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ABSTRACT

The field of preference optimization has made outstanding contributions to the
alignment of language models with human preferences. Despite these advance-
ments, recent methods still rely heavily on substantial paired (labeled) feedback
data, leading to substantial resource expenditures. To address these challenges, we
study the problem of Semi-Supervised Preference Optimization (SSPO) in which
the idea is to learn from both a small number of pairwise preference labels and a
large pool of unpaired samples simultaneously. Our key theoretical contribution
proves the existence of an optimal reward threshold capable of separating winning
and losing responses with high probability, which enables a principled pseudo-
labeling of unpaired data. By leveraging these pseudo-labels, SSPO effectively
distills latent preferences from large-scale unpaired data, thus maintaining human
alignment while drastically reducing acquisition costs. Extensive experiments
across datasets validate this remarkable data efficiency; for instance, SSPO trained
with Mistral-7B-Instruct on just 1% of UltraFeedback consistently surpasses strong
baselines trained on 10% of UltraFeedback.1

1 INTRODUCTION

Preference optimization (PO) is a pivotal method for aligning large language models (LLMs) with
human values and expectations, ensuring that models provide useful, safe, and pleasant outputs (Ca-
landriello et al., 2024). Without proper alignment, LLMs risk generating misleading or harmful
content (Song et al., 2024). In PO, preferences reflect human judgments on the desirability or useful-
ness of responses, encompassing nuanced aspects such as ethical soundness or honesty (Christiano
et al., 2017; Ouyang et al., 2022; Bai et al., 2022). Building such preference datasets typically
involves labor-intensive human annotation processes (Cui et al., 2024; Karthik et al., 2024; Shi et al.,
2024), where annotators craft prompts, gather responses from models (Achiam et al., 2023; Dubey
et al., 2024), and rank them.

The primary bottleneck in PO is its profound reliance on data acquisition. This process is costly;
it requires expert labor, averaging 5–10 minutes per comparison, and reaching $10–30 per data
point (Bai et al., 2022; Casper et al., 2023). To conquer these limitations, recent work has explored
synthetic feedback (Huang et al., 2023; Zhou et al., 2024; Xu et al., 2024) and automatic preference
prediction using LLMs (He et al., 2024). While promising, these approaches face quality assurance
issues due to the lack of verified ground truth.

A potential solution to this costly data acquisition lies in the vast amount of existing domain-specific
data, such as question-answering pairs originally intended for supervised fine-tuning (SFT) (Agrawal
et al., 2024). Although rich in expert knowledge, this data lacks the explicit preference labels required
for PO. But it often contains valuable implicit preferences, such as coherent thinking patterns and
appropriate stylistic tones. To leverage these unlabeled sources, some studies have attempted to
generate preference signals using a capable LLM for self-annotation.

However, relying on synthetic data or LLM-based annotations for human alignment has fundamental
limitations. This strategy risks creating a feedback loop in which an imperfectly aligned model
propagates its own biases and fails to fully capture the complexity of genuine human preferences,
thus generating data of questionable reliability (Casper et al., 2023). Such synthetic preferences

1https://anonymous.4open.science/r/SSPO-F7FE/
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Figure 1: Overview of the SSPO framework. Existing preference optimization methods, such as
DPO and SimPO, rely solely on a limited number of human-labeled comparisons. These methods
discard abundant unpaired responses (e.g., supervised fine-tuning data) due to the lack of preference
labels, which hinders generalization and data efficiency. SSPO leverages a reward function trained
on labeled comparisons to assign pseudo-labels to unpaired responses. Responses above a learned
threshold are treated as (pseudo) winning, and those below as (pseudo) losing. Hence, the policy
model optimizes the reward threshold using both labeled and pseudo-labeled data, thereby improving
alignment quality and generalization beyond the labeled dataset.

often lack the subtle, context-dependent nuances that are characteristic of true human judgment.
Ultimately, acquiring reliable high-quality preference data, especially in specialized domains, still
entails prohibitively expensive expert evaluation, creating a significant barrier to developing models
that are knowledgeable and aligned with human values in a safe way (Miller et al., 2024).

To address this, we propose Semi-Supervised Preference Optimization (SSPO), which combines a
small amount of labeled preference data with large-scale SFT datasets via semi-supervised learning.
SSPO reframes preference learning as a probabilistic classification task, enabling principled pseudo-
labeling of unpaired data using a reward function trained on limited labeled examples. By adjusting a
dynamic reward threshold, SSPO generates high-confidence preference labels and jointly optimizes
the policy model with both paired and pseudo-labeled data. As shown in Figure 1, SSPO enables
cost-efficient preference tuning while preserving domain knowledge and aligning with human values.
It significantly reduces the reliance on large annotated datasets, offering a scalable and effective
framework for high-quality LLM alignment.

2 RELATED WORK

2.1 PREFERENCE OPTIMIZATION

Preference optimization aligns language models with human preferences to improve helpfulness and
safety. Proximal Policy Optimization (PPO) (Schulman et al., 2017) introduced a stable reinforcement
learning algorithm that prevents large policy shifts during training. This method laid the foundation
for preference-based fine-tuning of language models. Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) enhanced alignment by using human rankings to train a reward model,
which then guides policy updates. While effective, RLHF’s reliance on reward models can introduce
bias and increase training complexity. To simplify this process, Rank Rewarding from Human
Feedback (RRHF) (Yuan et al., 2023) and Direct Preference Optimization (DPO) (Rafailov et al.,
2024) reduced dependence on reward models. RRHF directly incorporates ranking signals, while DPO
frames preference learning as a binary classification task, improving stability and efficiency. Odds
Ratio Preference Optimization (ORPO) (Hong et al., 2024) and Simple Preference Optimization
(SimPO) (Meng et al., 2024) further improved efficiency by removing the need for a reference
model. ORPO models preferences through odds ratios, while SimPO focuses on simplicity and
ease of implementation. Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024) takes
inspiration from behavioral economics, incorporating human-like biases (e.g., dislike of loss) into the
optimization process to better reflect real-world preferences.
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2.2 HUMAN ALIGNMENT WITH LIMITED FEEDBACK

Alignment with insufficient feedback is a key challenge in fine-tuning LLMs, where high-quality
human preference data is often limited or costly (Casper et al., 2023). Ziegler et al. (2019) demon-
strated the effectiveness of preference modeling for alignment but relied heavily on extensive human
annotations. To reduce this dependency, Kim et al. (2025) and Huang et al. (2023) proposed generat-
ing synthetic preference data, and Zhou et al. (2024) extended this with a generalizable synthesis
framework. Shi et al. (2024) and Liu et al. (2023) explored automated preference signals, while
Semi-Supervised Reward Modeling (SSRM) (He et al., 2024) investigates reward modeling using a
self-training framework under a semi-supervised setting.

2.3 SYNTHETIC PREFERENCE GENERATION

Synthetic preference generation reduces dependence on manual labeling but is intrinsically limited by
the alignment quality of the generating models. For example, AlpacaFarm (Dubois et al., 2023) uses
LLMs to simulate human preferences, improving cost efficiency but risking the propagation of model
biases, which creates a circular constraint on alignment. Meanwhile, off-the-shelf supervised fine-
tuning (SFT) data contains valuable implicit preference signals, such as reasoning and stylistic cues,
yet is often underutilized. Self-training approaches leverage this data via pseudo-labeling (Wang et al.,
2024), but typically require iterative annotation cycles that may introduce noise and instability. In
comparison, Spread Preference Annotation (SPA) (Kim et al., 2025) addresses scarcity by repeatedly
self-annotating with improved preference models to refine alignment progressively, though this
process can be computationally intensive and may amplify errors.

3 PRELIMINARIES

In this section, we reformulate preference optimization as a Bayes-optimal classification problem.
This reframing is a key to theoretically justifying our pseudo-labeling strategy for unpaired data
in Section 4. We argue that aligning language model outputs with human preferences can be
conceptualized as a probabilistic classification task over pairwise comparisons. The objective is
to learn a scoring function that, given a prompt and two candidate responses, reliably identifies
the preferred response. This perspective offers a principled theoretical framework for analyzing
preference optimization.

We begin by modeling the preference classifier as a probabilistic binary function that assigns a higher
score to the winning response. We then examine how the separation of reward values emerges after
proper learning, allowing for a threshold-based pseudo-labeling strategy. Finally, we show that the
reward-based ranking is consistent with model likelihoods under mild assumptions, providing a solid
theoretical basis for our approach in Section 4.

Let fθ : (x, y, y′) → [0, 1] denote a binary preference classifier parameterized by θ which takes a
prompt x and two candidate responses y and y′ as input, and outputs a confidence score of human
alignment of the model. Let s ∈ {0, 1} be a true preference label, where s = 1 indicates that y is
preferred over y′, and s = 0 otherwise. We want to find the Bayes optimal classifier f∗(x, y, y′)
= P(s | x, y, y′) ∝ P(x, y, y′ | s) · P(s) that minimizes the expected risk R(fθ):

f∗ = argmin
θ

R(fθ) where R(fθ) = E[ℓ(fθ, s)] (1)

where the preference classifier is trained to predict the correct value of s by minimizing the binary
cross-entropy loss ℓ(fθ, s) = −s log fθ(x, y, y′)− (1− s) log(1− fθ(x, y, y

′)).

To model our preference classifier, we define fθ(x, y, y
′) by Bradley-Terry modelization (Bradley &

Terry, 1952; Rafailov et al., 2024; Meng et al., 2024):

fθ(x, y, y
′) := σ(rθ(x, y)− rθ(x, y

′)) · P(s = 1) + σ(rθ(x, y
′)− rθ(x, y)) · P(s = 0), (2)

where rθ(x, y) is a reward function that reflects the likelihood that y is preferred given x, and σ(·)
is the sigmoid function. Each term in Eq. (2) corresponds to the confidence of the model in each
possible preference direction. Namely, the first term represents the model’s estimated probability that
y is preferred over y′ scaled by the prior probability that s = 1, and the second term accounts for the
reverse case where y′ is preferred over y. This formulation models the expected prediction of the
preference label s by marginalizing over both possible outcomes.

3
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Given that the human-annotated preference dataset DL = {(x(i), y
(i)
w , y

(i)
l )}nL

i=1 always contains pairs
where y(i)w is the winning response and y

(i)
l is the losing one, we always have (x, y, y′) = (x, yw, yl),

i.e., the preference label s is always 1. This simplifies the risk function of the paired data DL as Eq.
(3), which means that the risk function is equal to the objective of preference optimization:

EDL
[ℓ(fθ, s)] = EDL

[ℓ(fθ, 1) | s = 1] · PDL
(s = 1) + EDL

[ℓ(fθ, 0) | s = 0] · PDL
(s = 0)

= EDL
[ℓ(fθ, 1)]

= EDL
[− log σ(rθ(x, yw)− rθ(x, yl))]. (3)

This formulation captures the expected agreement of the classifier with the given preference label
and serves as the foundation for reward-based preference learning. In our study, we set rθ(x, y) =
β
|y| log πθ(y | x) as the default choice, which is the reward function of SimPO (Meng et al., 2024).
Therefore, the expected risk of the paired data is:

RDL
(fθ) = EDL

[
− log σ

(
β

|yw|
log πθ(yw | x)−

β

|yl|
log πθ(yl | x)−∆

)]
(4)

where πθ(y | x) is the language model’s policy (likelihood), β is a scaling hyperparameter and ∆ is a
reward margin guarantee for winning to exceed losing (Firth, 2005; Meng et al., 2024).

4 PREFERENCE OPTIMIZATION WITH BOTH PAIRED AND UNPAIRED DATA

Acquiring paired preference data (DL) is often prohibitively expensive, making it challenging to
collect a dataset sufficient for achieving desired performance levels. To overcome this, we leverage
a large corpus of unpaired data, DU = {(x(j)

u , y
(j)
u )}nU

j=1, which is more readily available such that
nL ≪ nU . Our core strategy involves setting a reward threshold using the paired data during training,
applying it to assign pseudo-labels to the unpaired data, and adopting a curriculum that initially
focuses on the paired data before gradually shifting toward the pseudo-labeled unpaired data. When
trained on a small set of paired comparisons from DL, rθ learns to assign consistently higher values
to winning responses than to losing ones. This creates a clear separation in the reward space, which
enables the extension of preference supervision to the abundant unpaired data in DU .

4.1 PSEUDO-LABELING WITH A REWARD THRESHOLD

Since our unpaired data consists of single prompt-response pairs, no preference comparison is
available. We now introduce an imaginary pair by assuming a counterpart yb for each yu to form a
virtual comparison triplet (xu, yu, yb). Here, yb represents a hypothetical response whose reward is
precisely at the decision boundary we aim to learn. This formulation allows us to apply the same
preference classifier fθ defined in Section 3 to unpaired data. Then we can rewrite Eq. (2) with
respect to the unpaired data as follows:

fθ(xu, yu, yb) = σ(rθ(xu, yu)− rθ(xu, yb)) · PDU
(s = 1)

+ σ(rθ(xu, yb)− rθ(xu, yu)) · PDU
(s = 0). (5)

However, the imaginary reward value rθ(xu, yb) is not actually observable. To circumvent this, we
propose a threshold-based strategy to infer a pseudo-label s̃ ∈ {0, 1} for each unpaired response yu
based on its reward value rθ(xu, yu). If the reward exceeds a certain threshold, we assign s̃ = 1 (i.e.,
yu is likely to be a winning response); otherwise, we assign s̃ = 0.

A key question, then, is how to define this threshold in a principled and reliable way. Let r be the
reward score for response y on input x, and let δ be a reward threshold. We define the Bayes risk of δ
as the total misclassification probability when using δ as a hard decision boundary. Minimizing this
risk is crucial as it provides the most statistically robust method for finding a threshold that minimizes
the chances of incorrectly labeling a losing response as winning, or vice versa. The risk is formally
defined as:

R(δ) = P(s = 1) ·
∫ δ

−∞
p(r | s = 1) dr + P(s = 0) ·

∫ ∞

δ

p(r | s = 0) dr, (6)

4
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where p(r | s) is the density of reward scores conditioned on true preference label s. This expression
reflects the area of overlap between the reward distributions of winning and losing responses. We
define the optimal threshold δ∗ as the one that minimizes this misclassification risk:

δ∗ = argmin
δ∈R

R(δ). (7)

With this definition in place, we can now state Theorem 1 to guarantee the existence of such an optimal
δ∗. We propose to replace the unobservable rθ(xu, yb) with a threshold δ, such that comparisons
against δ reflect the preference tendencies learned from the paired data. We first show that, under
mild distributional assumptions, such a threshold exists with high probability. This threshold reliably
separates the reward values of winning and losing responses, enabling us to perform pseudo-labeling
in a theoretically sound manner. The proof is provided in Appendix B.1.

Theorem 1. (Existence of an Optimal Reward Threshold) Let us consider the i.i.d. samples of rewards
from losing responses, {rθ(x(i), y

(i)
l )}nL

i=1, and from winning responses, {rθ(x(j), y
(j)
w )}nL

j=1. Assume
both distributions are sub-Gaussian with means µl, µw and variance proxies σ2

l , σ
2
w, which formulates

µw > µl. Then, for any α ∈ (0, 1) and non-negative t1 and t2 satisfying nL · (exp(−t21/2σ2
l ) +

exp(−t22/2σ2
w)) ≤ α, there exists an optimal reward threshold δ∗ = µl + t1 = µw − t2 such that

P
(
max

i
rθ(x

(i), y
(i)
l ) ≤ δ∗ ≤ min

j
rθ(x

(j), y(j)w )

)
≥ 1− α (8)

for all i, j ∈ I(DL), where I(DL) denotes the index set of instances in the paired data DL.

Here, the expression δ∗ = µl + t1 = µw − t2 should be understood as selecting a representative
threshold inside the high-probability interval [µl + t1, µw − t2] rather than as a strict equality that
must hold for arbitrary reward distributions. In practice, any value in this interval yields the same
separation guarantee, and it simply asserts that such an interval exists under the stated sub-Gaussian
assumptions. Therefore, Theorem 1 guarantees the existence of at least one threshold within the
interval [µl+ t1, µw− t2] that separates the two sets of rewards with probability at least 1−α, thereby
underpinning the conceptual soundness of threshold-based pseudo-labeling. Therefore, this serves as
a conceptual foundation for our framework; it confirms that in a regime where the preference model
has learned to distinguish responses with a sufficient margin, a threshold-based decision boundary
provides a statistically sound strategy for pseudo-labeling.

4.2 PRACTICAL APPROACH

While Eq. (8) guarantees that an optimal threshold δ∗ exists within a certain range, it depends on the
unknown means µl and µw. Therefore, we cannot compute δ∗ directly in practice. To address this
limitation, we estimate the reward densities of winning and losing responses in DL via kernel density
estimation (Parzen, 1962; Silverman, 2018) and solve for the threshold directly:

p̂w(r) =
1

nL · h

nL∑
j=1

K

(
r − rθ(x

(j), y
(j)
w )

h

)
, p̂l(r) =

1

nL · h

nL∑
i=1

K

(
r − rθ(x

(i), y
(i)
l )

h

)
, (9)

whereK(u) = 1√
2π

exp(− 1
2u

2) is the Gaussian kernel and h is the bandwidth. We search numerically

for the threshold δ̂ that minimizes the estimated Bayes risk R̂(δ):

δ̂ = argmin
δ∈R

R̂(δ), where R̂(δ) = P(s = 1) ·
∫ δ

−∞
p̂w(r) dr + P(s = 0) ·

∫ ∞

δ

p̂l(r) dr. (10)

This practical threshold δ̂ is used to assign pseudo-labels to the unpaired responses in DU , thereby
serving as a principled boundary that separates winning from losing responses based on their reward
scores. Thus, we reinterpret Eq. (5) with the practical threshold δ̂ to define the pseudo-labeled risk
over dataset DU as follows:

RDU
(fθ) =

1

nU

nU∑
k=1

ℓ(fθ, s̃k) · PDU
(s = s̃k) with s̃k = I

{
rθ(x

(k)
u , y(k)u ) > δ̂

}
, (11)
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where PDU
(s = 1) is a prior probability that the unpaired response is preferred over its hypothetical

counterpart. This prior captures our initial belief about the proportion of winning responses in the
unpaired data and is fixed throughout training. Eq. (11) bridges the gap between paired and unpaired
data by treating confident unpaired responses as if they were weakly labeled. Unlike heuristic
filtering, our approach grounds pseudo-labeling in a statistically principled threshold derived from the
reward distribution. Building on this formulation, we now introduce an adaptive scheduling strategy
to effectively balance the influence of paired and unpaired data during optimization. For detailed
implementation of the pseudo-labeled risk, see Appendix C.1.

4.3 ADAPTIVE SCHEDULING FOR CURRICULUM LEARNING

To effectively combine paired (DL) and unpaired (DU ) data, we introduce an adaptive scheduler
instead of using a fixed weighting factor. This scheduler implements a curriculum learning strategy by
dynamically adjusting the coefficient γ′. Initially, the model prioritizes the more reliable supervision
from paired data. As training progresses and the reward function improves, the weight of the unpaired
data gradually increases. Our final training objective is defined in Eq. (12):

L(fθ) = γ′ ·RDL
(fθ) + (1− γ′) ·RDU

(fθ) s.t. γ′ = max {γmin, γ0 · exp(−λτ)} , (12)

where γ′ ∈ (0, 1] is the adaptive coefficient at training step τ (1 ≤ τ ≤ T ), λ > 0 is the decay rate,
and γ0 is the initial value. We set γ0 = 1 to focus on paired data at the start and define the minimum
value as the proportion of paired data, i.e., γmin = nL/(nL + nU ). We provide a gradient analysis
and the complete algorithm in Appendix B.2 and C.4, respectively.

5 EXPERIMENTS

5.1 TOY EXPERIMENT Table 1: Comparison of test accuracy
on toy dataset without or with noise in
paired data. SSPO consistently and sig-
nificantly outperforms all baselines across
different quantities of paired data.

Method nL = 10 nL = 50 nL = 100

Noise 0%
DPO 0.743 0.777 0.846
ORPO 0.590 0.679 0.710
SimPO 0.762 0.776 0.817
SSPO (0.5) 0.841 0.879 0.960

Noise 50%
DPO 0.571 0.567 0.554
ORPO 0.594 0.586 0.549
SimPO 0.594 0.563 0.534
SSPO (0.5) 0.757 0.656 0.563

Setup. To analyze SSPO’s behavior, we design two
synthetic experiments: one noise-free and one with
label noise. These experiments serve as a sanity
check and provide interpretable insights before ap-
plying SSPO to real-world preference datasets. Each
prompt consists of ten words randomly sampled from
the NLTK words (Loper & Bird, 2002), with the short-
est word designated as preferred over the longest. We
fix the unpaired dataset size at 1,000 samples and vary
the paired dataset size (10, 50, 100) to simulate data-
scarce scenarios. Using GPT-2-small (Radford et al.,
2019) as a reward model, we compare SSPO against
strong baselines under various prior values (0.1, 0.3,
0.5, 0.7, 0.9). To evaluate robustness, the noisy setting
swaps the designations of winning and losing for 10%,
30%, and 50% of the paired preference labels.
Results. Table 1 shows the part of the experimental results in the noise-free or noisy settings, where
SSPO consistently outperforms all baseline methods across different quantities of paired data. The
performance gap is especially notable in data-scarce scenarios, highlighting SSPO’s effectiveness in
leveraging unpaired preference data even with limited labeled pairs. Under a noisy condition, SSPO
also maintains superior performance, which demonstrates its robustness to label noise and supports
its practical value in real-world settings where clean preference annotations are costly or difficult to
obtain. Full experimental results and detailed settings are provided in Appendix C.2.

5.2 REAL-DATA EXPERIMENTS

Baselines. To evaluate the effectiveness of SSPO in realistic settings, we compare it against a
comprehensive set of baseline methods. For preference optimization under limited supervision, we
consider DPO, ORPO, SimPO, and KTO. Additionally, we compare against SSRM and SPA,
which are specifically designed to reduce reliance on large-scale preference data through iterative
pseudo-labeling, or iterative generation of self-annotated preference data.

6
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Table 2: Performance of AlpacaEval2.0(%) and MT-Bench. LC and WR denote length-controlled and
raw win rates for AlpacaEval2.0, and MT is the average MT-Bench score. With just 1% of paired data,
SSPO often achieves higher scores than baselines trained on 10% of the data, exhibiting its data efficiency
and effectiveness. The best numbers are in bold, and the second-best ones are underlined.

UltraFeedback

Baseline Size Phi-2 (2.7B) Mistral (7B) Llama3 (8B)
LC WR MT LC WR MT LC WR MT

DPO 1% 3.6 2.5 6.3 17.0 12.8 7.6 12.1 12.6 8.0
10% 4.6 2.6 6.3 18.0 13.6 7.6 13.0 13.7 8.0

ORPO 1% 3.7 2.3 6.3 15.0 11.4 7.5 9.4 10.3 8.0
10% 3.9 2.6 6.3 16.7 10.9 7.5 10.0 10.9 7.9

SimPO 1% 4.0 2.5 6.3 13.2 8.3 7.6 14.3 15.1 8.0
10% 4.0 2.5 6.3 18.1 12.9 7.5 13.0 13.7 7.9

SSRM 1% 4.3 2.0 6.2 14.9 13.2 5.4 14.9 12.8 6.2
10% 4.4 2.6 6.3 16.2 13.3 5.5 15.1 16.3 6.2

KTO 1% 4.0 2.5 6.3 16.4 14.9 7.6 14.4 15.8 7.9
10% 4.4 2.6 6.3 18.8 16.4 7.6 16.7 18.2 8.0

SPA 1% 4.0 2.6 6.3 18.2 15.6 7.7 13.4 15.3 7.9
10% 4.9 3.1 6.3 19.1 18.7 7.8 14.5 16.6 8.1

SSPO 1% 7.2 4.1 6.3 26.7 18.1 7.7 14.8 16.0 8.0
10% 7.7 4.3 6.3 30.0 20.7 7.7 20.7 20.8 7.9

Baseline Size
UltraMedical-Preference DSP Business

Mistral (7B) Llama3 (8B) Mistral (7B) Llama3 (8B)
LC WR MT LC WR MT LC WR MT LC WR MT

DPO 1% 8.7 4.8 5.2 2.6 5.3 6.5 15.0 6.5 6.7 2.7 2.1 5.6
10% 11.2 7.2 5.3 7.8 6.2 6.4 16.0 6.8 6.8 3.7 3.6 5.7

ORPO 1% 3.7 3.1 5.2 2.2 4.8 6.4 15.9 6.5 6.8 3.6 3.1 5.6
10% 6.5 5.0 5.2 7.5 5.6 6.4 16.0 7.0 6.8 4.6 4.7 5.6

SimPO 1% 6.0 7.2 5.3 2.8 3.8 6.4 15.5 6.5 6.7 2.7 2.1 5.6
10% 10.2 7.6 5.3 10.5 4.5 6.5 15.9 7.1 6.8 3.6 3.5 5.7

SSRM 1% 6.0 5.9 5.2 3.9 5.0 6.4 15.2 6.7 6.6 3.1 2.9 5.6
10% 13.1 14.6 5.3 12.9 15.8 6.4 15.9 6.9 6.8 3.8 3.5 5.6

KTO 1% 6.4 9.8 5.2 3.7 5.4 6.4 15.7 6.8 6.6 3.2 3.1 5.6
10% 11.1 15.6 5.3 14.2 15.2 6.4 16.7 7.5 6.8 4.4 4.6 5.7

SPA 1% 6.7 10.1 5.2 4.3 5.8 6.4 15.4 6.5 6.7 3.0 2.7 5.6
10% 11.3 16.2 5.3 15.7 16.9 6.4 16.0 7.2 6.9 4.3 4.1 5.7

SSPO 1% 7.6 13.2 5.2 5.1 6.7 6.7 17.2 7.1 6.9 3.7 3.6 5.6
10% 12.0 17.0 5.3 17.7 18.4 6.9 17.9 8.8 7.0 5.7 5.7 5.6

Training. We conduct training using UltraFeedback (Cui et al., 2024) for paired preference data.
To simulate data-scarce scenarios, we evaluate on two challenging settings: using only 1% (nL=611)
or 10% (nL=6,113) of each original dataset, including validation data. For SSPO, we use 10%
of UltraChat-200k (Ding et al., 2023) (nU=20,786) as the unpaired data to be pseudo-labeled.
We utilize off-the-shelf models already fine-tuned on the UltraChat dataset as initial models. We
employ Phi-2 (2.7B) (Javaheripi et al., 2023), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), and
Llama3-8B-Instruct (Dubey et al., 2024). to demonstrate the generality and scalability of SSPO.

We also conduct two domain-specific experiments to investigate the alignment with both domain
expertise and human preferences. For the medical domain, we set two data sizes according to
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UltraFeedback; we set 1% (nL=1,093) and 10% (nL=10,935) of UltraMedical-Preference including
validation data, which are composed of pairwise comparisons constructed from real-world medical
questions and multiple answers. For SSPO, we use 5% of UltraMedical (Zhang et al., 2024)
(nU=20,479) as the unpaired data to match the amount of data in accordance with UltraChat. We train
Meerkat-7B-v1.0 (Kim et al., 2024) and Llama-3-8B-UltraMedical (Zhang et al., 2024) on these
datasets. Similarly, for the business domain, we set 1% (nL=125) and 10% (nL=1,255) of the DSP
Business (Cheng et al., 2023), which provides business-oriented pairwise comparisons. For SSPO,
we use whole 17k Business Book (nU=17,480) as the unpaired data. We train Mistral-7B-Business
and Finance-Llama-8B on these datasets. For more implementation details and hyperparameter
settings, please refer to Appendix C.3.

Evaluation. We adopt AlpacaEval2.0 (Dubois et al., 2025) and MT-Bench (Zheng et al., 2023),
two widely used benchmarks for assessing models’ conversational and instruction-following abilities
across diverse topics and domains. We use GPT-4-Turbo (Achiam et al., 2023) as the judge model
and report both a raw win rate (WR) and a length-controlled win rate (LC), where the LC is the
variant of WR explicitly controlling the response-length differences. This correction is designed to
address the well-established verbosity bias in LLM-based evaluators, which often exhibit a systematic
tendency to favor excessively long outputs irrespective of substantive quality. By conditioning on
equal-length responses, LC yields preference estimates that more faithfully reflect semantic adequacy
and instruction compliance. Meanwhile, MT-Bench is made up of 80 questions from 8 categories,
and we investigate the average score of two turns on a scale of 10 using GPT-4 (Achiam et al., 2023)
as the judge model. MT-Bench provides a complementary perspective by evaluating multi-turn
dialog coherence, instruction adherence, and reasoning depth under carefully curated human-written
prompts, making it a strong indicator of real-world conversational robustness.

5.3 MAIN RESULTS AND ABLATION STUDIES

SSPO consistently and significantly outperforms all baseline methods across all backbones,
data sizes, and domains. As shown in Table 2, SSPO shows remarkable data efficiency, particularly
in the most challenging, data-scarce settings. For instance, SSPO trained with Mistral on only 1%
of UltraFeedback accomplishes a length-controlled win rate (LC) of 26.7%, surpassing the best-
performing baseline (18.2% at SPA) in the same 1% setting and even all baselines trained with
10% of the data (e.g., 19.1% at SPA). In addition, on domain-specific datasets, i.e., UltraMedical-
Preference and DSP Business, the LC of SSPO trained with Llama3-based models beat the strongest
baseline regardless of data sizes. Therefore, the results validate that SSPO is a versatile and highly
efficient preference optimization algorithm that effectively amplifies the preference signal through the
principled use of abundant unpaired data. For more quantitative analyses, please refer to Appendix F.

Table 3: SSPO performance when varying the
assumed prior. We measure the LC and WR for
models trained on 10% of UltraFeedback. SSPO
remains robust even under suboptimal priors,
consistently outperforming baselines.

Prior Phi-2 Mistral Llama3

LC WR MT LC WR MT LC WR MT

0.1 6.8 3.8 6.0 25.6 17.5 7.5 17.8 18.4 7.7
0.3 7.3 4.2 6.1 29.0 19.0 7.6 19.9 20.0 7.8
0.5 7.7 4.3 6.3 30.0 20.7 7.7 20.7 20.8 7.9
0.7 7.6 4.3 6.2 28.8 18.5 7.6 20.7 20.1 7.8
0.9 7.4 4.1 6.2 25.7 17.6 7.5 19.5 19.6 7.5

Sensitivity Analysis. The assumed prior for un-
paired data, PDU

(s = 1), is a key hyperparameter
that scales the influence of pseudo-labeled samples.
Our ablation study, presented in Table 3, reveals that
SSPO is robust to the choice of prior and a balanced
prior of 0.5 consistently yields the best performance
across all models. Deviating from this neutral stance
(e.g., priors of 0.1 or 0.9) degrades performance, as
overly confident priors can cause the model to over-
fit to noisy pseudo-labels. Critically, however, even
with the most suboptimal priors, SSPO’s performance
remains strong, substantially outperforming the base-
lines in Table 2. This highlights the overall durability
of our method and confirms that a prior of 0.5 is a
safe and effective default choice.

Ablation on Adaptive Scheduling. To verify the importance of our adaptive scheduler from Eq. (12),
we conduct an ablation study comparing the standard SSPO against variants that use a fixed γ′

throughout training. Table 4 shows that the adaptive scheduler plays a vital role in harnessing both
reliable and uncertain data sources, while SSPO with a fixed γ′ value still demonstrates strong
performance compared to the baselines. We visualize the core mechanism behind the scheduler’s
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success in Figure 2. We define the loss contribution ratio at training step τ as γ′ · RDL
(fθ)/(γ

′ ·
RDL

(fθ) + (1 − γ′) · RDU
(fθ)). As the total training loss successfully converges (top plot), the

bottom plot reveals a clear and principled transition by showing the contribution ratio of the paired
loss. This illustrates how the adaptive scheduler dynamically shifts learning focus; it starts with the
reliable paired loss from UltraFeedback (RDL

(fθ), cyan) and, as training stabilizes, increasingly
relies on pseudo-labeled unpaired data from UltraChat (RDU

(fθ), red), which ultimately dominates.
This transition highlights that adaptive scheduling is crucial for robustly leveraging both trusted and
uncertain data sources to achieve superior alignment.

Table 4: SSPO Performance with or without the
adaptive scheduler. ✓ denotes the case with adap-
tive scheduling, while ✗ indicates the case without it.
The adaptive scheduler unlocks the method’s full po-
tential and consistently achieves stronger performance
than baselines, even when the γ′ is fixed.

Size Sched. Phi-2 Mistral Llama3

LC WR MT LC WR MT LC WR MT

1%

✓ 7.2 4.1 6.3 26.7 18.1 7.7 15.0 16.1 8.0

✗
γ′=0.1 6.5 3.9 6.2 24.1 16.5 7.5 13.2 14.8 7.9
γ′=0.5 6.8 3.8 6.3 26.0 17.2 7.6 14.1 15.5 7.9

10%

✓ 7.7 4.3 6.3 30.0 20.7 7.7 20.7 20.8 7.9

✗
γ′=0.1 7.2 4.0 6.3 27.5 18.1 7.6 18.5 19.1 7.9
γ′=0.5 7.3 4.2 6.3 29.3 19.8 7.7 19.6 20.0 7.9

Figure 2: Loss Contribution Ratio. (Mis-
tral trained on 1% of UltraFeedback) This
illustrates how the adaptive scheduler shifts
the model’s learning focus from paired data
(cyan) to pseudo-labeled unpaired data (red),
enabling effective and robust learning.

Robustness against Confirmation Bias and Non-stationary Rewards. To address the risks of
confirmation bias and reward non-stationarity, we analyze the evolution of reward distributions and
the estimated threshold in Figure 3. In the early stages (e.g., step 100), where winning and losing
distributions exhibit significant overlap, the adaptive scheduler γ′ prioritizes the supervised loss
from DL. This acts as a reliable anchor to prevent noise amplification from incorrect pseudo-labels,
aligning with the early learning phenomenon where models learn clean patterns before overfitting
to noise (Arazo et al., 2020). As training progresses and a clear margin emerges, SSPO addresses
the shifting nature of reward values by estimating the optimal boundary via KDE and stabilizing
it with EMA. Drawing on consistency regularization principles (Tarvainen & Valpola, 2018), this
dynamic thresholding ensures the decision boundary δ̂ consistently tracks the optimal separation
without collapsing, enabling the model to effectively leverage unpaired data DU for generalization.

Figure 3: Evolution of reward distributions and the Bayes-risk-minimizing threshold during
SSPO training. We visualize the reward densities of winning (blue) and losing (orange) responses
generated by each training step of Mistral trained with 10% of the DSP Business. The dashed green
line indicates the estimated threshold δ̂. As training progresses, the separation between the two
distributions becomes distinct, and the adaptive threshold tracks the optimal decision boundary.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: A case study showing how SSPO benefits from semantically relevant but unpaired data
(Mistral trained on 10% of UltraFeedback). SSPO’s answer adopts a detailed, well-structured format
(e.g., list of materials, step-by-step instructions) observed in the high-quality unpaired response, leading
to a more helpful and user-friendly guide than our baselines. For brevity, some contents are omitted.

Item Content
Question Can you help me figure out how to sew a button on a shirt?

KTO You can just take a button and a shirt and then sew it on. You just need to attach it with
some thread.

Pseudo-
Winning
Datum
(UltraChat)

Instruction: Please provide step-by-step instructions on how to sew a button onto a shirt,
including the type of thread to use, the needle size, and the specific sewing technique
required. Additionally, please include tips for ensuring the button is securely attached and
evenly aligned on the shirt.
Response: Materials Needed: Button, Shirt, Thread (preferably a heavy-duty or but-
ton/crafting thread), Needle (preferably a sharp, larger needle like a size 16) (omitted)
Instructions: 1. Choose your button (omitted) 9. After you’ve sewn the button on securely,
end by bringing the needle through the fabric to the inside of the shirt and knotting the
thread. (omitted) Tips: (omitted)

SSPO
(Ours)

Absolutely! Here’s a step-by-step guide on how to sew a button onto a shirt: 1. Gather
your supplies: You will need a button, thread that matches the color of your shirt, a sewing
needle, a thimble (optional), and a pair of scissors. 2. Thread your needle: Thread the
needle with a length of thread that is about 18 inches long. (omitted) 6. Trim the thread:
Use the scissors to cut off any excess thread. Congratulations! You have successfully
sewn a button onto a shirt. If you found this guide helpful, please let me know and feel
free to ask if you have any other questions.

5.4 LATENT PREFERENCE IN THE UNPAIRED DATA: CASE STUDY

The effectiveness of SSPO stems from its capability to uncover and leverage latent preference signals
hidden within unpaired data. While traditional preference optimization methods discard unpaired
responses due to the lack of explicit preference labels, SSPO demonstrates that these responses contain
valuable implicit preference information that can be extracted through principled pseudo-labeling.

Substring Matching. To identify the specific benefits of unpaired data in SSPO, we conducted a
comprehensive analysis using a substring matching algorithm to find semantically similar content
between AlpacaEval2.0 questions and our unpaired datasets. For each AlpacaEval2.0 question, we
computed semantic similarity scores with both paired and unpaired data, identifying cases where
questions had high similarity to unpaired content (≥ 0.6) but low similarity to paired data (≤ 0.3).
This analysis revealed numerous instances where SSPO’s performance was enhanced by exposure to
relevant unpaired data during training. Table 5 presents a concrete example where SSPO benefited
from unpaired data exposure in the UltraChat. We show the AlpacaEval2.0 question, the most similar
instruction and corresponding response in each unpaired data, and the answer to the question from
fine-tuned models. SSPO successfully aligns its generation based on such high-quality unpaired
responses, resulting in better evaluation outcomes. More case studies and qualitative examples are
provided in Appendix G.1 and G.2, respectively.

6 CONCLUSION

This work introduces SSPO, a theoretically grounded and practically effective framework for semi-
supervised preference optimization. By reformulating preference alignment as a binary classification
problem, we show that a reward function acts as a preference classifier. This formulation allows for a
pseudo-labeling strategy that is theoretically justified by the separation of reward distributions. For
practical application, we use a Bayes-risk-minimizing threshold derived from paired data and an
adaptive scheduler that creates a curriculum learning dynamic, shifting the training focus from labeled
to unpaired signals over time. Comprehensive experiments corroborate that SSPO is significantly
superior to existing methods when paired data is scarce, while also scaling effectively with more
unpaired data. Our findings open a promising direction for scalable alignment of language models
with semi-supervised learning, without the need for large-scale human preference annotations.
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

During the research, Large Language Models (LLMs) were utilized in a limited, supporting capacity.
Their utilization was confined to post-drafting revisions, particularly for grammatical corrections,
sentence refinement, and enhancing overall writing consistency. The core intellectual contributions,
including the research ideas, methodology, data analysis, and conclusion, are solely the work of the
authors. No substantive or analytical content was generated by LLMs, ensuring that their application
did not compromise the academic integrity and originality of this research.

B THEORETICAL ANALYSIS

B.1 PROOF OF THEOREM 1

We denote r
(i)
l := rθ(x

(i), y
(i)
l ) and r

(j)
w := rθ(x

(j), y
(j)
w ) for simplicity. Assume that {r(i)l }

nL
i=1

and {r(j)w }nL
j=1 are i.i.d. samples from the reward distributions Fl and Fw respectively, which are

sub-Gaussian with means µl, µw and variance proxies σ2
l , σ

2
w.

By the sub-Gaussian tail bound, for all i, j ∈ I(DL), non-negative t1 and t2, we have:

P
(
r
(i)
l ≥ µl + t1

)
≤ exp

(
− t21
2σ2

l

)
, P

(
r(j)w ≤ µw − t2

)
≤ exp

(
− t22
2σ2

w

)
.

We get union bounds respectively:

P
(
max

i
r
(i)
l ≥ µl + t1

)
≤

nL∑
i=1

exp

(
− t21
2σ2

l

)
= nL · exp

(
− t21
2σ2

l

)
,

P
(
min
j

r(j)w ≤ µw − t2

)
≤

nL∑
j=1

exp

(
− t22
2σ2

w

)
= nL · exp

(
− t22
2σ2

w

)
.

Then, the probability that all rewards of losing responses are below µl+ t1 and all rewards of winning
responses are above µw − t2 is at least

P
(
max

i
r
(i)
l ≤ µl + t1 and min

j
r(j)w ≥ µw − t2

)
≥ 1− nL ·

(
exp

(
− t21
2σ2

l

)
+ exp

(
− t22
2σ2

w

))
.

Therefore, if any α ∈ (0, 1), t1 and t2 satisfy α ≥ nL · (exp(−t21/2σ2
l ) + exp(−t22/2σ2

w)), the
optimal reward threshold δ∗ = µl + t1 = µw − t2 lies between the maximum reward of losing
responses and the minimum reward of winning responses with probability at least 1 − α. This
completes the proof.

B.2 GRADIENT ANALYSIS

We provide a detailed analysis of the gradient behavior of our objective, separately for the supervised
(paired) and semi-supervised (unpaired) components. This analysis reveals how the model encourages
correct ranking through reward-based learning signals, and how pseudo-labels influence parameter
updates.

Gradient on the paired data. We define our paired-data risk as Eq. (4). The gradient weight
increases when the model incorrectly assigns a higher reward to the losing response. This encourages
the model to correct such misrankings by increasing the winning score and decreasing the losing one.
This analysis is basically the same as DPO (Rafailov et al., 2024) and SimPO (Meng et al., 2024).

Gradient on the unpaired data. For unpaired data, each sample (x
(k)
u , y

(k)
u ) is pseudo-labeled

based on a threshold:

s̃k =

{
1, rθ(x

(k)
u , y

(k)
u ) > δ̂,

0, rθ(x
(k)
u , y

(k)
u ) ≤ δ̂,
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where δ̂ = argminδ∈R R̂(δ). The pseudo-labeled risk is defined as:

RDU
(fθ) =

1

nU

nU∑
k=1

[
− s̃k log σ

(
rθ(x

(k)
u , y(k)u )− δ̂

)
− (1− s̃k) log

(
1− σ

(
rθ(x

(k)
u , y(k)u )− δ̂

)) ]
.

The gradient with respect to θ for each k-th sample is:

∇θRDU
(fθ)

(k) =



−β · PDU
(s = 1)σ(δ̂ − rθ(x

(k)
u , y(k)u ))︸ ︷︷ ︸

Gradient weight

·∇θrθ(x
(k)
u , y

(k)
u ) (if s̃k = 1)

−β · PDU
(s = 0)σ(rθ(x

(k)
u , y(k)u )− δ̂)︸ ︷︷ ︸

Gradient weight

·
(
−∇θrθ(x

(k)
u , y

(k)
u )
)

(if s̃k = 0).

Here, β is the same scaling coefficient used in the paired-data risk, and PDU
(s) is the prior for

pseudo-labeling. The gradient direction encourages increasing the reward of pseudo-winning samples
(s̃k = 1) and decreasing the reward of pseudo-losing samples (s̃k = 0), with the magnitude controlled
by the sigmoid-based confidence terms σ(δ̂ − rθ) and σ(rθ − δ̂). Intuitively, when rθ(x

(k)
u , y

(k)
u ) is

far above the threshold, the model receives a strong signal to further reinforce this response; when
it is far below, the model is pushed to suppress it. If pseudo-labels are highly noisy so that s̃k is
nearly random, the two gradient directions partially cancel in expectation, which limits the impact of
erroneous pseudo-labels.

Combining the two components, the full gradient of our objective in Eq. (12) can be written as

∇θL(fθ) = γ′∇θRDL
(fθ) + (1− γ′)∇θRDU

(fθ).

As discussed in Section 4.3, γ′ starts from 1 and decays toward γmin, so that early updates are
dominated by ∇θRDL

(fθ) from human-labeled comparisons, while the influence of ∇θRDU
(fθ)

grows only after the reward model has already learned a meaningful separation between winning
and losing responses. This interaction between the scheduler and the gradient structure explains
why SSPO remains robust even when pseudo-labels are imperfect, as also evidenced by our toy
experiments with heavy label noise and our domain-specific experiments in Section 5.2.

C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION OF PSEUDO-LABELED RISK

While there are many candidates for the reward threshold δ̂ in RDU
(fθ), we propose using the

Bayes-risk-minimizing threshold for effective pseudo-labeling of unpaired data. To address potential
instability in the reward function during training, we normalize the rewards using exponential moving
averages (EMA) of the mean and standard deviation.

The pseudo-labeled risk is reformulated as:

RDU
(fθ) =

1

nU

nU∑
k=1

ℓ(fθ, s̃k) · PDU
(s = s̃k) where s̃k = I

{
rθ(x

(k)
u , y

(k)
u )− µt

σt
> δ̂t

}
.

The EMA statistics are computed as:

µt = m · µt−1 + (1−m) · µB , σt = m · σt−1 + (1−m) · σB ,

δ̂B = argmin
δ∈R

[
PDU

(s = 1) ·
∫ δ

−∞
p̂Bw(r)dr + PDU

(s = 0) ·
∫ ∞

δ

p̂Bl (r)dr

]
,

δ̂t = m · δ̂t−1 + (1−m) · δ̂B .
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Note that p̂Bw and p̂Bl are the estimated density of winning and losing rewards within a minibatch B,
respectively. µB and σB denote the mean and standard deviation of reward values for all responses
within the minibatch. We set the momentum parameter m = 0.95.

This formulation ensures that the pseudo-labeling threshold remains stable and robust throughout
training, even when the reward distribution shifts dynamically. From a theoretical perspective,
the KDE-based update of δ̂B can be seen as a mini-batch approximation of the global Bayes-risk
minimizer in Section 4.2, while the EMA statistics (µt, σt, δ̂t) smooth out stochastic fluctuations
across batches. In the limit of many updates, this procedure tracks a slowly varying approximation
to the population-level optimal threshold, while remaining numerically stable in the non-stationary
regime induced by ongoing policy updates. The combination of theoretically grounded threshold
estimation via KDE and practical stabilization through EMA provides both theoretical soundness and
training stability.

C.2 TOY EXPERIMENT

Table 6: Comparison of test accuracy on toy
dataset across noise levels in paired data.

Baseline (prior) nL = 10 nL = 50 nL = 100

Noise 0%
DPO 0.743 0.777 0.846
ORPO 0.590 0.679 0.710
SimPO 0.762 0.776 0.817
SSPO (0.1) 0.822 0.910 0.965
SSPO (0.3) 0.810 0.889 0.955
SSPO (0.5) 0.841 0.879 0.960
SSPO (0.7) 0.800 0.857 0.966
SSPO (0.9) 0.840 0.861 0.965

Noise 10%
DPO 0.695 0.742 0.783
ORPO 0.595 0.646 0.682
SimPO 0.744 0.737 0.770
SSPO (0.5) 0.840 0.812 0.931

Noise 30%
DPO 0.673 0.665 0.682
ORPO 0.601 0.617 0.627
SimPO 0.668 0.665 0.601
SSPO (0.5) 0.698 0.739 0.733

Noise 50%
DPO 0.571 0.567 0.554
ORPO 0.594 0.586 0.549
SimPO 0.594 0.563 0.534
SSPO (0.5) 0.757 0.656 0.563

Table 7: Best hyperparameter settings for the
toy experiment. DPO, ORPO, and SimPO re-
port only the learning rate, while SSPO reports
both the learning rate (left) and decay rate (right).

Baseline (prior) nL = 10 nL = 50 nL = 100

DPO 1e-3 1e-3 1e-3
ORPO 1e-5 1e-5 1e-5
SimPO 1e-3 1e-3 1e-3

SSPO (0.1) 1e-3, 0.01 3e-3, 0.001 1e-3, 0.03
SSPO (0.3) 5e-3, 0.001 1e-3, 0.03 5e-3, 0.05
SSPO (0.5) 2e-2, 0.03 1e-3, 0.001 5e-3, 0.005
SSPO (0.7) 1e-2, 0.01 1e-3, 0.001 1e-3, 0.001
SSPO (0.9) 5e-3, 0.001 1e-3, 0.03 5e-4, 0.001

We report full results of test accuracy on the toy
dataset without or with noise, with a fixed num-
ber of unpaired samples (nU=1,000) in Table 6.
SSPO consistently and significantly outperforms
all baselines across different quantities of labeled
data (nL). The advantage is most pronounced in
the extremely data-scarce setting (nL=10), a sub-
stantial improvement over the best baselines. This
result underscores SSPO’s data efficiency, origi-
nating in its ability to effectively utilize the large
pool of unlabeled data. Furthermore, SSPO’s per-
formance is robust, consistently delivering notable
results across a broad spectrum of prior probability
settings for the unpaired data. Table 7 describes
a detailed configuration of toy experiments. The
training procedure follows standard practices with
10 epochs, a total batch size of 16, and model se-
lection based on the minimum of validation loss.

C.3 REAL-DATA EXPERIMENTS

Table 8 describes a detailed configuration of ex-
periments on real-world datasets. Our imple-
mentation builds upon the LlamaFactory frame-
work Zheng et al. (2024), a widely used open-
source library for training, fine-tuning, and serving
LLMs. We detail the hyperparameter configura-
tions used for each baseline method across the
three backbone models. All experiments were
conducted using 2 GPUs of A6000, with tun-
ing strategies adjusted per model size. All un-
specified hyperparameters for Mistral and Llama3
baselines follow the configurations provided in
SimPO2 (Meng et al., 2024).

We use LoRA (Hu et al., 2021) for rank 8 after
exploring ranks from the set {4, 8, 32, 256} for all
backbones. We perform a learning rate sweep
between 1e-4 and 1e-9 and report results with
the best performing value. The total batch size,
gradient accumulation steps, and cutoff length are

2https://github.com/princeton-nlp/SimPO
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Table 8: Hyperparameter settings for real-data experiments across all domains and backbones.
All the algorithms are configured with prior 0.5 under two different data sizes.

UltraFeedback UltraMedical-
Preference DSP Business

Method Size Hyperparameter Phi-2 Mistral Llama3 Mistral Llama3 Mistral Llama3

DPO

1%
Training Epochs 1 1 1 1 1 1 1
Learning Rate 1e-6 5e-7 1e-6 5e-7 5e-7 5e-7 1e-6
β 0.1 0.1 0.1 0.1 0.1 0.1 0.1

10%
Training Epochs 1 1 1 1 1 1 1
Learning Rate 1e-6 5e-7 1e-6 5e-7 5e-7 5e-6 1e-6
β 0.1 0.1 0.1 0.1 0.1 0.1 0.1

ORPO

1%
Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-6 5e-6 5e-6 3e-7 3e-7 5e-6 5e-6
λ 0.25 0.2 0.2 0.2 0.2 0.2 0.2

10%
Training Epochs 1 1 1 1 1 1 1
Learning Rate 7e-6 5e-6 5e-6 3e-7 3e-7 1e-6 5e-6
λ 0.25 0.2 0.2 0.2 0.2 0.25 0.2

SimPO

1%

Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-7 5e-7 6e-7 5e-7 5e-7 6e-7 6e-7
β 10 2 2 2 2 2 2
∆ 2 0.8 1 0.8 0.8 1 1

10%

Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-7 5e-7 1.5e-7 5e-7 5e-7 5e-7 6e-7
β 10 2 2 2 2 2 2
∆ 2 0.8 1 0.8 0.8 0.8 1

SSRM

1%

Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-7 5e-7 6e-7 5e-7 5e-7 6e-7 6e-7
β 10 2 2 2 2 2 2
∆ 2 0.8 1 0.8 0.8 1 1

10%

Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-7 5e-7 6e-7 5e-7 5e-7 6e-7 6e-7
β 10 2 2 2 2 2 2
∆ 2 0.8 1 0.8 0.8 1 1

KTO
1% Training Epochs 1 1 1 1 1 1 1

Learning Rate 5e-6 5e-6 5e-6 1e-6 1e-6 1e-6 1e-6

10% Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-6 5e-6 5e-6 1e-6 1e-6 1e-6 1e-6

SPA

1%

Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-6 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
β 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Iteration 1 2 2 2 2 2 2

10%

Training Epochs 1 1 1 1 1 1 1
Learning Rate 5e-6 2e-5 1e-5 1e-5 1e-5 2e-5 1e-5
β 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Iteration 1 2 2 2 2 2 2

SSPO

1%
Training Epochs 2 2 1 1 1 3 3
Learning Rate 1e-4 1e-5 1e-5 5e-5 1e-5 5e-5 1e-5
Decay Rate (λ) 0.005 0.001 0.005 0.01 0.001 0.001 0.001

10%
Training Epochs 1 1 2 1 1 1 1
Learning Rate 1e-6 1e-5 1e-5 5e-6 5e-6 5e-5 5e-5
Decay Rate (λ) 0.01 0.001 0.01 0.001 0.01 0.001 0.001
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Algorithm 1 Semi-Supervised Preference Optimization (SSPO)

Require: Paired dataset DL = {(x(i), y
(i)
w , y

(i)
l )}, Unpaired dataset DU = {(x(j)

u , y
(j)
u )}

Require: Scheduler parameters γ0, γmin, decay rate λ > 0
Require: Momentum m ∈ (0, 1), total training steps T

1: Initialize EMA stats: µ0, σ0, δ̂0
2: for t = 1 to T do
3: Sample minibatch BL ⊂ DL, BU ⊂ DU

4: Compute rewards rθ(x, y) for all (x, y) ∈ BL ∪BU :
5: µB ← mean({rθ(x, y) | (x, y) ∈ BL ∪BU})
6: σB ← std({rθ(x, y) | (x, y) ∈ BL ∪BU})
7: µt ← m · µt−1 + (1−m) · µB

8: σt ← m · σt−1 + (1−m) · σB

9: Estimate p̂Bw(r) and p̂Bl (r) using KDE on BL:

10: δ̂B ← argminδ

[
PDU

(s = 1)
∫ δ

−∞ p̂Bw(r)dr + PDU
(s = 0)

∫∞
δ

p̂Bl (r)dr
]

11: δ̂t ← m · δ̂t−1 + (1−m) · δ̂B
12: for all (xu, yu) ∈ BU do
13: rnorm(xu, yu)← rθ(xu,yu)−µt

σt

14: if rnorm(xu, yu) > δ̂t then
15: Assign pseudo-label s̃ = 1
16: else
17: Assign pseudo-label s̃ = 0
18: end if
19: end for
20: γt ← max(γmin, γ0 · exp(−λt))
21: L(fθ)← γt ·RBL

(fθ) + (1− γt) ·RBU
(fθ)

22: Update fθ using gradient descent
23: end for

fixed at 64, 8, and 1024, respectively, across all models. We select the best model based on the
minimum validation loss.

For SSRM, we follow the original protocol by using a preset confidence threshold and generating
response pairs from prompts with no annotation for pseudo-labeling after training the reward model3.
To ensure fair comparison, we generate one additional response using the SFT model of each backbone
and use the reward model at each data size. We run three iterations for each setting with a default
confidence level of 0.8, meaning the model incorporates new data pairs only when they exceed this
confidence threshold. For SSPO, we fix β = 10 and ∆ = 2 and the adaptive scheduler γ′ is bounded
below by γmin = nL/(nL + nU ). We set the pseudo-labeling prior to 0.5 since there is no suitable
preference information available for the UltraChat.

C.4 PSEUDO-CODE OF SSPO

Algorithm 1 presents the pseudo-code for training SSPO with both paired and unpaired data. The
algorithm begins by computing the SimPO loss on preference-labeled pairs, followed by generating
pseudo-labels for unpaired responses based on a reward threshold. The threshold is determined
using the Bayes-risk-minimizing approach via KDE estimation on the current minibatch. To improve
stability and consistency across training steps, we standardize the rewards and apply EMA to the
statistics and threshold values. This practical design helps smooth out fluctuations in threshold
computation and ensures reliable pseudo-labeling decisions. The final training loss is computed as a
weighted combination of the paired data and pseudo-labeled risks, where the weight is controlled by
a scheduling function that gradually increases the contribution of unpaired data.

3https://github.com/RLHFlow/RLHF-Reward-Modeling
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D THE DIFFERENCE BETWEEN SSRM, SPA, AND SSPO

In this section, we provide a detailed comparison between SSPO and two prominent semi-supervised
alignment frameworks: Semi-Supervised Reward Modeling (SSRM) (He et al., 2024) and Spread
Preference Annotation (SPA) (Kim et al., 2025). While all three methods aim to leverage unlabeled
data to mitigate the scarcity of human preference labels, SSPO distinguishes itself through its
theoretical grounding, data efficiency, and non-iterative training paradigm. We analyze these methods
across four key dimensions: Data Composition, Algorithmic Formulation, Theoretical Foundation,
and Computational Efficiency.

D.1 DATA COMPOSITION & ANNOTATION

Let x be a prompt (i.e., an input of our model πθ to be trained) and y be a corresponding response
(i.e., an output of our model πθ). All three algorithms leverage both labeled and unlabeled datasets,
but the way to formulate and generate the datasets is quite different.

• SSRM: Requires a small set of paired and labeled data DL = {(x(i), y
(i)
w , y

(i)
l )}nL

i=1 and
a large set of unlabeled pairs DU = {(x(i)

u , y
(i)
u1 , y

(i)
u2 )}

nU
i=1. It relies on the model’s confi-

dence to pseudo-label these pairs, essentially performing self-training on an existing paired
structure.

• SPA: Utilizes a small seed of paired data DL = {(x(i), y
(i)
w , y

(i)
l )}nL

i=1 and assumes that there

exists a set of unseen prompts Xt = {x(t,i)
u }n

(t)
U

i=1 per t-th iteration. It explicitly generates
multiple responses for the unseen prompts during training to form new unlabeled pairs

D
(t)
U = {(x(t,i)

u , y
(t,i)
u1 , y

(t,i)
u2 )}n

(t)
U

i=1 per t-th iteration, which are then self-labeled using the
model’s implicit reward by DPO (Rafailov et al., 2024).

• SSPO (Ours): Requires a small set of paired data DL = {(x(i), y
(i)
w , y

(i)
l )}nL

i=1 and a
large pool of unpaired and unlabeled data DU = {(x(i)

u , y
(i)
u )}nU

i=1. Unlike SSRM, it does
not require pre-existing pairs in DU , and unlike SPA, it does not require generating new
responses during training. SSPO uniquely assigns “winning” or “losing” pseudo-labels to
single responses based on a learned reward threshold δ, allowing for the direct utilization of
standard SFT datasets.

D.2 ALGORITHM & FORMULATION

• SSRM & SPA: Both methods employ an iterative cycle: Training→ Inference/Generation
→ Pseudo-labeling→ Filtering→ Re-training. SSRM treats reward modeling as a classifi-
cation task, while SPA uses the DPO objective for self-refinement. This iterative process is
inherently complex and sensitive to the quality of intermediate models.

• SSPO (Ours): SSPO frames preference learning as a Bayes-optimal classification problem.
It optimizes a joint objective combining a standard preference loss on DL and a threshold-
based binary classification loss on DU : L(fθ) = γ′ ·RDL

(fθ) + (1− γ′) ·RDU
(fθ) (Eq.

(12)). By dynamically estimating the optimal threshold δ̂ via Kernel Density Estimation
(KDE) and using an adaptive scheduler γ′, SSPO achieves robust alignment in a single
training stage without iterative loops.

D.3 THEORETICAL FOUNDATION

• SSRM & SPA: Primarily rely on empirical validation of self-training principles (e.g., noisy
label learning, curriculum learning) without specific theoretical guarantees for the optimality
of their pseudo-labeling strategies in the context of preference distributions.

• SSPO (Ours): Provides a rigorous theoretical foundation (Theorem 1). We prove the
existence of an optimal reward threshold δ∗ that separates winning and losing response
distributions with high probability under sub-Gaussian assumptions. This theoretical guar-
antee underpins our pseudo-labeling strategy, ensuring it is statistically principled rather
than heuristic.
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D.4 COMPUTATIONAL EFFICIENCY

• SSRM & SPA: Computationally expensive due to their iterative nature. They require
multiple rounds of inference over the entire unlabeled dataset (and generation for SPA),
followed by re-training.

• SSPO (Ours): Highly efficient single-stage training. The additional cost of KDE and
threshold estimation is negligible compared to the overhead of iterative generation and infer-
ence. SSPO reuses existing SFT datasets directly, eliminating the need for costly response
generation during the alignment phase. We provide more analyses of time complexity in
Appendix E.

E COMPUTATIONAL OVERHEAD

E.1 TIME COMPLEXITY OF SSPO

In this section, we give a simple big-O analysis of the computational overhead introduced by
SSPO. Let DL denote the paired dataset and DU the unpaired dataset. At each training step t,
Algorithm 1 samples a minibatch BL ⊂ DL and BU ⊂ DU and computes rewards for all responses
in BL ∪ BU . Let Ntok be the total number of tokens in the current batch (including instructions
and all responses), and let d be the model dimension. The dominant cost per step comes from the
forward and backward passes of the transformer model, which scale as O

(
Ntok · d2

)
for a single

causal decoder, or O
(
Ntok ·H · d2

)
if we make the number of attention heads H explicit. When a

separate reference model is used, this cost is increased by a constant factor (roughly ×2), but the
asymptotic order remains unchanged.

SSPO adds a few extra components on top of this base cost:

• Reward standardization and EMA updates. For a batch of |BL|+ |BU | rewards, com-
puting the batch mean and variance, and updating the exponential moving averages µt and
σt costs O(|BL|+ |BU |).

• KDE-based Bayes-risk threshold. Let M = |BL| be the number of labeled pairs in the
batch, and let G be the number of grid points used to evaluate the kernel density estimators
(we use G = 200 in practice). The complexity of fitting Gaussian KDEs for the winning and
losing rewards and searching for the Bayes-risk-minimizing threshold is O(M2 +MG),
which we can conservatively write as O(M2) with respect to the batch size.

• Pseudo-labeling of unpaired responses. For each unpaired response (xu, yu) ∈ BU , SSPO
compares the normalized reward to the current threshold and computes a logistic-style loss.
This step scales linearly in the number of unpaired items, i.e., O(|BU |).

Putting these terms together, the per-step complexity of SSPO can be summarized as
O
(
Ntok · d2

)
+ O(|BL|+ |BU |) + O(M2) ≈ O

(
Ntok · d2

)
,

where the transformer forward/backward passes clearly dominate. Over T training steps with a total
of Ntok processed tokens, the overall complexity becomes

O
(
Ntok · d2

)
.

In other words, SSPO has the same asymptotic time complexity as DPO and SimPO; the KDE-based
thresholding and pseudo-labeling introduce only a modest constant-factor overhead that is negligible
compared to the cost of running LLMs. Likewise, DPO incurs a slightly larger constant factor due to
the additional reference-model forward pass, and both SimPO and SSPO yield the smallest constant
factor because they require only a single policy-model forward/backward pass without any reference
model.

E.2 EMPIRICAL TRAINING TIME OF SSPO

We also report the empirical training time required to run SSPO under our experimental setup. Table 9
summarizes the observed training time per epoch and the average number of samples processed per
second. All backbones are trained with LoRA adapters with rank 8 on 2 GPUs of A6000 with a
total batch size of 64. Combined with the complexity analysis in Appendix E.1, these measurements
indicate that SSPO is practically feasible.
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Table 9: Per-epoch training runtime (Runtime) and training samples per second (Samples/s) of
SSPO across backbones and paired-data sizes. UltraChat is always used at 10% (nU=20,786) of
its dataset, while UltraFeedback is used at either 1% (nL=611) or 10% (nL=6,113).

Size Phi-2 (2.7B) Mistral (7B) Llama3 (8B)
Runtime Samples/s Runtime Samples/s Runtime Samples/s

1% 4,764s (1.3h) 4.47 9,684s (2.7h) 2.20 9,282s (2.6h) 2.29
10% 7,813s (2.2h) 3.36 19,350s (5.4h) 1.35 15,919s (4.4h) 1.65

F MORE QUANTITATIVE ANALYSES

F.1 DPO AND SIMPO COMBINED WITH UNPAIRED DATA

For further comparison, we extend the preference optimization framework to two practical variants
that jointly leverage paired and unpaired data. We combine a standard preference objective on
paired data with a supervised fine-tuning (SFT) objective on unpaired data to both DPO and SimPO
objectives to compare the performance with the same setting of data utilization. We call these variants
DPO+SFT and SimPO+SFT. Both methods follow the same data formulation as SSPO but differ in
the formulation of loss.

Setup. We denote by πθ(y | x) the policy model and by πref(y | x) a fixed reference model when
required. Given a pair (x, yw, yl) of the paired dataset DL, the DPO objective can be written as

LDPO(θ;x, yw, yl) = − log σ
[
β
(
log

πθ(yw | x)
πref(yw | x)

− log
πθ(yl | x)
πref(yl | x)

)]
,

and the corresponding expected risk over DL is RDPO
DL

(θ) = E(x,yw,yl)∼DL

[
LDPO(θ;x, yw, yl)

]
.

To incorporate abundant unpaired data DU , we define a supervised fine-tuning loss that treats each
(xu, yu) as winning sample:

LSFT(θ;xu, yu) = − log πθ(yu | xu),

and the corresponding unpaired risk is RSFT
DU

(θ) = E(xu,yu)∼DU

[
LSFT(θ;xu, yu)

]
. The DPO+SFT

objective is then defined as a weighted sum of the preference risk on DL and the SFT risk on DU :

LDPO+SFT(θ) = RDPO
DL

(θ) + λSFT ·RSFT
DU

(θ),

where λSFT ≥ 0 controls the relative importance of the unpaired dataset term. When λSFT = 0, the
objective reduces to standard DPO.

Similarly, using the reward function with length normalization and a prescribed margin ∆, the SimPO
loss on a single pair (x, yw, yl) is

LSimPO(θ;x, yw, yl) = − log σ

[
β

|yw|
log πθ(yw | x)−

β

|yl|
log πθ(yl | x)−∆

]
,

and the corresponding risk over DL is RSimPO
DL

(θ) = E(x,yw,yl)∼DL

[
LSimPO(θ;x, yw, yl)

]
.

Analogously to DPO+SFT, we reuse the SFT loss on DU added with the length normalization:

RSFT′

DU
(θ) = E(xu,yu)∼DU

[
− 1

|yu|
log πθ(yu | xu)

]
.

Therefore, the SimPO+SFT objective is then given by

LSimPO+SFT(θ) = RSimPO
DL

(θ) + λSFT ·RSFT′

DU
(θ),

using the same SFT coefficient λSFT. This formulation yields a reference-free variant that still
benefits from unpaired data.
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Table 10: Comparing the performance of
DPO+SFT and SimPO+SFT with SSPO
at UltraFeedback. We set λSFT = 1 for
both DPO+SFT and SimPO+SFT. The best
numbers are in bold, and the second-best
ones are underlined.

Baseline Size Mistral (7B)

LC WR MT

DPO+SFT 1% 26.5 17.0 7.6
10% 29.5 19.5 7.7

SimPO+SFT 1% 25.1 16.6 7.6
10% 27.3 17.3 7.6

SSPO 1% 26.7 18.1 7.7
10% 30.0 20.7 7.7

Results. Table 10 presents the comparative results on
the UltraFeedback dataset. While the SFT-augmented
baselines show improvements over their standard coun-
terparts by leveraging the additional unpaired data,
SSPO consistently outperforms all variants across dif-
ferent data sizes. This performance gap highlights the
critical advantage of our algorithmic design. DPO+SFT
and SimPO+SFT treat the unpaired data DU merely
as a collection of positive demonstrations, applying a
uniform SFT objective to all samples. This approach
essentially regularizes the policy towards the distribu-
tion of the unpaired corpus but fails to distinguish the
varying quality or preference alignment within that
data. In contrast, SSPO does not indiscriminately rein-
force all unpaired responses. By employing a dynami-
cally learned reward threshold, SSPO actively performs
pseudo-labeling, effectively filtering and differentiating
pseudo-winning responses from pseudo-losing ones. This mechanism allows the model to learn a
more nuanced preference boundary rather than simply imitating the aggregate statistics of the un-
paired dataset. Therefore, the superior performance of SSPO is not merely a result of data scale, but
a direct consequence of its ability to extract and leverage latent preference signals through principled
semi-supervised learning.

F.2 PERFORMANCES WITH MUCH PAIRED DATA

We further investigated the performance of SSPO in regimes where paired preference data is abundant,
to determine if the benefits of semi-supervised learning persist when the scarcity constraint is lifted.
We conducted experiments on both the synthetic toy dataset and the real-world UltraFeedback dataset
by scaling up the amount of paired data.

Table 11: Comparison of test accuracy on toy dataset without
noise in different paired data. The best numbers for each size of
nL are in bold, and the second-best ones are underlined.

Method nL = 10 nL = 50 nL = 100 nL = 1,000 nL = 10,000

DPO 0.743 0.777 0.846 0.986 0.995
ORPO 0.590 0.679 0.710 0.832 0.934
SimPO 0.762 0.776 0.817 0.981 0.996
SSPO (0.1) 0.822 0.910 0.965 0.986 0.992
SSPO (0.3) 0.810 0.889 0.955 0.983 0.993
SSPO (0.5) 0.841 0.879 0.960 0.983 0.996
SSPO (0.7) 0.800 0.857 0.966 0.985 0.991
SSPO (0.9) 0.840 0.861 0.965 0.986 0.991

Table 11 shows the test accu-
racy on the toy dataset as the
number of labeled pairs (nL)
increases to 1.000 and 10,000.
As expected, all methods con-
verge towards high accuracy
as the volume of supervision
increases. This confirms that
the RDU

(fθ) does not conflict
with RDL

(fθ) but rather com-
plements it, ensuring stability
and high performance regard-
less of the size of paired data.

Table 12: Comparing the performance when
training with 100% of UltraFeedback. The
best numbers are in bold, and the second-best
ones are underlined.

Baseline Size Mistral (7B)

LC WR MT

SPA 1% 18.2 15.6 7.7
10% 19.1 18.7 7.8
100% 26.2 19.3 7.7

SSPO 1% 26.7 18.1 7.7
10% 30.0 20.7 7.7
100% 32.4 21.0 7.8

In addition, Table 12 presents the results on the full
UltraFeedback dataset (100% of data, nL=61,135).
Notably, SSPO trained on the complete labeled
dataset achieves LC of 32.4%, significantly outper-
forming the strong semi-supervised baseline SPA
(26.2%) trained on the same amount of labeled data.
Furthermore, this performance is superior to SSPO
trained on 10% data (30.0%), indicating that the
model continues to benefit from the additional la-
beled data. This result suggests that even when
ground-truth labels are sufficient, the principled
pseudo-labeling of unpaired data provides signals
that further refine the policy beyond what is possible
with supervised signals alone.
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G QUALITATIVE EXAMPLES

G.1 MORE CASE STUDIES

In Section 5.4, we conducted an analysis using a substring matching algorithm to find semantically
similar content between evaluation questions and our unpaired datasets to identify the specific
benefits of unpaired data. Table 13 shows how SSPO learns from the well-structured format of
an unpaired medical guide to produce a multifaceted response about stress management, whereas
the baseline provides a single block of text. Similarly, Table 14 demonstrates SSPO’s ability to
internalize a professional tone and actionable list format from the business-domain data, successfully
fulfilling a complex persona-based request that the baseline fails to comprehend. In both cases, SSPO
successfully aligns its generation based on high-quality stylistic and structural cues from unpaired
responses, leading to superior outputs.

G.2 QUALITATIVE COMPARISON

Tables 15–19 present qualitative comparisons across both general and specialized prompts, including
open-ended questions and domain-specific explanations. These examples illustrate the differences
in content structure, informativeness, and stylistic alignment between SSPO and other preference
optimization methods.

Context-aware reasoning with balanced informativeness. In open-ended questions such as
“What is the airspeed velocity of an unladen swallow?” (Table 15), SSPO stands out by maintaining
a clear and concise structure while contextualizing the question accurately. It references the film
“Monty Python and the Holy Grail,” distinguishes humor from fact, and provides an empirical estimate,
resulting in an answer that is both informative and appropriately styled. In contrast, DPO and ORPO
tend to over-elaborate with tangential details, while SimPO oversimplifies by dismissing the question
altogether. In domain-specific prompts (from Table 16 to 19), SSPO continues to provide well-
structured responses that surpass the superficial summaries of baselines, whether by presenting multi-
step biological mechanisms with accurate terminology or by delivering comprehensive, actionable
guides for brand marketing.

Structural coherence and domain adaptability. Across diverse inputs, SSPO demonstrates a
consistent ability to organize responses around key conceptual stages, especially in specialized
domains such as medicine. Where other methods often plateau at surface-level summaries or fall into
redundancy (as with SSRM), SSPO maintains logical progression and avoids repetition. Its answers
are technical enough for experts by explicitly structuring the mechanisms (e.g., antigen presentation,
immune activation) and aligning stylistic tone with the question’s context. These results suggest that
SSPO’s use of unpaired data not only improves human alignment but also enhances the structural and
semantic quality of domain-specific responses.
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Table 13: A case study showing how SSPO benefits from semantically relevant but unpaired
data (Mistral trained on 10% of UltraMedical-Preference). The selected response exhibits implicit
preference (via a pseudo-label reward), enabling SSPO to generalize effectively in specialized domains
like medicine. By learning from the comprehensive, categorized structure of the unpaired medical data,
SSPO generates a response that is not just a simple list but a well-organized, multi-faceted guide to stress
management, demonstrating effective knowledge transfer. For brevity, some contents are omitted.

Item Content

Question What are the most effective ways to deal with stress?

KTO Stress, defined as a physiological response to a perceived threat, is primarily mediated by the
hypothalamic-pituitary-adrenal (HPA) axis, leading to an increase in glucocorticoids such as cor-
tisol. (omitted) It is recommended to consult a healthcare professional for a full diagnostic workup and
a tailored treatment plan based on your specific stress-related symptomatology.

Pseudo-
Winning
Datum
(UltraMedical)

Instruction: Offer detailed guidance for managing stress and promoting better mental health.
Response: Managing stress and promoting better mental health are critical aspects of living a balanced
and fulfilling life. Here are several detailed strategies to help you navigate through stressful periods
and maintain your mental well-being: ### 1. **Practice Mindfulness and Meditation** Mindfulness
involves staying present and fully engaging with the moment without judgment. Meditation can
help calm your mind, reduce stress, and improve concentration. (omitted) ### 2. **Regular Physical
Activity** Exercise is a powerful stress reliever. It can improve your mood, enhance your physical
health, and increase your energy levels. (omitted)

SSPO
(Ours)

1. **Adrenaline Outlets**: Engaging in activities that involve physical exertion and the release of
adrenaline provides an immediate outlet for stress. This can include sports, exercise routines that push
personal boundaries, and adventurous pursuits. (omitted) 2. **Cognitive Control**: Psychological
techniques aimed at managing the perception and interpretation of stress have proven efficacy. (omitted)
Therefore, an integrative approach involving multiple strategies and healthcare professionals is often
the most effective course of treatment and prevention for individuals experiencing severe or chronic
stress problems.

Table 14: A case study showing how SSPO benefits from semantically relevant but unpaired
data (Mistral trained on 10% of DSP Business). While the baseline (KTO) produces an unstructured,
keyword-based output that fails to adopt the requested persona, SSPO effectively learns the professional
tone and structured format prevalent in the unpaired business dataset. As a result, SSPO generates a
clear, actionable, and well-organized response, directly providing the mentee with a comprehensive,
enumerated guide. For brevity, some contents are omitted.

Item Content

Question Pretend to be a business professional. Act like you are giving your mentee professional advice on the
most essential points to create a self-sustaining business within the next five years time without the
help of external investors.

KTO [SYSTEM_QUERY]: "self-sustaining business" + "no investors"
[RESPONSE_PROTOCOL]: DATA_DUMP
INITIATING...
KEY_TERMS_LIST:
ROI (Return on Investment)
GAAP (Generally Accepted Accounting Principles)
(omitted)

Pseudo-
Winning
Datum
(17k Business
Book)

Instruction: how can recognizing customer passions ignite word-of-mouth movements?
Response: Truly understanding customer passions, like by listening to stories about their lives, allows
a business to inspire behaviors and tap into causes that customers want to spread. This recognition of
passion can ignite self-sustaining word-of-mouth movements.

SSPO
(Ours)

As a business professional, I would advise you to follow these essential points to create a self-sustaining
business within the next five years: 1. Develop a comprehensive business plan: Your business plan
should outline your mission, vision, goals, target audience, market analysis, marketing strategy, and
financial projections.(omitted) 2. Conduct thorough market research: Before starting your business, it
is important to conduct thorough market research to understand your target audience, competition, and
industry trends. (omitted)
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Table 15: Comparison of model responses to the general-domain question from AlpacaEval2.0. All
models are based on Mistral and trained with 10% of UltraFeedback. The table highlights differences
in context awareness, informativeness, and stylistic alignment across preference optimization methods.
SSPO uniquely balances humor and factual accuracy, while baselines either over-explain or oversimplify.

Instruction What is the airspeed velocity of an unladen swallow?

DPO The question is a famous line from the Monty Python film “Monty Python and the Holy Grail.”
In the film, the answer is given as 11 meters per second, or about 25 miles per hour. However,
this answer is a joke, as the film never actually provides an accurate or scientifically sound
answer to this question. In reality, the airspeed velocity of an unladen swallow depends on the
species of the swallow, and can range from about 5 to 11 meters per second. For instance, the
European Swallow (Hirundo rustica) can reach speeds of up to 11 m/s, while the African
Swallow (Hirundo lucida) is typically slower, at around 7 m/s. So, while the Monty Python
answer is amusing, it is not a scientifically accurate answer to the question.

ORPO The question is a reference to a scene in the movie “Monty Python and the Holy Grail” where
the answer is humorously given as “11 meters per second, or 40 kilometers per hour, or 14 miles
per hour, or 11 meters per second.” The actual answer is not provided in the movie and varies
depending on the source, with estimates ranging from 1.5 to 11 meters per second. In reality, the
airspeed velocity of a European Swallow is around 11 meters per second (40 kilometers per hour
or 14 miles per hour) during level flight, but this assumes the swallow is carrying food. When
unladen, the European Swallow can fly at speeds of around 7.5 to 11 meters per second (27 to 40
kilometers per hour or 17 to 25 miles per hour). The African Swallow, on the other hand, has a
higher cruising speed of around 12.7 meters per second (45 kilometers per hour or 28 miles per
hour).

SimPO The question is a popular reference to the film “Monty Python and the Holy Grail.” However, the
film never actually gives a definitive answer to this question. It is generally accepted that the
question itself is a nonsensical one, as swallows do not fly with no weight in their bellies.
Therefore, there is no scientifically accurate answer to this question.

SSRM 650.
I don’t remember learning the airspeed velocity of an unladen swallow in school. But it does
make for a great punchline.

KTO That’s the classic Monty Python question. Everyone knows the correct answer is 100 miles per
hour, because otherwise the bridge keeper wouldn’t have asked it. So clearly, an unladen
swallow must fly at that speed.

SPA This question is a well-known line from the movie “Monty Python and the Holy Grail.” In the
film, a humorous answer of 11 meters per second, or roughly 25 miles per hour, is mentioned.
However, this is meant as a joke. The movie does not actually offer a scientifically valid
response. In fact, the true airspeed of an unladen swallow varies depending on the species. For
example, the European Swallow (Hirundo rustica) can fly at speeds up to 11 m/s, while the
African Swallow (Hirundo lucida) tends to fly slower, around 7 m/s. So although the Monty
Python reference is entertaining, it shouldn’t be taken as a factual answer.

SSPO The question “What is the airspeed velocity of an unladen swallow?” is a popular one due to its
mention in the Monty Python film ”Monty Python and the Holy Grail.” However, there is no
definitive answer to this question as it is based on a line from a fictional movie and there is no
scientific evidence to support an exact value. Swallows, specifically the African Swallow
(Hirundo rustica), have been estimated to fly at speeds between 11 and 12 meters per second
(approximately 25 to 27 miles per hour) based on observations and studies. However, these
estimates do not account for the weight of the swallow carrying food or eggs, making the
question of the airspeed velocity of an unladen swallow a matter of folklore rather than fact.
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Table 16: Comparison of model responses to the medical-domain question from AlpacaEval2.0. All
models are based on Mistral and trained with 10% of UltraMedical-Preference. This table includes
the outputs from our baselines: DPO, ORPO, SimPO, and SSRM. Baselines converge on antibody-level
summaries and fail to capture the structured, multi-stage mechanisms emphasized in SSPO.

Instruction How do vaccinations work to protect individuals and communities from infectious diseases,
and what is herd immunity?

DPO Vaccinations work by stimulating the immune system to produce an immune response to a
pathogen without causing illness. This immune response includes the production of antibodies
that can recognize and destroy the pathogen if the person is exposed to it in the future.
Herd immunity refers to the protection of a community or population against the spread of an
infectious disease. It occurs when a large percentage of the population is immune to the disease,
either through vaccination or prior infection, which reduces the likelihood of the disease
spreading within the community. Herd immunity is especially important for protecting
individuals who cannot receive vaccines due to medical reasons or those who have weakened
immune systems.

ORPO Vaccinations work by stimulating the immune system to produce an immune response against
specific pathogens without causing the disease. This is achieved through the introduction of
antigens, which are components of the pathogen, into the body. The antigens stimulate the
production of antibodies, which can recognize and neutralize the pathogen if encountered again.
Herd immunity, also known as community immunity, occurs when a significant portion of the
population is immune to a particular infectious disease, either through vaccination or prior
infection. When a large proportion of the population is immune, the spread of the disease is
limited, providing indirect protection to those who are not immune. This is especially important
for individuals who cannot be vaccinated due to medical reasons, such as infants, pregnant
women, or individuals with weakened immune systems.
Overall, vaccinations and herd immunity play a crucial role in protecting individuals and
communities from infectious diseases by preventing the transmission and spread of pathogens.

SimPO Vaccinations work by stimulating an individual’s immune system to produce an immune
response against specific pathogens (such as viruses or bacteria) without causing the disease
itself. This immune response includes the production of antibodies that can recognize and
destroy the pathogen if the person is later exposed to it.
Herd immunity, also known as community immunity, refers to a situation where a large
proportion of the population becomes immune to a particular infectious disease, either through
vaccination or prior infection. When a high percentage of individuals in a community are
immune, the spread of the disease is significantly reduced, protecting not only those who are
immune but also individuals who are not immune, such as those who are too young or have
compromised immune systems. Herd immunity is particularly important for protecting those
who cannot be vaccinated due to medical reasons. It also helps prevent outbreaks and epidemics
by reducing the number of susceptible individuals in a population.
Overall, vaccinations and herd immunity are crucial for controlling and preventing the spread of
infectious diseases.

SSRM Vaccines are medical interventions that are designed to prevent infectious diseases by stimulating
an individual’s immune system to produce immunity to a specific pathogen. They contain a
weakened or killed version of the pathogen or a small part of it (antigen), which is used to trigger
an immune response that produces antibodies and white blood cells that can fight the pathogen.
When vaccines are administered to individuals, they provide protection against the targeted
disease. However, when a sufficient number of people in a community receive the vaccine, they
can create herd immunity. Herd immunity is a situation where a large portion of the population
is immune to an infectious disease, which prevents the spread of the disease even if some people
in the community are not vaccinated or vaccinated individuals are exposed to the pathogen.
This collective immunity occurs because vaccinated individuals cannot transmit the disease to
others, and they reduce the pool of susceptible individuals that the pathogen can infect.
Consequently, the fewer susceptible individuals in the community, the less the pathogen can
spread, which can ultimately lead to the elimination of the disease from the community.
Overall, vaccines are an essential tool in public health interventions that can prevent infectious
diseases from spreading and promote herd immunity. By increasing vaccination rates,
communities can protect themselves and reduce the risk of epidemics and pandemics.
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Table 17: (Continuation of Table 16) Comparison of model responses to the medical-domain question
from AlpacaEval2.0. All models are based on Mistral trained with 10% of UltraMedical-Preference.
This table includes the outputs from SSPO and our strongest baseline: SPA. SSPO provides a highly struc-
tured explanation covering vaccine platforms, immune memory, and medical terminology, outperforming
all the baselines. For brevity, some contents are omitted.

Instruction How do vaccinations work to protect individuals and communities from infectious diseases,
and what is herd immunity?

KTO Vaccines keep people from getting sick by making you immune. If enough people get them then
diseases go away. Herd immunity is just when the community doesn’t get sick anymore.
Basically, vaccines are useful because they prevent disease.

SPA Vaccines help protect people by training the immune system to recognize and fight off specific
pathogens, such as viruses or bacteria, without causing the actual disease. They do this by
prompting the body to produce antibodies, which can quickly respond if the real pathogen is
encountered later on.
Herd immunity happens when a significant portion of the population becomes immune to a
contagious disease, either through vaccination or previous infection. This widespread immunity
makes it harder for the disease to spread, thereby offering indirect protection to those who are
not immune, such as individuals with certain medical conditions or weakened immune systems
who cannot be vaccinated.

SSPO 1. Fundamental Mechanisms:

- **Pathogen Recognition and Immune Response**: Vaccines present antigens that mimic or are
the actual components of pathogens. Upon administration, these induce an immune reaction
including antigen presentation to T-cells, antibody production by B-cells, and the formation of
memory cells. This results in the recognition and rapid immune response targeting the specific
microbial agents upon subsequent encounters.

- The **AHA (antigenic heterogeneity and antigenicity)** of viruses and pathogens necessitates
repeated vaccine updates or multiple components within vaccines to cover diverse strains
effectively.

- **Vaccine Delivery Systems**: Various platforms are used to elicit potent and appropriate
immune responses, ranging from live attenuated organisms to protein subunits, nucleic acids
encoding viral proteomes, to live vectors (like the chimeric viruses in viral vector vaccines) or
even intracellular replicons (like virus-like particles or live attenuated virus replicons in cellular
vectors). These approaches tailor the immune stimulus specifically to the target tissue or
pathogen lifecycle stage that is crucial for the desired immunity.

- **Humoral vs. Cell-Mediated Immunity**: Vaccines generally drive both but emphasize
antibody production which can neutralize pathogens extracellularly. Importantly, the
establishment of robust T-cell immunity (particularly cytotoxic T lymphocytes for intracellular
pathogens or helper T-cell responses that assist in antigen presentation for all pathogens) is
crucial in many vaccine designs, especially with certain vaccine modalities and infections.

- **Long-term Protection and Memory**: Successful vaccination leads to the establishment of
long-lived antibody-producing B-cell populations within memory (or germinal center) centers in
secondary lymphoid tissues. These can rapidly proliferate upon reinfection, quickly producing
neutralizing antibodies, and are instrumental in the concept of “original antigenic sin.” (omitted)
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Table 18: Comparison of model responses to the business-domain question from AlpacaEval2.0. All
models are based on Mistral and trained with 10% of DSP Business. While DPO, ORPO, and SimPO
successfully generate structured, list-based answers, their content is generic and superficial. They provide
a simple enumeration of common marketing tactics without distinguishing foundational strategies from
tactical options, lacking the depth of an expert-level response.

Instruction What are the important points for brand promotion and brand marketing?

DPO 1. Defining the target audience: Understanding the demographics, needs, and preferences of the
target market is crucial for creating effective brand promotions and marketing strategies. 2.
Developing a strong brand identity: Establishing a consistent brand image, tone of voice, and
message across all communication channels is essential for building brand awareness and
recognition. 3. Utilizing various marketing channels: A mix of traditional and digital marketing
channels such as social media, email marketing, content marketing, search engine optimization
(SEO), pay-per-click (PPC) advertising, and public relations can help reach a wider audience and
increase brand exposure. 4. Creating engaging content: Producing high-quality, relevant, and
shareable content that resonates with the target audience can help generate buzz and increase
brand awareness. 5. Building a community: Engaging with customers and building a community
around the brand can help foster loyalty and increase brand advocacy. 6. Measuring and
analyzing results: Regularly monitoring and analyzing the effectiveness of brand promotions and
marketing strategies can help identify areas for improvement and optimize future campaigns.

ORPO 1. Define your target audience: Determine who your ideal customer is, their age, income,
interests, and behavior patterns. This information will help you create effective marketing
strategies that resonate with your target audience. 2. Create a unique brand identity: Your brand
should stand out from the competition. Develop a distinct brand voice, logo, and visual identity
that communicates your brand’s values and personality. 3. Develop a strong online presence: In
today’s digital age, having a strong online presence is essential. Build a website, social media
profiles, and other online channels that showcase your brand and engage with your target
audience. 4. Build brand awareness: Use various marketing channels such as advertising, public
relations, and content marketing to increase your brand’s visibility and reach. 5. Provide
exceptional customer service: Providing excellent customer service is crucial for building brand
loyalty and reputation. Ensure that your customers have positive experiences with your brand at
every touchpoint. 6. Continuously measure and analyze your marketing efforts: Use analytics
tools to measure the effectiveness of your marketing campaigns and make data-driven decisions
to optimize your strategies. 7. Stay true to your brand values: Your brand’s values should be the
foundation of all your marketing and promotional efforts. Ensure that your messaging and
marketing strategies align with your brand’s mission and purpose.

SimPO 1. Know Your Target Audience: Determine your ideal customer and what drives their purchasing
decisions. 2. Develop a Strong Brand Identity: Create a clear and consistent brand message that
resonates with your audience. 3. Build a Strong Online Presence: Utilize social media, a website,
and other online channels to reach your audience and establish your brand. 4. Provide
Exceptional Customer Service: Provide excellent customer service to build loyalty and attract
repeat business. 5. Leverage Influencer Marketing: Partner with influencers in your industry to
reach a wider audience and increase brand awareness. 6. Monitor and Measure Results: Track
and analyze your marketing efforts to understand what works and what doesn’t, and adjust your
strategy accordingly. 7. Offer Value: Provide value to your customers through promotions,
discounts, and other incentives to encourage them to engage with your brand. 8. Collaborate
with Other Brands: Collaborate with complementary brands to reach new audiences and increase
brand visibility. 9. Stay Adaptable: Stay up-to-date on industry trends and adapt your marketing
strategy to remain relevant and effective.
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Table 19: (Continuation of Table 18) Comparison of model responses to the business-domain question
from AlpacaEval2.0. All models are based on Mistral trained with 10% of DSP Business. The
baselines here exhibit clear deficiencies: KTO’s response is overly simplistic and unhelpful, while SPA’s
is conceptually vague and fails to provide the actionable, enumerated points requested by the prompt. In
contrast, SSPO provides a response that is both comprehensive and practical, delivering a well-organized,
actionable guide that successfully avoids the pitfalls of other baselines and demonstrates superior alignment
with the user’s intent. For brevity, some contents are omitted.

Instruction What are the important points for brand promotion and brand marketing?

SSRM Brand promotion and brand marketing are essential components of any successful business
strategy. Here are some important points for effective brand promotion and marketing: 1. Define
your brand: Understand your brand’s mission, vision, values, and unique selling proposition
(USP) to communicate a clear and consistent message to your audience. 2. Know your audience:
Understand your target audience’s demographics, interests, and pain points to tailor your brand
messaging and marketing efforts effectively. 3. Build a strong brand identity: Develop a visual
and messaging identity that aligns with your brand and resonates with your audience. 4. Utilize
multiple marketing channels: Leverage various marketing channels, including social media,
email marketing, content marketing, influencer marketing, and paid advertising, to reach your
audience where they are. 5. Consistency is key: Maintain a consistent brand message and visual
identity across all marketing channels and touchpoints to build trust and recognition with your
audience. 6. Engage with your audience: Build a community around your brand by engaging
with your audience on social media, responding to customer feedback, and providing excellent
customer service. 7. Monitor and measure your results: Use analytics tools to track your
marketing efforts’ performance and adjust your strategy as needed to optimize your brand’s
reach and impact. (omitted)

KTO Brand promotion and marketing are important because they help people know about your brand.
You should try to tell people what your brand is and make sure they like it. Using the internet or
talking to customers can help. Overall, the key point is just to make your brand more visible.

SPA Brand promotion and brand marketing are about making sure your brand is noticed,
remembered, and appreciated by people. To do this effectively, it’s important to focus on
visibility and consistency. A brand that is consistently shown to audiences will naturally build
recognition over time, which is one of the key elements of strong promotion. Another important
point is to use multiple ways of reaching your audience. Different people interact with brands in
different environments, so making sure that your brand shows up across a variety of touchpoints
will help create familiarity. Whether it’s online or offline, what matters most is that your
message is delivered in a way that connects with people and stays in their minds. Marketing also
plays a role in shaping how customers feel about the brand. If promotion makes people aware,
then marketing helps them develop a favorable impression. This means you should think about
how to create positive associations and keep reinforcing them. When customers feel good about
a brand, they are more likely to engage with it. Ultimately, the most important points for brand
promotion and brand marketing can be summarized as visibility, consistency, and recognition. If
people know about your brand, see it often, and think positively about it, then your promotional
and marketing efforts will be successful.

SSPO 1. Define your brand: Before you start promoting and marketing your brand, it’s important to
define what it stands for and what sets it apart from competitors. 2. Know your target audience:
Knowing your target audience is critical to effective brand promotion and marketing.
Understanding their needs, preferences, and pain points will help you create messaging and
content that resonates with them. 3. Develop a strong brand identity: Your brand identity
includes all the visual and verbal elements that represent your brand. This includes your logo,
website design, messaging, and tone of voice. 4. Leverage social media: Social media platforms
are powerful tools for brand promotion and marketing. They allow you to reach a wider
audience, engage with your target market, and build brand awareness. 5. Create valuable content:
Content marketing is a highly effective way to promote and market your brand. Creating
valuable, relevant, and informative content will help attract and retain customers. 6. Use
influencer marketing: Partnering with influencers in your industry can help you reach a wider
audience and build credibility with potential customers. 7. Monitor and analyze your results:
Measuring the success of your brand promotion and marketing efforts is important. Regularly
tracking and analyzing your results will help you identify what’s working and what needs to be
improved. (omitted)
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