores
τens(x,S; {fΘ(i)}Ii=1) ∈ Rn based on the set of models.
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The ensembled TDA scores could be simply obtained by averaging over the TDA scores for individual
models, i.e.,

τens(x,S; {fΘ(i)}Ii=1) =
1

I

I∑
i=1

τ(x,S; fΘ(i)). (1)

They could also come from more sophisticated aggregation over the individual models. For example,
the TRAK method [24] works as the following:

τTRAK(x,S; {fΘ(i)}Ii=1) =

(
1

I

I∑
i=1

Qf
Θ(i)

)(
1

I

I∑
i=1

ϕf
Θ(i)

(
Φ⊤

f
Θ(i)

Φf
Θ(i)

)−1

Φ⊤
f
Θ(i)

)
, (2)

where Θ(i) are parameters of models independently trained on the training data; Qf
Θ(i)

is a diagonal
matrix with each diagonal element corresponding to the “one minus correct-class probability” of
a training data point under model Θ(i); ϕf

Θ(i)
is the vector gradient of fΘ(i)(x) with respect to

Θ(i); and Φf
Θ(i)

is the matrix of the vector gradients of fΘ(i)(xj) stacked over the training samples
xj ∈ S.2

3.2 Computational costs of TDA methods
While recent research has shown that ensembling gradient-based TDA methods can achieve decent
attribution efficacy with tens of indepedently trained models (as opposed to hundreds or even
thousands of model retraining in retraining-based TDA methods) [24], it is still impractical for very
large-scale or edge-device applications due to the increased time and space costs. To better quantify
the time and space costs associated with TDA methods, we categorize the costs into three parts:
training time cost, serving time cost, and storage cost. We provide a detailed explanation for these
costs as follows:

• Training time cost: This refers to the computational time incurred by processing and training
models to be used by TDA ensembles. This is the major computational challenge for ensembling
TDA methods.

• Serving time cost: This refers to the remaining computational time to deploy TDA ensembles
after model training. Typically, ensembling gradient-based TDA methods derives different TDA
scores using multiple trained models and then aggregates them. The serving time cost will include
all computational costs incurred during this process.

• Space cost: This refers to the parameters of the trained models that are stored by TDA ensembles.
These model parameters are required to run forward and backward passes on top of the models for
TDA score calculation. The space costs are generally proportional to the model size.

3.3 DROPOUT ENSEMBLE

General methodology. Dropout, a common module used in many modern deep learning models,
is initially designed as an efficient approximation of ensemble [29]. Motivated by this idea, we
propose a simple, efficient ensemble strategy, DROPOUT ENSEMBLE, for TDA methods. Instead of
performing the TDA ensemble over a large number of independently trained models, the proposed
method utilizes multiple dropout masks on the same model to perform the TDA ensemble.

In practice, DROPOUT ENSEMBLE consists of two steps. In the first step, we train I independent
models, {Θ(i)}Ii=1. Next, for each model Θ(i), i ∈ {1, . . . I}, we obtain D variants of the model
with different dropout masks, which are denoted as {f (d)

Θ(i)}Dd=1. For any TDA method, DROPOUT

ENSEMBLE calculates the ensembled TDA scores through τens(x,S; {f (d)

Θ(i)}1≤i≤I,1≤d≤D).

In comparison to the naive independent ensemble method, DROPOUT ENSEMBLE can significantly
reduce the training time and space costs. As we will show in Section 4.1, this method allows us
to replace the expensive independently trained models with dropout-masked models that incur no
additional training cost or model parameters.
TDA-method-specific optimization. It is possible to further optimize the proposed ensemble
strategy when applying it to a particular TDA method. For example, we develop a variant of
DROPOUT ENSEMBLE tailored for the TRAK method to reduce the serving time cost of DROPOUT
ENSEMBLE. Recall that in Eq. (2), the quantities Q’s only involve the forward pass of the models

2Some details of the exact TRAK implementation are omitted here.
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on the training data, while ϕ’s and Φ’s require the backward pass on the training data. We find that,
perhaps a bit surprisingly, if we only use the dropout-masked models to calculate Q’s while using the
original models to calculate ϕ’s and Φ’s, we can get similar attribution efficacy. Concretely, directly
applying DROPOUT ENSEMBLE on TRAK leads to

τens

(
x,S; {f (d)

Θ(i)} 1≤i≤I
1≤d≤D

)
=

(
1

I·D
∑I

i=1

∑D
d=1 Qf

(d)

Θ(i)

)(
1

I·D
∑I

i=1

∑D
d=1 ϕf

(d)

Θ(i)

(
Φ⊤

f
(d)

Θ(i)

Φ
f
(d)

Θ(i)

)−1

Φ⊤
f
(d)

Θ(i)

)
,

while in the optimized version, we have

τens

(
x,S; {f (d)

Θ(i)} 1≤i≤I
1≤d≤D

, {fΘ(i)}1≤i≤I

)
=

(
1

I·D
∑I

i=1

∑D
d=1 Qf

(d)

Θ(i)

)(
1
I

∑I
i=1 ϕf

Θ(i)

(
Φ⊤

f
Θ(i)

Φf
Θ(i)

)−1

Φ⊤
f
Θ(i)

)
.

In this case, we only need to evaluate the forward pass on the dropout-masked models and reduce the
serving time cost by avoiding the backward pass. We call this variant of our method as DROPOUT
ENSEMBLE (fowrad-only).
3.4 LORA ENSEMBLE

For large-scale generative models, especially Transformer models [30], LoRA adapters have shown
great success for efficiently fine-tuning the models [14]. Our second efficient ensemble strategy,
LORA ENSEMBLE, is motivated by the LoRA techniques. In particular, we propose to replace the
independently trained models in the naive ensemble method with LoRA fine-tuned models.

Similar to DROPOUT ENSEMBLE, LORA ENSEMBLE also consists of two steps. The first step trains
I independent models, {Θ(i)}Ii=1, while the second step further trains L LoRA fine-tuned models,
{Θ(i,l)

LoRA}Ll=1, for each Θ(i), i ∈ {1, . . . , I}.

In comparison to DROPOUT ENSEMBLE, LORA ENSEMBLE will introduce a small amount of
additional training time cost and model parameters for LoRA fine-tuning. However, using LoRA
adapters can reduce the serving time cost of TDA compared to either dropout-masked models in
DROPOUT ENSEMBLE or independent models in the naive method. This leads to a unique advantage
for LORA ENSEMBLE if the serving time cost is critical among the computational costs.

4 Experiments
In this section, we empirically evaluate the efficiency and efficacy of the proposed DROPOUT
ENSEMBLE and LORA ENSEMBLE.
4.1 DROPOUT ENSEMBLE

Improvement over the training time cost. To illustrate the improvement over training time cost
comparing DROPOUT ENSEMBLE to the naive ensemble, we first report the results on the TRAK
method across four experiment settings. As can be seen in Figure 1, across all four experiment
settings, increasing the number of dropout-masked passes (D) results in significant LDS improvement
for a fixed number of independently trained models (I). Recall that DROPOUT ENSEMBLE does
not incur any additional training time cost for a fixed I . This implies that DROPOUT ENSEMBLE
can significantly reduce the training time cost for achieving the same level of attribution efficacy
as measured by LDS. For example, DROPOUT ENSEMBLE with I = 5 can reach higher LDS than
naive independent ensemble with I = 25 for MLP on MNIST and MLP/ResNet9 on CIFAR-2, which
achieves a 80% reduction on training time cost. For Music Transformer on MAESTRO, DROPOUT
ENSEMBLE with I = 1 can reach higher LDS than naive independent ensemble with I = 10, which
achieves a 90% reduction.

We find that DROPOUT ENSEMBLE works similarly well for other TDA methods. In Figure 6,
we report the results on IF, Grad-Dot, and Grad-Cos. We only experiment on the setting of MLP
classifiers trained on MNIST, as these TDA methods do not have meaningfully good efficacy on more
complex settings. Similar to the TRAK experiments, we observe that DROPOUT ENSEMBLE with
I = 1 could match the LDS of naive independent ensemble with I = 10 for IF and Grad-Dot, and
match that with I = 5 for Grad-Cos. Therefore, we expect that the proposed DROPOUT ENSEMBLE
can be generalized to various gradient-based TDA methods.
Improvement over the space cost. The improvement of DROPOUT ENSEMBLE over the space
cost is self-evident, which can also be measured by I , the number of independently trained models.
According to Figure 1, for example, applying DROPOUT ENSEMBLE on TRAK (in comparison to
naive independent ensemble) can lead to a 80% or 90% reduction in space cost for different model
and dataset settings.

5



100 1010.1

0.2

0.3

0.4

0.5

0.6

Co
rre

la
tio

n 
(L

DS
) 

 (m
or

e 
ef

fe
ct

iv
e 

)

MLP on MNIST (TRAK)

Naive Ensemble
Dropout (D=10)
Dropout (D=25)
Dropout (D=50)

100 101
0.1

0.2

0.3

0.4

0.5

0.6

MLP on CIFAR-2 (TRAK)

Naive Ensemble
Dropout (D=10)
Dropout (D=25)
Dropout (D=50)

100 101

Number of Independently Trained Models 
 (  less training time cost)

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n 
(L

DS
) 

 (m
or

e 
ef

fe
ct

iv
e 

)

ResNet9 on CIFAR-2 (TRAK)

Naive Ensemble
Dropout (D=10)
Dropout (D=25)
Dropout (D=50)

100 101

Number of Independently Trained Models 
 (  less training time cost)

0.1

0.2

0.3

0.4

0.5 MusicTransformer on MAESTRO (TRAK)

Naive Ensemble
Dropout (D=3)
Dropout (D=10)
Dropout (D=25)

Figure 1: The LDS of naive independent ensemble and DROPOUT ENSEMBLE with different numbers
of dropout-masked passes (D) and independently trained models (I). We apply the ensemble methods
to the TDA method, TRAK. There are four experiment settings: MLP classifiers trained on MNIST
and CIFAR-2 (top row); ResNet9 trained on CIFAR-2 (bottom-left); and Music Transformer trained
on MAESTRO (bottom-right). The x-axis indicates the training time cost measured by the number of
independently trained models (I). The y-axis indicates the attribution efficacy measured by LDS.

DROPOUT ENSEMBLE (forward-only) improves the serving time cost. Figure 2 shows the results
of DROPOUT ENSEMBLE (forward-only), a variant of DROPOUT ENSEMBLE specifically tailored
for TRAK. In comparison to the vanilla DROPOUT ENSEMBLE, this optimized variant can achieve
comparable TDA accuracy with around 50% less serving time.

We also report additional ablation studies and results of DROPOUT ENSEMBLE in Appendix F.
4.2 LORA ENSEMBLE

To demonstrate the efficiency of LORA ENSEMBLE, we only consider TRAK [24] as the main TDA
method in this section since it is the most effective (in terms of LDS) among the four gradient-based
TDA methods discussed in Section 4.1. We experiment LORA ENSEMBLE under the setting of Music
Transformer on MAESTRO because this setting aligns better with large-scale real-world generative
settings where LoRA adapters are more prevalent.

As shown in Figure 3, LORA ENSEMBLE outperforms naive independent ensemble since it can
reach similar LDS as the latter with significantly less computational costs in terms of all types of
measurements. For example, LORA ENSEMBLE with (I = 1, L = 3) achieves similar LDS as naive
ensemble with I = 5, while having reduction in training time, serving time, and total parameter count
respectively for 78.4%, 60.5%, and 79.6%.

5 Theoretical Analysis of Naive and Two-step Ensemble
In this section, we present a theoretical analysis to compare TDA method with the naive ensemble
(regular independent ensemble) and our two-step ensemble (a general case containing DROPOUT
ENSEMBLE and LORA ENSEMBLE). With notation defined in Section 3.1, for any test sample x ∈ T
and S as the training set, we assume a TDA method τ finds an “optimal” attribution score τ(Θ∗)
based on the optimal parameter Θ∗ that some ensemble estimators try to approximate (omit fΘ here
for notational convenience). Then, we define the two types of ensemble estimators for τ(Θ∗) and
through Lemma 5.1 below to show that DROPOUT ENSEMBLE and LORA ENSEMBLE outperform
the regular ensemble in terms of the approximation error.
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Figure 2: The LDS of DROPOUT ENSEMBLE and its variant DROPOUT ENSEMBLE (forward-only)
when applied to TRAK on different dataset and model settings. The x-axis indicates the serving time
cost measured by the running time on a single A40 GPU. The y-axis indicates the attribution efficacy
measured by LDS. The points in the plot correspond to different numbers of dropout masked models
(D). The number of independently trained models (I) is fixed to 5.
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Figure 3: The LDS of naive ensemble and LORA ENSEMBLE with respect to different cost mea-
surements. Here, we apply the ensemble methods to TRAK on Music Transformer trained on the
MAESTRO dataset. The x-axis of Figure (3a, 3b) indicates training/serving time costs (running time
on a single A40), while that of Figure 3c specifies the space cost (total parameter count). The y-axis
of all figures is the attribution efficacy measured by LDS. LORA ENSEMBLE has significantly fewer
costs in all aspects than naive ensemble for achieving similar LDS.

We start with the definition of the two types of ensemble estimators. For a TDA method τ , the
regular ensemble estimator τens is defined as the average of τ(Θ(i)), where Θ(i) for i = 1, . . . , I
are I identically distributed (i.d.) individual estimators. The two-step ensemble estimator τ2-step is
defined as the average of τ(Θ(k,d)), where each of Θ(k) for k = 1, · · · ,K is an individual estimator
(just as Θ(i) in regular ensemble estimator) and by using Θ(k) as a base estimator, D variants of
it, Θ(k,d), are generated for the second-step ensemble. This is a general definition and includes
DROPOUT ENSEMBLE and LORA ENSEMBLE as special cases. Our goal is to compare the squared
error of τens and τ2-step with respect to τ(Θ∗), which we formalize as the following lemma (proof in
Appendix I.1).

Lemma 5.1. Define τens and τ2-step as the regular and two-step ensemble estimators for τ(Θ∗):

τens =
1

I

I∑
i=1

τ(Θ(i)) and τ2-step =
1

KD

K∑
k=1

D∑
d=1

τ(Θ(k,d)).
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Assume each individual estimate τ(Θ(i)) and τ(Θ(k,d)) have the same distribution. Then, the
difference in squared error ∆ = ∥τens − τ(Θ∗)∥2 − ∥τ2-step − τ(Θ∗)∥2 is given by:

∆ =
1

I
(Σ1,1 + (I − 1)Σi,j)−

1

KD

(
Σ(k,m),(k,m) + (D − 1)Σ(k,m),(k,n) +D(K − 1)Σ(k,m),(l,n)

)
,

where:

• Σi,j = Cov(τ(Θ(i)), τ(Θ(j))) is the covariance between individual estimators in the regular
ensemble. Given the i.d. assumption, Σi,j are the same for all i ̸= j, and Σi,j = Σ1,1 for
i = j.

• Σ(k,m),(l,n) = Cov(τ(Θ(k,m)), τ(Θ(l,n))) is the covariance between variants of base indi-
vidual estimators in the two-step ensemble. We further define Σ(k,m),(k,n) as the within-
group covariance and Σ(k,m),(l,n) with k ̸= l as the between-group covariance.

Now, we analyze ∆ and show that ∆ will stay positive under reasonable assumptions, which implies
that τ2-step outperforms τens. We especially derive ∆ for two interesting cases: K = I and KD = I
(see assumpions and derivation in Appendix I.2).

Case 1: K = I means the number of individual estimators K in the two-step ensemble is equal
to the number of individual estimators I in the regular ensemble, but the two-step ensemble has D
variants for each base estimator, resulting in a total of K ·D = I ·D estimates. In this case, we drive

∆ =
D − 1

ID

(
Σ1,1 − Σ(k,m),(k,n)

)
. (3)

As long as the within-group covariance Σ(k,m),(k,n) is smaller than variance of each individual
estimator Σ1,1, τ2-step will outperform the regular ensemble τens. This is likely to be the case for any
pair of different variants of the same base estimator through dropout or LoRA fine-tuning. For a fixed
small I , when D is small, D−1

D has bigger impact on ∆ and increase D can quickly increase ∆ means
τ2-step outperforms τens more. In contrast, when D is large, D−1

D is close to 1 and increase D will
not change ∆ much, meaning the performance gain of τ2-step over τens will saturate, which matches
our empirical results in Figure 1 and Figure 3. On the other hand, for a large I , changing D will
not change ∆ much as ∆ is already small, and the performance gain of τ2-step over τens will be less
significant, which also aligns with our empirical observation in Figure 1 and Figure 3. In summary,
when K = I , τ2-step clearly outperforms τens when the within-group covariance is small benefiting
from averaging over more total estimators (ID versus I), and the performance gain saturates as the
within-group covariance increases.

Case 2: KD = I means the total number of estimators in the two-step ensemble K ·D is equal to
the number of estimators I in the regular ensemble. Thus, both ensembles have the same number of
estimates, but the two-step ensemble introduces a base-variant relationship. In this case, we derive:

∆ =
D − 1

I

(
Σi,j − Σ(k,m),(k,n)

)
. (4)

This case is about comparing the within-group covariance Σ(k,m),(k,n) and the individual estimator
covariance Σi,j . In general, Σ(k,m),(k,n) is expected to be larger than Σi,j , because Σ(k,m),(k,n) is the
covariance between variants of the same base estimator, while Σi,j is the covariance between different
estimators. This can lead to negative ∆, indicating that the two-step ensemble is outperformed by the
regular ensemble in this case. However, since KD = I , D−1

I is close to 1
K , meaning τ2-step is not

significantly outperformed by τens when a large K is set. In summary, when KD = I , τ2-step can still
outperform τens if the within-group covariance is small. However, if this covariance is large, then
τ2-step’s advantage diminishes, and τens may perform similarly or better due to the independent nature
of its estimators. Even for the latter, two-step ensemble still enjoy drastic efficiency gain as generating
more variants for each base estimator is much cheaper, e.g., via dropout or LoRA fine-tuning, than
generating more individual estimators from re-training.

6 Conclusion

We present DROPOUT ENSEMBLE and LORA ENSEMBLE as efficient alternatives to the naive
independent ensemble approach for improving gradient-based TDA methods. The proposed strategies

8



significantly reduce training time (up to 80%), serving time (up to 60%), and space cost (up to
80%), while maintaining similar attribution efficacy in comparison to the naive ensemble. Empirical
results from our extensive experiments show that the proposed efficient ensembles can remarkably
advance the Pareto frontier of TDA methods with better computational efficiency and TDA efficacy.
Notably, we demonstrate the proposed methods work well on a generative modeling setting. In the
future, we will utilize our methods in more real-world generative settings that were blocked by high
computational costs or low effectiveness of TDA methods.

One limitation of this work is that there is limited theoretical understanding on the empirical success of
the proposed strategies. As a future work, we would like to develop better theoretical understandings
on TDA ensembles.
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A TDA methods

In this section, we provide details on the TDA methods we perform efficient ensembling on.
Additionally, we also introduce the ensembling aggregation methods, i.e., the way to aggregate
τens(x,S; {fΘ(i)}Ii=1), for each method. The notation will follow Section 3.1.

Tracing with the Randomly-projected After Kernel (TRAK). This is a state-of-the-art gradient-
based TDA method provided by [24]. It natively introduces ensembling in its definition.

τTRAK(x,S; {fΘ(i)}Ii=1) =

(
1

I

I∑
i=1

Qf
Θ(i)

)(
1

I

I∑
i=1

ϕf
Θ(i)

(
Φ⊤

f
Θ(i)

Φf
Θ(i)

)−1

Φ⊤
f
Θ(i)

)
,

Detailed notation description is described in Section 3.1. We use 2048 as the random projection
dimension for TRAK. For each independently trained model, we train the model on half sampled
training set following Park et al. [24].

Influence functions based on the conjugate gradients (IF). First proposed by Koh and Liang
[19], the definition of IF is

τIF(x,S; {fΘ(i)}Ii=1) =

[
1

I

I∑
i=1

gf
Θ(i)

(xj)
⊤H−1

f
Θ(i)

gf
Θ(i)

(x) : xj ∈ S

]
,

where gf
Θ(i)

(x) is the vector gradient of model output f(x; Θ(i)) with respect to the parameters Θ(i),
H−1

f
Θ(i)

is the inverse hessian matrix with respect to the training set, and gf
Θ(i)

(xj)
⊤ is the vector

gradient to the training sample. The product of the first two terms are an inverse-hessian-vector-
product problem, we implement conjugate gradients approach to solve it.

Grad-Dot. Grad-Dot is proposed by Charpiat et al. [5]. We simply calculate Grad-Dot multiple
times on trained parameters Θ(i), i ∈ {1, . . . ,K} and take the average value.

τGrad-Dot(x,S; {fΘ(i)}Ii=1) =

[
1

I

I∑
i=1

gf
Θ(i)

(x)⊤gf
Θ(i)

(xj) : xj ∈ S

]
,

where gf
Θ(i)

(x)⊤ is the vector gradient of model output f(x; Θ(i)) with respect to the parameters
Θ(i), and gf

Θ(i)
(xj)

⊤ is the gradient to the training sample.

Grad-Cos. Similar to Grad-Dot,

τGrad-Cos(x,S; {fΘ(i)}Ii=1) =

[
1

I

I∑
i=1

gf
Θ(i)

(x)⊤

∥gf
Θ(i)

(x)∥
gf

Θ(i)
(xj)

∥gf
Θ(i)

(xj)∥
: xj ∈ S

]
,

where gf
Θ(i)

(x)⊤ is the vector gradient of model output f(x; Θ(i)) with respect to the parameters
Θ(i), and gf

Θ(i)
(xj)

⊤ is the gradient to the training sample.

B Detailed experiment setup

B.1 Experimental setup

We conduct extensive experiments on a wide range of settings.
TDA methods. We apply the proposed methods to various gradient-based TDA methods, including
influence function (IF) [19], Grad-Dot/Grad-Cos [5], and TRAK [24]. The detailed descriptions and
implementations of these algorithms are provided in Appendix A.
Datasets and models. We consider models with different architectures trained on diverse datasets:
(1) a three-layer MLP classifier trained on the MNIST-10 dataset [23], (2) a three-layer MLP classifer
and a ResNet-9 classifier [13] trained on the CIFAR-2 dataset (a two-class subset of the CIFAR-10

11



dataset [20]), and (3) a Music Transformer [15] trained on the MAESTRO dataset [12]. Notably, the
former two are supervised classification settings, while the last one is a generative modeling setting.
We sample 5000 training samples and 500 test samples from MNIST-10 and CIFAR-2 datasets. For
MAESTRO dataset, we sample 5000 training samples and 178 generated samples. More detailed
setups for each dataset and model are listed in Appendix B.1. MNIST-10 dataset holds CC BY-SA
3.0 license. CIFAR-10 dataset holds CC-BY 4.0 license. MAESTRO dataset holds CC BY-NC-SA
4.0 license.
Evaluation metric for TDA efficacy. We utilize the linear datamodeling score (LDS) [24] to
evaluate the efficacy of the TDA methods augmented by different ensembling methods. Intuitively,
LDS measures the rank correlation between the TDA scores among training samples and the change
of model outputs by removing a subset of training samples and retraining the model from scratch. A
higher LDS value corresponds to a better alignment between the TDA scores and the influence of the
training samples on the model outputs, thus better TDA quality. We refer the reader to Appendix D
for the exact definition of LDS.
Evaluation metrics for TDA efficiency. As introduced in Section 3.2, we measure the TDA
efficiency in terms of the training time cost, serving time cost, and space cost. For both training
and serving time costs, we measure the wall-clock time on a single A40 GPU. For the space cost,
although ideally one would measure it by memory usage, this can be challenging because memory
usage is sensitive to the specific implementation and parallelization. Therefore, we measure the space
cost by the total parameter count instead. For DROPOUT ENSEMBLE, we will also use the number of
independently trained models (I) as a measure of the training time cost and space cost, as both of the
two costs are proportional to I in this case. More details about the measurements are provided in
Appendix E.

MLP on MNIST-10. For the MNIST-10 [23] experiment, we sampled 5000 training samples and
500 testing samples. We used a 3-layer MLP with hidden layer sizes equal to 128 and 64 and placed
dropout layers after the first two linear layers with a rate of 0.1, which resulted in a total of about
0.11M parameters. We employed an SGD optimizer with learning rate 0.01, momentum 0.9, and
batch size 64 to train this MLP classifier for 100 epochs.

MLP/ResNet-9 on CIFAR-2. For CIFAR-2 experiment, we construct the CIFAR-2 dataset by
sampling from the CIFAR-10 dataset that only include the “cat” and “dog” classes (same as the
setting in Park et al. [24]). To incorporate a diverse set of model architectures, we train an MLP and
a CNN-based model on this dataset. We also only consider a subset of the CIFAR-2 dataset with a
training size equal to 5000 and a testing size equal to 500. Firstly, we use a 3-layer MLP with hidden
layer sizes equal to 120 and 84 and place dropout layers after the first two linear layers with a rate
of 0.1, which results in a total of about 0.38M parameters. We employ an SGD optimizer with a
learning rate of 0.01, momentum of 0.9, and batch size 64 to train this MLP classifier for 50 epochs.
Additionally, we consider a standard ResNet-9 model [13] with dropout layers being placed after
all convolution layers, which has roughly 4.83M trainable parameters. We train this model for 50
epochs.

MusicTransformer on MAESTRO. For the MAESTRO experiment, we use the MIDI and Audio
Edited for Synchronous TRacks and Organization (MAESTRO) dataset (v2.0.0) [12] and construct a
Music Transformer following the original setting in [15]. Specifically, the number of layers equals
to 6, the number of independent heads equal to 8, the input feature size is 512 and the dimension
of the feedforward network is 1024. For data processing, we follow the basic experiment setup
used by [6]. To be more specific, we define a vocabulary set of size equal to 388, which includes
“NOTE ON” and “NOTE OFF” events for 128 different pitches, 100 “TIME SHIFT” events, and
32 “VELOCITY” events. The raw data is pre-processed as sequences of about 90K events. Due to
computational constraints, we train a Music Transformer model on a subset of the official training set
in the MAESTRO dataset with a size of 5000. For training, the batch size has been set to 64, and the
model is trained by a classic seq2seq loss function. We employ an Adam optimizer with a learning
rate equal to 1e-4, β1 = 0.9 and β2 = 0.98. We apply zero warm-up steps since the dataset size is
comparably small, and we train the model for 20 epochs. For music event generation, we use 178
samples from the official testing dataset as prompts to generate music with a single event, which is
used to evaluate the TDA methods.
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C Efficient ensemble setup

C.1 DROPOUT ENSEMBLE

Dropout is applied to the same layers as the model training stated in Appendix B.1. Dropout rate is
set to 0.1 for all experiment settings.

C.2 LORA ENSEMBLE

This method is only applied to MusicTransformer trained on the MAESTRO dataset. According to
Section 3.4, we first train I independent models on the full training dataset with 10 epochs using
different model initialization, and all the other remaining settings follow Appendix B.1. The LoRA
adapters used in this experiment all have rank r = 8, alpha α = 8, and trainable biases. No dropouts
are applied for LoRA parameters. We augment LoRA adapters to only the Wq and Wv matrices in
the self-attention modules within all the layers of the MusicTransformer. Then, we define fine-tuning
datasets for each LoRA adapter as random training data subsets with a size equal to 2500 (i.e., half of
the original training dataset size). We further fine-tune each of the aforementioned I independent
models using L different LoRA adapters for an additional 10 epochs on these random training data
subsets, which results in a total of I · L LoRA fine-tuned models.

D Linear datamodeling score (LDS)

Park et al. [24] proposed the linear datamodeling score (LDS), aiming at probing the TDA method’s
ability to make counterfactual predictions based on the attribution score derived from the learned
model output function fΘ and the corresponding dataset to train fΘ. Because most TDA methods are
assumed to be additive3, the TDA scores can be used to predict the model output function learned
from a subset of training data in a summation form. Formally, the attribution-based output predictions
of the model output function fΘS′ is defined as follows:

gτ (x,S ′;S) ≜
∑

i:xi∈S′

τ(x,S; fΘ)i, (5)

where S is the training set, S ′ ⊆ S is a subset of S and fΘS′ is the model output function with
ΘS′ learned from S ′. Intuitively, gτ (x,S ′;S) computes the overall attribution of the subset S ′ on
example x, which should be a powerful indicator of the model prediction on x (i.e., fΘS′ (x)) if the
TDA method works well. The linear datamodeling score (LDS) is defined to measure the predictive
power of gτ (x,S ′;S) and can be formalized as follows:
Definition D.1 (Linear datamodeling score). Given a training set S , a model output function fΘ, and
a corresponding TDA method τ . Let {S1, . . . ,Sm : Sj ⊆ S} be m randomly sampled subsets of S,
each of size α× n for some fixed α ∈ (0, 1). The linear datamodeling score (LDS) of τ for a specific
example x is defined as

LDS(τ, x) ≜ ρ({fΘSj
(x) : j ∈ [m]}, {gτ (x,Sj ;S) : j ∈ [m]}),

where ρ is the Spearman rank correlation [28], fΘSj
is the model output function with ΘSj

learned
from Sj and gτ (x,Sj ;S) is defined in Eq (5).

To compute LDS for our experiment settings, we use 50 models that are independently trained on
random subsets with size half of the full dataset (i.e., we set m = 50 and α = 0.5 in Definition D.1).

E Wall-clock time measurements

In this paper, we use the wall-clock time on a single A40 GPU to measure the computational costs if
the number of independently trained models (i.e., the value of I) can not precisely demonstrate the
costs, e.g., the training time cost and serving time cost of LORA ENSEMBLE.

Here, we define several components that dominate the wall-clock time of different ensemble methods.
3If a TDA method is additive, then it defines an attribution score that the overall influence of a group is the

sum of the individual influence in the group.
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• TTrain: The time to train a model from scratch.

• TTrain, Base: The time to train a base model from scratch for LoRA tuning. Normally speaking,
TTrain, Base < TTrain.

• TTrain, LoRA: The time to fine-tune for one LoRA adapter.

• TServing: The time to calculate the TDA scores for one trained model after model training.

• TServing, Forward-only: The time to calculate the TDA scores for one trained models after model
training with shared gradients. (will only be used by DROPOUT ENSEMBLE(forward only).
Normally speaking, TServing, Forward-only < TServing, Forward-only.

• TServing, LoRA: The time to calculate the TDA scores after model training for one LoRA
adapter. Normally speaking, TServing, LoRA < TServing.

The total computational cost is approximated and summarized in t:

• Training time cost (naive independent ensemble/DROPOUT ENSEMBLE/DROPOUT ENSEM-
BLE (forward only)): I× TTrain.

• Training time cost (LORA ENSEMBLE): I× TTrain, Base + I × L× TTrain, LoRA.

• Serving time cost (naive independent ensemble): I× TServing.

• Serving time cost (DROPOUT ENSEMBLE): I ×D× TServing.

• Serving time cost (DROPOUT ENSEMBLE (forward only)): I× TServing + I × (D − 1)×
TServing, Forward-only.

• Serving time cost (LORA ENSEMBLE): I × L× TServing, LoRA.

F Additional experiment for DROPOUT ENSEMBLE

F.1 Ablation experiment to random projection

Here, we examine the root of the DROPOUT ENSEMBLE’s performance through an ablation experi-
ment. There are no random factors other than dropout for IF, Grad-Dot, or Grad-Cos, while there is
another random factor, i.e., random projection, in TRAK. We perform D dropout-masked passes with
dropout enabled, i.e., “DROPOUT ENSEMBLE’́ and D dropout-masked passes with dropout disabled,
i.e., “Only Random Projection”, in Table 1 and calculate the LDS. Random projection does contribute
to the accuracy improvement, but the improvement will saturate when D is large.

D
I 1 3 5

Naive Independent Ensemble N/A 0.122 0.217 0.275

DROPOUT ENSEMBLE 10 0.249 0.399 0.457
Only Random Projection 0.210 0.335 0.398

DROPOUT ENSEMBLE 25 0.316 0.458 0.502
Only Random Projection 0.217 0.351 0.413

Table 1: Ablating the contribution of test-time dropout. The experiment is carried out on
MNIST+MLP. Note that D is the number of dropout-masked passes, and I is the number of indepen-
dently trained models.

F.2 Intermediate checkpoints

Here, we show that DROPOUT ENSEMBLE ensemble can also be applied to intermediate checkpoints
and improve the accuracy. Park et al. [24] states that intermediate checkpoints with fewer epochs can
be used for ensembling to reduce the training time cost. We save multiple checkpoints from different
epochs of the same training process (I = 1).
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Ensembling methods
D

#ckpts 1 3 5

Naive Independent Ensemble N/A 0.122 0.170 0.188

DROPOUT ENSEMBLE
10 0.249 0.318 0.342
25 0.316 0.359 0.373

Table 2: The TDA efficacy of DROPOUT ENSEMBLE on intermediate checkpoints from different
epochs of the same training process (I = 1). Note that D is the number of dropout-masked passes,
and #ckpts is the number of intermediate checkpoints used.

G Memory costs of DROPOUT ENSEMBLE and LORA ENSEMBLE

Here we record the peak memory usage at serving time for DROPOUT ENSEMBLE (Table 3) and
LORA ENSEMBLE (Table 4) applied on TRAK algorithm. The memory of vanilla DROPOUT
ENSEMBLE is the same as naive independent ensemble. The meomory of DROPOUT ENSEMBLE
(Forward Only) is larger than vanilla DROPOUT ENSEMBLE because some of the cached terms. The
memory usage of LORA ENSEMBLE is slightly lower than naive independent ensemble because of
the reduction in parameter size.

Datasets and Models method variants
D 3 10 25

MNIST+MLP DROPOUT ENSEMBLE 342M
DROPOUT ENSEMBLE (Forward Only) 636M 1956M 4787M

CIFAR2+MLP DROPOUT ENSEMBLE 344M
DROPOUT ENSEMBLE (Forward Only) 638M 1966M 4797M

CIFAR2+ResNet9 DROPOUT ENSEMBLE 477M
DROPOUT ENSEMBLE (Forward Only) 785M 2087M 4877M

MAESTRO+MusicTransformer DROPOUT ENSEMBLE 538M
DROPOUT ENSEMBLE (Forward Only) 634M 1529M 3421M

Table 3: The peak memory usage of DROPOUT ENSEMBLE and its alternative on TRAK with different
numbers of dropout-masked passes (D) and the number of independently trained models fixed to 5
(I = 5).

Ensembling Methods
L

I 1 3 5 10

Naive Independent Ensemble N/A 431M 538M 538M 538M

LORA ENSEMBLE 3 404M 404M 404M 404M
LORA ENSEMBLE 10 404M 404M 404M 404M
LORA ENSEMBLE 25 404M 404M 404M 404M

Table 4: The peak memory usage of LORA ENSEMBLE and naive independent ensemble applied on
TRAK for MusicTransformer trained on MAESTRO dataset. Note that I represents the number of
independently trained models, and L is the number of LoRA adapters augmented on each model.

H Space costs of DROPOUT ENSEMBLE and LORA ENSEMBLE

Here we record the parameter count to present the space cost for DROPOUT ENSEMBLE (Table 5)
and LORA ENSEMBLE (Table 6).
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I(w/ any D)
settings MNIST

+MLP
CIFAR-2

+MLP
CIFAR-2

+ResNet-9
MAESTRO

+MusicTransformer

1 0.11M 0.38M 4.83M 13.11M
3 0.33M 1.14M 14.48M 39.35M
5 0.55M 1.89M 24.13M 65.58M
10 1.09M 3.79M 48.25M 131.16M
25 2.73M 9.48M 120.63M 327.89M

Table 5: The space cost (total parameter count) of different experiment settings under different
numbers of independently trained models (I). Note that DROPOUT ENSEMBLE will not incur any
additional storage cost with more dropout-masked passes (i.e., the space cost is fixed with respect to
D).

I
L Naive Independent

ensemble (L = 0) 3 10 25

1 13.11M 13.41M 14.09M 15.57M
3 39.35M 40.23M 42.29M 46.72M
5 65.58M 67.05M 70.49M 77.87M

10 131.76M 134.11M 140.99M 155.73M

Table 6: The space cost (total parameter count) of MusicTransformer under different numbers of
independently trained models (I) and different numbers of LoRA adapters (L). LORA ENSEMBLE
only add marginal space cost (at most a 18.7% increment for D = 25 across all I) compared to naive
independent ensembling.

I Proofs

I.1 Proof of Lemma 5.1

Proof. We proceed by analyzing the bias and variance contributions for both the naive ensemble
and the two-step ensemble. We first analyze the bias of the two estimators. Let µi = E[τ(Θ(i))]
and µ(k,d) = E[τ(Θ(k,d))] represent the expected values of the individual and variant estimators,
respectively. Since we assume that each individual estimate τ(Θ(i)) and τ(Θ(k,d)) have the same
and identical distribution, we have µi = µ(k,d), and thus

Bias2(τens) =

(
1

I

I∑
i=1

µi − τ(Θ∗)

)2

=

(
1

KD

K∑
k=1

D∑
d=1

µ(k,d) − τ(Θ∗)

)2

= Bias2(τ2-step) (6)

Therefore,the difference in squared error ∆ arises solely from the variance terms.

We then analyze the variance of the two estimators. For the naive ensemble estimator τens, the
variance is given by:

Var(τens) =
1

I2

I∑
i=1

Var(τ(Θ(i))) +
2

I2

∑
i<j

Cov(τ(Θ(i)), τ(Θ(j))) (7)

Using the simplified notation, where Σ1,1 = Var(τ(Θ(i))) and Σi,j = Cov(τ(Θ(i)), τ(Θ(j))) for
i ̸= j, this can be written as:

Var(τens) =
1

I
(Σ1,1 + (I − 1)Σi,j) (8)

For the two-step ensemble estimator τ2-step, the variance is given by:

Var(τ2-step) =
1

(KD)2

K∑
k=1

D∑
d=1

Var(τ(Θ(k,d))) +
2

(KD)2

∑
(k,d)<(k′,d′)

Cov(τ(Θ(k,d)), τ(Θ(k′,d′)))

(9)
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This variance can be decomposed into within-group and between-group covariances. Let
Σ(k,m),(k,n) = Cov(τ(Θ(k,m)), τ(Θ(k,n))) represent the within-group covariance (i.e., between
variants of the same base estimator), and let Σ(k,m),(l,n) = Cov(τ(Θ(k,m)), τ(Θ(l,n))) represents
the between-group covariance (i.e., between variants of different base estimators). The variance
simplifies to:

Var(τ2-step) =
1

KD

(
Σ(k,m),(k,m) + (D − 1)Σ(k,m),(k,n) +D(K − 1)Σ(k,m),(l,n)

)
(10)

Finally, the difference in variance between the two estimators, denoted as ∆, is:
∆ = Var(τens)− Var(τ2-step) (11)

Substituting the variance expressions for τens and τ2-step, we have:

∆ =
1

I
(Σ1,1 + (I − 1)Σi,j)−

1

KD

(
Σ(k,m),(k,m) + (D − 1)Σ(k,m),(k,n) +D(K − 1)Σ(k,m),(l,n)

)
(12)

This expression shows that the difference in error depends on the number of estimators (I in the naive
ensemble and KD in the two-step ensemble) and the covariance structure among the estimators.
The two-step ensemble will outperform the naive ensemble if the within-group and between-group
covariance are sufficiently small compared to the overall covariance in the naive ensemble.

I.2 Derivation of the Error Difference for K = I and KD = I

For both derivations, we use the following assumptions:
Σ1,1 = Σ(k,m),(k,m) and Σi,j = Σ(k,m),(l,n) for i ̸= j, k ̸= m (13)

This first equality implies that the variance of each estimator in both ensemble approaches is the same.
The second equality implies that the covariance between different estimators in the naive ensemble is
the same as the covariance between different estimator variants in the two-step ensemble. These are
reasonable assumptions following the i.d. assumption on the individual estimators.

Case 1: K = I . Substitute K = I into the expression for ∆ and use the assumption Σ1,1 =
Σ(k,m),(k,m) and Σi,j = Σ(k,m),(l,n), this simplifies ∆ to:

∆ =
1

I
(Σ1,1 + (I − 1)Σi,j)−

1

ID

(
Σ1,1 + (D − 1)Σ(k,m),(k,n) +D(I − 1)Σi,j

)
(14)

=
1

I
Σ1,1 +

I − 1

I
Σi,j −

1

ID
Σ1,1 −

D − 1

ID
Σ(k,m),(k,n) −

I − 1

I
Σi,j (15)

=
1

I
Σ1,1 −

1

ID
Σ1,1 −

D − 1

ID
Σ(k,m),(k,n) (16)

=
D − 1

ID
Σ1,1 −

D − 1

ID
Σ(k,m),(k,n) (17)

=
D − 1

ID

(
Σ1,1 − Σ(k,m),(k,n)

)
(18)

Case 2: KD = I . Substitute KD = I into the expression for ∆ and use the assumption Σ1,1 =
Σ(k,m),(k,m) and Σi,j = Σ(k,m),(l,n), this simplifies ∆ to:

∆ =
1

I
(Σ1,1 + (I − 1)Σi,j)−

1

I

(
Σ1,1 + (D − 1)Σ(k,m),(k,n) + (I −D)Σi,j

)
(19)

=
1

I
Σ1,1 +

I − 1

I
Σi,j −

1

I
Σ1,1 −

D − 1

I
Σ(k,m),(k,n) −

I −D

I
Σi,j (20)

=
I − 1

I
Σi,j −

D − 1

I
Σ(k,m),(k,n) −

I −D

I
Σi,j (21)

=
D − 1

I
Σi,j −

D − 1

I
Σ(k,m),(k,n) (22)

=
D − 1

I

(
Σi,j − Σ(k,m),(k,n)

)
(23)
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J Additional Experiments

Here we report the results of additional experiments, including a new experiment setting, GPT on
the Shakespeare dataset for language modeling task, and two existing settings with a larger scale,
MNIST with 60K training images and MAESTRO with 15K training music sequences. As can be
seen in Figure 4 and Figure 5 (respectively for DROPOUT ENSEMBLE and LORA ENSEMBLE), both
methods still show clear improvements in these new experiments.
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Figure 4: LDS of Naive Ensemble and DROPOUT ENSEMBLE with the same plot format as Figure 1.
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Figure 5: LDS of Naive Ensemble and LORA ENSEMBLE. Please refer to Figure 3 for the plot
format. LORA ENSEMBLE is applied to Transformer models only therefore the ResNet + MNIST
setting is omitted. One point in the MT on MAESTRO (15K) plot is missing as we did not finish the
experiment on time.
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Figure 6: The LDS of naive independent ensemble and DROPOUT ENSEMBLE on more TDA methods,
IF, Grad-Dot, and Grad-Cos. The experiments are performed on MLP classifiers trained on MNIST.
The plot setup is similar as Figure 1.

K Computation Overhead

In Table 7, we list the computational overhead by different ensemble methods measured on Music-
Transformer with TRAK. The overhead of naive ensemble is proportional to the number of models
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used in the ensemble. In comparison, the DROPOUT ENSEMBLE does not incur any additional cost in
terms of training time cost (no additional training) and space cost (the dropout-masked variants do
not need to be stored), while incurring additional serving time cost. The LORA ENSEMBLE incurs
additional costs in terms of all three types of costs, but they are much smaller than naive ensemble.
Furthermore, the serving time cost is significantly reduced in comparison to DROPOUT ENSEMBLE
since we only need to calculate the gradients with respect to the LoRA parameters.

Cost Type No Ensemble Naive (3) Naive (10) D=3 D=10 L=3 L=10

Training Time 1 3 10 1 1 2.00 5.50

Serving Time 1 3 10 3 10 1.85 6.07

Space 1 3 10 1 1 1.03 1.10
Table 7: The relative computation overhead for Naive Ensemble (varying number of ensembles),
DROPOUT ENSEMBLE (one base model and varying D), and LORA ENSEMBLE (one base model
and varying L). The “No Ensemble” column refers to the cost with only one model, where the entries
are normalized to one for easier comparison. The relative costs of Naive Ensemble and DROPOUT
ENSEMBLE are based on simple counting while the relative costs of LORA ENSEMBLE are based on
experiments on MusicTransformer with TRAK.
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