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Abstract

Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-
medalist capabilities and producing formal proofs that span thousands of lines.
Although such proofs are mechanically verified by formal systems like Lean, their
excessive length renders them difficult for humans to comprehend and limits their
usefulness for mathematical insight. Proof simplification is therefore a critical
bottleneck. Yet, training data for this task is scarce, and existing methods—mainly
agentic scaffolding with off-the-shelf LLMs—struggle with the extremely long
proofs generated by RL-trained provers. We introduce ProofOptimizer, the first
language model trained to simplify Lean proofs without requiring additional human
supervision. ProofOptimizer is trained via expert iteration and reinforcement learn-
ing, using Lean to verify simplifications and provide training signal. At inference
time, it operates within an iterative proof-shortening workflow, progressively reduc-
ing proof length. Experiments show that ProofOptimizer substantially compresses
proofs generated by state-of-the-art RL-trained provers on standard benchmarks,
reducing proof length by 87% on miniF2F, 57% on PutnamBench, and 49% on
Seed-Prover’s IMO 2025 proofs.

1 Introduction

Theorem proving in formal environments such as Lean (9) offers a powerful testbed for training
large language models (LLMs) in mathematical reasoning via reinforcement learning (RL). Lean
mechanically verifies proofs and filters hallucinations, giving reliable reward signals. RL-finetuned
provers have reached near gold-medal IMO performance (6) and excelled on benchmarks like
PutnamBench (17). These provers produce correct but excessively long and inscrutable proofs, as
optimizing only for correctness leads to convoluted and redundant output, such as in Lean proof of
IMO 2025 P1 is 4,357 lines, which is 16x longer than its informal counterpart.

We address this with proof simplification: transforming formal proofs into simpler forms while
preserving correctness. We focus on proof length (Lean token count), but our approach extends to
any computable metric (14). Prior methods (2) scaffold around API-only LLMs like GPT-4o and
work on human proofs but fail on long RL-generated proofs.

We introduce ProofOptimizer, an LLM-based system to shorten Lean proofs. It combines (i) a
symbolic Lean linter to strip obvious redundancies, (ii) a 7B-parameter model finetuned for proof
simplification, and (iii) an iterative inference algorithm that repeatedly applies the model to the
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shortest proof. Expert iteration and RL training use verified simplifications, enabling continual
improvement without human labels. On proofs from Goedel-Prover-V2 (MiniF2F, PutnamBench)
and Seed-Prover (IMO 2025), ProofOptimizer achieves large reductions: 63% average on MiniF2F
and 26% on PutnamBench in one shot, 72% with test-time RL, and up to 87%/57% after iterative
shortening, halving three of four IMO 2025 proofs.
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: 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=  

   h_main : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi := 
     h₁ : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2)) := 
       h₁₁ : ∀ (x : ℝ), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2) := 
         x

         h₁₂ : (1 + x^2 : ℝ) ≠ 0 :=  
         h₁₃ : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4 := 
          
          <;>

          sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)
         h₁₄ : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4) / (1 + x^2) := 
          h₁₃]

        rw [h₁₄]

        h₁₂  <;>  <;> h₁₂] <;> 
      
       x

      h₁₁ x
    h₁
    

   h_final : 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 
    h_main
    <;>

    Real.pi_pos
  

   h_final
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theorem 
: 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 

 ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^2) = 

           (x ^6 - 4 * x ^5 + 5 * x ^4 - 

            4 * x ^2 + 4 - 4 / (1 + x ^2)) 
     x

    
    

  <;>  Real.pi_pos
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Figure 1: ProofOptimizer reduces a proof of a Putnam problem from 1097 to 76 tokens.

2 Proof Simplification: Task and Metrics

Task Definition We formalize the proof simplification task as minimizing the complexity of a given
proof. Specifically, for a valid formal statement s with proof p, the goal is to produce an alternative
proof p∗ of s that minimizes a complexity measure L:

p∗ = argmin
x proves s

L(x)

Our method is agnostic to the choice of complexity measure L, provided that it is deterministic and
can be automatically computed from the proof. This flexibility encompasses the metrics used in prior
work (2). In the rest of this paper, we adopt proof length as the measure of complexity, defined as the
number of tokens produced by a Lean-specific tokenizer. Our proof length measure correlates with
character count but does not penalize long identifier names, and it ignores comments and line breaks.
We denote the length of a proof x by |x|, i.e., L(x) = |x|.
Evaluation Metrics Given an original proof p and k candidate simplifications generated by the
model, p′1, p

′
2, . . . , p

′
k, we define li = min(|p|, |p′i|) if p′i is a valid proof and li = |p| otherwise.

(Intuitively, an invalid attempt reverts to the original proof length). We evaluate proof simplification
using two metrics:

• min@k ≜ mini {li} denotes the minimum shortened proof length (lower is better).

• red@k ≜ maxi

{
|p|−li
|p|

}
= 1 − min@k

|p| denotes the maximum relative proof length reduction
from the original proof (higher is better).

Note that these metrics may not always be correlated: a method that only excels at shortening long
proofs has a lower min@k and red@k than one that only excels at shortening short proofs. As with
the pass@k metric (7), we report our metrics via an unbiased estimator using n > k samples (see
Appendix I). We average min@k and red@k across samples in a dataset to get overall length and
reduction metrics.

3 ProofOptimizer: LLMs for Proof Simplification

3.1 Training

ProofOptimizer-ExpIt: Expert Iteration: We leverage a STaR-like (31) iterative training algorithm
to improve our model. We start with our base model π0 and a collection of 145K proofs P0. At each
iteration, we attempt to simplify each proof, train our model on successful proof simplifications, and
use the collection of simplified proofs as seed proofs for the next iteration.

More precisely, we have a 3-stage process. In the sample phase, for each proof x ∈ Pi, sample 4
simplifications Yp ≜ {y1x, y2x, y3x, y4x} ∼ πi(x). Then, in the filter phase, we use the Lean compiler to
find the shortest correct simplification yx ∈ {x}∪Yx. Create a training dataset of proof simplifications
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Di = {(x, yx) | len(yx) ≤ 0.8 · len(x), x ∈ Pi}. The length constraint is designed to encourage the
model to learn more substantial simplifications rather than trivial ones. For iterations after the first, as
x may have been simplified from a more complex proof x′ ∈ P0, we also add (x′, yx) pairs to Di,
which are valid and larger proof simplifications. Also, collect simplified proofs πi+1 = {sx | x ∈ Pi}
for the next iteration. Finally, in the train stage, we fine-tune πi on Di to get πi+1.

ProofOptimizer-RL: Online Reinforcement Learning: We also train a proof optimizer model with
online RL. Using the same dataset as in expert iteration, the RL task consists of producing a valid
but shorter proof y for a statement given an initial proof x. The reward is the relative shortening
R(x, y) = |y|−|x|

|x| if y is valid and |y| ≤ |x|, and R(x, y) = 0 otherwise. We employ asynchronous
GRPO (21) with advantage Ai = Ri − 1

k

∑
j≤k Rj .

3.2 Inference-Time Techniques

First, we implement a symbolic linter that removes extraneous tactics via Lean’s
linter.unusedTactic linter, which detects tactics that do not change the proof state and provides
messages like ’norm_num’ tactic does nothing. We compare two techniques. In test-time
RL, we use the setup from training and perform RL on our two evaluation sets (jointly). Our test-time
RL keeps the input proof fixed, meaning improvements occur solely in the model’s parameters. In
iterative proof shortening, we first sample k candidate shortenings and take the shortest correct one.
Then, we sample k shortenings of the new proof, take the shortest correct one – and so on.

4 Experiments

For all evaluations, we use proofs generated by Goedel-Prover-V2 (16) on two popular datasets in
formal math, miniF2F (32) and PutnamBench (23). For miniF2F, we use n = 194 proofs (average
length 334), and for PutnamBench, we use n = 75 proofs (average length 1468). More details and
examples of proofs in our evaluation set can be found in Appendix F.

4.1 Expert Iteration vs. RL vs. Test-Time RL

First, we compare our two training schemes: expert iteration and RL. Starting from our Lean
base model, we train ProofOptimizer-ExpIt by performing three rounds of expert iteration and
ProofOptimizer-RL by performing online RL after two rounds of expert iteration. The table below
shows min@k and red@k scores with respect to linted proofs. We observe steady improvements
during each round of expert iteration for both @1 and @32 metrics. Our final model outper-
forms Gemini-2.5-Pro, a strong reasoning model, even with proof states like Chain-of-States in
ImProver (2).

Next, we see that ProofOptimizer-RL significantly improves single sample (@1) metrics at the
expense of diversity collapse, an issue commonly identified during RL training (11, 25, 30). In
Fig. 2 (a, b), we show the evolution of red@1 during training, observing that miniF2F reduction
steadily rises while PutnamBench reduction experiences oscillations. This tension is likely because
the distribution of training data is more similar in length to miniF2F than PutnamBench, which has a
mean proof length of 4x that of the training set.

Finally, we find that test-time RL leads to even further improvements on min@1 and red@1. This is
expected, as the model is able to directly tune its weights to learn from successful simplifications
at test-time. However, like ProofOptimizer-RL, we observe an even smaller gap between @1 and
@32 metrics. In Fig. 2 (c, d), we observe a much more stable evaluation red@1 curve because the
distribution gap between the training and evaluation sets is eliminated.
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Data Type Model Min@1 ↓ Min@32 ↓ Red@1 ↑ Red@32 ↑

mini
F2F

Linted 302 0.0%
Gemini-2.5-Pro 280 207 24.3% 57.2%

Gemini-2.5-Pro (States) 283 207 26.4% 58.7%
Base (7B) 283 202 17.6% 56.2%

ExpIt
Base + It 1 266 178 33.4% 67.0%
Base + It 2 251 166 45.1% 70.6%

ProofOptimizer-ExpIt 241 153 49.0% 72.3%

RL ProofOptimizer-RL 190 152 63.6% 70.9%
It 2 + Test-Time RL 160 154 72.5% 73.4%

Putnam
Bench

Linted 1359 0.0%
Gemini-2.5-Pro 1348 1303 5.5% 18.0%

Gemini-2.5-Pro (States) 1371 1319 6.1% 19.2%
Base (7B) 1341 1222 3.9% 20.5%

ExpIt
Base + It 1 1341 1215 5.2% 22.5%
Base + It 2 1335 1186 6.9% 24.7%

ProofOptimizer-ExpIt 1328 1161 8.2% 26.3%

RL ProofOptimizer-RL 1303 1258 14.9% 21.1%
It 2 + Test-Time RL 1260 1255 23.8% 24.2%
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Figure 2: Proof reduction (red@1) during RL training (a, b) and test-time RL (c, d).

4.2 Iterative Proof Shortening

In Fig. 3, we show the results of iterative proof shortening on miniF2F and PutnamBench proofs
using ProofOptimizer-ExpIt. First, we do 64 samples per iteration for 6 iterations, observing steady
improvement at each iteration. To demonstrate the potential of further scaling, we do 1024 samples
at iterations 7 and 8 and see significant improvement (see Appendix C.2 for analysis on sample size).
Overall, ProofOptimizer combined with iterative proof shortening is very effective on miniF2F
and PutnamBench, as average proof length is reduced from 334 → 75 and 1468 → 811, for an
average per-proof reduction of 87.9%/57.2%.
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Figure 3: Iterative Shortening: per-iteration improvement

Finally, we demonstrate the effectiveness of ProofOptimizer on an out-of-distribution dataset, Seed-
Prover’s four IMO 2025 proofs. With an order of magnitude higher sampling budget, we achieve a
significant reduction in the proof length for all four problems, showcasing the potential of our model
and technique. Details about our full setup are in Appendix C.3.
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P1 P3 P4 P5
Original Proof Length 36478 16377 29147 8658

Simplified Proof Length 20506 7907 14531 4002
Length Reduction 43.8% 51.7% 50.1% 53.8%

5 Related Works

Classically, there have been many symbolic methods targeting shortening proofs in SAT and first-
order logic languages (20, 24, 26, 12, 14). On the neural side, GPT-f (19) generated 23 verified
proofs shorter than those in the Metamath library. Most related to our work, ImProver (2), is an
inference-time method for proof shortening using GPT-4o with proof states and retrieval. In contrast,
we use training-time approaches (expert iteration and RL), analyze complementary inference-time
techniques, and focus on shortening longer proofs generated by SoTA LLMs.

6 Conclusion

We present ProofOptimizer, the first language model trained to simplify Lean proofs. Unlike prior
work that wraps existing LLMs around agentic scaffolding, we train a model using expert iteration
and RL, coupled with a symbolic linter and iterative proof shortening at inference time. Although
simple, our approach already yields nontrivial results, reducing proof length by an average of 87% on
MiniF2F, 57% on PutnamBench, and over 50% on Seed-Prover’s IMO 2025 proofs. As AI becomes
more tightly integrated with mathematics, we envision a future where AI-generated proofs are not
only correct but also concise and readable, with simplification serving as a critical bridge between
rigorous formal proofs and human intuitive understanding.
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A Lean Base Model and Proof Simplification Data Details

A.1 General Base Model for Lean

First, we train a general-purpose base model in Lean by fine-tuning Qwen-2.5-7B-Instruct (27) on
around 1B Lean tokens. The model is fine-tuned on a combination of diverse math and Lean-related
tasks, as follows:

• Natural Language Problem Solving: The model is trained on natural language mathe-
matics problems with associated solutions so that it has general math capabilities. We use
NuminaMath-1.5 (15), a high-quality set of such pairs.

• Lean Code Completion: We use a subset of Lean code from GitHub, using GPT-4o with
heuristics to classify whether code is Lean 3 or Lean 4. We include only the Lean 4 subset
of the code.

• Auto-formalization: In order to teach the model to associate natural language with Lean,
we train the model to perform auto-formalization of both problems and solutions from
natural language to Lean 4 in our data mix. For problems, we use natural language problems
with Lean problem statement formalizations from high-quality datasets: CombiBench (18),
Compfiles, FormalMATH (29), Goedel-Pset (16), Lean Workbook (28), miniF2F (32),
ProofNet (5), and PutnamBench (23). We include solution autoformalization data from
the Goedel-Pset-v1-Solved dataset by mapping Lean solutions with natural language
solutions.

• Formal Theorem Proving: We use a set of conjectures and proofs from STP (10), which is
a diverse collection of theorems and proofs in Lean 4 generated via expert iteration while
training their model.

• Tactic and Proof State Prediction: Finally, to teach the model about proof states, we use
pre-extracted data from LeanUniverse (4) and extract additional data using the Pantograph
(3) tool. For each proof in STP, we extract each tactic, as well as the proof states before and
after the tactic. The model is given the proof state before the tactic and asked to predict both
the tactic and the proof state following the tactic.

A.2 Generating a Dataset of Theorems and Proofs for Shortening

After creating a Lean base model, we next describe how we generate a training dataset of proofs to
be shortened. To do so, we first present a recipe for generating interesting theorems.

Formalizing Proofs with Sketches to Derive Subtheorems While there are many datasets such as
Goedel-Pset and Lean Workbook, we find that they have a high density of simple computational
problems posed as proofs rather than high-quality proving problems. In Goedel-Pset, we estimate
that only 5% of the problems are proof problems1, leading to a lack of high-quality theorem proving
data. To combat this, we develop a technique to generate diverse and interesting theorems based on
the idea of proof sketching (13).

The key idea is that we can leverage existing natural language solutions to identify core steps in a
proof. We first train our Lean base model to take a natural language solution and auto-formalizing into
a high-level proof, which we call a proof sketch, an example shown in Listing 1. In the proof sketch,
core steps are represented via have statements, and lower-level details are omitted and left as sorry
statements. We then filter sketches are then filtered by the Lean compiler to remove non-compiling
sketches.

Once we have a set of compiling sketches, we extract each sorry goal into a new theorem via the
extract_goal tactic, which turns it into a theorem that is equivalent to what needs to be proved at
that particular sorry. For example, extracting the second sorry in Listing 1 results in the theorem
shown in Listing 2. By extracting these sorry statements, we are able to generate 518K theorems.

1We estimate whether a problem is a computational problem via a heuristic filter of whether the problem has
any of the keywords: prove, show, establish, demonstrate, verify
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theorem lean_workbook_plus_22532 (a b : N → R)
(h0 : 0 < a ∧ 0 < b)
(h1 : ∀ n, a (n + 1) = a n + 2)
(h2 : ∀ n, b (n + 1) = b n * 2)
(h3 : a 1 = 1)
(h4 : b 1 = 1)
(h5 : Σ k in Finset.range 3, b k = 7) :
Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2^n + 3 := by
-- Lemma 1: Prove that the sequence {a_n} is an arithmetic sequence.
have lemma1 : ∀ n, a (n + 1) = a n + 2 := by

sorry

-- Lemma 2: Express a_n in terms of n.
have lemma2 : ∀ n, a n = 2 * n - 1 := by

sorry

-- Lemma 3: Express b_n in terms of n.
have lemma3 : ∀ n, b n = 2^(n - 1) := by

sorry

-- Lemma 4: Calculate the sum of the first n terms of the sequence {a_n b_n}.
have lemma4 : ∀ n, Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2^n + 3 := by

sorry

-- Apply lemma4 to conclude the theorem.
exact lemma4 n

Listing 1: Example of a proof sketch

theorem lean_workbook_plus_22532.extracted_1_1 (a b : N → R) (h0 : 0 < a ∧ 0 < b) (h1 : ∀ (n : N
↪→ ), a (n + 1) = a n + 2)

(h2 : ∀ (n : N), b (n + 1) = b n * 2) (h3 : a 1 = 1) (h4 : b 1 = 1) (h5 : Σ k ∈ Finset.range 3,
↪→ b k = 7)

(lemma1 : ∀ (n : N), a (n + 1) = a n + 2) (n : N) : a n = 2 * ↑n - 1 := sorry

Listing 2: Example of an extracted theorem

Fine-Tuning our Model for Proof Sketching In order to fine-tune our model for proof sketching,
we first curate a dataset of natural language problems (with corresponding Lean problem formal-
izations) and solutions by combining Goedel-Pset-v1 (16) with NuminaMath-1.5 (15). Then, we
use Qwen-2.5-32B-Instruct to produce proof-sketches based on these natural language solutions
similar to that in Listing 1. We filter out compiling sketches and train our Lean base model on
them. In Table 1, we show the results of fine-tuning. Since it can be tricky to measure the objective
correctness of a sketch, we use the proxy of compile rate, finding our model performs better than
Qwen2.5-32B and is smaller and can do inference faster.

Table 1: Proof sketching ability of models

Model compile@1 compile@16
Qwen2.5 7B (zero-shot) 3.6 7.0
Qwen2.5 7B (one-shot) 4.9 19.0

Qwen2.5 32B (zero-shot) 21.1 62.0
Qwen2.5 32B (one-shot) 35.1 75.0

Ours (7B) 54.8 89.1

Generating Proofs for Simplification Because proof sketching can generate steps or sub-theorems
that are too incremental, we first filter out trivial theorems that can be easily solved by automation
tactics in Lean. For example, the first sorry in Listing 1 is just a restatement of hypothesis h1 and
can be solved via rfl. While this theorem is correct, it is not challenging for the model. Therefore,
we design an AUTO tactic (Listing 3) that tries a series of Lean automation tactics such as linarith
and aesop to filter out these simple theorems, leaving 307K of the original 518K theorems (filtering
out 41%).
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For the remaining theorems, we attempt to generate proofs of these theorems with
Goedel-Prover-V2-32B, a strong open-source proving model. With 4 attempts per theorem,
the model is able to prove 145K theorems, which we use as targets for proof simplification. Statistics
and examples of these proofs can be found in the next section, Appendix A.3.

macro "AUTO" : tactic =>
‘(tactic|

repeat’
(try rfl
try tauto
try assumption
try norm_num
try ring
try ring_nf at *
try ring_nf! at *
try native_decide
try omega
try simp [*] at *
try field_simp at *
try positivity
try linarith
try nlinarith
try exact?
try aesop))

Listing 3: AUTO tactic for filtering trivial theorems

A.3 Statistics of Proof Simplification Training Dataset

The minimum, Q1, median, Q3, and maximum proof lengths of our training dataset are 1, 103, 204,
411, and 10958. The mean is 334. In Fig. 4, we show the distribution of lengths, observing its
right-skewed nature. Examples of proofs are shown in Listings 4 and 5. Compared to the proofs
in our evaluation sets, we observe that training proofs often have more unused hypotheses, as they
are derived from extracting the proof state, which may contain hypotheses that are not used for that
particular sub-goal.
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Figure 4: Histogram of proof lengths.
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theorem extracted_1 (a b : R) (ha : 0 ≤ a) (ha1 : a ≤ 1) (hb : b = a ^ 3 + 1 / (1 + a))
(lemma1 : 1 - a + a ^ 2 - a ^ 3 ≤ 1 / (1 + a)) (lemma2 : b ≥ 1 - a + a ^ 2) (lemma3 : 1 - a + a

↪→ ^ 2 ≥ 3 / 4)
(lemma4 : b ≤ 3 / 2) : 3 / 4 < b := by
have h_main : 3 / 4 < b := by

by_contra h
-- Assume for contradiction that b ≤ 3/4
have h1 : b ≤ 3 / 4 := by linarith
-- From lemma2, b ≥ 1 - a + ²a, and from lemma3, 1 - a + ²a ≥ 3/4
have h2 : 1 - a + a ^ 2 ≤ 3 / 4 := by

linarith
-- But from lemma3, 1 - a + ²a ≥ 3/4, so 1 - a + ²a = 3/4
have h3 : 1 - a + a ^ 2 = 3 / 4 := by

linarith
-- Solve 1 - a + ²a = 3/4 to get a = 1/2
have h4 : a = 1 / 2 := by

have h41 : a ^ 2 - a + 1 / 4 = 0 := by
nlinarith

have h42 : (a - 1 / 2) ^ 2 = 0 := by
nlinarith

have h43 : a - 1 / 2 = 0 := by
nlinarith

linarith
-- Substitute a = 1/2 into b = ³a + 1/(1 + a)
have h5 : b = 19 / 24 := by

rw [hb]
rw [h4]
norm_num

-- But 19/24 > 3/4, so b > 3/4, contradiction
have h6 : b > 3 / 4 := by

rw [h5]
norm_num

linarith
exact h_main

Listing 4: Example of Proof Simplification Training Task (Length 158)
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theorem extracted_1 (n : N) (hn : 3 ≤ n) (lemma1 : Nat.card ↑{k | k ≤ n ∧ k ̸= 0} = n) :
Nat.card ↑{k | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by
have h_main : Nat.card ↑{k : N | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by

have h1 : {k : N | k ≤ n - 1 ∧ k ̸= 0} = Set.Icc 1 (n - 1) := by
apply Set.ext
intro k
simp only [Set.mem_setOf_eq, Set.mem_Icc]
constructor
· intro h

have h2 : k ≤ n - 1 := h.1
have h3 : k ̸= 0 := h.2
have h4 : 1 ≤ k := by

by_contra h4
-- If k < 1, then k = 0 since k is a natural number
have h5 : k = 0 := by

omega
contradiction

exact ⟨h4, h2⟩
· intro h

have h2 : 1 ≤ k := h.1
have h3 : k ≤ n - 1 := h.2
have h4 : k ≤ n - 1 := h3
have h5 : k ̸= 0 := by

by_contra h5
-- If k = 0, then 1 ≤ k would be false
have h6 : k = 0 := by simpa using h5
omega

exact ⟨h4, h5⟩
rw [h1]
-- Calculate the cardinality of the set {1, . . ., n - 1}
have h2 : Nat.card (Set.Icc 1 (n - 1) : Set N) = n - 1 := by

-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
have h3 : n - 1 ≥ 1 := by

have h4 : n ≥ 3 := hn
omega

-- Use the formula for the cardinality of the interval [a, b]
rw [Nat.card_eq_fintype_card]
-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
rw [Fintype.card_ofFinset]
-- Convert the set to a finset and calculate its cardinality
<;> simp [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> cases n with
| zero => contradiction
| succ n =>

cases n with
| zero => contradiction
| succ n =>

cases n with
| zero => contradiction
| succ n =>

simp_all [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> ring_nf at *
<;> omega

rw [h2]
exact h_main

Listing 5: Example of Proof Simplification Training Task (Length 295)
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B Training Metrics throughout RL

In Section 4.1, we observed that expert iteration leads to higher diversity as witnessed by better @32
metrics, while reinforcement learning with standard reinforcement learning algorithms maximizing
expected rewards leads to higher @1 metrics. In Figure 5, we show the evolution of proof shortening
red@1 alongside red@32. Initial @32 metrics are slowly distilled into @1, but the improvement on
@32 metrics is limited.

0 50 100 150
Step (k)

50

55

60

65

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(a) miniF2F red@1

0 50 100 150
Step (k)

10

12

14

16

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(b) PutnamBench red@1

0 25 50 75 100
Step (k)

66

68

70

72

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(c) miniF2F red@32

0 25 50 75 100
Step (k)

18

20

22

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(d) PutnamBench red@32

Figure 5: Reduction metrics @1 and @32 over the course of RL. GRPO maximizes red@1 at the
cost of diversity, as red@32 only marginally increases in comparison.
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C Full Results and Additional Analysis of Iterative Proof Shortening

C.1 Table of Iterative Proof Shortening Results

Table 2 is a tabular form of Fig. 3, showing the proof length after each iteration of proof shortening.

Table 2: Min@64 (rounded to nearest integer) and reduction (%) of miniF2F and PutnamBench
proofs across inference-time iterations. Iterations 1− 6 are done with 64 samples, and 7− 8 with
1024 samples.

Dataset Model Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F Min@64 334 302 144 126 121 117 106 104 88 75
Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Putnam Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811
Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

C.2 Effect of k on min@k and red@k throughout simplification

In this section, we analyze the effect of increasing k on min@k and red@k. First, we analyze this
trend when attempting to simplify the initial, linted proof, shown in Table 3 and Fig. 6. We observe a
relatively log-linear gain in both metrics.

For comparison, we analyze the same trend but for simplifying proofs that have already gone many
iterations of simplification. In Fig. 7, we analyze proofs that have gone 7 iterations of proof
simplification. We see a different pattern, where min@k falls slower for lower k and then log-linearly
afterwards. Intuitively, as proofs become more simplified, they become harder to simplify in a
low-shot setting, and exploring more diverse simplifications becomes crucial.

Table 3: Min@k and Red@k for increasing values of k

Dataset Metric Original Linter @1 @2 @4 @8 @16

miniF2F Min@k 334 302 142 141 139 137 134
Red@k (%) 0.0% 9.2% 77.1% 77.3% 77.7% 78.1% 78.6%

PutnamBench Min@k 1468 1359 1120 1117 1112 1105 1094
Red@k (%) 0.0% 7.4% 35.2% 35.5% 35.9% 36.5% 37.3%

Dataset Metric @32 @64 @128 @256 @512 @1024

miniF2F Min@k 130 126 122 118 114 110
Red@k (%) 79.2% 79.9% 80.6% 81.2% 81.8% 82.4%

PutnamBench Min@k 1080 1063 1043 1023 1004 987
Red@k (%) 38.4% 39.7% 41.3% 42.9% 44.3% 45.7%
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Figure 6: Effect of scaling k (sample count) on Min@k and Red@k (initial iteration)
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Figure 7: Effect of scaling k (sample count) on Min@k and Red@k (later iteration)

C.3 Details on Seed-Prover IMO Proof Shortening

Earlier in 2025, Seed-Prover released Lean proofs of four problems that the model successfully solved
from the 2025 International Mathematical Olympiad (IMO) (6). They solved problems 3, 4, and
5 were solved during the contest window, and problem 1 later after the competition. However, the
proofs of these problems are extremely verbose, especially compared to their informal counterparts.
Using iterative proof shortening, our ProofOptimizer is able to successfully reduce the proof length
of their proofs for P3, P4, and P5 by over half, as well as the longer P1 by 43.8%. In addition, we
find that our shortened proofs for P4 and P5 show a 25% and 81% (respectively) speedup over the
original proofs (Table 4).

Table 4: Results for ProofOptimizer + Iterative Shortening on IMO 2025 Proof Simplification

Problem Length Runtime
Original Simplified Reduction Original Simplified Speedup

P1 36478 20506 43.79% 399.7 392.3 1.02×
P3 16377 7907 51.72% 39.7 39.1 1.02×
P4 29147 14531 50.15% 453.8 362.5 1.25×
P5 8658 4002 53.78% 61.0 33.7 1.81×

We use proofs from the official GitHub repository using Mathlib 4.14.0 (our model was trained on
Mathlib 4.19.0). Before shortening, we replace invocations of exact? and apply? with the actual
proof that is found. Each of the proofs is divided into a collection of smaller lemmas and theorems
(problems 1, 3, 4, and 5 have 80, 52, 88, and 14 theorems, respectively). Since running iterative
shortening on the entire proof will suffer from long context issues, we treat each sub-lemma/sub-
theorem as an individual target for shortening. At the end, we combine the shortened theorems to
produce the complete shortened proof. When feeding a sub-theorem into ProofOptimizer, we include
as context the theorem definition (but not proof) of all other theorems that occur in its proof. Finally,
to ensure the correctness of our simplified proofs, we use SafeVerify to confirm that all four simplified
proofs match the specification of the original proof without any environmental manipulation. We
remark that our setup does not consider the space of structure-level simplifications, as we retain all
sub-theorem statements from the original proof and only simplify their proofs. In addition, as our
proof length metric only measures the length of proofs, it does not take into account unnecessarily
long or redundant sub-theorem statements.

As this experiment aims to provide a simple demonstration of the potential of our approach rather than
perform a controlled scientific study, we do not fix the number of iterations or samples per iteration
across problems. Approximately, we use 15-20 iterations of shortening with 64-4096 samples per
iteration. Taking inspiration from the analysis in Sec. C.2, we generally use less samples for the
first few iterations and increase the number of samples for later iterations to maximize reduction per
sample. We also allocate more samples to sub-theorems that show more simplification potential in
early iterations. In total, we used approximately 3000 H100 GPU hours per problem.
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D Comparison with Qwen2.5, GPT-4o, and Gemini-2.5-Pro

In Table 5, we compare ProofOptimizer models with several off the shelf models, namely Qwen
2.5 (22), GPT-4o (1), and Gemini-2.5-Pro (8). For all models, we feed the output of the symbolic
linter as input, and report overall reduction with respect to the original (unlinted) proof.

Table 5: Proof length of miniF2F and PutnamBench proofs for various models. Specially trained
proof minimization models outperform prompted off-the-shelf models. Reinforcement learning
achieves best @1 metrics but at the cost of reducing diversity, as witnessed by improved @32 metrics
with expert iteration.

Dataset Model Min@1 Min@32 Red@1 Red@32

miniF2F

Original 334 0.0%
Linter 302 9.2%

Qwen2.5-7B 294 267 25.7% 41.8%
Qwen2.5-32B 288 252 30.0% 47.3%

GPT-4o 283 258 35.2% 47.9%
GPT-4o + States 266 290 32.9% 46.5%
Gemini-2.5-Pro 280 207 31.6% 62.0%

Gemini-2.5-Pro + States 283 208 31.6% 62.0%
ProofOptimizer-ExpIt 241 153 53.9% 74.9%
ProofOptimizer-RL 190 152 67.1% 73.4%

Putnam
Bench

Original 1468 0.0%
Linter 1359 7.4%

Qwen2.5-7B 1358 1339 9.0% 14.8%
Qwen2.5-32B 1353 1304 10.9% 20.7%

GPT-4o 1355 1336 10.9% 18.2%
GPT-4o + States 1379 1358 9.3% 15.9%
Gemini-2.5-Pro 1348 1303 12.7% 24.5%

Gemini-2.5-Pro + States 1371 1319 11.5% 24.1%
ProofOptimizer-ExpIt 1328 1161 15.2% 31.9%
ProofOptimizer-RL 1303 1258 21.6% 27.1%

In Fig. 8, we compare the specific optimized proofs between Gemini and ProofOptimizer. For both
data sets it can be seen that the longer the proof, the more challenging it is to shorten it. This is
because although long proofs have more potential for shortening, the models struggle to maintain
correctness of them. Still, ProofOptimizer is able to bring some improvements for the long proofs
(see the top right part of the PutnamBench plot). In miniF2F, there is a significant number of proofs
that can be minimized to just one step, which typically boils down to invoking one proof automation
tactic (like linarith instead of applying a sequence of more explicit proof steps.
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Table 6: Step-by-step success rates, revealing the main bottleneck of long repaired proofs.

Dataset Simplification Repair Shorter than best (before/after linter)

miniF2F 7852
12416 (63.2%) 2840

4564 (62.2%) 76
2840 → 137

2840 (2.7% → 4.8%)

PutnamBench 1288
4800 (26.8%) 613

3512 (17.4%) 5
613 → 11

613 (0.8% → 1.8%)

E Full Results and Analysis of Repair with Execution Feedback

E.1 Analysis of Repair with Execution Feedback

As described in Sec. 3.2, we (1) sample 64 simplifications for each proof with ProofOptimizer-ExpIt,
(2) repair incorrect proofs with Goedel-Prover-V2-32B, and (3) shorten successful repairs with
our linter. Overall, we find while repair with execution feedback leads to improvements, it
underperforms resampling because repaired proofs are often even longer than the original
proofs. Fig. 9 (left) shows the average proof length and reduction % after sampling, repair, and
linting. We our linter to be effective on repaired proofs, decreasing the average repaired proof length
from 644 → 576 (miniF2F) and 877 → 788 (PutnamBench). In Fig. 9 (right), we plot the proof
length of the original proofs (before Step 1) against simplified proofs (Step 1) and repaired proofs
(Step 2). A majority of the repaired proofs (green dots) are above the y = x line, meaning they are
longer than the original proofs, let alone the simplified proofs (blue dots).
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Figure 9: Analysis of execution-based repair with Goedel-Prover-V2 on PutnamBench.

In Table 6, we analyze the success rate of each step of our pipeline. However, the key issue remains
to be the high length of the repaired proofs. Even after linting, only 4.8% (miniF2F) / 1.8% (Putnam)
of post-linted proofs are shorter than the best proof found by ProofOptimizer during simplification.
We refer the reader to Appendix E for further analysis and examples.

All simplification attempts are done on the set of linted proofs. Table 7, Figure 10, and Figure 11 are
extended versions of Fig. 9 for both PutnamBench and miniF2F. The settings are as follows:

• ProofOptimizer: ProofOptimizer-ExpIt, with 64 simplification attempts per proof.
• + Repair: The previous setting, with 1 attempted repair by Goedel-Prover-V2-32B.
• + Repair + Linter: The previous setting, with our linter applied to all proofs.
• ProofOptimizer (@128): ProofOptimizer-ExpIt, with 128 simplification attempts per proof
• ProofOptimizer (@64x2): ProofOptimizer-ExpIt with 64 simplification attempts per proof,

and the best simplified proof for each problem is then fed back for an additional 64 attempts.

We remark that these baselines are normalizing for sample count rather than running time. Sampling
a repair from Goedel-Prover-V2-32B takes considerably longer than sampling a simplification
from our model. This is both because it is a larger model (32B vs. 7B) and because their model relies
on CoT, causing their average response length to be significantly longer than ours.
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Table 7: Results of execution-based repair strategies

Dataset Model Min@64 Min@64 × 2 Red@64 Red@64 × 2

miniF2F

Linter 302 9.2%
ProofOptimizer 144 - 75.5% -

+ Repair - 136 - 77.3%
+ Repair + Linter - 132 - 77.9%

ProofOptimizer (@128) - 130 - 78.9%
ProofOptimizer (It 2) - 125 - 80.2%

Putnam
Bench

Linter 1359 7.4%
ProofOptimizer 1123 - 32.9% -

+ Repair - 1113 - 35.3%
+ Repair + Linter - 1107.2 - 35.7%

ProofOptimizer (@128) - 1099 - 36.5%
ProofOptimizer (@64x2) - 1095 - 37.0%
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Figure 10: Results of Execution-Based Repair with Goedel-Prover
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Figure 11: Comparison of Proof Lengths with Execution-Based Repair

Finally, in Listings 6 and 7, we show an example of a proof that was successfully repaired. Note that
the repaired proof has many components in common with the original proof.
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theorem mathd_numbertheory_314
(r n : N) (h0 : r = 1342 % 13) (h1 : 0 < n)
(h2 : 1342|n) (h3 : n % 13 < r)
: 6710 ≤ n := by
have h_r : r = 3 := by rw [h0]
have h_main : 6710 ≤ n := by

have h4 : n % 13 < 3 := by
rw [h_r] at h3
exact h3

obtain ⟨k, rfl⟩ := h2
have h5 : 0 < k := by

by_contra h
push_neg at h
have h6 : k = 0 := by omega
simp [h6] at h1

by_contra! h6
have h7 : k ≤ 4 := by

by_contra h8
have h9 : k ≥ 5 := by omega
have h10 : 1342 * k ≥ 1342 * 5 := by
↪→ nlinarith
omega

interval_cases k <;> norm_num [Nat.mul_mod,
↪→ Nat.add_mod, Nat.mod_mod] at h4 ⊢

exact h_main

Listing 6: Original Lean Proof (Length 126)

theorem mathd_numbertheory_314 -- Wrong
(. . . statement omitted) := by
rw [h0] at h3
have : n % 13 < 3 := by omega
obtain ⟨k, rfl⟩ := h2
omega

theorem mathd_numbertheory_314 -- Correct
(. . . statement omitted) := by
have h_r : r = 3 := by

rw [h0]
<;> norm_num
<;> rfl

have h_main : 6710 ≤ n := by
have h4 : n % 13 < 3 := by

rw [h_r] at h3
exact h3

obtain ⟨k, rfl⟩ := h2
by_contra! h
have h5 : k ≤ 4 := by

omega
interval_cases k <;> norm_num [Nat.mul_mod,
↪→ Nat.add_mod, Nat.mod_mod] at h4 ⊢ <;>
(try omega) <;> (try contradiction)

exact h_main

Listing 7: Wrong Simplification and Correct
Repair (Length 93)
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F Evaluation Dataset Details

For our evaluation datasets, we use miniF2F and PutnamBench proofs sampled from
Goedel-LM/Goedel-Prover-V2-32B. For miniF2F, we sample with temperature 1 and top-p 0.95.
For PutnamBench, we use proofs provided by the team. In both cases, we take the shortest passing
proof for each problem in Mathlib 4.19.0, resulting in 194 proofs for miniF2F and 75 proofs for
PutnamBench. Table 8 and Figure 12 show summary statistics of our dataset. One sample from each
dataset is shown in Listings 8 and 9.

As a sidenote, we observe a discrepency in Goedel-Prover-V2-32B’s results with Lean versions. Upon
testing their model, we measured 90% (pass@64) and 86 (pass@184) on miniF2F and PutnamBench
with Mathlib 4.9, but only 80% (pass@64) and 75 (pass@184) with Mathlib 4.19. In this paper, we
use Mathlib 4.19 rather than 4.9, as it is more recent and likely more useful to the Lean community.

Table 8: Summary statistics of proof lengths in evaluation dataset

Dataset n Min Q1 Median Q3 Max Mean
MiniF2F 194 13 64 167 499 2980 334

PutnamBench 75 2 608 1179 2110 5420 1468
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Figure 12: Histograms of proof lengths for our miniF2F and PutnamBench evaluation sets.

theorem mathd_numbertheory_185
(n : N)
(h0 : n % 5 = 3) :
(2 * n) % 5 = 1 := by
have h1 : (2 * n) % 5 = 1 := by

have h2 : (2 * n) % 5 = (2 * (n % 5)) % 5 := by
simp [Nat.mul_mod, Nat.mod_mod]
<;> ring_nf at *
<;> omega

rw [h2]
rw [h0]
<;> norm_num
<;> rfl

exact h1

Listing 8: Example of miniF2F Eval Task (Length 65)
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theorem putnam_1993_a2
(x : N → R)
(xnonzero : ∀ n : N, x n ̸= 0)
(hx : ∀ n ≥ 1, (x n) ^ 2 - x (n - 1) * x (n + 1) = 1)
: ∃ a : R, ∀ n ≥ 1, x (n + 1) = a * x n - x (n - 1) := by

have h_main : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
intro n hn
have h1 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x (n + 2) + x n) / x (n + 1)
↪→ := by
intro n hn
have h2 : (x (n + 1)) ^ 2 - x n * x (n + 2) = 1 := by

have h3 := hx (n + 1) (by linarith)
simpa [Nat.add_assoc] using h3

have h3 : (x n) ^ 2 - x (n - 1) * x (n + 1) = 1 := hx n hn
have h4 : x (n + 2) * x n + (x n) ^ 2 - (x (n + 1)) ^ 2 - x (n - 1) * x (n + 1) = 0 := by

linarith
have h5 : (x (n + 2) + x n) * x n - (x (n + 1) + x (n - 1)) * x (n + 1) = 0 := by

ring_nf at h4 ⊢
linarith

have h6 : x n ̸= 0 := xnonzero n
have h7 : x (n + 1) ̸= 0 := xnonzero (n + 1)
have h8 : (x (n + 2) + x n) / x (n + 1) - (x (n + 1) + x (n - 1)) / x n = 0 := by

field_simp [h6, h7] at h5 ⊢
nlinarith

linarith

have h2 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
intro n hn
induction’ hn with n hn IH
·

norm_num
·

have h3 := h1 n hn
have h4 := h1 (n + 1) (by linarith)
simp [Nat.add_assoc] at h3 h4 ⊢
<;>
(try norm_num at * <;>
try linarith) <;>
(try simp_all [Nat.add_assoc]) <;>
(try ring_nf at * <;>
try linarith) <;>
(try field_simp [xnonzero] at * <;>
try nlinarith)
<;>
linarith

exact h2 n hn

have h_exists_a : ∃ (a : R), ∀ (n : N), n ≥ 1 → x (n + 1) = a * x n - x (n - 1) := by
use (x 2 + x 0) / x 1
intro n hn
have h1 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := h_main n hn
have h2 : x n ̸= 0 := xnonzero n
have h3 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by rw [h1]
have h4 : x (n + 1) + x (n - 1) = ((x 2 + x 0) / x 1) * x n := by

field_simp [h2] at h3 ⊢
<;> nlinarith

have h5 : x (n + 1) = ((x 2 + x 0) / x 1) * x n - x (n - 1) := by linarith
exact h5

exact h_exists_a

Listing 9: Example of PutnamBench Eval Task (Length 715)
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G Examples of Proofs Simplified by ProofOptimizer

In Listings 10 to 17, we show proofs successfully optimized with ProofOptimizer and iterative
shortening. Some proofs were syntactically modified to fit on the page (new lines removed, multiple
lines compressed into one).

theorem mathd_algebra_338 -- Original Proof
(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have h3 : b = a + 6 := by

have h31 : -a + b = 6 := by
have h32 : (a + 3 * b + c) - (3 * a + b +
↪→ c) = 9 - (-3) := by

linarith
linarith

linarith

have h4 : c = a + 11 := by
have h41 : -a + c = 11 := by

have h42 : (a + b + 3 * c) - (3 * a + b +
↪→ c) = 19 - (-3) := by

linarith
linarith

linarith

have h5 : a = -4 := by
have h51 : 3 * a + b + c = -3 := h0
rw [h3, h4] at h51

ring_nf at h51 ⊢
linarith

have h6 : b = 2 := by
rw [h3]
rw [h5]
<;> norm_num

have h7 : c = 7 := by
rw [h4]
rw [h5]
<;> norm_num

have h8 : a * b * c = -56 := by
rw [h5, h6, h7]
<;> norm_num

exact h8

Listing 10: Original Proof (Length 214)

theorem mathd_algebra_338
(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have : a = -4 := by linarith
subst_vars
nlinarith

Listing 11: Simplified Proof (Length 11)
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theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
have h1 : ∀ n : N, (a (n + 10) : Z) ≡ - (a n : Z) [ZMOD 181] := by

intro n
induction’ n using Nat.strong_induction_on with n ih
rcases n with (_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | n) <;>

simp_all [Int.ModEq, abase, arec] <;> omega
have h2 : (a 5 : Z) ≡ 0 [ZMOD 181] := by norm_num [Int.ModEq, abase, arec]
have h3 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by

have h4 : ∀ k : N, (a (10 * k + 5) : Z) ≡ 0 [ZMOD 181] := by
intro k
induction’ k with k ih
· norm_num [Int.ModEq] at h2 ⊢

<;> simpa [abase, arec] using h2
· have h5 := h1 (10 * k + 5)

have h6 := h1 (10 * k + 6)
have h7 := h1 (10 * k + 7)
have h8 := h1 (10 * k + 8)
have h9 := h1 (10 * k + 9)
have h10 := h1 (10 * k + 10)
norm_num [Int.ModEq] at h5 h6 h7 h8 h9 h10 ih ⊢
<;> ring_nf at * <;> omega

have h5 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by
have h6 : (a (10 * 201 + 5) : Z) ≡ 0 [ZMOD 181] := h4 201
norm_num at h6 ⊢
<;> simpa [add_assoc] using h6

exact h5
exact Int.dvd_of_emod_eq_zero h3

Listing 12: Original Proof (Length 324)

theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
rw [show 2015 = 10 * 202 - 5 by norm_num]
have h1 : ∀ n : N, a (10 * n + 5) ≡ 0 [ZMOD 181] := by

intro n
induction’ n with k ih
· norm_num [abase, arec, Int.ModEq]
· rw [Nat.mul_succ]

simp_all [Int.ModEq, arec]
omega

have h2 := h1 201
exact Int.dvd_of_emod_eq_zero h2

Listing 13: Simplified Proof (Length 82)
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theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))^2 ̸= 0)
(h2 : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· set s := Real.sqrt (1 + 2 * x) with hs

have h51 : 0 ≤ 1 + 2 * x := h0
have h52 : s ≥ 0 := Real.sqrt_nonneg _
have h53 : s ^ 2 = 1 + 2 * x := by

rw [hs]
rw [Real.sq_sqrt] <;> linarith

have h54 : (1 - s) ^ 2 ̸= 0 := by simpa [hs] using h1
have h55 : s ̸= 1 := by

intro h
have h551 : (1 - s) ^ 2 = 0 := by

rw [h]
norm_num

contradiction
have h56 : (s + 1) ^ 2 * (s - 1) ^ 2 = (s ^ 2 - 1) ^ 2 := by

ring
have h57 : (s ^ 2 - 1 : R) ^ 2 = 4 * x ^ 2 := by

rw [h53]
ring

have h58 : (4 : R) * x ^ 2 / (s - 1) ^ 2 = (s + 1) ^ 2 := by
have h581 : (s - 1 : R) ^ 2 ̸= 0 := by

intro h
have h582 : (1 - s : R) ^ 2 = 0 := by

calc
(1 - s : R) ^ 2 = (s - 1 : R) ^ 2 := by ring
_ = 0 := by rw [h]

contradiction
field_simp [h581] at h57 ⊢
nlinarith

have h59 : (4 : R) * x ^ 2 / (1 - s) ^ 2 = (s + 1) ^ 2 := by
rw [← h58]
ring

nlinarith [sq_nonneg (s - 1)]

Listing 14: Original Proof (Length 330)

theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))^2 ̸= 0)
(h2 : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· have h57 : (4 : R) * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 = (1 + Real.sqrt (1 + 2 * x)) ^ 2

↪→ := by
have h58 : (1 - Real.sqrt (1 + 2 * x)) ^ 2 ̸= 0 := by assumption
field_simp [h58]
nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption)]

nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption),
Real.sqrt_nonneg (1 + 2 * x)]

Listing 15: Simplified Proof (Length 125)
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theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z) ).1 + ((fun n : N => (n)!, fun n : N => 2

↪→ ^ n) : (N → Z) × (N → Z) ).2 :=
by
have h_main : ∀ (n : N), T n = (n ! : Z) + 2 ^ n := by

intro n
have h1 : T n = (n ! : Z) + 2 ^ n := by

have h2 : ∀ n : N, T n = (n ! : Z) + 2 ^ n := by
intro n
induction n using Nat.strong_induction_on with
| h n ih =>

match n with
| 0 =>

norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 1 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 2 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| n + 3 =>
have h3 := hTn n
have h4 := ih n (by omega)
have h5 := ih (n + 1) (by omega)
have h6 := ih (n + 2) (by omega)
simp [h4, h5, h6, pow_add, pow_one, Nat.factorial_succ, Nat.mul_add, Nat.add_mul] at h3 ⊢
<;>
ring_nf at h3 ⊢ <;>
norm_cast at h3 ⊢ <;>
simp_all [Nat.factorial_succ, pow_add, pow_one, mul_assoc]
<;>
ring_nf at * <;>
norm_num at * <;>
nlinarith

exact h2 n
exact h1

have h_final : T = ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z) ).1 + ((fun n : N => (n)!,
↪→ fun n : N => 2 ^ n) : (N → Z) × (N → Z) ).2 := by

funext n
have h1 : T n = (n ! : Z) + 2 ^ n := h_main n
simp [h1, Pi.add_apply]
<;> norm_cast <;> simp [Nat.cast_add] <;> ring_nf

apply h_final

theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z)).1 + ((fun n : N => (n)!, fun n : N => 2

↪→ ^ n) : (N → Z) × (N → Z)).2 := by
ext n
induction’ n using Nat.strong_induction_on with n ih
match n with
| 0 => simp_all
| 1 => simp_all
| 2 => simp_all
| n + 3 =>

simp_all [Nat.factorial_succ]
ring_nf

Listing 16: Original Proof (Length 320) and Simplified Proof (Length 34)
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theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by

have h_main : (
∫

x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi := by
have h1 : (

∫
x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (

∫
x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R)

↪→ - 4 / (1 + x^2)) := by
have h11 : ∀ (x : R), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) - 4 / (1 + x^2) :=
↪→ by
intro x
have h12 : (1 + x^2 : R) ̸= 0 := by nlinarith
have h13 : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) * (1 + x^2) - 4 := by

ring_nf <;> nlinarith [sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)]
have h14 : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) * (1 + x^2) - 4) / (1 + x

↪→ ^2) := by
rw [h13]

rw [h14]
field_simp [h12] <;> ring_nf <;> field_simp [h12] <;> ring_nf

congr
ext x
rw [h11 x]

rw [h1]
have h2 : (

∫
x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) - 4 / (1 + x^2)) = (

∫
x in (0)..1, (x^6 - 4*x

↪→ ^5 + 5*x^4 - 4*x^2 + 4 : R)) - (
∫

x in (0)..1, (4 : R) / (1 + x^2)) := by
apply intervalIntegral.integral_sub
· apply Continuous.intervalIntegrable

continuity
· apply Continuous.intervalIntegrable

have h3 : Continuous (fun x : R => (4 : R) / (1 + x ^ 2)) := by
apply Continuous.div
· exact continuous_const
· exact Continuous.add continuous_const (continuous_pow 2)
· intro x

have h4 : (1 + x ^ 2 : R) ̸= 0 := by nlinarith
exact h4

exact h3
rw [h2]
have h3 : (

∫
x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R)) = (22 / 7 : R) := by

norm_num [integral_id, mul_comm] <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]
have h4 : (

∫
x in (0)..1, (4 : R) / (1 + x^2)) = Real.pi := by

have h41 : (
∫

x in (0)..1, (4 : R) / (1 + x ^ 2)) = 4 * (
∫

x in (0)..1, (1 : R) / (1 + x ^ 2)) := by
have h42 : (

∫
x in (0)..1, (4 : R) / (1 + x ^ 2)) = (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ^ 2)) := by

congr
ext x <;> ring_nf

rw [h42]
have h43 : (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ^ 2)) = 4 * (

∫
x in (0)..1, (1 : R) / (1 + x ^ 2)) := by

simp [intervalIntegral.integral_comp_mul_left (fun x => (1 : R) / (1 + x ^ 2))] <;>
norm_num <;> field_simp <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]

rw [h43]
rw [h41]
have h44 : (

∫
x in (0)..1, (1 : R) / (1 + x ^ 2)) = Real.pi / 4 := by

have h45 : (
∫

x in (0)..1, (1 : R) / (1 + x ^ 2)) = Real.arctan 1 - Real.arctan 0 := by
rw [integral_one_div_one_add_sq] <;> norm_num

rw [h45]
have h46 : Real.arctan 1 = Real.pi / 4 := by

norm_num [Real.arctan_one]
have h47 : Real.arctan 0 = 0 := by

norm_num [Real.arctan_zero]
rw [h46, h47] <;> ring_nf <;> norm_num

rw [h44] <;> ring_nf <;> norm_num
rw [h3, h4] <;> ring_nf <;> norm_num

have h_final : 22/7 - Real.pi =
∫

x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by
rw [h_main] <;> linarith [Real.pi_pos]

exact h_final

theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by

simp_rw [show ∀ x : R, x ^ 4 * (1 - x) ^ 4 / (1 + x ^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x
↪→ ^2)) by

intro x
field_simp
ring]

ring_nf
norm_num
<;> linarith [Real.pi_pos]

Listing 17: Original Proof (Length 1097) and Simplified Proof (Length 76)
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H Examples of Proof Speedup and Slowdown after Simplification

We analyze two examples of proof speedup and slowdown. In Listing 18, we observe that the original
proof uses an extraneous amount of tactics within nlinarith in order to prove the main conjecture.
By removing a majority of these, the simplified proof achieves a 4.7x speedup. In Listing 19, we
observe a more extreme case, where the original proof is significantly overcomplicated and can be
reduced to one omega invocation. Goedel-Prover-V2-32B never found this single-tactic proof
(with 64 samples) and instead produces proofs with many unnecessary subgoals, leading to a proof
with slow execution time.

In several occurrences, we observe that simplified proofs can be significantly slower than the original
proof. This is usually because the simplified proof is notationally shorter, but uses a slower approach
to complete the proof. For example, in Listing 20, ProofOptimizer finds a shorter proof, but the proof
is reliant on simp_all, Finset.sum_range_succ, and linarith, which expand the goal into large
proof terms that are time-consuming, causing the new proof to be over 10× slower. Another example
is shown in Listing 21. Here, the original proof first iterates over all m ≤ 71 with interval_cases
m, tries to simplify using omega, and then iterates over all n ≤ 71 with interval_cases n.
ProofOptimizer, however, removes the try omega, directly doing an exhaustive search over (m,n).
The try omega statement in the original proof made it much faster, removing 69 of the 71 goals,
whereas the simplified proof had to iterate through n for these goals.

theorem imo_1983_p6 -- Original Proof, Time: 5.57s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by
have h_main : 0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by

nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),
mul_nonneg h0.1.le h0.2.1.le, mul_nonneg h0.2.1.le h0.2.2.le, mul_nonneg h0.2.2.le h0.1.le,
mul_nonneg (sq_nonneg (a - b)) h0.2.2.le, mul_nonneg (sq_nonneg (b - c)) h0.1.le,
mul_nonneg (sq_nonneg (c - a)) h0.2.1.le, mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0.2.2,
mul_pos h0.2.2 h0.1, mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2),
mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1),
sq_nonneg (a + b - 2 * c), sq_nonneg (b + c - 2 * a), sq_nonneg (c + a - 2 * b)]

exact h_main

theorem imo_1983_p6 -- Simplified Proof, Time: 1.20s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by
nlinarith [mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2), mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3),

↪→ mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1), sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg
↪→ (c - a)]

Listing 18: Example of Speedup after Simplification (orig: 5.6s, new: 1.2s)
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theorem mathd_numbertheory_765 -- Original Proof, Time: 2.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
have h_main : x ≤ -449 := by

by_contra! h
have h2 : -448 ≤ x := by linarith
have h3 : x < 0 := h0
have h4 : (24 * x) % 1199 = 15 := h1
have h5 : x ≥ -448 := by linarith
have h6 : x ≤ -1 := by

omega
-- We will check all possible values of x from -448 to -1 and show that none satisfy (24 * x) %
↪→ 1199 = 15

have h7 : False := by
-- Use the fact that x is between -448 and -1 to check each possible value
have h8 : x ≥ -448 := by linarith
have h9 : x ≤ -1 := by omega
-- Use interval_cases to check each possible value of x
interval_cases x <;> norm_num [Int.mul_emod, Int.add_emod] at h4 ⊢ <;> omega

exact h7
exact h_main

theorem mathd_numbertheory_765 -- Simplified Proof, Time: 0.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
omega

Listing 19: Example of Speedup after Simplification (orig: 2.5s, new: 0.5s)
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theorem aime_1984_p1 -- Original Proof, Time: 0.91s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
have h2 : ∀ (n : N), u n = u 0 + n := by

(. . . 14 lines omitted)

have h3 : 98 * u 0 + 4851 = 137 := by
have h4 : Σ k in Finset.range 98, u (k.succ) = 137 := h1
have h5 : Σ k in Finset.range 98, u (k.succ) = Σ k in Finset.range 98, (u 0 + (k.succ : Q))
↪→ := by
apply Finset.sum_congr rfl
intro k _
rw [h2 (k.succ)]
<;> simp [Nat.cast_add, Nat.cast_one]
<;> ring_nf
<;> norm_num

rw [h5] at h4
have h6 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = 98 * u 0 + 4851 := by

have h7 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = Σ k in Finset.range 98, (u 0 : Q)
↪→ + Σ k in Finset.range 98, (k.succ : Q) := by

rw [Finset.sum_add_distrib]
rw [h7]
have h8 : Σ k in Finset.range 98, (u 0 : Q) = 98 * u 0 := by

simp [Finset.sum_const, Finset.card_range]
<;> ring_nf

rw [h8]
have h9 : Σ k in Finset.range 98, (k.succ : Q) = 4851 := by

norm_num [Finset.sum_range_succ, Finset.sum_range_succ, Finset.sum_range_succ]
<;>
rfl

rw [h9]
<;> ring_nf

rw [h6] at h4
norm_num at h4 ⊢
<;> linarith

have h4 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 49 * u 0 + 2450 := by
-- (. . . 25 lines omitted)

have h5 : 49 * u 0 = -2357 := by
-- (. . . 6 lines omitted)

have h6 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
-- (. . . 4 lines omitted)
linarith

exact h6

theorem aime_1984_p1 -- Simplified Proof, Time: 10.84s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
simp_all [Finset.sum_range_succ]
linarith

Listing 20: Example of Slowdown after Simplification (orig: 0.9s, new: 10.8s)
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theorem mathd_numbertheory_711 -- Original Proof, 4.87s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have h_product : m * n = 896 := by

-- (. . . 5 lines omitted)
have h_main : 72 ≤ m + n := by

have h3 : 0 < m := h0.1
have h4 : 0 < n := h0.2
have h5 : m * n = 896 := h_product
have h6 : Nat.gcd m n = 8 := h1
have h7 : Nat.lcm m n = 112 := h2
have h8 : m + n ≥ 72 := by

by_contra! h
-- (. . . 4 lines omitted)
have h11 : m ≤ 71 := by nlinarith
have h12 : n ≤ 71 := by nlinarith
interval_cases m <;> norm_num at h5 ⊢ <;>

(try omega) <;>
(try {

interval_cases n <;> norm_num at h5 h6 h7 ⊢ <;>
-- (. . . 5 lines omitted)

}) <;>
-- (. . . 5 lines omitted)

exact h8
exact h_main

theorem mathd_numbertheory_711 -- Simplified Proof, 74.63s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have : m * n = 896 := by

rw [← Nat.gcd_mul_lcm m n]
simp_all

by_contra!
have : m ≤ 71 := by nlinarith
have : n ≤ 71 := by nlinarith
interval_cases m <;> interval_cases n <;> simp_all

Listing 21: Example of Slowdown after Simplification (orig: 4.9s, new: 74.6s)

32



I Derivation of Closed Form for min@k and max@k

In this section, we derive the closed form expression we use for estimating max@k from n samples
based off the classic pass@k metric:

max@k =
1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi.

Let X be a real random variable, X1, . . . , Xk independent realizations of X and X(k) = maxi≤k Xi

their maximum. We would like to give an estimator for E[X(k)] given n ≥ k independent samples
x1 ≤ . . . ≤ xn of X sorted by size.

Consider the estimator M = 1

(nk)

∑
i≤n

(
i−1
k−1

)
xi, with the idea being that there exist

(
n
k

)
ways to

choose k out of the n samples overall, out of which
(
i−1
k−1

)
select the i-th and then k−1 with a smaller

index.

We compute

Exi

 1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi

 = Exi

 1(
n
k

) ∑
I⊆{1,...,n},|I|=k

xmax I


=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi
[xmax I ]

=
1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi

[
max
j∈I

xj

]
=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

E
[
X(k)

]
= E

[
X(k)

]
by the counting argument explained above, linearity of expectation, ordering of the xi and indepen-
dence.

Note that this is a generalization of the pass@k metric, which covers the case of Bernoulli distributed
X (7).

We recommend using a numerically stable implementation that computes the ratio (i−1
k−1)
(nk)

by canceling

a (k − 1)! factor and pairing up numerator and denominator factors.

Moreover, the min@k estimator can be obtained as min@k(x1, . . . , xn) =
−max@k(−x1, . . . ,−xn).
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J Hyperparameters

In this section, we detail the hyperparameters we use throughout our various training and inference
experiments. Prompts can be found in the next section, Appendix K.

Iterative Training: For each round of SFT, we use an effective batch size of 64 (2 nodes, 8 H100/node,
4 gradient accumulation steps) and learning rate 1e-5. We use a cosine scheduler with minimum
learning rate 1e-8 and 100 steps of warm-up starting from 1e-30. For inference, we use τ = 1.0 and
top-p 0.95.

Reinforcement learning: Our setup is asynchronous online reinforcement learning with 16 trainer
and 16 worker GPUs, and 16 environment copies per worker GPU. We use a global training batch size
of 32 (local batch size 2 per trainer), a constant learning rate of 6e-8 following a linear warmup over
200 steps, a GRPO group size of 8, mean normalization but no variance normalziation, no KL penalty
and model updates sent to workers every 100 steps. Workers use For inference, we use τ = 1.0 and
top-p 1.0, and evaluations use τ = 1.0 and top-p 0.95.

For test-time reinforcement learning we use the same settings but halve the number of trainers and
workers.

Execution Feedback and Goedel-Prover for Repair (Sec. E.1): We use temperature τ = 0.2 and
top-p 0.95 with a maximum prompt length of 8192 and a maximum generation length of 32768.

Iterative Shortening (Sec. 4.2): For iterations 1 through 6, we use temperature τ = 1.0 and top-p
0.95. We increase the temperature to τ = 1.2 for iteration 7, and to τ = 1.5 for iteration 8. We find
that the higher temperatures in later iterations are helpful for increasing diversity with 1024 samples.

Lean Base Model (Sec. A.1): We use an effective batch size of 512 (2 nodes, 8 H100/node, 32
gradient accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30.
We train with a maximum sequence length of 8192 for 2000 steps.

Proof Sketching (Sec. A.2): We use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient
accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train
with a maximum sequence length of 8192 for 50 steps. Evaluation is done with temperature τ = 0.8
and top-p 0.95.

Comparison with Leading Models (Sec. D): For our model and Qwen2.5-32B, we use τ = 1.0 and
top-p 0.95. For GPT-4o and Gemini-2.5-Pro, we use the default settings with τ = 1.0.
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K Prompts

K.1 Proof Simplification Prompt

You are given a correct Lean 4 proof of a mathematical theorem.
Your goal is to simplify and clean up the proof, making it shorter and more readable while ensuring it is

↪→ still correct.

Here is the original proof:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your simplified proof. Do NOT modify the theorem or header, and surround your proof in ‘‘‘
↪→ lean4 and ‘‘‘ tags.

Listing 22: Zero-shot Proof Sketching Prompt

K.2 Proof Sketching Prompts

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the
↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for clarity.

↪→ Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton would

↪→ compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your Lean 4 proof sketch. Do NOT modify the theorem or header, and surround your proof sketch
↪→ in ‘‘‘lean4 and ‘‘‘ tags.

Listing 23: Zero-shot Proof Sketching Prompt

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the
↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for clarity.

↪→ Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton would

↪→ compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Here is an example:

Problem:
Prove that if p, q are primes such that q is divisible by p, then p must be equal to q.

Solution:
Since q is prime, it only has 2 divisors: 1 and itself. Therefore, since p divides q, either $p=1$ or $p=

↪→ q$. Because $p$ is a prime, $p \ne 1$, so $p=q$.

Lean 4 Statement:
‘‘‘lean4
import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by sorry
‘‘‘

Lean 4 Proof Sketch:
‘‘‘lean4
import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by
-- Lemma 1: Since q is prime, it only has 2 divisors: 1 and itself.
have lemma1 : p = 1 ∨ p = q := by
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sorry

-- Lemma 2: Since p is prime, p ̸= 1.
have lemma2 : p ̸= 1 := by

sorry

-- Now, do case analysis on lemma1 to conclude p = q.
cases lemma1 with
| inl h_left =>

contradiction
| inr h_right =>

exact h_right
‘‘‘

Now, it is your turn to provide your Lean 4 proof sketch for a new problem. Do NOT modify the theorem or
↪→ header, and surround your proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Lean 4 Proof Sketch

Listing 24: One-shot Proof Sketching Prompt

K.3 Goedel-Prover Repair Prompt

In Listing 25, use a modified version of Goedel-Prover’s repair prompt found in their codebase. The
main difference is that because we do not have proofs annotated with CoT’s, our lean_proof only
contains a proof.

Complete the following Lean 4 code:

‘‘‘lean4
{formal_statement}‘‘‘

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan
↪→ outlining the main proof steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the
↪→ construction of the final formal proof.

Here is the proof:
‘‘‘lean4
{lean_proof}‘‘‘

The proof (Round 1) is not correct. Following is the compilation error message, where we use <error></
↪→ error> to signal the position of the error.

{error_message_for_prev_round}

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed analysis of the
↪→ error message.

Listing 25: Goedel-Prover Repair Prompt
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