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ABSTRACT

Cardiovascular disease (CVD) diagnosis relies heavily on electrocardiograms
(ECGs). However, most existing self-supervised uni-modal methods suffer from
limited representational capacity, while multi-modal frameworks are hindered by
coarse-grained semantic alignment across modalities, thus restricting their gener-
alizability in clinical settings. To address these limitations, we propose TAMER, a
Tri-modal contrastive Alignment and Multi-scale Embedding Refinement frame-
work that jointly models ECG recordings, spectrograms, and diagnostic reports.
TAMER is composed of three key components: First, the tri-modal feature en-
coding and projection (TFEP) module employs modality-specific encoders to
extract global and local features from ECG recordings, spectrograms, and di-
agnostic reports, and projects them into latent spaces. Then, the global-local
temporal-spectral alignment (GLTSA) module captures complementary rhythm-
and wave-level characteristics via contrastive alignment and attentive interaction
between temporal and spectral modalities. Finally, the report-aware alignment
and refinement (RAAR) module performs diagnostic-level alignment and wave-
level refinement with clinical reports, enabling semantic enrichment of ECG rep-
resentations. Extensive experiments on three public ECG datasets demonstrate
that TAMER achieves state-of-the-art zero-shot classification performance (AUC:
81.2%) and strong cross-domain generalization (AUC: 83.1%), outperforming ex-
isting uni-modal and multi-modal baselines methods. The source code is available
at https://anonymous.4open.science/r/TAMER-FB58.

1 INTRODUCTION

Early detection of cardiovascular diseases (CVDs) is critical for improving patient outcomes and
reducing healthcare costs Tripathi et al. (2022); Elvas et al. (2025). Subtle irregularities in ECG
recordings can indicate early signs of arrhythmia, ischemia, and other cardiac abnormalities, often
before the onset of severe symptoms Acharya et al. (2016); Hong et al. (2020); Yagi et al. (2024).
Consequently, ECG serves as a vital tool for identifying at-risk individuals, enabling timely inter-
ventions that help prevent disease progression and reduce mortality.

In recent years, the increasing availability of clinical data and advances in deep learning have led
to significant progress in automated ECG diagnostic models Ribeiro et al. (2020); Huang et al.
(2022); Liu et al. (2023); Al-Zaiti et al. (2023); Ameen et al. (2024). However, several challenges
continue to hinder their widespread clinical adoption. First, the scarcity of labeled data for specific
or rare clinical conditions poses a major obstacle, making it difficult to train reliable models that
generalize well across diverse patient populations. Second, uni-modal ECG signals, which primarily
reflect electrical activity, not only fail to capture the complex structural and functional abnormalities
associated with cardiovascular disease, but also suffer from inherent noise and variability that hinder
effective multi-modal fusion Zhang et al. (2023); Tripathi et al. (2022); Ameen et al. (2024).

To mitigate the scarcity of annotated data, self-supervised learning (SSL) has emerged as a powerful
paradigm for ECG representation learning Wang et al. (2023); Zhang et al. (2022). Existing ECG
SSL approaches generally fall into two categories: contrastive learning Mehari & Strodthoff (2022);
Li et al. (2022); Oh et al. (2022) and generative learning Zhang et al. (2023); Na et al. (2024).
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Contrastive methods learn discriminative representations by constructing positive and negative pairs
in the embedding space, whereas generative methods rely on masked reconstruction tasks to model
latent structural patterns. However, these methods predominantly focus on uni-modal time-series
data, limiting their capacity to capture complex pathological features.

To effectively leverage other modalities, recent research has focused on multi-modal ECG modeling
(Zhang et al., 2023; Lalam et al., 2023). One promising approach involves extracting time-frequency
joint representations Bui et al. (2024); Yang et al. (2024), which improve sensitivity to local pertur-
bations and non-stationary rhythms. Another emerging trend incorporates clinical diagnostic reports
Liu et al. (2024); PHAM et al. (2024), providing high-level semantic supervision. However, several
key challenges remain unresolved: (1) Temporal and spectral modalities emphasize distinct feature
types and are subject to modality-specific noise Singh & Krishnan (2023), leading to semantic mis-
alignment and fusion instability. (2) Most ECG-report alignment methods focus primarily on global
coarse matching, neglecting local correspondences between waveform anomalies and diagnostic
phrases Liu et al. (2024); PHAM et al. (2024), which limits the detection of subtle abnormalities.

To address these challenges, we propose TAMER, a tri-modal contrastive alignment and multi-scale
embedding refinement framework for zero-shot ECG diagnosis. TAMER is composed of three key
components: (1) The tri-modal feature encoding and projection (TFEP) module employs modality-
specific encoders and projections to extract global and local features from ECG recordings, spec-
trograms, and clinical reports, projecting each into latent spaces. (2) The global-local temporal-
spectral alignment (GLTSA) module performs rhythm-level contrastive alignment and wave-level
attentive interaction between temporal and spectral ECG features, producing a unified ECG rep-
resentation that captures multi-scale diagnostic patterns. (3) The report-aware alignment and re-
finement (RAAR) module integrates report-anchored diagnostic-level alignment and report-guided
wave-level refinement to enable semantic awareness, yielding robust ECG representations.The main
contributions are summarized as follows:

• We propose a tri-modal self-supervised ECG framework that jointly models ECG record-
ings, spectrograms, and clinical reports, extracting complementary diagnostic information
from underexplored modalities.

• We introduce the GLTSA and RAAR modules to improve tri-modal ECG representations
by enforcing temporal-spectral consistency and enabling cross-modal, global-local seman-
tic alignment between ECG signals and clinical reports.

• Extensive experiments conducted on three public ECG datasets demonstrate that TAMER
outperforms state-of-the-art methods in zero-shot classification and cross-domain general-
ization, highlighting its strong transferability and clinical relevance.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING IN ECG ANALYSIS

In recent years, SSL, broadly categorized into contrastive and generative methods, has made no-
table progress in intelligent ECG diagnosis. For contrastive learning, Mehari & Strodthoff (2022)
adapted classical visual contrastive techniques to ECG data, demonstrating their feasibility and
effectiveness in modeling medical time-series signals. Meanwhile, Wang et al. (2023) proposed
ASTCL, which enhances the robustness and spatiotemporal representation of ECG signals via ad-
versarial contrastive learning. However, contrastive methods often rely on augmentations that can
introduce non-physiological features, reducing sensitivity to critical patterns. In contrast, genera-
tive approaches such as ST-MEM Na et al. (2024) and MAFE Zhang et al. (2022) utilize Vision
Transformers and masking strategies to reconstruct occluded segments, capturing local morpholog-
ical patterns and temporal dependencies. Moreover, CRT Zhang et al. (2023) and MassMIB Yang
et al. (2024) performed cross-domain reconstruction of time- and frequency-domain representations,
exploiting their complementary characteristics to enhance robustness of ECG representations. How-
ever, these methods typically demand significant computational resources and large-scale datasets.

Overall, current ECG SSL methods limited in capturing complex or subtle abnormal patterns due
to underutilization of diverse information inherent in clinical data, highlighting the need for multi-
modal frameworks integrating time-domain signals, frequency-domain features, and clinical context.
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2.2 MULTI-MODAL LEARNING FOR ECG ANALYSIS

The multi-modal nature of ECG data is increasingly recognized as a key factor in enhancing diag-
nostic performance. Integrating ECG signals, spectrograms, and clinical reports yields more com-
prehensive representations, motivating current multi-modal methods. On the one hand, frequency-
domain features complement time-domain signals by capturing rhythmic and instantaneous fre-
quency variations (Yang & Hong, 2022; Duan et al., 2024; Zhou et al., 2024). This has motivated
ECG-specific time-frequency model methods such as CRT Zhang et al. (2023) and MassMIB Yang
et al. (2024), which employ masked reconstruction across time and frequency views to capture
global context and enhance cross-view robustness. On the other hand, inspired by CLIP Radford
et al. (2021), vision-language contrastive learning has been widely adopted in medical image analy-
sis, where clinical reports are increasingly regarded as a key modality for providing high-level diag-
nostic supervision (Wang et al., 2022; Cheng et al., 2023). More recently, MERL Liu et al. (2024)
extended this paradigm to ECG data, introducing a multimodal contrastive learning framework that
aligns ECG signals and clinical reports in a shared embedding space for zero-shot diagnosis.

In clinical practice, diagnostic decisions are based on specific waveform patterns, which are reflected
in reports through textual descriptions. However, existing multi-modal approaches often overlook
the alignment between localized waveform features and diagnostic semantics. To the best of our
knowledge, no existing method jointly models time-domain signals, frequency-domain features, and
clinical reports within a unified framework. To address this gap, we propose a tri-modal framework
that enhances both modality diversity and alignment granularity, particularly over MERL Liu et al.
(2024), by incorporating spectrogram features and introducing dual-level semantic alignment for
more precise cross-modal understanding.
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Figure 1: Overview of the TAMER framework. (a) Tri-modal Feature Encoding and Projection
(TFEP). (b) Global-Local Temporal-Spectral Alignment (GLTSA). (c) Report-Aware Alignment
and Refinement (RAAR). Subfigures (d) and (e) provide detailed illustrations of the internal mecha-
nisms of the Wave-Level Attentive Interaction (WLAI) and Report-Guided Wave-Level Refinement
(RGWR) respectively. CL and WCL denote the contrastive loss and the weighted contrastive loss.

3 METHODS

Figure 1 illustrates the proposed TAMER framework. Given an unlabeled tri-modal dataset,
D = {(xt

i, x
f
i, x

r
i)}Ni=1, each training sample consists of a 12-lead ECG signal xt

i, its corresponding
spectrogram xf

i, and the associated clinical report xr
i. The TFEP module encodes each modality

to extract both global features (gt
i, g

f
i, g

r
i) and local features (lt

i, l
f
i, l

r
i). Subsequently, the GLTSA

performs rhythm-level contrastive alignment on (gt
i, g

f
i) to ensure cross-modal consistency, and

wave-level attentive interaction on (lt
i, l

f
i) to produce a unified ECG representation ze

i . ze
i is fur-

ther regularized through dropout-based perturbation to produce augmented views for consistency
learning. Simultaneously, both ze

i and lt
i are fed into the RAAR module, which performs dual-level
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contrastive learning with gr
i and lr

i, promoting deep semantic alignment between ECG signals and
clinical reports.

3.1 TRI-MODAL FEATURE ENCODING AND PROJECTION

Multi-modal ECG data comprises time-domain signals that capture rhythm and waveform charac-
teristics, spectrograms that reveal frequency-domain anomalies (e.g., transient bursts, non-stationary
spectral patterns), and clinical reports that contain diagnostic knowledge. We hypothesize that
modality-specific information is essential for learning high-quality representations.

We propose the tri-modal feature encoding and projection (TFEP) module, as illustrated in Fig-
ure 1(a). First, we transform the raw ECG waveform xt

i ∈ RL×T , where L denotes the number
of leads (typically 12) and T is the temporal length, into a spectrogram xf

i ∈ RL×F×M using the
short-time Fourier transform (STFT) Bui et al. (2024). F and M are the numbers of frequency bins
and temporal frames, respectively. We then extract local features lt

i and lf
i from xt

i and xf
i via the

hidden layers of the ECG and spectrogram encoders. We also extract global features gt
i and gf

i by
applying average pooling over lt

i and lf
i. For the clinical report xr

i, we apply a frozen report encoder
to obtain the global representation gr

i and local representations lr
i, along with the attention weights

of the [CLS] token, represented as a vector w, which is used to estimate the importance of each
report token based on its contribution to the [CLS] token. All extracted features are then projected
into modality-specific latent spaces to facilitate downstream contrastive alignment and fusion.

3.2 GLOBAL-LOCAL TEMPORAL-SPECTRAL ALIGNMENT

ECG signals and spectrograms exhibit periodicity and semantic complementarity in the time-
frequency domain. To fully leverage this internal consistency, we introduce three modules: (1)
rhythm-level contrastive alignment (RLCA) for enforcing global temporal-spectral consistency. (2)
wave-level attentive interaction (WLAI) module for enhancing local feature interaction and derive
a unified ECG representation, and (3) uni-ECG consistency regularization (UECR) for improveing
the robustness of the unified representation, as shown in Figure 1(b).

3.2.1 RHYTHM-LEVEL CONTRASTIVE ALIGNMENT.

Although temporal and spectral features originate from the same physiological signal, the STFT
transformation introduces differences in temporal resolution. Coupled with modality-specific noise,
this often lead to semantic misalignment between global cardiac rhythms across modalities, hinder-
ing the model’s ability to detect periodic abnormalities. To address this, we propose the RLCA,
which enforces global alignment between temporal and spectral modalities via contrastive learn-
ing. Specifically, inspired by the contrastive learning Radford et al. (2021), given a pair of features
(ηa,ηb) from modalities a and b, we minimize the distance between positive pairs (ηa

i ,η
b
i ), while

maximizing that between negative pairs (ηa
i ,η

b
j). The contrastive loss (CL) LCL(·) is defined as:

La2b
i,j = − log

(
exp(sim(ηa

i ,η
b
i )/τ)∑N

j=1 1[j ̸=i] exp(sim(ηa
i ,η

b
j)/τ)

)
, Lb2a

i,j = − log

(
exp(sim(ηb

i ,η
a
i)/τ)∑N

j=1 1[j ̸=i] exp(sim(ηb
i ,η

a
j)/τ)

)
,

LCL(η
a,ηb) =

1

2B

N∑
i=1

N∑
j=1

(
La2b
i,j + Lb2a

i,j

)
,

(1)

where τ is the temperature parameter, B is the batch size, 1(·) is the indicator function, and sim(·)
denotes the cosine similarity.

For temporal-spectral pairs (gt, gf), the loss LRLCA is defined as LRLCA = LCL(g
t, gf). By enforcing

this global rhythm-level alignment, RLCA enhances the temporal-spectral consistency and improves
the model’s ability to recognize rhythmic patterns and periodic abnormalities.

3.2.2 WAVE-LEVEL ATTENTIVE INTERACTION.

While RLCA captures global rhythm consistency, it lacks fine-grained modeling of diagnostic
waves, such as the QRS complex or ST segment, which reflect critical pathological patterns across
cycles. To this end, we introduce the WLAI module, which enhances wave-level interactions and
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constructs a unified ECG representation. Specifically, local temporal and spectral features, lt
i and lf

i
are concatenated to preserve modality-specific characteristics. A two-stage residual attention mech-
anism is then applied to adaptively reweigh salient features and align complementary semantics.
Finally, a learnable class token and attention-based pooling are incorporated to aggregate diagnostic-
sensitive waves into a compact embedding ze

i , which captures compound or co-existing pathological
patterns. The overall process is:

ljoint
i = concatenation(lt

i, l
f
i), z

(1)
i = ljoint

i + att(ljoint
i ), z

(2)
i = z

(1)
i + att(z

(1)
i ), ze

i = attpool(z
(2)
i ), (2)

where att denotes the multi-head attention mechanism, and attpool(·) represents attention-based
aggregation (Vaswani et al., 2017).

Unlike conventional fusion methods that directly sum or concatenate modalities, often leading to
information redundancy or loss, WLAI selectively integrates clinically relevant features, resulting
in a coherent and semantically enriched representation.

3.2.3 UNI-ECG CONSISTENCY REGULARIZATION.

Although the WLAI produces a unified representation, it may still be instability due to modality-
specific noise, motion artifacts, or modality discrepancies. To enhance robustness and representation
consistency, we introduce the UECR module. UECR aims to enforce view-invariant representations
by perturbing the fused embedding ze

i . Specifically, we apply dropout to to generate two stochastic
views zu

i and zv
i . We then apply a contrastive loss, LUECR = LCL(z

u, zv), using the contrastive
function defined in Eq. equation 1 to encourage their alignment in the embedding space.

3.3 REPORT-AWARE ALIGNMENT AND REFINEMENT

In clinical practice, diagnostic reports interpret ECG signals from a medical perspective, provid-
ing high-level complementary information. Exploiting the complementarity of these two modalities
enhances the model’s ability to capture disease-related features. To this end, the RAAR module
leverages a frozen text encoder to provide stable diagnostic semantics and enhances ECG repre-
sentations through two sub-modules: the report-anchored diagnostic-level alignment (RADA) en-
hances the model’s awareness of global diagnostic semantics, while the report-guided wave-level
refinement (RGWR) strengthens attention to key diagnostic waves and improves the identification
of fine-grained abnormalities, as illustrated in Figure 1(c).

3.3.1 REPORT-ANCHORED DIAGNOSTIC-LEVEL ALIGNMENT.

The representation ze
i produced by the WLAI module integrates key waveform segments to form a

comprehensive diagnostic embedding, while the global report embedding gr
i captures diagnostic se-

mantics from textual descriptions. These two modalities respectively provide the physiological and
clinical perspectives necessary for cardiovascular disease diagnosis. To align them, the RADA mod-
ule enforces global semantic consistency across modalities via contrastive learning. The objective is
defined as LRADA = LCL(z

e, gr) (Eq. equation 1).

3.3.2 REPORT-GUIDED WAVE-LEVEL REFINEMENT.

While RADA captures global semantics, it lacks fine-grained alignment between ECG and diag-
nostic report. Since WLAI already fuses temporal and spectral features, RGWR focuses on local
interactions between temporal ECG waves and diagnostic reports, enabling wave-level semantic
refinement and improving abnormality localization.

Let Ti = {tki }Kk=1,Ri = {rmi }Mm=1, t
k
i , r

m
i ∈ RD denote the local feature sets from ECG record-

ings and report respectively. A dual cross-attention mechanism computes contextual representations:

cki =
M∑

m=1

softmax
(
Qtki ·Kpm

i√
D

)
· V rmi , cmi =

K∑
k=1

softmax
(
Qrmi ·Ktki√

D

)
· V tki , (3)

with Q,K,V ∈ RD×D as learnable matrices.

To dynamically weight the diagnostic importance of different tokens and ECG waves, we utilize
token-level attention weights wj

i generated by the report encoder. The weighted contrastive loss

5
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Table 1: Comparison of different methods on the PTBXL-Super dataset (best in bold).
Method Training Zero-Shot Domain Shift

Ratio PTBXL-Super CPSC2018 CSN
SimCLR 100% × 69.62 73.05
BYOL 100% × 70.27 74.01
BarlowTwins 100% × 68.98 72.85
MoCo-v3 100% × 69.41 73.29
SimSiam 100% × 70.06 73.92
TS-TCC 100% × 71.32 75.16
CLOCS 100% × 68.79 72.64
ASTCL 100% × 69.23 73.18
CRT 100% × 70.15 74.08
ST-MEM 100% × 76.12 84.50
MERL 0% 74.2 88.21 78.01
C-MET 0% 76.2 72.09 79.11
TAMER 0% 76.5 84.71 80.95

(WCL) for local ECG-report refinement denoted as LRGWR and computed as follows:

LECG = − 1

2NK

N∑
i=1

K∑
j=1

wj
i log

(
exp(sim(tji , c

j
i )/λ)∑K

k=1 exp(sim(tji , c
k
i )/λ)

)
, Lreport = − 1

2NM

N∑
i=1

M∑
j=1

wj
i log

(
exp(sim(rji , c

j
i )/λ)∑M

m=1 exp(sim(rji , c
m
i )/λ)

)
,

LRGWR = LECG + Lreport,

(4)
where λ is the temperature parameter. The RGWR highlights waveform segments that are most
relevant to the diagnostic report, enhancing interpretability and fine-grained disease recognition.
Attention weights wj

i dynamically adjust focus based on the diagnostic importance of each token,
improving sensitivity to critical abnormalities.

By integrating global and local contrastive losses, the RAAR alignment loss is defined as:

LRAAR = LRADA + LRGWR. (5)

3.4 OVERALL LOSS FUNCTION

Finally, TAMER jointly optimizes the key loss functions as follows:

Ltotal = LRLCA + LUECR + LRAAR. (6)

By integrating these components, TAMER significantly enhances cross-modal consistency and im-
proves representation robustness.

4 EXPERIMENTS AND RESULTS

4.1 PRE-TRAINING

4.1.1 PRE-TRAINING DATASET.

We pre-train our model on the MIMIC-ECG dataset Gow et al. (2023), which contains 800,035
ECG-report pairs collected from 161,252 patients. Each sample consists of a 12-lead ECG signal
recorded at 500 Hz for 10 seconds, accompanied by a structured or free-text diagnostic report.
Data processing follows the standard pipeline proposed in MERL Liu et al. (2024), including signal
normalization, clinical report cleaning, and semantic filtering. After processing, a total of 771,693
high-quality triplets are retained for unsupervised tri-modal training.

4.1.2 PRE-TRAINING IMPLEMENTATION DETAILS.

Our model is implemented in PyTorch and trained on a single NVIDIA A100-PCIE-40GB GPU.
The ECG encoder adopts a randomly initialized 1D ResNet-34 He et al. (2016), the spectrogram
encoder is a 2D CNN, and the report encoder employs a frozen Med-CPT Query Encoder Jin et al.
(2023) for semantic stability.

We use the AdamW optimizer with an initial learning rate of 2 × 10−4 and a weight decay of
1 × 10−7. To dynamically adjust the learning rate during training, we adopt a cosine annealing
warm restart scheduler with an initial restart period of T0 = 40, 000. The temperature factor λ is set
to be 0.04. The model is trained for 50 epochs with a batch size of 256.
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Table 2: Comparison of different methods on the CPSC2018 dataset (best in bold).
Method Training Zero-Shot Domain Shift

Ratio CPSC2018 PTBXL-Super CSN
SimCLR 100% × 56.65 66.36
BYOL 100% × 57.32 67.56
BarlowTwins 100% × 55.97 65.89
MoCo-v3 100% × 56.54 66.12
SimSiam 100% × 57.21 67.48
TS-TCC 100% × 58.47 68.34
CLOCS 100% × 55.86 65.73
ASTCL 100% × 56.61 66.27
CRT 100% × 57.39 67.62
ST-MEM 100% × 62.27 75.19
MERL 0% 82.8 76.77 76.56
C-MET 0% 80.1 77.12 82.91
TAMER 0% 88.3 82.00 86.73

Table 3: Comparison of different methods on the CSN dataset (best in bold).
Method Training Zero-Shot Domain Shift

Ratio CSN PTBXL-Super CPSC2018
SimCLR 100% × 59.74 62.11
BYOL 100% × 60.39 63.24
BarlowTwins 100% × 58.76 61.35
MoCo-v3 100% × 59.82 62.07
SimSiam 100% × 60.23 63.09
TS-TCC 100% × 61.55 64.48
CLOCS 100% × 58.69 61.27
ASTCL 100% × 59.74 61.12
CRT 100% × 60.48 63.33
ST-MEM 100% × 73.05 64.66
MERL 0% 74.4 74.15 82.86
C-MET 0% 76.3 76.24 80.10
TAMER 0% 78.7 76.49 87.62

4.2 DOWNSTREAM TASKS

4.2.1 DOWNSTREAM TASK DATASETS.

To evaluate the generalization of our pre-trained TAMER across various clinical scenarios, we con-
duct downstream experiments on three public ECG datasets, each providing 12-lead signals (500
Hz, 10 s). Data splitting and preprocessing follow the protocol in MERL Liu et al. (2024).

PTBXL-Super Dataset. A PTBXL subset Wagner et al. (2020) with 21,837 ECG recordings from
18,885 patients across five major CVD categories is used for evaluation.

CSN Dataset. The CSN dataset Zheng et al. (2020; 2022) includes 23,026 ECG recordings anno-
tated with 38 diagnostic labels.

CPSC2018 Dataset. The CPSC2018 dataset Liu et al. (2018) comprises 6,877 12-lead ECG record-
ings, with durations ranging from 6 to 60 seconds, and includes 9 diagnostic labels. We retain
recordings with durations ≥ 10 seconds and truncate all signals to 10 seconds, resulting in 6,867
records used for evaluation.

4.2.2 DOWNSTREAM TASK IMPLEMENTATION DETAILS.

To comprehensively assess the generalization ability of the pre-trained model under real-world clin-
ical constraints, we design two zero-shot evaluation scenarios:

Zero-Shot Classification Across Unseen Labels. We evaluate the model’s ability to recognize
previously unseen disease categories while keeping all pre-trained parameters frozen. We adopt
the CKEPE prompt dictionary Liu et al. (2024) to generate class-level textual descriptions. The
similarity between each ECG representation and the semantic prompt is computed and used as the
prediction score on the downstream test set.

Zero-Shot Classification Under Domain Shift. To simulate domain shifts frequently encountered
in clinical environments, such as varying patient populations or acquisition protocols, we conduct
cross-dataset evaluations where the source and target domains share semantically aligned diagnostic
labels but differ in data distribution. Label mapping and merging are performed following the pro-
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Figure 2: t-SNE Visualization of ECG Features (MERL vs. TAMER) on CSN Dataset

tocol in MERL Liu et al. (2024). The model is directly evaluated on the target domain without any
additional tuning.

4.3 EVALUATION METRICS

All evaluations are based on macro-AUC, ensuring a fair comparison in the presence of class imbal-
ance and providing a robust measure of model reliability across domains.

4.4 COMPARISON WITH STATE-OF-THE-ART METHODS

To comprehensively evaluate the effectiveness and generalization capability of the proposed
TAMER framework, we conduct systematic comparisons with state-of-the-art SSL methods un-
der two evaluation settings: zero-shot classification and zero-shot classification under domain shift.
Zero-shot classification is performed for multi-modal methods to assess their capacity for seman-
tic understanding and classification. For zero-shot classification under domain shift, multi-modal
approaches such as MERL Liu et al. (2024) and C-MET PHAM et al. (2024) are evaluated on
the target domain without any fine-tuning, better reflecting their ability to generalize across domains
through cross-modal semantic alignment. All uni-modal SSL baselines: SimCLR Chen et al. (2020),
BYOL Grill et al. (2020), BarlowTwins Zbontar et al. (2021), MoCo-v3 Chen et al. (2021), Sim-
Siam Chen & He (2021), TS-TCC Eldele et al. (2021), CLOCS Kiyasseh et al. (2021), ASTCL Wang
et al. (2023), CRT Zhang et al. (2023), ST-MEM Na et al. (2024) are fine-tuned on 100% of the la-
beled source domain data and then evaluated on the target domain.

4.4.1 ZERO-SHOT CLASSIFICATION.

As illustrated in Tables 1, 2, and 3,TAMER achieves the best overall performance, with AUCs of
76.5%/88.3%/78.7% on PTBXL-Super, CPSC2018, and CSN, respectively. This notably surpasses
MERL (74.2%/82.8%/74.4%) and C-MET (76.2%/80.1%/76.3%), especially on CPSC2018 where
TAMER an AUC of 88.3%, demonstrating its exceptional capability in handling complex, multi-
label ECG classification under zero-shot settings.

4.4.2 ZERO-SHOT CLASSIFICATION UNDER DOMAIN SHIFT.

Under domain shift conditions, TAMER continues to outperform all compared SSL, achieving an
average AUC of 81.2% on three cross-domain evaluation settings, without any fine-tuning, as shown
in Tables 1, 2, and 3. This highlights its robustness to distribution shifts and the advantage of
leveraging tri-modal semantics.

Several insights can be drawn from the results. First, under domain shift scenarios, multi-modal
methods generally outperform uni-modal approaches that rely on source-domain fine-tuning, em-
phasizing the effectiveness of incorporating clinical text as semantic priors to mitigate the impact
of distributional shifts. Second, TAMER achieves average AUCs of 81.2% and 83.1% across three
datasets on the two downstream tasks, consistently surpassing all uni-modal and multi-modal self-
supervised baselines. These results demonstrate its superior generalization capability and validate
the effectiveness of our proposed tri-modal architecture and report-aware alignment and refinement
module in improving cross-domain modeling.
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4.5 ANALYSIS OF TAMER

4.5.1 ABLATION STUDY.

We conduct ablation experiments by individually removing the RLCA, WLAI, and RGWR mod-
ules to evaluate their contributions to model performance. As shown in Table 4, removing RLCA,
WLAI, and RGWR results in average AUC drops of 0.57%, 5.03%, and 2.46%, respectively, on the
zero-shot task, and 1.59%, 4.14%, and 3.64% on the domain shift task. These results clearly demon-
strate the essential role of all three modules in enhancing the model’s generalization and diagnostic
performance. Specifically, RLCA and WLAI enhance semantic consistency between temporal and
spectral modalities at the global and local levels, respectively. RGWR performs fine-grained seman-
tic alignment between ECG signals and diagnostic phrases, facilitating the precise identification of
critical abnormalities. Together, these three modules promote deep interaction and semantic enrich-
ment across ECG tri-modal features, significantly improving the model’s discriminative capability
and clinical adaptability in automated ECG diagnosis. These findings validate the effectiveness of
the proposed method in multi-modal medical scenarios.

Table 4: Results of ablation experiments on key modules.
WLAI RGWR Zero-Shot Domain Shift

× ✓ ✓ 80.62 81.49
✓ × ✓ 76.16 78.94
✓ ✓ × 78.73 79.44
✓ ✓ ✓ 81.19 83.08

4.5.2 EFFECTS OF TEMPERATURE PARAMETER λ.

The temperature parameter λ controls the concentration level of the similarity distributions. We
assess the impact of λ using values of 0.03, 0.04, and 0.05. As shown in Table 5, λ = 0.04 yields
the best performance in both zero-shot and domain shift settings, indicating a balanced trade-off
between training stability and discriminative learning.

Table 5: Effects of temperature parameter λ.
λ Zero-Shot Domain Shift

0.03 80.42 81.66
0.04 81.19 83.08
0.05 79.91 81.62

4.5.3 VISUALIZATION OF FEATURE REPRESENTATIONS.

We employ t-SNE to visualize the ECG embeddings extracted from the CSN test set, as shown
in Figure 2. To enhance clustering clarity, multi-label samples and classes with fewer than 50 in-
stances are excluded. The visualization shows that TAMER produces more distinct and compact
clusters across various diagnostic categories. Compared to MERL, TAMER exhibits clearer group
boundaries for easily confusable classes such as ALS, APB, and TWC, indicating improved sepa-
ration and reduced overlap in the feature space. For well-separated categories like AF and ST, both
models perform similarly, confirming that TAMER retains the original discriminative capacity while
also producing more refined embeddings for ambiguous cases.

5 CONCLUSION

In this work, we propose TAMER, a unified tri-modal pre-training framework for robust and gen-
eralizable ECG representation learning. TAMER integrates three key components: a tri-modal fea-
ture encoding and projection module, a global-local temporal-spectral alignment module, and a
report-aware alignment and refinement module. By jointly modeling ECG signals, spectrograms,
and clinical diagnostic reports, TAMER effectively captures heterogeneous and localized seman-
tic information. The fusion and contrastive alignment modules promote consistent, interpretable,
and discriminative representations. Extensive evaluations on three public datasets demonstrate that
TAMER consistently outperforms state-of-the-art uni-modal and multi-modal baselines in both zero-
shot classification and cross-domain transfer tasks.
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A APPENDIX

A.1 LLM ASSISTANCE STATEMENT

During the preparation of this manuscript, we utilized AI-based assistance tools (OpenAI’s Chat-
GPT) to support the writing and editing process. The AI was used primarily to:

• Refine and polish the language of certain paragraphs to improve clarity, readability, and
conciseness.

• Suggest alternative wording or phrasing for specific terms to enhance precision and aca-
demic tone.

• Provide guidance on restructuring sentences or paragraphs for better logical flow.

All scientific content, including experimental design, methodology, results, analysis, and conclu-
sions, was authored and verified solely by the human authors. The AI did not generate any original
scientific claims or analyses; it assisted only with language expression and clarity.

A.2 CHOICES OF TEXT ENCODERS.

We evaluate the effectiveness of different report encoders derived from three representative medical
language models: PubMedBERT Gu et al. (2021), Clinical ModernBERT Lee et al. (2025), and
Med-CPT Jin et al. (2023). Each text encoder is assessed under identical pre-training and down-
stream evaluation settings. As shown in Table A1, Med-CPT consistently achieves the best perfor-
mance across both zero-shot classification and domain shift tasks, significantly outperforming the
other encoders. This advantage is attributed to Med-CPT’s contrastive pre-training strategy, which
is more effective at modeling semantic consistency and capturing fine-grained features in medical
reports, thereby improving cross-modal alignment performance.

Table A1: Performance comparison of different text encoders
Text encoder Zero-Shot Domain Shift
PubMedBERT 72.23 74.36

Clinical ModernBERT 76.92 79.61
Med-CPT 81.19 83.08

A.3 COMPARISON OF DIFFERENT METHODS UNDER ZERO-SHOT.
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Figure A1: Zero-shot AUC (%) on three ECG datasets: MERL vs. C-MET vs. TAMER. AUC
performance (%) of MERL, C-MET, and TAMER across three ECG datasets in the zero-shot setting.
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