
ProofOptimizer: Training Language Models to Simplify Proofs without Human Demonstrations

Alex Gu
Meta FAIR & MIT CSAIL
gua@mit.edu

Bartosz Piotrowski
Meta FAIR
bpio@meta.com

Fabian Gloeckle
Meta FAIR & École des Ponts Paris
fgloeckle@meta.com

Kaiyuy Yang
Meta FAIR
kaiyuy@meta.com

Aram H. Markosyan
Meta FAIR
aram.math@gmail.com

Abstract

Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-medalist capabilities and producing formal proofs that span thousands of lines. Although such proofs are mechanically verified by formal systems like Lean, their excessive length renders them difficult for humans to comprehend and limits their usefulness for mathematical insight. Proof simplification is therefore a critical bottleneck. Yet, training data for this task is scarce, and existing methods—mainly agentic scaffolding with off-the-shelf LLMs—struggle with the extremely long proofs generated by RL-trained provers. We introduce *ProofOptimizer*, the first language model trained to simplify Lean proofs without requiring additional human supervision. ProofOptimizer is trained via expert iteration and reinforcement learning, using Lean to verify simplifications and provide training signal. At inference time, it operates within an iterative proof-shortening workflow, progressively reducing proof length. Experiments show that ProofOptimizer substantially compresses proofs generated by state-of-the-art RL-trained provers on standard benchmarks, reducing proof length by 87% on miniF2F, 57% on PutnamBench, and 49% on Seed-Prover’s IMO 2025 proofs.

1 Introduction

Theorem proving in formal environments such as Lean (9) offers a powerful testbed for training large language models (LLMs) in mathematical reasoning via reinforcement learning (RL). Lean mechanically verifies proofs and filters hallucinations, giving reliable reward signals. RL-finetuned provers have reached near gold-medal IMO performance (6) and excelled on benchmarks like PutnamBench (17). These provers produce correct but excessively long and inscrutable proofs, as optimizing only for correctness leads to convoluted and redundant output, such as in [Lean proof of IMO 2025 P1](#) is 4,357 lines, which is 16x longer than its [informal counterpart](#).

We address this with *proof simplification*: transforming formal proofs into simpler forms while preserving correctness. We focus on proof length (Lean token count), but our approach extends to any computable metric (14). Prior methods (2) scaffold around API-only LLMs like GPT-4o and work on human proofs but fail on long RL-generated proofs.

We introduce *ProofOptimizer*, an LLM-based system to shorten Lean proofs. It combines (i) a symbolic Lean linter to strip obvious redundancies, (ii) a 7B-parameter model finetuned for proof simplification, and (iii) an iterative inference algorithm that repeatedly applies the model to the

shortest proof. Expert iteration and RL training use verified simplifications, enabling continual improvement without human labels. On proofs from Goedel-Prover-V2 (MiniF2F, PutnamBench) and Seed-Prover (IMO 2025), ProofOptimizer achieves large reductions: 63% average on MiniF2F and 26% on PutnamBench in one shot, 72% with test-time RL, and up to 87%/57% after iterative shortening, halving three of four IMO 2025 proofs.

Before ProofOptimizer	After ProofOptimizer
<pre> theorem putnam_1097_a1 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by simp_rw [show ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^ 2) =] (x ^ 6 - 4 * x ^ 5 + 5 * x ^ 4 - 4 * x ^ 2 + 4) / (1 + x ^ 2) by intro x field_simp ring] ring_nf norm_num < ;> linarith [Real.pi_pos] exact h1 </pre>	<pre> theorem putnam_1968_a1 : 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by simp_rw [show ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^ 2) =] (x ^ 6 - 4 * x ^ 5 + 5 * x ^ 4 - 4 * x ^ 2 + 4) / (1 + x ^ 2) by intro x field_simp ring] ring_nf norm_num < ;> linarith [Real.pi_pos] </pre>

Figure 1: ProofOptimizer reduces a proof of a Putnam problem from 1097 to 76 tokens.

2 Proof Simplification: Task and Metrics

Task Definition We formalize the proof simplification task as minimizing the complexity of a given proof. Specifically, for a valid formal statement s with proof p , the goal is to produce an alternative proof p^* of s that minimizes a complexity measure \mathcal{L} :

$$p^* = \arg \min_{x \text{ proves } s} \mathcal{L}(x)$$

Our method is agnostic to the choice of complexity measure \mathcal{L} , provided that it is deterministic and can be automatically computed from the proof. This flexibility encompasses the metrics used in prior work (2). In the rest of this paper, we adopt proof length as the measure of complexity, defined as the number of tokens produced by a Lean-specific tokenizer. Our proof length measure correlates with character count but does not penalize long identifier names, and it ignores comments and line breaks. We denote the length of a proof x by $|x|$, i.e., $\mathcal{L}(x) = |x|$.

Evaluation Metrics Given an original proof p and k candidate simplifications generated by the model, p'_1, p'_2, \dots, p'_k , we define $l_i = \min(|p|, |p'_i|)$ if p'_i is a valid proof and $l_i = |p|$ otherwise. (Intuitively, an invalid attempt reverts to the original proof length). We evaluate proof simplification using two metrics:

- $\text{min}@k \triangleq \min_i \{l_i\}$ denotes the minimum shortened proof length (lower is better).
- $\text{red}@k \triangleq \max_i \left\{ \frac{|p| - l_i}{|p|} \right\} = 1 - \frac{\text{min}@k}{|p|}$ denotes the maximum relative proof length reduction from the original proof (higher is better).

Note that these metrics may not always be correlated: a method that only excels at shortening long proofs has a lower min@k and red@k than one that only excels at shortening short proofs. As with the pass@k metric (7), we report our metrics via an unbiased estimator using $n > k$ samples (see Appendix I). We average min@k and red@k across samples in a dataset to get overall length and reduction metrics.

3 ProofOptimizer: LLMs for Proof Simplification

3.1 Training

ProofOptimizer-ExpIt: Expert Iteration: We leverage a STaR-like (31) iterative training algorithm to improve our model. We start with our base model π_0 and a collection of 145K proofs P_0 . At each iteration, we attempt to simplify each proof, train our model on successful proof simplifications, and use the collection of simplified proofs as seed proofs for the next iteration.

More precisely, we have a 3-stage process. In the **sample** phase, for each proof $x \in P_i$, sample 4 simplifications $Y_p \triangleq \{y_x^1, y_x^2, y_x^3, y_x^4\} \sim \pi_i(x)$. Then, in the **filter** phase, we use the Lean compiler to find the shortest correct simplification $y_x \in \{x\} \cup Y_x$. Create a training dataset of proof simplifications

$D_i = \{(x, y_x) \mid \text{len}(y_x) \leq 0.8 \cdot \text{len}(x), x \in P_i\}$. The length constraint is designed to encourage the model to learn more substantial simplifications rather than trivial ones. For iterations after the first, as x may have been simplified from a more complex proof $x' \in P_0$, we also add (x', y_x) pairs to D_i , which are valid and larger proof simplifications. Also, collect simplified proofs $\pi_{i+1} = \{s_x \mid x \in P_i\}$ for the next iteration. Finally, in the **train** stage, we fine-tune π_i on D_i to get π_{i+1} .

ProofOptimizer-RL: Online Reinforcement Learning: We also train a proof optimizer model with online RL. Using the same dataset as in expert iteration, the RL task consists of producing a valid but shorter proof y for a statement given an initial proof x . The reward is the relative shortening $R(x, y) = \frac{|y| - |x|}{|x|}$ if y is valid and $|y| \leq |x|$, and $R(x, y) = 0$ otherwise. We employ asynchronous GRPO (21) with advantage $A_i = R_i - \frac{1}{k} \sum_{j \leq k} R_j$.

3.2 Inference-Time Techniques

First, we implement a symbolic linter that removes extraneous tactics via Lean’s `linter.unusedTactic` linter, which detects tactics that do not change the proof state and provides messages like ‘`norm_num`’ tactic does nothing. We compare two techniques. In **test-time RL**, we use the setup from training and perform RL on our two evaluation sets (jointly). Our test-time RL keeps the input proof fixed, meaning improvements occur solely in the model’s parameters. In **iterative proof shortening**, we first sample k candidate shortenings and take the shortest correct one. Then, we sample k shortenings of the new proof, take the shortest correct one – and so on.

4 Experiments

For all evaluations, we use proofs generated by Goedel-Prover-V2 (16) on two popular datasets in formal math, miniF2F (32) and PutnamBench (23). For miniF2F, we use $n = 194$ proofs (average length 334), and for PutnamBench, we use $n = 75$ proofs (average length 1468). More details and examples of proofs in our evaluation set can be found in Appendix F.

4.1 Expert Iteration vs. RL vs. Test-Time RL

First, we compare our two training schemes: expert iteration and RL. Starting from our Lean base model, we train *ProofOptimizer-ExpIt* by performing three rounds of expert iteration and *ProofOptimizer-RL* by performing online RL after two rounds of expert iteration. The table below shows min@k and red@k scores with respect to linted proofs. We observe steady improvements during each round of expert iteration for both @1 and @32 metrics. **Our final model outperforms Gemini-2.5-Pro**, a strong reasoning model, even with proof states like Chain-of-States in ImProver (2).

Next, we see that **ProofOptimizer-RL significantly improves single sample (@1) metrics at the expense of diversity collapse**, an issue commonly identified during RL training (11, 25, 30). In Fig. 2 (a, b), we show the evolution of red@1 during training, observing that miniF2F reduction steadily rises while PutnamBench reduction experiences oscillations. This tension is likely because the distribution of training data is more similar in length to miniF2F than PutnamBench, which has a mean proof length of 4x that of the training set.

Finally, we find that test-time RL leads to even further improvements on min@1 and red@1. This is expected, as the model is able to directly tune its weights to learn from successful simplifications at test-time. However, like ProofOptimizer-RL, we observe an even smaller gap between @1 and @32 metrics. In Fig. 2 (c, d), we observe a much more stable evaluation red@1 curve because the distribution gap between the training and evaluation sets is eliminated.

Data	Type	Model	Min@1↓	Min@32↓	Red@1↑	Red@32↑
<i>Linter</i>			<i>302</i>		0.0%	
mini F2F	Gemini	Gemini-2.5-Pro	280	207	24.3%	57.2%
		Gemini-2.5-Pro (States)	283	207	26.4%	58.7%
		Base (7B)	283	202	17.6%	56.2%
	ExpIt	Base + It 1	266	178	33.4%	67.0%
		Base + It 2	251	166	45.1%	70.6%
		<i>ProofOptimizer-ExpIt</i>	241	153	49.0%	72.3%
	RL	<i>ProofOptimizer-RL</i>	190	152	63.6%	70.9%
		It 2 + Test-Time RL	160	154	72.5%	73.4%
	<i>Linter</i>			<i>1359</i>		0.0%
Putnam Bench	Gemini	Gemini-2.5-Pro	1348	1303	5.5%	18.0%
		Gemini-2.5-Pro (States)	1371	1319	6.1%	19.2%
		Base (7B)	1341	1222	3.9%	20.5%
	ExpIt	Base + It 1	1341	1215	5.2%	22.5%
		Base + It 2	1335	1186	6.9%	24.7%
		<i>ProofOptimizer-ExpIt</i>	1328	1161	8.2%	26.3%
	RL	<i>ProofOptimizer-RL</i>	1303	1258	14.9%	21.1%
		It 2 + Test-Time RL	1260	1255	23.8%	24.2%

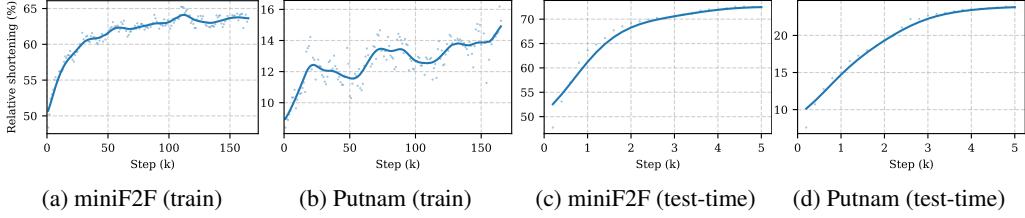


Figure 2: Proof reduction (red@1) during RL training (a, b) and test-time RL (c, d).

4.2 Iterative Proof Shortening

In Fig. 3, we show the results of iterative proof shortening on miniF2F and PutnamBench proofs using *ProofOptimizer-ExpIt*. First, we do 64 samples per iteration for 6 iterations, observing steady improvement at each iteration. To demonstrate the potential of further scaling, we do 1024 samples at iterations 7 and 8 and see significant improvement (see Appendix C.2 for analysis on sample size). **Overall, ProofOptimizer combined with iterative proof shortening is very effective on miniF2F and PutnamBench, as average proof length is reduced from 334 → 75 and 1468 → 811, for an average per-proof reduction of 87.9%/57.2%.**

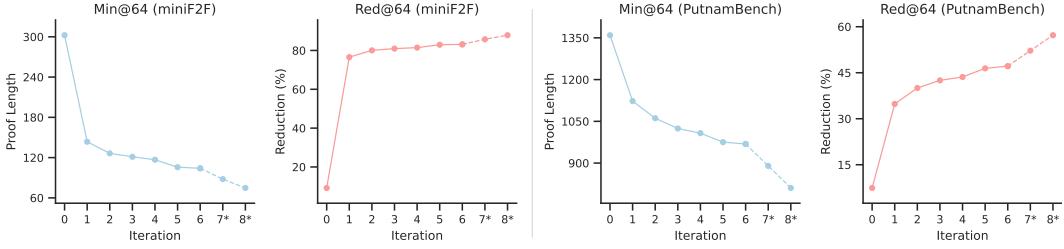


Figure 3: Iterative Shortening: per-iteration improvement

Finally, we demonstrate the effectiveness of ProofOptimizer on an out-of-distribution dataset, Seed-Prover’s **four IMO 2025 proofs**. With an order of magnitude higher sampling budget, we achieve a significant reduction in the proof length for all four problems, showcasing the potential of our model and technique. Details about our full setup are in Appendix C.3.

	P1	P3	P4	P5
Original Proof Length	36478	16377	29147	8658
Simplified Proof Length	20506	7907	14531	4002
Length Reduction	43.8%	51.7%	50.1%	53.8%

5 Related Works

Classically, there have been many symbolic methods targeting shortening proofs in SAT and first-order logic languages (20, 24, 26, 12, 14). On the neural side, GPT-f (19) generated 23 verified proofs shorter than those in the Metamath library. Most related to our work, ImProver (2), is an inference-time method for proof shortening using GPT-4o with proof states and retrieval. In contrast, we use training-time approaches (expert iteration and RL), analyze complementary inference-time techniques, and focus on shortening longer proofs generated by SoTA LLMs.

6 Conclusion

We present ProofOptimizer, the first language model trained to simplify Lean proofs. Unlike prior work that wraps existing LLMs around agentic scaffolding, we train a model using expert iteration and RL, coupled with a symbolic linter and iterative proof shortening at inference time. Although simple, our approach already yields nontrivial results, reducing proof length by an average of 87% on MinF2F, 57% on PutnamBench, and over 50% on Seed-Prover’s IMO 2025 proofs. As AI becomes more tightly integrated with mathematics, we envision a future where AI-generated proofs are not only correct but also concise and readable, with simplification serving as a critical bridge between rigorous formal proofs and human intuitive understanding.

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023. (Cited on pg. 17)
- [2] Riyaz Ahuja, Jeremy Avigad, Prasad Tetali, and Sean Welleck. Improver: Agent-based automated proof optimization. *arXiv preprint arXiv:2410.04753*, 2024. (Cited on pg. 1, 2, 3, 5)
- [3] Leni Aniva, Chuyue Sun, Brando Miranda, Clark Barrett, and Sanmi Koyejo. Pantograph: A machine-to-machine interaction interface for advanced theorem proving, high level reasoning, and data extraction in lean 4. In *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, pp. 104–123. Springer, 2025. (Cited on pg. 9)
- [4] Hugh Leather Aram H. Markosyan, Gabriel Synnaeve. Leanuniverse: A library for consistent and scalable lean4 dataset management. <https://github.com/facebookresearch/LeanUniverse>, 2024. (Cited on pg. 9)
- [5] Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics. *arXiv preprint arXiv:2302.12433*, 2023. (Cited on pg. 9)
- [6] Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL <https://arxiv.org/abs/2507.23726>, 2025. (Cited on pg. 1, 16)
- [7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>. (Cited on pg. 2, 33)
- [8] Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025. (Cited on pg. 17)
- [9] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp (eds.), *Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings*, volume 9195 of *Lecture Notes in Computer Science*, pp. 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6_26. URL https://doi.org/10.1007/978-3-319-21401-6_26. (Cited on pg. 1)
- [10] Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and proving. *arXiv preprint arXiv:2502.00212*, 2025. (Cited on pg. 9)
- [11] Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carboneaux, Taco Cohen, and Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning. *arXiv preprint arXiv:2410.02089*, 2024. (Cited on pg. 3)
- [12] Vladimir Gladshtain, George Pîrlea, and Ilya Sergey. Small scale reflection for the working lean user. *arXiv preprint arXiv:2403.12733*, 2024. (Cited on pg. 5)
- [13] Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix, Yuhuai Wu, and Guillaume Lamplé. Draft, sketch, and prove: Guiding formal theorem provers with informal proofs. *arXiv preprint arXiv:2210.12283*, 2022. (Cited on pg. 9)

[14] Michael Kinyon. Proof simplification and automated theorem proving. *CoRR*, abs/1808.04251, 2018. URL <http://arxiv.org/abs/1808.04251>. (Cited on pg. 1, 5)

[15] Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [<https://huggingface.co/AI-M0/NuminaMath-1.5>] (https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024. (Cited on pg. 9, 10)

[16] Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving. *arXiv preprint arXiv:2502.07640*, 2025. (Cited on pg. 3, 9, 10)

[17] Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis and self-correction. *arXiv preprint arXiv:2508.03613*, 2025. (Cited on pg. 1)

[18] Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi, Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking llm capability for combinatorial mathematics. *arXiv preprint arXiv:2505.03171*, 2025. (Cited on pg. 9)

[19] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. *arXiv preprint arXiv:2009.03393*, 2020. (Cited on pg. 5)

[20] Shree Prakash Rahul and George C Necula. *Proof optimization using lemma extraction*. Computer Science Division, University of California, 2001. (Cited on pg. 5)

[21] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Huawei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>. (Cited on pg. 3)

[22] Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>. (Cited on pg. 17)

[23] George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural theorem-provers on the putnam mathematical competition. *Advances in Neural Information Processing Systems*, 37:11545–11569, 2024. (Cited on pg. 3, 9)

[24] Jiří Vyskočil, David Stanovský, and Josef Urban. Automated proof compression by invention of new definitions. In *International Conference on Logic for Programming Artificial Intelligence and Reasoning*, pp. 447–462. Springer, 2010. (Cited on pg. 5)

[25] Christian Walder and Deep Karkhanis. Pass@ k policy optimization: Solving harder reinforcement learning problems. *arXiv preprint arXiv:2505.15201*, 2025. (Cited on pg. 3)

[26] Christoph Wernhard and Wolfgang Bibel. Investigations into proof structures. *Journal of Automated Reasoning*, 68(4):24, 2024. (Cited on pg. 5)

[27] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024. (Cited on pg. 9)

[28] Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale lean problem set formalized from natural language math problems. *Advances in Neural Information Processing Systems*, 37:105848–105863, 2024. (Cited on pg. 9)

[29] Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang, Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal

mathematical reasoning of large language models. *arXiv preprint arXiv:2505.02735*, 2025. (Cited on pg. 9)

- [30] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?, 2025. URL <https://arxiv.org/abs/2504.13837>. (Cited on pg. 3)
- [31] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022. (Cited on pg. 2)
- [32] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021. (Cited on pg. 3, 9)

A Lean Base Model and Proof Simplification Data Details

A.1 General Base Model for Lean

First, we train a general-purpose base model in Lean by fine-tuning Qwen-2.5-7B-Instruct (27) on around 1B Lean tokens. The model is fine-tuned on a combination of diverse math and Lean-related tasks, as follows:

- **Natural Language Problem Solving:** The model is trained on natural language mathematics problems with associated solutions so that it has general math capabilities. We use NuminaMath-1.5 (15), a high-quality set of such pairs.
- **Lean Code Completion:** We use a subset of Lean code from GitHub, using GPT-4o with heuristics to classify whether code is Lean 3 or Lean 4. We include only the Lean 4 subset of the code.
- **Auto-formalization:** In order to teach the model to associate natural language with Lean, we train the model to perform auto-formalization of both problems and solutions from natural language to Lean 4 in our data mix. For problems, we use natural language problems with Lean problem statement formalizations from high-quality datasets: CombiBench (18), Compfiles, FormalMATH (29), Goedel-Pset (16), Lean Workbook (28), miniF2F (32), ProofNet (5), and PutnamBench (23). We include solution autoformalization data from the Goedel-Pset-v1-Solved dataset by mapping Lean solutions with natural language solutions.
- **Formal Theorem Proving:** We use a set of conjectures and proofs from STP (10), which is a diverse collection of theorems and proofs in Lean 4 generated via expert iteration while training their model.
- **Tactic and Proof State Prediction:** Finally, to teach the model about proof states, we use pre-extracted data from LeanUniverse (4) and extract additional data using the Pantograph (3) tool. For each proof in STP, we extract each tactic, as well as the proof states before and after the tactic. The model is given the proof state before the tactic and asked to predict both the tactic and the proof state following the tactic.

A.2 Generating a Dataset of Theorems and Proofs for Shortening

After creating a Lean base model, we next describe how we generate a training dataset of proofs to be shortened. To do so, we first present a recipe for generating interesting theorems.

Formalizing Proofs with Sketches to Derive Subtheorems While there are many datasets such as Goedel-Pset and Lean Workbook, we find that they have a high density of simple computational problems posed as proofs rather than high-quality proving problems. In Goedel-Pset, we estimate that only 5% of the problems are proof problems¹, leading to a lack of high-quality theorem proving data. To combat this, we develop a technique to generate diverse and interesting theorems based on the idea of proof sketching (13).

The key idea is that we can leverage existing natural language solutions to identify core steps in a proof. We first train our Lean base model to take a natural language solution and auto-formalizing into a high-level proof, which we call a *proof sketch*, an example shown in Listing 1. In the proof sketch, core steps are represented via `have` statements, and lower-level details are omitted and left as `sorry` statements. We then filter sketches are then filtered by the Lean compiler to remove non-compiling sketches.

Once we have a set of compiling sketches, we extract each `sorry` goal into a new theorem via the `extract_goal` tactic, which turns it into a theorem that is equivalent to what needs to be proved at that particular `sorry`. For example, extracting the second `sorry` in Listing 1 results in the theorem shown in Listing 2. By extracting these `sorry` statements, we are able to generate 518K theorems.

¹We estimate whether a problem is a computational problem via a heuristic filter of whether the problem has any of the keywords: `prove`, `show`, `establish`, `demonstrate`, `verify`

```

theorem lean_workbook_plus_22532 (a b :  $\mathbb{N} \rightarrow \mathbb{R}$ )
  (h0 :  $0 < a \wedge 0 < b$ )
  (h1 :  $\forall n, a(n+1) = a n + 2$ )
  (h2 :  $\forall n, b(n+1) = b n * 2$ )
  (h3 :  $a 1 = 1$ )
  (h4 :  $b 1 = 1$ )
  (h5 :  $\sum k \in \text{Finset.range } 3, b k = 7$ ):
   $\sum k \text{ in } \text{Finset.range } n, (a k * b k) = (2 * n - 3) * 2^n + 3 := \text{by}$ 
  -- Lemma 1: Prove that the sequence  $\{a_n\}$  is an arithmetic sequence.
  have lemma1 :  $\forall n, a(n+1) = a n + 2 := \text{by}$ 
  sorry

  -- Lemma 2: Express  $a_n$  in terms of  $n$ .
  have lemma2 :  $\forall n, a n = 2 * n - 1 := \text{by}$ 
  sorry

  -- Lemma 3: Express  $b_n$  in terms of  $n$ .
  have lemma3 :  $\forall n, b n = 2^{n-1} := \text{by}$ 
  sorry

  -- Lemma 4: Calculate the sum of the first  $n$  terms of the sequence  $\{a_n b_n\}$ .
  have lemma4 :  $\forall n, \sum k \in \text{Finset.range } n, (a k * b k) = (2 * n - 3) * 2^n + 3 := \text{by}$ 
  sorry

  -- Apply lemma4 to conclude the theorem.
  exact lemma4 n

```

Listing 1: Example of a proof sketch

```

theorem lean_workbook_plus_22532.extracted_1_1 (a b :  $\mathbb{N} \rightarrow \mathbb{R}$ ) (h0 :  $0 < a \wedge 0 < b$ ) (h1 :  $\forall (n : \mathbb{N}$ 
   $\rightarrow), a(n+1) = a n + 2$ )
  (h2 :  $\forall (n : \mathbb{N}), b(n+1) = b n * 2$ ) (h3 :  $a 1 = 1$ ) (h4 :  $b 1 = 1$ ) (h5 :  $\sum k \in \text{Finset.range } 3,$ 
   $\rightarrow b k = 7$ )
  (lemma1 :  $\forall (n : \mathbb{N}), a(n+1) = a n + 2$ ) (n :  $\mathbb{N}$ ) :  $a n = 2 * \uparrow n - 1 := \text{sorry}$ 

```

Listing 2: Example of an extracted theorem

Fine-Tuning our Model for Proof Sketching In order to fine-tune our model for proof sketching, we first curate a dataset of natural language problems (with corresponding Lean problem formalizations) and solutions by combining Goedel-Pset-v1 (16) with NuminaMath-1.5 (15). Then, we use Qwen-2.5-32B-Instruct to produce proof-sketches based on these natural language solutions similar to that in Listing 1. We filter out compiling sketches and train our Lean base model on them. In Table 1, we show the results of fine-tuning. Since it can be tricky to measure the objective correctness of a sketch, we use the proxy of compile rate, finding our model performs better than Qwen2.5-32B and is smaller and can do inference faster.

Table 1: Proof sketching ability of models

Model	compile@1	compile@16
Qwen2.5 7B (zero-shot)	3.6	7.0
Qwen2.5 7B (one-shot)	4.9	19.0
Qwen2.5 32B (zero-shot)	21.1	62.0
Qwen2.5 32B (one-shot)	35.1	75.0
Ours (7B)	54.8	89.1

Generating Proofs for Simplification Because proof sketching can generate steps or sub-theorems that are too incremental, we first filter out trivial theorems that can be easily solved by automation tactics in Lean. For example, the first `sorry` in Listing 1 is just a restatement of hypothesis h_1 and can be solved via `rf1`. While this theorem is correct, it is not challenging for the model. Therefore, we design an `AUTO` tactic (Listing 3) that tries a series of Lean automation tactics such as `linarith` and `aesop` to filter out these simple theorems, leaving 307K of the original 518K theorems (filtering out 41%).

For the remaining theorems, we attempt to generate proofs of these theorems with Goedel-Prover-V2-32B, a strong open-source proving model. With 4 attempts per theorem, the model is able to prove 145K theorems, which we use as targets for proof simplification. Statistics and examples of these proofs can be found in the next section, Appendix A.3.

```
macro "AUTO" : tactic =>
  `(tactic|
  repeat|
  (try rfl|
  try tauto|
  try assumption|
  try norm_num|
  try ring|
  try ring_nf at *|
  try ring_nf! at *|
  try native_decide|
  try omega|
  try simp [*] at *|
  try field_simp at *|
  try positivity|
  try linarith|
  try nlinarith|
  try exact?|
  try aesop))
```

Listing 3: AUTO tactic for filtering trivial theorems

A.3 Statistics of Proof Simplification Training Dataset

The minimum, Q1, median, Q3, and maximum proof lengths of our training dataset are 1, 103, 204, 411, and 10958. The mean is 334. In Fig. 4, we show the distribution of lengths, observing its right-skewed nature. Examples of proofs are shown in Listings 4 and 5. Compared to the proofs in our evaluation sets, we observe that training proofs often have more unused hypotheses, as they are derived from extracting the proof state, which may contain hypotheses that are not used for that particular sub-goal.

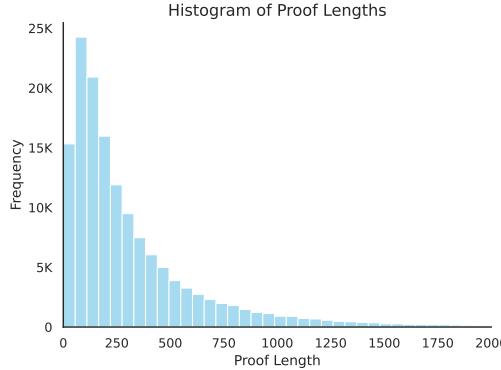


Figure 4: Histogram of proof lengths.

```

theorem extracted_1 (a b : ℝ) (ha : 0 ≤ a) (ha1 : a ≤ 1) (hb : b = a ^ 3 + 1 / (1 + a))
(lemma1 : 1 - a + a ^ 2 - a ^ 3 ≤ 1 / (1 + a)) (lemma2 : b ≥ 1 - a + a ^ 2) (lemma3 : 1 - a + a
    ↪ ^ 2 ≥ 3 / 4)
(lemma4 : b ≤ 3 / 2) : 3 / 4 < b := by
have h_main : 3 / 4 < b := by
by_contra h
-- Assume for contradiction that b ≤ 3/4
have h1 : b ≤ 3 / 4 := by linarith
-- From lemma2, b ≥ 1 - a + 2a, and from lemma3, 1 - a + 2a ≥ 3/4
have h2 : 1 - a + a ^ 2 ≤ 3 / 4 := by
linarith
-- But from lemma3, 1 - a + 2a ≥ 3/4, so 1 - a + 2a = 3/4
have h3 : 1 - a + a ^ 2 = 3 / 4 := by
linarith
-- Solve 1 - a + 2a = 3/4 to get a = 1/2
have h4 : a = 1 / 2 := by
have h41 : a ^ 2 - a + 1 / 4 = 0 := by
linarith
have h42 : (a - 1 / 2) ^ 2 = 0 := by
linarith
have h43 : a - 1 / 2 = 0 := by
linarith
linarith
-- Substitute a = 1/2 into b = a + 1/(1 + a)
have h5 : b = 19 / 24 := by
rw [hb]
rw [h4]
norm_num
-- But 19/24 > 3/4, so b > 3/4, contradiction
have h6 : b > 3 / 4 := by
rw [h5]
norm_num
linarith
exact h_main

```

Listing 4: Example of Proof Simplification Training Task (Length 158)

```

theorem extracted_1 (n : ℕ) (hn : 3 ≤ n) (lemma1 : Nat.card ↑{k | k ≤ n ∧ k ≠ 0} = n) :
Nat.card ↑{k | k ≤ n - 1 ∧ k ≠ 0} = n - 1 := by
have h_main : Nat.card ↑{k : ℕ | k ≤ n - 1 ∧ k ≠ 0} = n - 1 := by
  have h1 : {k : ℕ | k ≤ n - 1 ∧ k ≠ 0} = Set.Icc 1 (n - 1) := by
    apply Set.ext
    intro k
    simp only [Set.mem_setOf_eq, Set.mem_Icc]
    constructor
    · intro h
      have h2 : k ≤ n - 1 := h.1
      have h3 : k ≠ 0 := h.2
      have h4 : 1 ≤ k := by
        by_contra h4
        -- If k < 1, then k = 0 since k is a natural number
        have h5 : k = 0 := by
          omega
          contradiction
        exact ⟨h4, h2⟩
    · intro h
      have h2 : 1 ≤ k := h.1
      have h3 : k ≤ n - 1 := h.2
      have h4 : k ≤ n - 1 := h3
      have h5 : k ≠ 0 := by
        by_contra h5
        -- If k = 0, then 1 ≤ k would be false
        have h6 : k = 0 := by simp using h5
        omega
        exact ⟨h4, h5⟩
      rw [h1]
      -- Calculate the cardinality of the set {1, ..., n - 1}
      have h2 : Nat.card (Set.Icc 1 (n - 1) : Set ℕ) = n - 1 := by
      -- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
      have h3 : n - 1 ≥ 1 := by
        have h4 : n ≥ 3 := hn
        omega
      -- Use the formula for the cardinality of the interval [a, b]
      rw [Nat.card_eq_fintype_card]
      -- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
      rw [Fintype.card_ofFinsub]
      -- Convert the set to a finsub and calculate its cardinality
      <;> simp [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
      <;> cases n with
      | zero => contradiction
      | succ n =>
        cases n with
        | zero => contradiction
        | succ n =>
          cases n with
          | zero => contradiction
          | succ n =>
            simp_all [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
            <;> ring_nf at *
            <;> omega
      rw [h2]
      exact h_main

```

Listing 5: Example of Proof Simplification Training Task (Length 295)

B Training Metrics throughout RL

In Section 4.1, we observed that expert iteration leads to higher diversity as witnessed by better @32 metrics, while reinforcement learning with standard reinforcement learning algorithms maximizing expected rewards leads to higher @1 metrics. In Figure 5, we show the evolution of proof shortening red@1 alongside red@32. Initial @32 metrics are slowly distilled into @1, but the improvement on @32 metrics is limited.

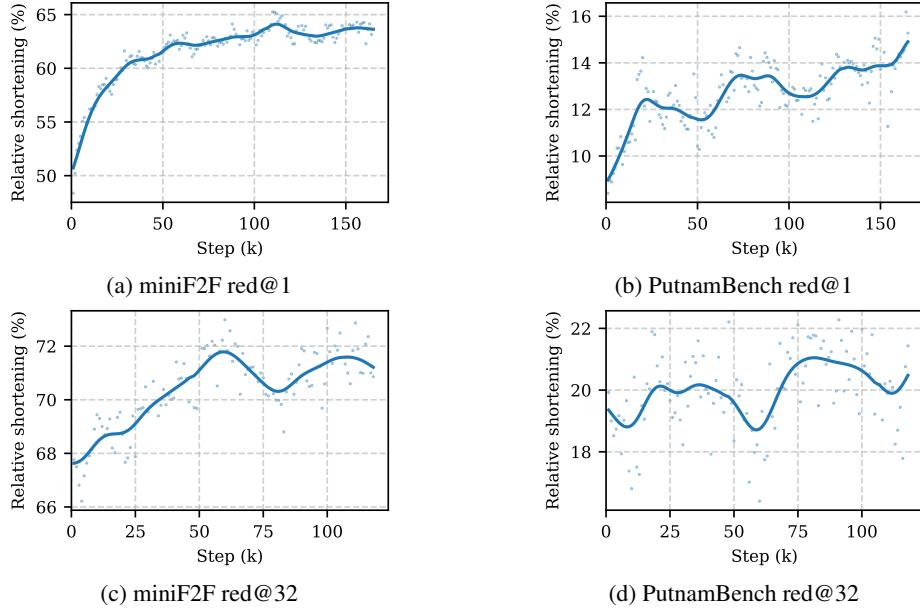


Figure 5: **Reduction metrics @1 and @32 over the course of RL.** GRPO maximizes **red@1** at the cost of diversity, as **red@32** only marginally increases in comparison.

C Full Results and Additional Analysis of Iterative Proof Shortening

C.1 Table of Iterative Proof Shortening Results

Table 2 is a tabular form of Fig. 3, showing the proof length after each iteration of proof shortening.

Table 2: Min@64 (rounded to nearest integer) and reduction (%) of miniF2F and PutnamBench proofs across inference-time iterations. Iterations 1 – 6 are done with 64 samples, and 7 – 8 with 1024 samples.

Dataset	Model	Orig	Lint	It 1	It 2	It 3	It 4	It 5	It 6	It 7*	It 8*
miniF2F	Min@64	334	302	144	126	121	117	106	104	88	75
	Red@64 (%)	0.0	9.2	76.6	80.0	81.0	81.5	82.9	83.1	85.7	87.9
Putnam	Min@64	1468	1359	1123	1061	1024	1007	975	969	890	811
	Red@64 (%)	0.0	7.4	34.8	40.0	42.5	43.6	46.4	47.1	52.2	57.2

C.2 Effect of k on min@ k and red@ k throughout simplification

In this section, we analyze the effect of increasing k on min@ k and red@ k . First, we analyze this trend when attempting to simplify the initial, linted proof, shown in Table 3 and Fig. 6. We observe a relatively log-linear gain in both metrics.

For comparison, we analyze the same trend but for simplifying proofs that have already gone many iterations of simplification. In Fig. 7, we analyze proofs that have gone 7 iterations of proof simplification. We see a different pattern, where min@ k falls slower for lower k and then log-linearly afterwards. Intuitively, as proofs become more simplified, they become harder to simplify in a low-shot setting, and exploring more diverse simplifications becomes crucial.

Table 3: Min@ k and Red@ k for increasing values of k

Dataset	Metric	Original	Linter	@1	@2	@4	@8	@16
miniF2F	Min@ k	334	302	142	141	139	137	134
	Red@ k (%)	0.0%	9.2%	77.1%	77.3%	77.7%	78.1%	78.6%
PutnamBench	Min@ k	1468	1359	1120	1117	1112	1105	1094
	Red@ k (%)	0.0%	7.4%	35.2%	35.5%	35.9%	36.5%	37.3%

Dataset	Metric	@32	@64	@128	@256	@512	@1024
miniF2F	Min@ k	130	126	122	118	114	110
	Red@ k (%)	79.2%	79.9%	80.6%	81.2%	81.8%	82.4%
PutnamBench	Min@ k	1080	1063	1043	1023	1004	987
	Red@ k (%)	38.4%	39.7%	41.3%	42.9%	44.3%	45.7%

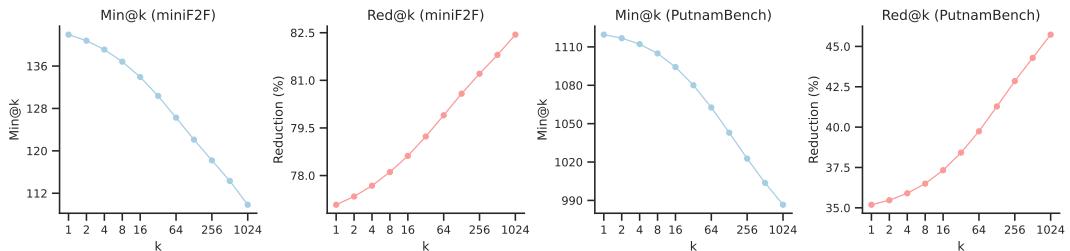


Figure 6: Effect of scaling k (sample count) on Min@ k and Red@ k (initial iteration)

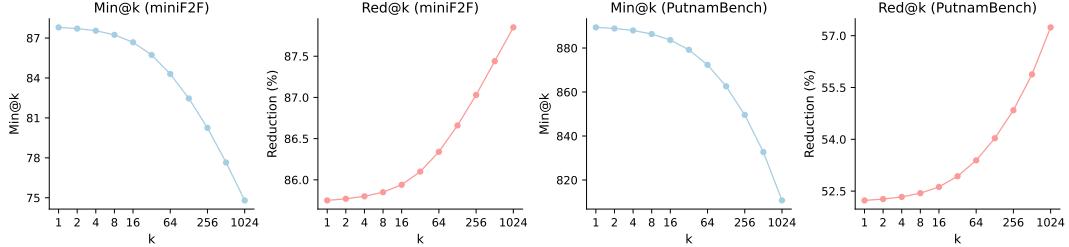


Figure 7: Effect of scaling k (sample count) on Min@ k and Red@ k (later iteration)

C.3 Details on Seed-Prover IMO Proof Shortening

Earlier in 2025, Seed-Prover released Lean proofs of four problems that the model successfully solved from the 2025 International Mathematical Olympiad (IMO) (6). They solved problems 3, 4, and 5 were solved during the contest window, and problem 1 later after the competition. However, the proofs of these problems are extremely verbose, especially compared to their informal counterparts. Using iterative proof shortening, our ProofOptimizer is able to successfully reduce the proof length of their proofs for P3, P4, and P5 by over half, as well as the longer P1 by 43.8%. In addition, we find that our shortened proofs for P4 and P5 show a 25% and 81% (respectively) speedup over the original proofs (Table 4).

Table 4: Results for ProofOptimizer + Iterative Shortening on IMO 2025 Proof Simplification

Problem	Length			Runtime		
	Original	Simplified	Reduction	Original	Simplified	Speedup
P1	36478	20506	43.79%	399.7	392.3	1.02×
P3	16377	7907	51.72%	39.7	39.1	1.02×
P4	29147	14531	50.15%	453.8	362.5	1.25×
P5	8658	4002	53.78%	61.0	33.7	1.81×

We use proofs from the [official GitHub repository](#) using Mathlib 4.14.0 (our model was trained on Mathlib 4.19.0). Before shortening, we replace invocations of `exact?` and `apply?` with the actual proof that is found. Each of the proofs is divided into a collection of smaller lemmas and theorems (problems 1, 3, 4, and 5 have 80, 52, 88, and 14 theorems, respectively). Since running iterative shortening on the entire proof will suffer from long context issues, we treat each sub-lemma/sub-theorem as an individual target for shortening. At the end, we combine the shortened theorems to produce the complete shortened proof. When feeding a sub-theorem into ProofOptimizer, we include as context the theorem definition (but not proof) of all other theorems that occur in its proof. Finally, to ensure the correctness of our simplified proofs, we use [SafeVerify](#) to confirm that all four simplified proofs match the specification of the original proof without any environmental manipulation. We remark that our setup does *not* consider the space of structure-level simplifications, as we retain all sub-theorem statements from the original proof and only simplify their proofs. In addition, as our proof length metric only measures the length of proofs, it does not take into account unnecessarily long or redundant sub-theorem statements.

As this experiment aims to provide a simple demonstration of the potential of our approach rather than perform a controlled scientific study, we do not fix the number of iterations or samples per iteration across problems. Approximately, we use 15-20 iterations of shortening with 64-4096 samples per iteration. Taking inspiration from the analysis in Sec. C.2, we generally use less samples for the first few iterations and increase the number of samples for later iterations to maximize reduction per sample. We also allocate more samples to sub-theorems that show more simplification potential in early iterations. In total, we used approximately 3000 H100 GPU hours per problem.

D Comparison with Qwen2.5, GPT-4o, and Gemini-2.5-Pro

In Table 5, we compare *ProofOptimizer* models with several off the shelf models, namely Qwen 2.5 (22), GPT-4o (1), and Gemini-2.5-Pro (8). For all models, we feed the output of the symbolic linter as input, and report overall reduction with respect to the *original (unlintered)* proof.

Table 5: **Proof length of miniF2F and PutnamBench proofs for various models.** Specially trained proof minimization models outperform prompted off-the-shelf models. Reinforcement learning achieves best @1 metrics but at the cost of reducing diversity, as witnessed by improved @32 metrics with expert iteration.

Dataset	Model	Min@1	Min@32	Red@1	Red@32
	<i>Original</i>	334		0.0%	
	<i>Linter</i>	302		9.2%	
miniF2F	Qwen2.5-7B	294	267	25.7%	41.8%
	Qwen2.5-32B	288	252	30.0%	47.3%
	GPT-4o	283	258	35.2%	47.9%
	GPT-4o + States	266	290	32.9%	46.5%
	Gemini-2.5-Pro	280	207	31.6%	62.0%
	Gemini-2.5-Pro + States	283	208	31.6%	62.0%
	ProofOptimizer-ExpIt	241	153	53.9%	74.9%
Putnam Bench	ProofOptimizer-RL	190	152	67.1%	73.4%
	<i>Original</i>	1468		0.0%	
	<i>Linter</i>	1359		7.4%	
	Qwen2.5-7B	1358	1339	9.0%	14.8%
	Qwen2.5-32B	1353	1304	10.9%	20.7%
	GPT-4o	1355	1336	10.9%	18.2%
	GPT-4o + States	1379	1358	9.3%	15.9%
Gemini	Gemini-2.5-Pro	1348	1303	12.7%	24.5%
	Gemini-2.5-Pro + States	1371	1319	11.5%	24.1%
	ProofOptimizer-ExpIt	1328	1161	15.2%	31.9%
	ProofOptimizer-RL	1303	1258	21.6%	27.1%

In Fig. 8, we compare the specific optimized proofs between Gemini and ProofOptimizer. For both data sets it can be seen that the longer the proof, the more challenging it is to shorten it. This is because although long proofs have more potential for shortening, the models struggle to maintain correctness of them. Still, ProofOptimizer is able to bring some improvements for the long proofs (see the top right part of the PutnamBench plot). In miniF2F, there is a significant number of proofs that can be minimized to just one step, which typically boils down to invoking one proof automation tactic (like `linarith` instead of applying a sequence of more explicit proof steps).

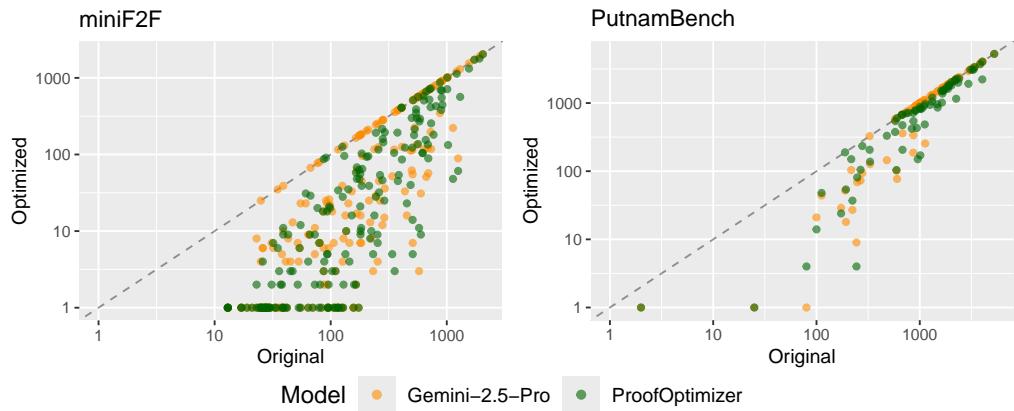


Figure 8: Comparison of optimized proofs between ProofOptimizer (green) and Gemini 2.5 Pro (yellow)

Table 6: Step-by-step success rates, revealing the main bottleneck of long repaired proofs.

Dataset	Simplification	Repair	Shorter than best (before/after linter)
miniF2F	$\frac{7852}{12416}$ (63.2%)	$\frac{2840}{4564}$ (62.2%)	$\frac{76}{2840} \rightarrow \frac{137}{2840}$ (2.7% \rightarrow 4.8%)
PutnamBench	$\frac{1288}{4800}$ (26.8%)	$\frac{613}{3512}$ (17.4%)	$\frac{5}{613} \rightarrow \frac{11}{613}$ (0.8% \rightarrow 1.8%)

E Full Results and Analysis of Repair with Execution Feedback

E.1 Analysis of Repair with Execution Feedback

As described in Sec. 3.2, we (1) sample 64 simplifications for each proof with ProofOptimizer-ExpIt, (2) repair incorrect proofs with Goedel-Prover-V2-32B, and (3) shorten successful repairs with our linter. **Overall, we find while repair with execution feedback leads to improvements, it underperforms resampling because repaired proofs are often even longer than the original proofs.** Fig. 9 (left) shows the average proof length and reduction % after sampling, repair, and linting. We our linter to be effective on repaired proofs, decreasing the average repaired proof length from 644 \rightarrow 576 (miniF2F) and 877 \rightarrow 788 (PutnamBench). In Fig. 9 (right), we plot the proof length of the original proofs (before Step 1) against simplified proofs (Step 1) and repaired proofs (Step 2). A majority of the repaired proofs (green dots) are above the $y = x$ line, meaning they are longer than the original proofs, let alone the simplified proofs (blue dots).

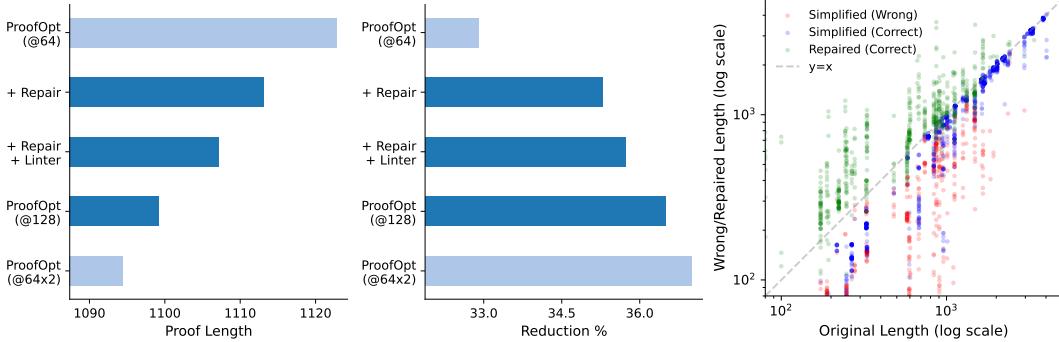


Figure 9: Analysis of execution-based repair with Goedel-Prover-V2 on PutnamBench.

In Table 6, we analyze the success rate of each step of our pipeline. However, the key issue remains to be the high length of the repaired proofs. Even after linting, only 4.8% (miniF2F) / 1.8% (Putnam) of post-linted proofs are shorter than the best proof found by ProofOptimizer during simplification. We refer the reader to Appendix E for further analysis and examples.

All simplification attempts are done on the set of linted proofs. Table 7, Figure 10, and Figure 11 are extended versions of Fig. 9 for both PutnamBench and miniF2F. The settings are as follows:

- **ProofOptimizer:** *ProofOptimizer-ExpIt*, with 64 simplification attempts per proof.
- **+ Repair:** The previous setting, with 1 attempted repair by *Goedel-Prover-V2-32B*.
- **+ Repair + Linter:** The previous setting, with our linter applied to all proofs.
- **ProofOptimizer (@128):** *ProofOptimizer-ExpIt*, with 128 simplification attempts per proof
- **ProofOptimizer (@64x2):** *ProofOptimizer-ExpIt* with 64 simplification attempts per proof, and the best simplified proof for each problem is then fed back for an additional 64 attempts.

We remark that these baselines are normalizing for sample count rather than running time. Sampling a repair from *Goedel-Prover-V2-32B* takes considerably longer than sampling a simplification from our model. This is both because it is a larger model (32B vs. 7B) and because their model relies on CoT, causing their average response length to be significantly longer than ours.

Table 7: Results of execution-based repair strategies

Dataset	Model	Min@64	Min@64 × 2	Red@64	Red@64 × 2
miniF2F	Linter		302		9.2%
	ProofOptimizer	144	-	75.5%	-
	+ Repair	-	136	-	77.3%
	+ Repair + Linter	-	132	-	77.9%
	ProofOptimizer (@128)	-	130	-	78.9%
Putnam Bench	ProofOptimizer (It 2)	-	125	-	80.2%
	Linter		1359		7.4%
	ProofOptimizer	1123	-	32.9%	-
	+ Repair	-	1113	-	35.3%
	+ Repair + Linter	-	1107.2	-	35.7%
ProofOptimizer (@128)	-	1099	-	36.5%	
	ProofOptimizer (@64x2)	-	1095	-	37.0%

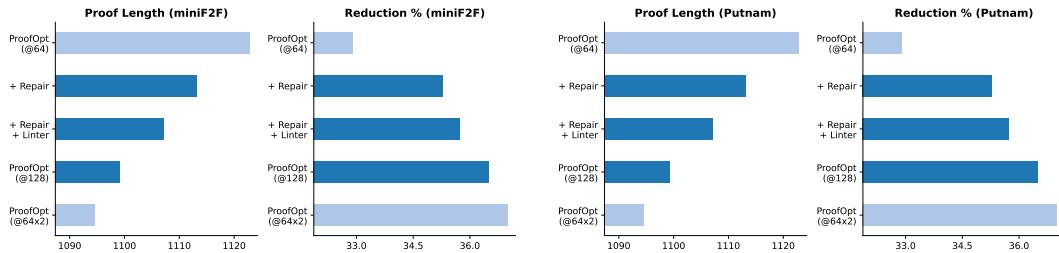


Figure 10: Results of Execution-Based Repair with Goedel-Prover

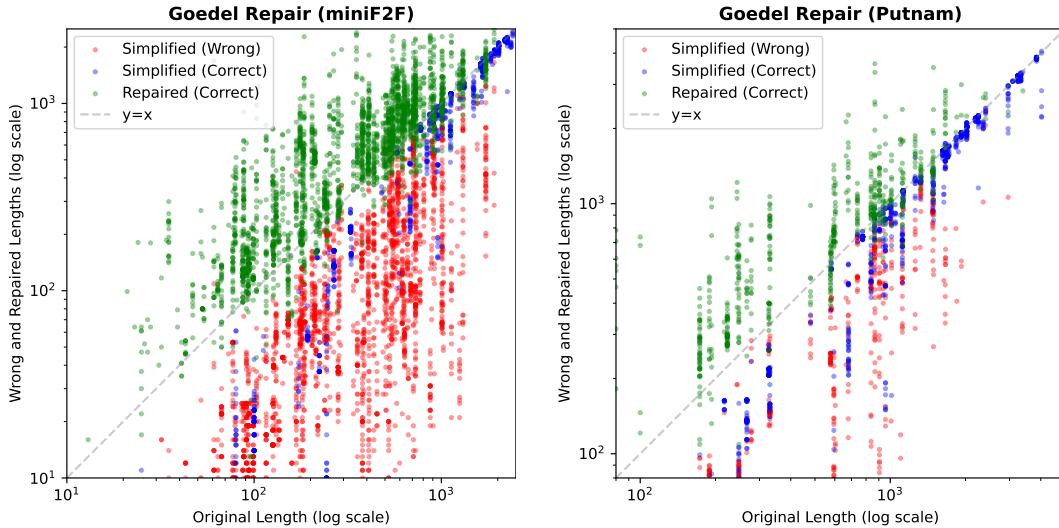


Figure 11: Comparison of Proof Lengths with Execution-Based Repair

Finally, in Listings 6 and 7, we show an example of a proof that was successfully repaired. Note that the repaired proof has many components in common with the original proof.

```

theorem mathd_numbertheory_314
  (r n : ℕ) (h0 : r = 1342 % 13) (h1 : 0 < n)
  (h2 : 1342|n) (h3 : n % 13 < r)
  : 6710 ≤ n := by
  have h_r : r = 3 := by rw [h0]
  have h_main : 6710 ≤ n := by
  have h4 : n % 13 < 3 := by
  rw [h_r] at h3
  exact h3
  obtain ⟨k, rfl⟩ := h2
  have h5 : 0 < k := by
  by_contra h
  push_neg at h
  have h6 : k = 0 := by omega
  simp [h6] at h1
  by_contra! h6
  have h7 : k ≤ 4 := by
  by_contra h8
  have h9 : k ≥ 5 := by omega
  have h10 : 1342 * k ≥ 1342 * 5 := by
  ↪ nlinarith
  omega
  interval_cases k < ;> norm_num [Nat.mul_mod,
  ↪ Nat.add_mod, Nat.mod_mod] at h4 ⊢
  exact h_main

```

Listing 6: Original Lean Proof (Length 126)

```

theorem mathd_numbertheory_314 -- Wrong
  (... statement omitted) := by
  rw [h0] at h3
  have : n % 13 < 3 := by omega
  obtain ⟨k, rfl⟩ := h2
  omega

theorem mathd_numbertheory_314 -- Correct
  (... statement omitted) := by
  have h_r : r = 3 := by
  rw [h0]
  < ;> norm_num
  < ;> rfl
  have h_main : 6710 ≤ n := by
  have h4 : n % 13 < 3 := by
  rw [h_r] at h3
  exact h3
  obtain ⟨k, rfl⟩ := h2
  by_contra! h
  have h5 : k ≤ 4 := by
  omega
  interval_cases k < ;> norm_num [Nat.mul_mod,
  ↪ Nat.add_mod, Nat.mod_mod] at h4 ⊢
  (try omega) < ;> (try contradiction)
  exact h_main

```

Listing 7: Wrong Simplification and Correct Repair (Length 93)

F Evaluation Dataset Details

For our evaluation datasets, we use miniF2F and PutnamBench proofs sampled from Goedel-LM/Goedel-Prover-V2-32B. For miniF2F, we sample with temperature 1 and top-p 0.95. For PutnamBench, we use proofs provided by the team. In both cases, we take the shortest passing proof for each problem in Mathlib 4.19.0, resulting in 194 proofs for miniF2F and 75 proofs for PutnamBench. Table 8 and Figure 12 show summary statistics of our dataset. One sample from each dataset is shown in Listings 8 and 9.

As a sidenote, we observe a discrepancy in Goedel-Prover-V2-32B's results with Lean versions. Upon testing their model, we measured 90% (pass@64) and 86 (pass@184) on miniF2F and PutnamBench with Mathlib 4.9, but only 80% (pass@64) and 75 (pass@184) with Mathlib 4.19. In this paper, we use Mathlib 4.19 rather than 4.9, as it is more recent and likely more useful to the Lean community.

Table 8: Summary statistics of proof lengths in evaluation dataset

Dataset	n	Min	Q1	Median	Q3	Max	Mean
MiniF2F	194	13	64	167	499	2980	334
PutnamBench	75	2	608	1179	2110	5420	1468

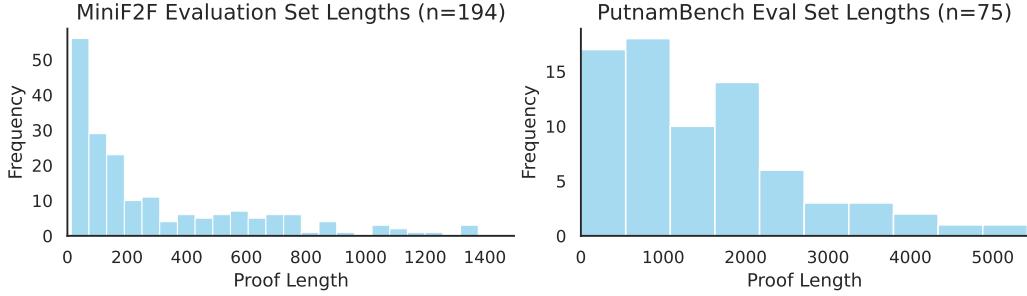


Figure 12: Histograms of proof lengths for our miniF2F and PutnamBench evaluation sets.

```
theorem mathd_numbertheory_185
  (n : ℕ)
  (h0 : n % 5 = 3) :
  (2 * n) % 5 = 1 := by
  have h1 : (2 * n) % 5 = 1 := by
  have h2 : (2 * n) % 5 = (2 * (n % 5)) % 5 := by
    simp [Nat.mul_mod, Nat.mod_mod]
    < ; > ring_nf at *
    < ; > omega
  rw [h2]
  rw [h0]
  < ; > norm_num
  < ; > rfl
  exact h1
```

Listing 8: Example of miniF2F Eval Task (Length 65)

```

theorem putnam_1993_a2
(x :  $\mathbb{N} \rightarrow \mathbb{R}$ )
(x nonzero :  $\forall n : \mathbb{N}, x n \neq 0$ )
(hx :  $\forall n \geq 1, (x n)^2 - x(n-1) * x(n+1) = 1$ )
:  $\exists a : \mathbb{R}, \forall n \geq 1, x(n+1) = a * x n - x(n-1) := \text{by}$ 
have h_main :  $\forall (n : \mathbb{N}), n \geq 1 \rightarrow (x(n+1) + x(n-1)) / x n = (x 2 + x 0) / x 1 := \text{by}$ 
intro n hn
have h1 :  $\forall (n : \mathbb{N}), n \geq 1 \rightarrow (x(n+1) + x(n-1)) / x n = (x(n+2) + x n) / x(n+1)$ 
 $\hookrightarrow := \text{by}$ 
intro n hn
have h2 :  $(x(n+1))^2 - x(n-1) * x(n+2) = 1 := \text{by}$ 
have h3 := hx(n+1) (by linarith)
simp [Nat.add_assoc] using h3
have h4 :  $(x n)^2 - x(n-1) * x(n+1) = 1 := \text{hx } n \text{ hn}$ 
have h4 :  $x(n+2) * x n + (x n)^2 - (x(n+1))^2 - x(n-1) * x(n+1) = 0 := \text{by}$ 
linarith
have h5 :  $(x(n+2) + x n) * x n - (x(n+1) + x(n-1)) * x(n+1) = 0 := \text{by}$ 
ring_nf at h4 ⊢
linarith
have h6 :  $x n \neq 0 := \text{x nonzero } n$ 
have h7 :  $x(n+1) \neq 0 := \text{x nonzero } (n+1)$ 
have h8 :  $(x(n+2) + x n) / x(n+1) - (x(n+1) + x(n-1)) / x n = 0 := \text{by}$ 
field_simp [h6, h7] at h5 ⊢
linarith
linarith

have h2 :  $\forall (n : \mathbb{N}), n \geq 1 \rightarrow (x(n+1) + x(n-1)) / x n = (x 2 + x 0) / x 1 := \text{by}$ 
intro n hn
induction' hn with n hn IH
.
norm_num
.
have h3 := h1 n hn
have h4 := h1(n+1) (by linarith)
simp [Nat.add_assoc] at h3 h4 ⊢
<;>
(try norm_num at * <;>
try linarith) <;>
(try simp_all [Nat.add_assoc]) <;>
(try ring_nf at * <;>
try linarith) <;>
(try field_simp [x nonzero] at * <;>
try linarith)
<;>
linarith
exact h2 n hn

have h_exists_a :  $\exists (a : \mathbb{R}), \forall (n : \mathbb{N}), n \geq 1 \rightarrow x(n+1) = a * x n - x(n-1) := \text{by}$ 
use (x 2 + x 0) / x 1
intro n hn
have h1 :  $(x(n+1) + x(n-1)) / x n = (x 2 + x 0) / x 1 := \text{h_main } n \text{ hn}$ 
have h2 :  $x n \neq 0 := \text{x nonzero } n$ 
have h3 :  $(x(n+1) + x(n-1)) / x n = (x 2 + x 0) / x 1 := \text{by rw } [h1]$ 
have h4 :  $x(n+1) + x(n-1) = ((x 2 + x 0) / x 1) * x n := \text{by}$ 
field_simp [h2] at h3 ⊢
<;> linarith
have h5 :  $x(n+1) = ((x 2 + x 0) / x 1) * x n - x(n-1) := \text{by linarith}$ 
exact h5

exact h_exists_a

```

Listing 9: Example of PutnamBench Eval Task (Length 715)

G Examples of Proofs Simplified by ProofOptimizer

In Listings 10 to 17, we show proofs successfully optimized with ProofOptimizer and iterative shortening. Some proofs were syntactically modified to fit on the page (new lines removed, multiple lines compressed into one).

```
theorem mathd_algebra_338 -- Original Proof
  (a b c : ℝ)
  (h0 : 3 * a + b + c = -3)
  (h1 : a + 3 * b + c = 9)
  (h2 : a + b + 3 * c = 19) :
  a * b * c = -56 := by
  have h3 : b = a + 6 := by
  have h31 : -a + b = 6 := by
  have h32 : (a + 3 * b + c) - (3 * a + b +
  ← c) = 9 - (-3) := by
  linarith
  linarith
  linarith

  have h4 : c = a + 11 := by
  have h41 : -a + c = 11 := by
  have h42 : (a + b + 3 * c) - (3 * a + b +
  ← c) = 19 - (-3) := by
  linarith
  linarith
  linarith

  have h5 : a = -4 := by
  have h51 : 3 * a + b + c = -3 := h0
  rw [h3, h4] at h51
  ring_nf at h51 ⊢
  linarith

  have h6 : b = 2 := by
  rw [h3]
  rw [h5]
  < ; > norm_num

  have h7 : c = 7 := by
  rw [h4]
  rw [h5]
  < ; > norm_num

  have h8 : a * b * c = -56 := by
  rw [h5, h6, h7]
  < ; > norm_num

  exact h8
```

Listing 10: Original Proof (Length 214)

```
theorem mathd_algebra_338
  (a b c : ℝ)
  (h0 : 3 * a + b + c = -3)
  (h1 : a + 3 * b + c = 9)
  (h2 : a + b + 3 * c = 19) :
  a * b * c = -56 := by
  have : a = -4 := by linarith
  subst_vars
  nlinarith
```

Listing 11: Simplified Proof (Length 11)

```

theorem putnam_2015_a2
(a :  $\mathbb{N} \rightarrow \mathbb{Z}$ )
(abase : a 0 = 1  $\wedge$  a 1 = 2)
(arec :  $\forall n \geq 2$ , a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) :  $\mathbb{N}$ )  $\wedge$  ((181) :  $\mathbb{N}$ ).Prime  $\wedge$  (((181) :  $\mathbb{N}$ ) :  $\mathbb{Z}$ )  $\mid$  a 2015 := by
constructor
· decide
constructor
· norm_num [Nat.Prime]
have h1 :  $\forall n : \mathbb{N}$ , (a (n + 10) :  $\mathbb{Z}$ )  $\equiv$  - (a n :  $\mathbb{Z}$ ) [ZMOD 181] := by
intro n
induction' n using Nat.strong_induction_on with n ih
rcases n with (_ | _ | _ | _ | _ | _ | _ | _ | _ | n) <;>
simp_all [Int.ModEq, abase, arec] <;> omega
have h2 : (a 5 :  $\mathbb{Z}$ )  $\equiv$  0 [ZMOD 181] := by norm_num [Int.ModEq, abase, arec]
have h3 : (a 2015 :  $\mathbb{Z}$ )  $\equiv$  0 [ZMOD 181] := by
have h4 :  $\forall k : \mathbb{N}$ , (a (10 * k + 5) :  $\mathbb{Z}$ )  $\equiv$  0 [ZMOD 181] := by
intro k
induction' k with k ih
· norm_num [Int.ModEq] at h2 ⊢
<;> simp [abase, arec] using h2
· have h5 := h1 (10 * k + 5)
have h6 := h1 (10 * k + 6)
have h7 := h1 (10 * k + 7)
have h8 := h1 (10 * k + 8)
have h9 := h1 (10 * k + 9)
have h10 := h1 (10 * k + 10)
norm_num [Int.ModEq] at h5 h6 h7 h8 h9 h10 ih ⊢
<;> ring_nf at * <;> omega
have h5 : (a 2015 :  $\mathbb{Z}$ )  $\equiv$  0 [ZMOD 181] := by
have h6 : (a (10 * 201 + 5) :  $\mathbb{Z}$ )  $\equiv$  0 [ZMOD 181] := h4 201
norm_num at h6 ⊢
<;> simp [add_assoc] using h6
exact h5
exact Int.dvd_of_emod_eq_zero h3

```

Listing 12: Original Proof (Length 324)

```

theorem putnam_2015_a2
(a :  $\mathbb{N} \rightarrow \mathbb{Z}$ )
(abase : a 0 = 1  $\wedge$  a 1 = 2)
(arec :  $\forall n \geq 2$ , a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) :  $\mathbb{N}$ )  $\wedge$  ((181) :  $\mathbb{N}$ ).Prime  $\wedge$  (((181) :  $\mathbb{N}$ ) :  $\mathbb{Z}$ )  $\mid$  a 2015 := by
constructor
· decide
constructor
· norm_num [Nat.Prime]
rw [show 2015 = 10 * 202 - 5 by norm_num]
have h1 :  $\forall n : \mathbb{N}$ , a (10 * n + 5)  $\equiv$  0 [ZMOD 181] := by
intro n
induction' n with k ih
· norm_num [abase, arec, Int.ModEq]
· rw [Nat.mul_succ]
simp_all [Int.ModEq, arec]
omega
have h2 := h1 201
exact Int.dvd_of_emod_eq_zero h2

```

Listing 13: Simplified Proof (Length 82)

```

theorem imo_1960_p2
  (x : ℝ)
  (h0 : 0 ≤ 1 + 2 * x)
  (h1 : (1 - Real.sqrt (1 + 2 * x))^2 ≠ 0)
  (h2 : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9)
  (h3 : x ≠ 0) :
  -(1 / 2) ≤ x ∧ x < 45 / 8 := by
  constructor
  · nlinarith [sq_nonneg (x + 1 / 2)]
  · set s := Real.sqrt (1 + 2 * x) with hs
    have h51 : 0 ≤ 1 + 2 * x := h0
    have h52 : s ≥ 0 := Real.sqrt_nonneg -
    have h53 : s ^ 2 = 1 + 2 * x := by
      rw [hs]
      rw [Real.sq_sqrt] < ;> linarith
    have h54 : (1 - s) ^ 2 ≠ 0 := by simpa [hs] using h1
    have h55 : s ≠ 1 := by
      intro h
      have h551 : (1 - s) ^ 2 = 0 := by
        rw [h]
        norm_num
      contradiction
    have h56 : (s + 1) ^ 2 * (s - 1) ^ 2 = (s ^ 2 - 1) ^ 2 := by
      ring
    have h57 : (s ^ 2 - 1 : ℝ) ^ 2 = 4 * x ^ 2 := by
      rw [h53]
      ring
    have h58 : (4 : ℝ) * x ^ 2 / (s - 1) ^ 2 = (s + 1) ^ 2 := by
      have h581 : (s - 1 : ℝ) ^ 2 ≠ 0 := by
        intro h
        have h582 : (1 - s : ℝ) ^ 2 = 0 := by
          calc
            (1 - s : ℝ) ^ 2 = (s - 1 : ℝ) ^ 2 := by ring
            _ = 0 := by rw [h]
        contradiction
      field_simp [h581] at h57 ⊢
      nlinarith
    have h59 : (4 : ℝ) * x ^ 2 / (1 - s) ^ 2 = (s + 1) ^ 2 := by
      rw [← h58]
      ring
    nlinarith [sq_nonneg (s - 1)]

```

Listing 14: Original Proof (Length 330)

```

theorem imo_1960_p2
  (x : ℝ)
  (h0 : 0 ≤ 1 + 2 * x)
  (h1 : (1 - Real.sqrt (1 + 2 * x))^2 ≠ 0)
  (h2 : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9)
  (h3 : x ≠ 0) :
  -(1 / 2) ≤ x ∧ x < 45 / 8 := by
  constructor
  · nlinarith [sq_nonneg (x + 1 / 2)]
  · have h57 : (4 : ℝ) * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 = (1 + Real.sqrt (1 + 2 * x)) ^ 2
    ↔ := by
      have h58 : (1 - Real.sqrt (1 + 2 * x)) ^ 2 ≠ 0 := by assumption
      field_simp [h58]
      nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption)]
      nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption),
      Real.sqrt_nonneg (1 + 2 * x)]

```

Listing 15: Simplified Proof (Length 125)

```

theorem putnam_1990_a1
  (T :  $\mathbb{N} \rightarrow \mathbb{Z}$ )
  (hT012 : T 0 = 2  $\wedge$  T 1 = 3  $\wedge$  T 2 = 6)
  (hTn :  $\forall n, T(n + 3) = (n + 7) * T(n + 2) - 4 * (n + 3) * T(n + 1) + (4 * n + 4) * T(n)$  :
  T = ((fun n :  $\mathbb{N} \Rightarrow (n)!$ , fun n :  $\mathbb{N} \Rightarrow 2^n$ ) :  $(\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})$ ).1 + ((fun n :  $\mathbb{N} \Rightarrow (n)!$ , fun n :  $\mathbb{N} \Rightarrow 2^n$ ) :
   $\rightarrow^n$  :  $(\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})$ ).2 := by
  by
  have h_main :  $\forall (n : \mathbb{N}), T n = (n ! : \mathbb{Z}) + 2^n :=$  by
  intro n
  have h1 : T n = (n ! :  $\mathbb{Z}$ ) + 2^n := by
  have h2 :  $\forall n : \mathbb{N}, T n = (n ! : \mathbb{Z}) + 2^n :=$  by
  intro n
  induction n using Nat.strong_induction_on with
  | h n ih =>
  match n with
  | 0 =>
  norm_num [hT012]
  <;>
  simp_all [Nat.factorial]
  <;>
  norm_num
  | 1 =>
  norm_num [hT012]
  <;>
  simp_all [Nat.factorial]
  <;>
  norm_num
  | 2 =>
  norm_num [hT012]
  <;>
  simp_all [Nat.factorial]
  <;>
  norm_num
  | n + 3 =>
  have h3 := hTn n
  have h4 := ih n (by omega)
  have h5 := ih (n + 1) (by omega)
  have h6 := ih (n + 2) (by omega)
  simp [h4, h5, h6, pow_add, pow_one, Nat.factorial_succ, Nat.mul_add, Nat.add_mul] at h3 ⊢
  <;>
  ring_nf at h3 ⊢ <;>
  norm_cast at h3 ⊢ <;>
  simp_all [Nat.factorial_succ, pow_add, pow_one, mul_assoc]
  <;>
  ring_nf at * <;>
  norm_num at * <;>
  nlinarith
  exact h2 n
  exact h1
  have h_final : T = ((fun n :  $\mathbb{N} \Rightarrow (n)!$ , fun n :  $\mathbb{N} \Rightarrow 2^n$ ) :  $(\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})$ ).1 + ((fun n :  $\mathbb{N} \Rightarrow (n)!$ ,
   $\rightarrow^n$  :  $(\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})$ ).2 := by
  funext n
  have h1 : T n = (n ! :  $\mathbb{Z}$ ) + 2^n := h_main n
  simp [h1, P1.add_apply]
  <;> norm_cast <;> simp [Nat.cast_add] <;> ring_nf
  apply h_final

```

```

theorem putnam_1990_a1
  (T :  $\mathbb{N} \rightarrow \mathbb{Z}$ )
  (hT012 : T 0 = 2  $\wedge$  T 1 = 3  $\wedge$  T 2 = 6)
  (hTn :  $\forall n, T(n + 3) = (n + 7) * T(n + 2) - 4 * (n + 3) * T(n + 1) + (4 * n + 4) * T(n)$  :
  T = ((fun n :  $\mathbb{N} \Rightarrow (n)!$ , fun n :  $\mathbb{N} \Rightarrow 2^n$ ) :  $(\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})$ ).1 + ((fun n :  $\mathbb{N} \Rightarrow (n)!$ , fun n :  $\mathbb{N} \Rightarrow 2^n$ ) :
   $\rightarrow^n$  :  $(\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})$ ).2 := by
  ext n
  induction' n using Nat.strong_induction_on with n ih
  match n with
  | 0 => simp_all
  | 1 => simp_all
  | 2 => simp_all
  | n + 3 =>
  simp_all [Nat.factorial_succ]
  ring_nf

```

Listing 16: Original Proof (Length 320) and Simplified Proof (Length 34)

```

theorem putnam_1968_a1
: 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by
  have h_main : (∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi := by
    have h1 : (∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ)
      ↪ - 4 / (1 + x^2)) := by
      have h11 : ∀ (x : ℝ), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2) := by
        intro x
        have h12 : (1 + x^2 : ℝ) ≠ 0 := by nlinarith
        have h13 : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4 := by
          ring_nf <;> nlinarith [sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)]
        have h14 : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4) / (1 + x
      ↪ ^2) := by
        rw [h13]
        rw [h14]
        field_simp [h12] <;> ring_nf <;> field_simp [h12] <;> ring_nf
    congr
    ext x
    rw [h11 x]
  rw [h1]
  have h2 : (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2)) = (∫ x in (0)..1, (x^6 - 4*x
    ↪ ^5 + 5*x^4 - 4*x^2 + 4 : ℝ)) - (∫ x in (0)..1, (4 : ℝ) / (1 + x^2)) := by
    apply intervalIntegral.integral_sub
    · apply Continuous.intervalIntegrable
      continuity
    · apply Continuous.intervalIntegrable
      have h3 : Continuous (fun x : ℝ => (4 : ℝ) / (1 + x ^ 2)) := by
        apply Continuous.div
        · exact continuous_const
        · exact Continuous.add continuous_const (continuous_pow 2)
        · intro x
          have h4 : (1 + x ^ 2 : ℝ) ≠ 0 := by nlinarith
          exact h4
        exact h3
    rw [h2]
    have h3 : (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ)) = (22 / 7 : ℝ) := by
      norm_num [integral_id, mul_comm] <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]
    have h4 : (∫ x in (0)..1, (4 : ℝ) / (1 + x^2)) = Real.pi := by
      have h41 : (∫ x in (0)..1, (4 : ℝ) / (1 + x ^ 2)) = 4 * (∫ x in (0)..1, (1 : ℝ) / (1 + x ^ 2)) := by
        have h42 : (∫ x in (0)..1, (4 : ℝ) / (1 + x ^ 2)) = (∫ x in (0)..1, 4 * (1 : ℝ) / (1 + x ^ 2)) := by
          congr
          ext x <;> ring_nf
        rw [h42]
        have h43 : (∫ x in (0)..1, 4 * (1 : ℝ) / (1 + x ^ 2)) = 4 * (∫ x in (0)..1, (1 : ℝ) / (1 + x ^ 2)) := by
          simp [intervalIntegral.integral_comp_mul_left (fun x => (1 : ℝ) / (1 + x ^ 2))] <;>
          norm_num <;> field_simp <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]
        rw [h43]
    rw [h41]
    have h44 : (∫ x in (0)..1, (1 : ℝ) / (1 + x ^ 2)) = Real.pi / 4 := by
      have h45 : (∫ x in (0)..1, (1 : ℝ) / (1 + x ^ 2)) = Real.arctan 1 - Real.arctan 0 := by
        rw [integral_one_div_one_add_sq] <;> norm_num
    rw [h45]
    have h46 : Real.arctan 1 = Real.pi / 4 := by
      norm_num [Real.arctan_one]
    have h47 : Real.arctan 0 = 0 := by
      norm_num [Real.arctan_zero]
    rw [h46, h47] <;> ring_nf <;> norm_num
    rw [h44] <;> ring_nf <;> norm_num
  rw [h3, h4] <;> ring_nf <;> norm_num
  have h_final : 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by
    rw [h_main] <;> linarith [Real.pi_pos]
  exact h_final

```

```

theorem putnam_1968_a1
: 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by
  simp_rw [show ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^ 2) = (x ^ 6 - 4 * x ^ 5 + 5 * x ^ 4 - 4 * x ^ 2 + 4 - 4 / (1 + x
    ↪ ^2)) by
  intro x
  field_simp
  ring]
  ring_nf
  norm_num
  <;> linarith [Real.pi_pos]

```

Listing 17: Original Proof (Length 1097) and Simplified Proof (Length 76)

H Examples of Proof Speedup and Slowdown after Simplification

We analyze two examples of proof speedup and slowdown. In Listing 18, we observe that the original proof uses an extraneous amount of tactics within `nlinarith` in order to prove the main conjecture. By removing a majority of these, the simplified proof achieves a 4.7x speedup. In Listing 19, we observe a more extreme case, where the original proof is significantly overcomplicated and can be reduced to one `omega` invocation. Goedel-Prover-V2-32B never found this single-tactic proof (with 64 samples) and instead produces proofs with many unnecessary subgoals, leading to a proof with slow execution time.

In several occurrences, we observe that simplified proofs can be significantly slower than the original proof. This is usually because the simplified proof is notationally shorter, but uses a slower approach to complete the proof. For example, in Listing 20, ProofOptimizer finds a shorter proof, but the proof is reliant on `simp_all`, `Finset.sum_range_succ`, and `linarith`, which expand the goal into large proof terms that are time-consuming, causing the new proof to be over 10 \times slower. Another example is shown in Listing 21. Here, the original proof first iterates over all $m \leq 71$ with `interval_cases m`, tries to simplify using `omega`, and then iterates over all $n \leq 71$ with `interval_cases n`. ProofOptimizer, however, removes the `try omega`, directly doing an exhaustive search over (m, n) . The `try omega` statement in the original proof made it much faster, removing 69 of the 71 goals, whereas the simplified proof had to iterate through n for these goals.

```

theorem imo_1983_p6 -- Original Proof, Time: 5.57s
  (a b c : ℝ)
  (h0 : 0 < a ∧ 0 < b ∧ 0 < c)
  (h1 : c < a + b)
  (h2 : b < a + c)
  (h3 : a < b + c) :
  0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by
  have h_main : 0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by
  nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),
  mul_nonneg h0.1.le h0.2.1.le, mul_nonneg h0.2.1.le h0.2.2.le, mul_nonneg h0.2.2.le h0.1.le,
  mul_nonneg (sq_nonneg (a - b)) h0.2.2.le, mul_nonneg (sq_nonneg (b - c)) h0.1.le,
  mul_nonneg (sq_nonneg (c - a)) h0.2.1.le, mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0.2.2,
  mul_pos h0.2.2 h0.1, mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2),
  mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1),
  sq_nonneg (a + b - 2 * c), sq_nonneg (b + c - 2 * a), sq_nonneg (c + a - 2 * b)]
  exact h_main

theorem imo_1983_p6 -- Simplified Proof, Time: 1.20s
  (a b c : ℝ)
  (h0 : 0 < a ∧ 0 < b ∧ 0 < c)
  (h1 : c < a + b)
  (h2 : b < a + c)
  (h3 : a < b + c) :
  0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by
  nlinarith [mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2), mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3),
  ← mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1), sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg
  ← (c - a)]

```

Listing 18: Example of Speedup after Simplification (orig: 5.6s, new: 1.2s)

```

theorem mathd_numbertheory_765 -- Original Proof, Time: 2.50s
  (x : ℤ)
  (h0 : x < 0)
  (h1 : (24 * x) % 1199 = 15) :
  x ≤ -449 := by
  have h_main : x ≤ -449 := by
  by_contra! h
  have h2 : -448 ≤ x := by linarith
  have h3 : x < 0 := h0
  have h4 : (24 * x) % 1199 = 15 := h1
  have h5 : x ≥ -448 := by linarith
  have h6 : x ≤ -1 := by
  omega
  -- We will check all possible values of x from -448 to -1 and show that none satisfy (24 * x) %
  -- → 1199 = 15
  have h7 : False := by
  -- Use the fact that x is between -448 and -1 to check each possible value
  have h8 : x ≥ -448 := by linarith
  have h9 : x ≤ -1 := by omega
  -- Use interval_cases to check each possible value of x
  interval_cases x <;> norm_num [Int.mul_emod, Int.add_emod] at h4 ⊢ <;> omega
  exact h7
  exact h_main

theorem mathd_numbertheory_765 -- Simplified Proof, Time: 0.50s
  (x : ℤ)
  (h0 : x < 0)
  (h1 : (24 * x) % 1199 = 15) :
  x ≤ -449 := by
  omega

```

Listing 19: Example of Speedup after Simplification (orig: 2.5s, new: 0.5s)

```

theorem aime_1984_p1 -- Original Proof, Time: 0.91s
  (u : ℕ → ℚ)
  (h0 : ∀ n, u (n + 1) = u n + 1)
  (h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
  Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
  have h2 : ∀ (n : ℕ), u n = u 0 + n := by
  (... 14 lines omitted)

  have h3 : 98 * u 0 + 4851 = 137 := by
  have h4 : Σ k in Finset.range 98, u (k.succ) = 137 := h1
  have h5 : Σ k in Finset.range 98, u (k.succ) = Σ k in Finset.range 98, (u 0 + (k.succ : ℚ))
  ← := by
  apply Finset.sum_congr rfl
  intro k -
  rw [h2 (k.succ)]
  <;> simp [Nat.cast_add, Nat.cast_one]
  <;> ring_nf
  <;> norm_num
  rw [h5] at h4
  have h6 : Σ k in Finset.range 98, (u 0 + (k.succ : ℚ)) = 98 * u 0 + 4851 := by
  have h7 : Σ k in Finset.range 98, (u 0 + (k.succ : ℚ)) = Σ k in Finset.range 98, (u 0 : ℚ)
  ← + Σ k in Finset.range 98, (k.succ : ℚ) := by
  rw [Finset.sum_add_distrib]
  rw [h7]
  have h8 : Σ k in Finset.range 98, (u 0 : ℚ) = 98 * u 0 := by
  simp [Finset.sum_const, Finset.card_range]
  <;> ring_nf
  rw [h8]
  have h9 : Σ k in Finset.range 98, (k.succ : ℚ) = 4851 := by
  norm_num [Finset.sum_range_succ, Finset.sum_range_succ, Finset.sum_range_succ]
  <;>
  rfl
  rw [h9]
  <;> ring_nf
  rw [h6] at h4
  norm_num at h4 ⊢
  <;> linarith

  have h4 : Σ k in Finset.range 49, u (2 * k.succ) = 49 * u 0 + 2450 := by
  -- (... 25 lines omitted)
  have h5 : 49 * u 0 = -2357 := by
  -- (... 6 lines omitted)
  have h6 : Σ k in Finset.range 49, u (2 * k.succ) = 93 := by
  -- (... 4 lines omitted)
  linarith
  exact h6

theorem aime_1984_p1 -- Simplified Proof, Time: 10.84s
  (u : ℕ → ℚ)
  (h0 : ∀ n, u (n + 1) = u n + 1)
  (h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
  Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
  simp_all [Finset.sum_range_succ]
  linarith

```

Listing 20: Example of Slowdown after Simplification (orig: 0.9s, new: 10.8s)

```

theorem mathd_numbertheory_711 -- Original Proof, 4.87s
(m n : ℕ)
(h₀ : 0 < m ∧ 0 < n)
(h₁ : Nat.gcd m n = 8)
(h₂ : Nat.lcm m n = 112) :
72 ≤ m + n := by
have h_product : m * n = 896 := by
-- (... 5 lines omitted)
have h_main : 72 ≤ m + n := by
have h₃ : 0 < m := h₀.1
have h₄ : 0 < n := h₀.2
have h₅ : m * n = 896 := h_product
have h₆ : Nat.gcd m n = 8 := h₁
have h₇ : Nat.lcm m n = 112 := h₂
have h₈ : m + n ≥ 72 := by
by_contra! h
-- (... 4 lines omitted)
have h₁₁ : m ≤ 71 := by nlinarith
have h₁₂ : n ≤ 71 := by nlinarith
interval_cases m <;> norm_num at h₅ ⊢ <;>
(try omega) <;>
(try {
  interval_cases n <;> norm_num at h₅ h₆ h₇ ⊢ <;>
  -- (... 5 lines omitted)
}) <;>
-- (... 5 lines omitted)
exact hs
exact h_main

theorem mathd_numbertheory_711 -- Simplified Proof, 74.63s
(m n : ℕ)
(h₀ : 0 < m ∧ 0 < n)
(h₁ : Nat.gcd m n = 8)
(h₂ : Nat.lcm m n = 112) :
72 ≤ m + n := by
have : m * n = 896 := by
rw [← Nat.gcd_mul_lcm m n]
simp_all
by_contra!
have : m ≤ 71 := by nlinarith
have : n ≤ 71 := by nlinarith
interval_cases m <;> interval_cases n <;> simp_all

```

Listing 21: Example of Slowdown after Simplification (orig: 4.9s, new: 74.6s)

I Derivation of Closed Form for min@k and max@k

In this section, we derive the closed form expression we use for estimating max@k from n samples based off the classic pass@k metric:

$$\text{max}@k = \frac{1}{\binom{n}{k}} \sum_{i \leq n} \binom{i-1}{k-1} x_i.$$

Let X be a real random variable, X_1, \dots, X_k independent realizations of X and $X_{(k)} = \max_{i \leq k} X_i$ their maximum. We would like to give an estimator for $\mathbb{E}[X_{(k)}]$ given $n \geq k$ independent samples $x_1 \leq \dots \leq x_n$ of X sorted by size.

Consider the estimator $M = \frac{1}{\binom{n}{k}} \sum_{i \leq n} \binom{i-1}{k-1} x_i$, with the idea being that there exist $\binom{n}{k}$ ways to choose k out of the n samples overall, out of which $\binom{i-1}{k-1}$ select the i -th and then $k-1$ with a smaller index.

We compute

$$\begin{aligned} \mathbb{E}_{x_i} \left[\frac{1}{\binom{n}{k}} \sum_{i \leq n} \binom{i-1}{k-1} x_i \right] &= \mathbb{E}_{x_i} \left[\frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I|=k} x_{\max I} \right] \\ &= \frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I|=k} \mathbb{E}_{x_i} [x_{\max I}] \\ &= \frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I|=k} \mathbb{E}_{x_i} \left[\max_{j \in I} x_j \right] \\ &= \frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I|=k} \mathbb{E} [X_{(k)}] \\ &= \mathbb{E} [X_{(k)}] \end{aligned}$$

by the counting argument explained above, linearity of expectation, ordering of the x_i and independence.

Note that this is a generalization of the pass@k metric, which covers the case of Bernoulli distributed X (7).

We recommend using a numerically stable implementation that computes the ratio $\frac{\binom{i-1}{k-1}}{\binom{n}{k}}$ by canceling a $(k-1)!$ factor and pairing up numerator and denominator factors.

Moreover, the min@k estimator can be obtained as $\text{min}@k(x_1, \dots, x_n) = -\text{max}@k(-x_1, \dots, -x_n)$.

J Hyperparameters

In this section, we detail the hyperparameters we use throughout our various training and inference experiments. Prompts can be found in the next section, Appendix K.

Iterative Training: For each round of SFT, we use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient accumulation steps) and learning rate 1e-5. We use a cosine scheduler with minimum learning rate 1e-8 and 100 steps of warm-up starting from 1e-30. For inference, we use $\tau = 1.0$ and top-p 0.95.

Reinforcement learning: Our setup is asynchronous online reinforcement learning with 16 trainer and 16 worker GPUs, and 16 environment copies per worker GPU. We use a global training batch size of 32 (local batch size 2 per trainer), a constant learning rate of 6e-8 following a linear warmup over 200 steps, a GRPO group size of 8, mean normalization but no variance normalization, no KL penalty and model updates sent to workers every 100 steps. Workers use For inference, we use $\tau = 1.0$ and top-p 1.0, and evaluations use $\tau = 1.0$ and top-p 0.95.

For test-time reinforcement learning we use the same settings but halve the number of trainers and workers.

Execution Feedback and Goedel-Prover for Repair (Sec. E.1): We use temperature $\tau = 0.2$ and top-p 0.95 with a maximum prompt length of 8192 and a maximum generation length of 32768.

Iterative Shortening (Sec. 4.2): For iterations 1 through 6, we use temperature $\tau = 1.0$ and top-p 0.95. We increase the temperature to $\tau = 1.2$ for iteration 7, and to $\tau = 1.5$ for iteration 8. We find that the higher temperatures in later iterations are helpful for increasing diversity with 1024 samples.

Lean Base Model (Sec. A.1): We use an effective batch size of 512 (2 nodes, 8 H100/node, 32 gradient accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a maximum sequence length of 8192 for 2000 steps.

Proof Sketching (Sec. A.2): We use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a maximum sequence length of 8192 for 50 steps. Evaluation is done with temperature $\tau = 0.8$ and top-p 0.95.

Comparison with Leading Models (Sec. D): For our model and Qwen2.5-32B, we use $\tau = 1.0$ and top-p 0.95. For GPT-4o and Gemini-2.5-Pro, we use the default settings with $\tau = 1.0$.

K Prompts

K.1 Proof Simplification Prompt

```
You are given a correct Lean 4 proof of a mathematical theorem.  
Your goal is to simplify and clean up the proof, making it shorter and more readable while ensuring it is  
→ still correct.  
  
Here is the original proof:  
````lean4  
{statement}
````  
  
Now, provide your simplified proof. Do NOT modify the theorem or header, and surround your proof in ``  
→ lean4 and ```` tags.
```

Listing 22: Zero-shot Proof Sketching Prompt

K.2 Proof Sketching Prompts

```
Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the  
→ structure of the natural language solution. Follow these guidelines:  
1. Analyze the natural language solution and identify the key steps.  
2. Translate each key step into Lean 4 syntax, structuring your proof using 'have' statements for clarity.  
   → Include all core steps from the natural language solution.  
3. Use 'sorry' to replace individual proofs of lower-level steps, ensuring that your proof skeleton would  
   → compile successfully in Lean 4.  
4. Surround your Lean 4 proof sketch in ``lean4 and ```` tags.  
  
Problem:  
{problem}  
  
Solution:  
{solution}  
  
Lean 4 Statement:  
````lean4  
{statement}
````  
  
Now, provide your Lean 4 proof sketch. Do NOT modify the theorem or header, and surround your proof sketch  
→ in ``lean4 and ```` tags.
```

Listing 23: Zero-shot Proof Sketching Prompt

```
Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the  
→ structure of the natural language solution. Follow these guidelines:  
1. Analyze the natural language solution and identify the key steps.  
2. Translate each key step into Lean 4 syntax, structuring your proof using 'have' statements for clarity.  
   → Include all core steps from the natural language solution.  
3. Use 'sorry' to replace individual proofs of lower-level steps, ensuring that your proof skeleton would  
   → compile successfully in Lean 4.  
4. Surround your Lean 4 proof sketch in ``lean4 and ```` tags.  
  
Here is an example:  
  
Problem:  
Prove that if p, q are primes such that q is divisible by p, then p must be equal to q.  
  
Solution:  
Since q is prime, it only has 2 divisors: 1 and itself. Therefore, since p divides q, either $p=1$ or $p= q$.  
   → Because $p$ is a prime, $p \neq 1$, so $p=q$.  
  
Lean 4 Statement:  
````lean4  
import Mathlib

theorem prime_divides_prime_equal (p q : ℕ) (hp : Prime p) (hq : Prime q) (h : p ∣ q) : p = q := by sorry
````  
  
Lean 4 Proof Sketch:  
````lean4  
import Mathlib

theorem prime_divides_prime_equal (p q : ℕ) (hp : Prime p) (hq : Prime q) (h : p ∣ q) : p = q := by
 -- Lemma 1: Since q is prime, it only has 2 divisors: 1 and itself.
 have lemma1 : p = 1 ∨ p = q := by
```

```

sorry

-- Lemma 2: Since p is prime, p ≠ 1.
have lemma2 : p ≠ 1 := by
 sorry

-- Now, do case analysis on lemma1 to conclude p = q.
cases lemma1 with
| inl h_left =>
 contradiction
| inr h_right =>
 exact h_right
```

Now, it is your turn to provide your Lean 4 proof sketch for a new problem. Do NOT modify the theorem or
→ header, and surround your proof sketch in ““lean4 and ““ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
““lean4
{statement}
““

Lean 4 Proof Sketch

```

Listing 24: One-shot Proof Sketching Prompt

K.3 Goedel-Prover Repair Prompt

In Listing 25, use a modified version of Goedel-Prover’s repair prompt found in their [codebase](#). The main difference is that because we do not have proofs annotated with CoT’s, our `lean_proof` only contains a proof.

```

Complete the following Lean 4 code:

““lean4
{formal_statement}““

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan
  → outlining the main proof steps and strategies.
The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the
  → construction of the final formal proof.

Here is the proof:
““lean4
{lean_proof}““

The proof (Round 1) is not correct. Following is the compilation error message, where we use <error> </
  → error> to signal the position of the error.

{error_message_for_prev_round}

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed analysis of the
  → error message.

```

Listing 25: Goedel-Prover Repair Prompt