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Abstract

Image geolocalization is a fundamental yet challenging task, aiming at inferring
the geolocation on Earth where an image is taken. State-of-the-art methods employ
either grid-based classification or gallery-based image-location retrieval, whose
spatial generalizability significantly suffers if the spatial distribution of test im-
ages does not align with the choices of grids and galleries. Recently emerging
generative approaches, while getting rid of grids and galleries, use raw geographical
coordinates and suffer quality losses due to their lack of multi-scale information.
To address these limitations, we propose a multi-scale latent diffusion model called
LocDiff for image geolocalization. We developed a novel positional encoding-
decoding framework called Spherical Harmonics Dirac Delta (SHDD) Represen-
tations, which encodes points on a spherical surface (e.g., geolocations on Earth)
into a Hilbert space of Spherical Harmonics coefficients and decodes points (geolo-
cations) by mode-seeking on spherical probability distributions. We also propose a
novel SirenNet-based architecture (CS-UNet) to learn an image-based conditional
backward process in the latent SHDD space by minimizing a latent KL-divergence
loss. To the best of our knowledge, LocDiff is the first image geolocalization model
that performs latent diffusion in a multi-scale location encoding space and generates
geolocations under the guidance of images. Experimental results show that LocDiff
can outperform all state-of-the-art grid-based, retrieval-based, and diffusion-based
baselines across 5 challenging global-scale image geolocalization datasets, and
demonstrates significantly stronger generalizability to unseen geolocations.

1 Introduction

Location decoding, i.e., predicting geolocations from given context, remains a challenging and
rarely studied problem which has potential applications in numerous tasks including trajectory
synthesis [35], building footprint segmentation [14], and the widely studied image geolocalization
tasks [38, 45]. As one of the representative tasks for location decoding, image geolocalization
aims at predicting locations on Earth based on a given image, which potentially ranges from many
types such as wild life photos, street views, and remote sensing images. However, unlike image
classification, solutions to image geolocalization are less mature because their ground-truths are
locations represented by real-valued coordinates on the spherical surface. While regression models
are commonly used to predict real-valued labels, they are proven to be tricky to train and perform
especially poorly on the global-scale image geolocalization problem due to the highly complex and
non-linear mapping between the image space and the geospatial space [46, 17]. As an alternative
transductive solution, researchers employ pre-defined geographical classes (e.g. divide Earth into
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Figure 1: Multi-scale latent diffusion for image geolocalization. Black solid/dotted arrows denote encod-
ing/decoding steps. Orange modules are learnable, while blue modules are deterministic with no learning
parameters. (1) It is difficult to diffuse in the position encoding space [27] because valid positional encodings
are sparse which leads to difficulties in diffusion model training and decoding. (2) The locational embedding
space is dense and can perform diffusion processes, but the non-linear mapping between the position encoding
and location embedding space makes decoding back to a correct coordinates extremely difficult. Minimizing
distances in the location embedding space may not minimize geographic distance. (3) The SHDD encoding
space is dense – every point e in this encoding space corresponds to a spherical function Fe, whose difference
from the spherical Dirac delta function δ(θ0,ϕ0) of the ground truth location (θ0, ϕ0) is measured by the reverse
KL-divergence E . (4) The SHDD decoding addresses the non-linearity problem. The heatmaps (4a), (4b)
represents the distance from the spherical point represented by the embedding/encoding to the yellow star point
in the middle. The distance measured by SHDD is significantly smoother.

disjoint or hierarchical grid cells) [46, 38] or geo-tagged image galleries (e.g. a set of reference
geotagged images) [45] to map the real-valued ground-truth coordinates to discrete labels (e.g. the ID
of the grid cell or the ID of the reference image in the gallery), subsequently transforming the image
geolocalization problem into a special case of image classification or image-image/image-location
retrieval task. For example, [L]kNN [46], CPlaNet [38], and PIGEON [10] partition the Earth’s
surface into non-overlapping cells and convert the image geolocalization problem into an image
classification problem. GeoCLIP [45] uses a contrastive learning framework to align pretrained
image embeddings with geographical location embeddings in the gallery. However, the spatial
resolution of these approaches is constrained by the size of the cells or the availability of gallery
images/locations.

Generative models such as diffusion models [12, 41], score-based generative models [42], and
flow matching models [20], have demonstrated great capacity in directly generating continuous
outputs such as images and modeling their complex distributions. They are commonly applied
to points in Euclidean spaces [42, 12, 41] or the geometric structures defined in Euclidean spaces
[49]. This motivates us to develop diffusion-based image geolocalization methods that decode
locations on the spherical surface with a finer spatial resolution by using multi-scale location
representations[24, 26, 37] without dependence on predefined grid cells or galleries [46, 38, 45, 10].
However, simply performing diffusion or flow matching in the original coordinate space faces two
major challenges. First, geographical locations reside on an embedded Riemannian manifold
instead of an Euclidean space1. This makes noise adding/removal problematic. If we use coordinates
on the manifold such as longitudes and latitudes, the noise adding/removal will lead to projection
distortions, especially near the polar areas. If we use coordinates in the 3-D Euclidean space, every
forward/backward step will likely output points that are not on the spherical surface [8], which
requires noise adding/removal in the tangent space and re-projection back to the spherical surface,
such as in Diff R3 [8] and FM R3 [8]. The re-projection operation introduces extra computational
costs. Secondly, and more importantly, raw coordinates lack multi-scale information which is
necessary for modeling complex spatial distributions [27, 37]. This practice can yield suboptimal

1Geographical locations are distributed on a 2-dimensional Riemannian manifold (i.e., the sphere surface)
embedded in the 3-D Euclidean space.
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geolocalization results. As later shown in Table 2, compared with generative models operating
directly on raw coordinates (e.g., Diff R3, FM R3 and RFM S2 [8]), our multi-scale latent location
diffusion model LocDiff demonstrates superior performance on 2 image geolocalization datasets
across all evaluation metrics measured in various spatial scales.

In order to achieve multi-scale modeling power for complex distributions over space, neural location
encoding methods [25, 23, 27, 26, 18, 37, 48, 50] commonly adopt a multi-scale position encoding
with deterministic transformations followed by a learnable location embedding layer. However,
despite their wide applicability, neither the position encoding nor the location embedding space
is suitable for developing a location diffusion model due to sparsity problem during diffusion
and non-linearity problem during decoding as illustrated in Figure 1(1) and (2). Therefore, we
hypothesize that

The ideal space to develop latent diffusion models for spherical location generation
should be both dense and easy to find projections back to the coordinate space.

Motivated by this, we propose a novel spherical position encoding method called Spherical Harmonics
Dirac Delta (SHDD) Representation. Figure 1(3) and (4) illustrates how our method addresses the
sparsity problem by encoding a spherical point (θ0, ϕ0) as a spherical Dirac delta function δ(θ0,ϕ0). In
the SHDD encoding space, every point e uniquely corresponds to a spherical function Fe and can be
seen as an approximation of a spherical Dirac delta function. The level of noise E can be continuously
measured by the reverse KL-divergence between Fe and δ(θ0,ϕ0). Then the latent diffusion in the
SHDD encoding space equals gradually adding noise to the ground-truth δ(θ0,ϕ0) (forward process)
and finding a sequence of Fe that gradually reduces E (backward process). During decoding, the
learning-free SHDD Decoder evaluates the corresponding spherical function Fe and decodes it as
the spherical point whose corresponding spherical Dirac delta function minimizes E . Figure 1 4(b)
demonstrates that our SHDD encoding space shows less decoding non-linearity than existing location
representation learning methods such as Sphere2Vec [27] and SH [37]. Therefore, diffusion in the
SHDD encoding space will be more stable and easier to converge.

Equipped with the Hilbert (i.e. infinite-dimensional Euclidean) SHDD encoding space and the SHDD
decoder, we can now perform conventional latent diffusion for location generation. We propose a
novel SirenNet-based architecture called Conditional Siren-UNet (CS-UNet) to learn the conditional
backward diffusion process, i.e, to generate spherical points from random Gaussian noise given
conditions such as images and texts. We call the integrated framework, including SHDD encoding,
CS-UNet latent diffusion, and SHDD decoding, the LocDiff model. Results show that LocDiff
outperforms all state-of-the-art models on 5 global-scale image geolocalization datasets at large
scales (250 km, 750 km, 2500 km), and by combining retrieval-based models (See Appendix A.6),
the hybrid variant LocDiff-H achieves superior performance at small scales (1 km, 25 km). LocDiff
also outperforms the recently proposed generative geolocalization model RFM S2 [8], which shows
the advantages of our latent diffusion approach over generation in the original coordinate space.
Moreover, we demonstrate that LocDiff is more spatially generalizable to unseen locations than
retrieval-based models such as GeoCLIP [45].

2 Related Work

Geolocalization by classification and retrieval. Traditional geolocalization methods typically
employ either a classification approach or an image retrieval approach. The former divides the Earth’s
surface into non-overlapping or hierarchical cells and classifies images accordingly [31, 46, 30, 10]
while the latter approach identifies the location of a given image by matching it with a database of
image-location pairs [39, 52, 51, 45]. Using fewer cells results in lower location prediction accuracy
while using smaller cells reduces the number of training examples per class and risks overfitting [38].
On the other hand, retrieval-based systems usually suffer from poor search quality and inadequate
coverage of the global geographic landscape.

Geolocalization by diffusion and flow matching in the original coordinate space. Dufour et al
[8] recently proposed a set of generative image geolocalization models on the original coordinate
space, including Diff R3, FM R3, and RFM S2. The first two models perform diffusion and flow
matching on the 3D Euclidean space respectively and project the output back on the sphere. RFM S2,
instead, performs flow matching on the spherical Riemannian manifold by projecting back and forth
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to the tangent space of each location. However, operating on the original coordinate space cannot
capture the rich multi-scale geographic information required for modeling complex distributions on
the spherical surface. Our LocDiff overcomes this limitation by performing diffusion in a latent space
which captures rich multi-scale location information.

Riemannian generative models. Conventional generative models cannot function well in the
spherical coordinate space (e.g., 3D coordinates representing points on a sphere) due to the projection
distortion and sparsity issue. There are two common strategies to address this problem. The first
strategy is to project a point on the sphere to its tangent space (an Euclidean space), add/remove
noise in the tangent space, and then spherical re-project the noised/denoised point in the tangent
space back to the surface [36] like RFM S2 [8] does. The second strategy is to derive formulas
for direct Riemannian diffusion [15]. The main drawback of both strategies is their computational
complexity. In the first strategy, each projection operation takes time, making sampling acceleration
based on DDIM [41] impossible, because the projections are accurate only when the diffusion steps
are adequately small. For the second strategy, the Riemannian diffusion formulation is much more
complicated than the Euclidean version. The model architectures, training tricks, and other useful
techniques developed for conventional diffusion models can not be easily transferred.

Location Embedding. The distinction between positional encoding and location embedding lies
in semantics: the positional encoding is only a task-agnostic transformation of the coordinates x, but
the location embedding carries task-specific information. For example, it can contain information
about spatial distributions of species if trained on geo-aware species fine-grained recognition tasks
[22, 27, 26, 7, 48, 7, 50, 21]. Some prior work, e.g., NeRF [28], utilized positional encoding to
represent location information. This task-agnostic method focuses on capturing the position or order
of elements within a sequence. In contrast, many location encoders are specifically designed to
capture context-aware location information [24]. Please refer to Appendix A.2 and [27] for more
details.

3 Preliminaries

Real Basis of Spherical Harmonics Let p = (θ, ϕ) be a location on the spherical surface using
angular coordinates where θ ∈ [0, π) and ϕ ∈ [0, 2π). For any function F (θ, ϕ) on the sphere,
there exists a unique infinite-dimensional real-valued vector of coefficients {Clm} (we may call it
coefficient vector) such that ∀(θ, ϕ), F (θ, ϕ) =

∑∞
l=0

∑l
m=−l ClmYlm(θ, ϕ) where l is called degree

and m is called order and Ylm(θ, ϕ) is the real basis of spherical harmonics at degree l and order m.
The detailed computation of Ylm can be found in Appendix A.3. In this way, any function on the
sphere can be uniquely represented by its coefficient vector.

Spherical Dirac Delta Function Similar to the Dirac delta function in Euclidian space we can
define a spherical Dirac delta function is a probability density function over the spherical surface

whose mass all concentrates on one point: δ(θ0,ϕ0)(θ, ϕ) =

{
∞ θ = θ0, ϕ = ϕ0

0 otherwise
. It can uniquely

represent any point (θi, ϕi) on the sphere by mapping it to δ(θi,ϕi). Representing a point as a function
allows us to use spherical harmonics to represent points on the spherical surface.

4 LocDiff Framework

In this section, we will introduce the theory and techniques we employ in our LocDiff model that
enable spherical location generation via latent diffusion. Our aim is to find a position encoding space
that does not suffer from the sparsity problem and the non-linearity problem so we can efficiently
perform latent diffusion. We first analyze what properties we need to achieve this and propose the
Spherical Harmonics Dirac Delta (SHDD) Encoding-Decoding framework accordingly. Then we
prove that SHDD satisfies all the desired properties. Following that, we propose the Conditional
Siren-UNet (CS-UNet) architecture to learn the conditional backward process for latent diffusion.
We also develop computational techniques based on the properties of SHDD representation so that
the training and inference of LocDiff are efficient.
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4.1 Problem Setup and Intuitions

As we have outlined in the introduction, our goal is to find a position encoding method that encodes
the spherical surface into a dense subset of Rd (ideally the entire Rd) and accurately decodes points
back to spherical coordinates. There are several mathematical properties such position encoding and
decoding method should have. For rigorous discussions, we give definitions of the aforementioned
properties and demonstrate how they guide the finding of our SHDD encoding-decoding framework.
Definition 4.1 (Coordinate Space). A Coordinate Space C can be any space with a parametrization,
such as Euclidean space with the Descartes coordinate system. In this paper, C always refers to the
unit sphere surface embedded in R3 with the conventional angular coordinate system (θ, ϕ).
Definition 4.2 (Position Encoding and Position Decoding). A Position Encoder PE : C → Rd is an
injective function, usually d ≫ 3. SPE := PE(C) ⊂ Rd is called the Position Encoding Space. A
Position Decoder PD : Rd → C is a surjective function.

The sparsity problem: Since we are projecting a set of 2-dimensional points in C into a high-
dimensional Euclidean space SPE, dense filling is impossible.

However, if we define a difference measure E : Rd × Rd → R, then SPE can be partitioned by the
following equivalence relation:

e
E∼ e

′
⇐ argmin

s∈SPE

E(e, s) = argmin
s∈SPE

E(e
′
, s) (1)

that is, we can assign every point s ∈ SPE to the nearest positional encoding (consequently, a spherical
point) in terms of E . We say the E-equivalence classes densely fill Rd. Further, a learning-free
decoder exists as

PDE(e) := {p ∈ C|e E∼ PE(p)} = argmin
p∈C

E(e,PE(p)) (2)

If E is continuous, i.e.
∀s ∈ SPE, (e → s) ⇒ (E(e, s) → 0) (3)

then the sparsity problem is resolved. Since now diffusion in SPE equals a random walk among
spherical points and a small perturbation in SPE will not result in an abrupt jump on C.

The non-linearity problem: Since the diffusion model has intrinsic randomness, it is possible that
the generated e corresponds to a wrong s. If the mapping between s and its corresponding spherical
point p = PDE(s) is highly non-linear (e.g., in the location embedding space), the decoder PDE will
then be very unstable (see Figure 1). Thus, we hope that for a large tolerance η > 0 and a small shift
∆ > 0, the following property holds for our decoder PDE :

∀s ∈ SPE, E(e, s) < η ⇒ dC(PDE(e),PDE(s)) < ∆ (4)
where dC is the distance in the spherical coordinate space (e.g., the great circle distance). If this
property is satisfied, the non-linearity problem is resolved.

It is not an easy task to find such E , especially considering computational constraints (e.g., it
is impossible to exactly evaluate the argmin function in Equation 1). Fortunately, we find that
by treating spherical points as special spherical functions and representing them using Spherical
Harmonics coefficients, we can define E as spherical KL-divergence which satisfies all the desirable
properties mentioned above, thus addressing the sparsity and the non-linearity problems as a whole.
Moreover, the choice of Spherical Harmonics coefficients also enables efficient computation.

4.2 Spherical Harmonics Dirac Delta (SHDD) Encoding

As discussed in Section 3, we can represent spherical points as spherical Dirac delta functions, and a
spherical Dirac delta function can be encoded as an infinite-dimensional real-valued coefficient
vector, i.e. a point in a Hilbert space: PESHDD(θ0, ϕ0) :=

⋃∞
l=0

⋃l
m=−l [Clm], where

⋃
denotes

vector concatenation. Thus, the spherical harmonics coefficient vector can be used to uniquely
represent a point (θ0, ϕ0) on the sphere. In practice, we truncate the coefficient vector up to its
leading (L+ 1)2 dimensions, where L is the maximum degree of associate Legendre polynomials:

PEL
SHDD(θ0, ϕ0) :=

L⋃
l=0

l⋃
m=−l

[Clm] (5)
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We call this vector the (L+ 1)-degree Spherical Harmonics Dirac Delta (SHDD) Representation
of (θ0, ϕ0) and PESHDD the SHDD encoder. Each SHDD representation corresponds to an approxi-
mation of the true spherical Dirac delta function δ(θ0,ϕ0), whose probability density concentrates in a
region surrounding (θ0, ϕ0) rather than a single point, enabling differentiable comparison between
Dirac delta functions. The Legendre polynomials have finer granularity as their degree L increases,
which makes SHDD representations, like other frequency-based location encoding methods such as
Sphere2Vec [27], capable of capturing multi-scale spatial information.

Since for spherical Dirac delta functions, the coefficients of the Legendre polynomials are the values
of the Legendre polynomials at (θ0, ϕ0) [2], i.e.,

Clm ≡ Ylm(θ0, ϕ0),∀l,m, (6)

the encoding procedure can be reduced to a simple look-up of Ylm values.

4.3 SHDD KL-Divergence

Before describing our decoding algorithm we need to measure the difference between any (L+ 1)-
degree SHDD representation of a spherical Dirac delta function δ, and an arbitrary R(L+1)2 vector
corresponds to certain spherical function F . We propose to use the reverse KL-divergence between
(the normalized) F and δ as the difference measure E .

Let p(θ,ϕ) and qe be the normalized probability distributions corresponding to the SHDD representa-
tion of (θ, ϕ) and an arbitrary R(L+1)2 vector e =

⋃L
l=0

⋃l
m=−l [elm]:

p(θ,ϕ)(u, v) := exp

(
L∑

l=0

l∑
m=−l

Ylm(θ, ϕ)Ylm(u, v)

)
/Z(PESHDD(θ, ϕ)) (7)

qe(u, v) := exp

(
L∑

l=0

l∑
m=−l

elmYlm(u, v)

)
/Z(e) (8)

Here Z(e) is a normalization constant Z(e) =
∫ π

0

∫ 2π

0
exp

(∑L
l=0

∑l
m=−l elmYlm(u

′
, v

′
)
)
du

′
dv

′
.

Then the SHDD KL-divergence is computed by

LSHDD-KL(e,PESHDD((θ, ϕ))) :=

∫ π

0

∫ 2π

0

qe(u, v) log
qe(u, v)

p(θ,ϕ)(u, v)
dudv (9)

It is easy to verify that the SHDD KL-divergence is a continuous difference measure. As for the
property described in Equation 4, notice that by [9], the Wasserstein-2 distance W2 between p(θ,ϕ)
and qe is bounded by the KL-divergence in the following inequality:

W 2
2 (p(θ,ϕ), qe) ≤ CLSHDD-KL(e,PESHDD((θ, ϕ))) (10)

C is a finite constant. W2, being the Earth Mover’s Distance, quantifies the amount of probability
mass transport between two distributions. Thus, when LSHDD-KL(e,PESHDD((θ, ϕ)) is small, the
difference in probability mass distribution is also small, and consequently the largest-mass-region
found by the mode-seeking SHDD decoder will also remain mostly unchanged. Figure 1 visualizes
this with concrete examples (pretrained Sphere2Vec location encoder and learned neural decoder v.s.
our SHDD encoder and decoder) using heatmaps.

4.4 SHDD Decoding

KL-Divergence SHDD Decoder Following Equation 2, the KL-Divergence SHDD Decoder is:

PDKL(e) := argmin
(θ,ϕ)

LSHDD-KL(e,PESHDD((θ, ϕ))) (11)

It is impractical to compute PDKL exactly. Luckily, Equation 6 makes a natural simplification possible.
Notice that minimizing reverse KL-divergence leads to mode-seeking behavior [29], i.e. the (θ, ϕ)
that satisfies Equation 11 should fall within the region with the largest probability mass. Thus, we
can decode e by finding the center of its probability mass concentration.

6



(a) (b)

Figure 2: (a): The architecture of Condition SirenNet Module (C-Siren). x is the input latent vector, x
′

is
the output latent vector, t is the scalar timestep, and eI is the embedding of the input image. di is the input
dimension, do is the output dimension, dT is the time embedding dimension, dI is the conditional embedding
dimension. (b): The architecture of Conditional SirenNet-Based UNet (CS-UNet) and the workflow of LocDiff.
d is the latent dimension. The numbered circles denote the order of training steps.

Mode-Seeking SHDD Decoder Let e =
⋃L

l=0

⋃l
m=−l [elm] be an arbitrary vector in R(L+1)2 , then

the position decoder PDmode is defined as

PDmode(e; ρ) := argmax
(θ,ϕ)

{∫ θ+ρ

θ−ρ

∫ ϕ+ρ

ϕ−ρ

exp

(
L∑

l=0

l∑
m=−l

elmYlm(u, v)

)
dudv

}
(12)

where ρ is a hyperparameter that controls the granularity of the evaluation. There is trade-off between
decoding spatial resolution and decoding stability: when ρ is large, we only know the rough range of
(θ, ϕ) but the result is less sensitive to local spikes, and vice versa.

One advantage of adopting the SHDD decoder is its learning-free property. Unlike learned neural
decoders, there is no loss introduced during the decoding stage. Besides, the mapping from diffusion
outputs to spherical coordinates is shown to be continuous and relatively smooth. Therefore, it is safe
to train latent diffusion models only using the SHDD KL-divergence loss LSHDD-KL. Another critical
advantage is that the SHDD decoder does not depend on specific partitions of the spherical surface
or the spatial distributions of image/location galleries. This is because the SHDD representation is
in effect a continuous spherical function and in theory one can evaluate it in arbitrary resolution. The
only two constraints are the maximum degree of Legendre polynomials L which limits the spatial
resolution of the spherical function itself and the computational resources (e.g., float32 or float64,
evaluation granularity ρ), both being independent from other factors.

4.5 Conditional SirenNet-Based UNet (CS-UNet)

Inspired by [37], we used SirenNet [40] as the backbone of our diffusion model. The theoretical
motivation behind this decision is that Spherical Harmonics coefficients are sums of sinusoidal and
cosinusoidal functions (See Appendix A.3). Using sine as the activation function helps preserve
gradients because the derivatives of sinusoidal/cosinusoidal functions are still sinusoidal and cosinu-
soidal functions. Figure 2(a) depicts the network architecture of the Conditional SirenNet (C-Siren)
module. The design is straightforward: inputs are the latent vector x, the image condition embedding
eI , and the diffusion step t. First, we use feed-forward layers to project x and eI into hidden vectors
hx, hI . Then we use the sinusoidal embedding layer [41] and feed-forward layers to project the
discrete diffusion timestep t into a scale vector αt and a shift vector ϵt. Then, we transform hx

into hx = (1 + αt) ⊙ hx + ϵt, which is an unconditional denoising step. Following that, we sum
the transformed hx and the condition hI and pass the sum to a feed-forward layer, which adjusts
denoising step under the guidance of the condition. Finally, output the sine-activated hidden vector to
the next C-Siren module. Figure 2(b) describes the architecture of CS-Unet.
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4.6 LocDiff

Next, we introduce the training cycle of our LocDiff model as illustrated in Figure 2(b). A training
data sample includes an input image I and its associated geolocation p = (θ, ϕ) serving as the
prediction target. First, we use a frozen CLIP-based image encoder [33] to encode the image I into
an image embedding eI . Then, we encode the geolocation p = (θ, ϕ) into its SHDD representation
PESHDD(θ, ϕ) and store them in a look-up table. Following that, we perform a standard DDPM
training [13] based on the proposed CS-UNet architecture as shown in Figure 2(b). In a forward pass
of the latent diffusion process, the spherical Dirac delta function δ(θ0,ϕ0) defined by PESHDD(θ, ϕ)
will be gradually added noise until being reduced to a vector whose values in each dimension are
purely generated from Gaussian noise. In a backward pass of the latent diffusion model, the CS-UNet
will start with a noise vector and gradually recover δ(θ0,ϕ0). We implement the DDPM algorithm
based on the open-source PyTorch implementation. We use the SHDD KL-divergence LSHDD-KL
between the ground-truth SHDD representation PESHDD(θ, ϕ) and the diffusion output as the training
objective, because it is more computationally stable and preserves the spatial multi-scalability than
the spherical MSE (e.g. great circle distance) loss. During inferencing, we sample coefficient
vectors from Gaussian noise conditioned on CLIP-based image embeddings and use PDmode to
predict locations. There are two important implementation details worth mentioning. In practice,
the integrals in Equation 9 and Equation 12 are approximated by summation. More specifically, we
select a set of N anchor points AN = {(θi, ϕi) ∈ C}Ni=1 on the sphere.

LSHDD-KL(e,PESHDD(θ, ϕ)) =

N∑
i=1

qe(θi, ϕi) log
qe(θi, ϕi)

p(θ,ϕ)(θi, ϕi)
(13)

PDmode(e; ρ) = argmax
(θ,ϕ)

N∑
i=1

I{dC((θ, ϕ), (θi, ϕi)) < ρ} exp

(
L∑

l=0

l∑
m=−l

elmYlm(θi, ϕi)

)
(14)

LSHDD-KL is used for training, thus we random sample N = 2048 anchor points over the globe for
each mini-batch to avoid overfitting. As for PDmode, the choice of AN introduces inductive bias –
the regions with more anchor points may have heavier impact on the decoding results and higher
spatial resolutions. However, Table 3 shows that LocDiff performs stably well on different AN . See
Appendix A.5 for the pseudo codes of LocDiff.

5 Experiments

5.1 Main Results

We first follow the experimental setup of GeoCLIP [45], a widely used image geolocalization model,
for a fair comparison. The training dataset is MP16 (MediaEval Placing Tasks 2016 [19]) containing
4.72 million geotagged images. The test datasets are 3 global-scale image geolocalization datasets
– Im2GPS3k [11], YFCC26k [44], and GWS15k [6]. Note that the test datasets Im2GPS3k and
YFCC-26k have similar distributions to MP16, and more importantly, their data points might overlap
with those in MP16, which benefits retrieval-based approaches [45].

During model inference, we run multiple (16) samplings given different augmentations of each test
image and use their geographical center as the prediction. This is a successful strategy proven by
GeoCLIP[45] and SimCLR[5]. For example, in our experiments, without this augmentation and
averaging step, the 1km accuracy of GeoCLIP on Im2GPS3K may drop from 14% to below 10%.
Then we count how many predictions fall into the neighborhoods of the ground-truth locations at
different scales respectively, which are denoted as Street (1 km), City (25 km), Region (200 km),
County (750 km), and Continent (2500 km). See Appendix A.4, for a detailed ablation study on
L. Larger L can improve LocDiff resolution, but there is a limit of L = 47 before hitting numerical
stability issues (Figure 5). We leave numerical stability issue to our future work.

Table 1 summarizes the performance of different models on these three datasets. In addition to the
pure LocDiff model, to further increase the resolution without increasing L, we develop a hybrid
approach denoted as LocDiff-H in Table 1 that combines the advantages of LocDiff and retrieval-based
models such as GeoCLIP – we use LocDiff to generate candidate locations, and restrict the retrieval
of GeoCLIP to the 200 km radius region around the candidate locations. Please see Appendix A.6 for
a detailed description of this hybrid model. From Table 1, we can see that LocDiff-H can outperform
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Table 1: Main evaluation results with the GeoCLIP [45] eval setup. L is the degree of SHDD representations
used in our model. LocDiff-H stands for the hybrid approach of LocDiff plus GeoClip. “Coun.” and “Cont.”
indicate Country and Continent scales. Bold and underline numbers denote the best and second best performance
on the corresponding dataset. - means not reported.

Model
Im2GPS3k YFCC-26k GWS15k

Street City Region Coun. Cont. Street City Region Coun. Cont. Street City Region Coun. Cont.
1 km 25 km 200 km 750 km 2.5k km 1 km 25 km 200 km 750 km 2.5k km 1 km 25 km 200 km 750 km 2.5k km

[L]kNN, σ=4 [46] 7.2 19.4 26.9 38.9 55.9 - - - - - - - - - -
PlaNet [47] 8.5 24.8 34.3 48.4 64.6 4.4 11.0 16.9 28.5 47.7 - - - - -
CPlaNet [38] 10.2 26.5 34.6 48.6 64.6 - - - - - - - - - -
ISNs [30] 10.5 28.0 36.6 49.7 66.0 5.3 12.3 19.0 31.9 50.7 0.05 0.6 4.2 15.5 38.5
Translocator [32] 11.8 31.1 46.7 58.9 80.1 7.2 17.8 28.0 41.3 60.6 0.5 1.1 8.0 25.5 48.3
GeoDecoder [6] 12.8 33.5 45.9 61.0 76.1 10.1 23.9 34.1 49.6 69 0.7 1.5 8.7 26.9 50.5
GeoCLIP [45] 14.1 34.5 50.7 69.7 83.8 11.6 22.2 36.7 57.5 76.0 0.6 3.1 16.9 45.7 74.1
PIGEON [10] 11.3 36.7 53.8 72.4 85.3 10.5 25.8 42.7 63.2 79.0 0.7 9.2 31.2 65.7 85.1
LocDiff (L=47) 10.9 34.0 53.3 72.5 85.2 9.6 22.8 37.5 58.6 76.8 2.1 12.4 33.7 67.0 85.0
LocDiff-H (L=23) 15.3 36.5 56.4 75.2 87.4 13.2 26.0 41.9 64.5 80.3 0.9 7.4 33.5 66.2 85.0

all baselines and LocDiff across almost all spatial scales on both Im2GPS3k and YFCC-26k datasets
while remaining competitive for the city scale metric on Im2GPS3k and region scale metric on YFCC-
26k. On the GWS15k dataset, LocDiff shows the best performance while LocDiff-H underperforms
LocDiff, especially on higher spatial scale metrics (e.g., street and city scales). We hypothesize
that this is because, unlike Im2GPS3k and YFCC-26k, the spatial distribution of GWS15k is very
different from that of the MP16 training dataset. The spatial inductive bias brought by GeoCLIP will
not benefit but hurt the performance of LocDiff-H on GWS15k, especially for fine-scale metrics.

Table 2: Comparison with existing generative methods. The evaluation
setup is identical to Dufour et. al [8]. L is the degree of SHDD represen-
tations used in our model. Bold numbers denote the best performance on
the corresponding dataset. - means not reported.

Dataset Model City Region Country Continent Density Coverage
25 km 200 km 750 km 2500 km

OSV-5M

vMF [8] 0.6 17.2 52.7 - - -
vMFMix [17] 0.3 11.1 34.2 - - -
Diff R3 [8] 3.6 40.9 75.9 - 0.752 0.568
FM R3 [8] 4.2 40.0 74.9 - 0.799 0.575
RFM S2 [8] 5.4 44.2 76.2 - 0.797 0.590
LocDiff (L=47) 11.0 46.3 77.0 88.2 0.795 0.572

YFCC-4k

vMF [8] 4.8 15.0 30.9 53.4 - -
vMFMix [17] 0.4 8.8 20.9 41.0 - -
Diff R3 [8] 11.1 37.7 54.7 71.9 0.959 0.837
FM R3 [8] 22.1 35.0 53.2 73.1 1.037 0.920
RFM S2 [8] 23.7 36.4 54.5 73.6 1.060 0.926
RFM S2 (10M) [8] 33.5 45.3 61.1 77.7 - -
LocDiff (L=47) 33.3 46.7 65.2 79.9 1.072 0.915

Several generative models have
been developed recently for im-
age geolocalization including
Diff R3 [8], FM R3 [8], and
RFM S2 [8]. Since these mod-
els were evaluated in different
datasets and experimental setups,
in order to conduct a fair com-
parison, we follow the evalua-
tion setup in [8] and compare
our LocDiff against these gener-
ative geolocalization models on
two datasets – OSV-5M [3] and
YFCC-4k [46]. The results are
shown in Table 2. We can see
that LocDiff can outperform all
generative geolocalization mod-
els on both datasets which clearly
showcases the advantages of our
multi-scale latent diffusion approach compared with those diffusion models directly applied on the
original coordinate space [8].

5.2 Generalizability Experiment Results

The key advantage of generative geolocalization over traditional classification/retrieval-based geolo-
calization methods is that it completely gets rid of predefined spatial classes and location galleries.
As noted in [45], the performance of retrieval-based geolocalization methods depends heavily on the
quality of the gallery – i.e., how well the candidate locations in the gallery cover the test locations. For
example, GeoCLIP uses a 100k gallery with locations drawn from MP16 training data. When using
this gallery for the GWS15k dataset, the performance drops due the spatial distribution mismatch
between MP16 and GWS15k. As shown in Table 3, GeoCLIP’s performance significantly drops
when an evenly sampled grid on Earth is used instead of the default image gallery. At small scales,
this is explainable because the grids are too coarse to differentiate 1 km to 25 km objects. However,
at large scales, the performance of GeoCLIP also drops significantly which is unexpected. With 1
million grid points, the average distance between two candidates is less than 30 km. However, the
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Table 3: Generalizability experiment. Numbers outside of the brackets denote geolocalization accuracies.
Numbers in the brackets denote relative performance degradation compared to the prior knowledge gallery/anchor.
Bold numbers denote the largest drop in performance with the given gallery/anchor setting.

Model Gallery/Anchor Size Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

GeoCLIP

MP16 100 k 14.11 34.47 50.65 69.67 83.82

Grid

1 M 0.03 (↓99.79%) 9.18 (↓73.37%) 33.47 (↓33.90%) 55.32 (↓20.63%) 75.34 (↓10.11%)
500 k 0.03 (↓99.79%) 7.17 (↓79.21%) 29.40 (↓41.96%) 52.29 (↓24.94%) 73.11 (↓12.80%)
100 k 0.00 (↓100.00%) 2.67 (↓92.25%) 22.39 (↓55.81%) 47.35 (↓32.05%) 68.77 (↓17.94%)
21 k 0.00 (↓100.00%) 0.87 (↓97.48%) 19.55 (↓61.41%) 43.78 (↓37.17%) 64.33 (↓23.26%)

LocDiff (L=23)

MP16 100 k 0.57 11.1 44.42 68.35 82.50

Grid

1 M 0.01 (↓98.25%) 4.37 (↓60.63%) 43.04 (↓3.10%) 68.30 (↓0.07%) 81.66 (↓1.02%)
500 k 0.07 (↓87.72%) 4.47 (↓59.73%) 43.18 (↓2.79%) 68.36 (↑0.01%) 81.65 (↓1.03%)
100 k 0.07 (↓87.72%) 4.04 (↓63.60%) 42.91 (↓3.40%) 68.34 (↓0.01%) 82.18 (↓0.39%)
21 k 0.03 (↓94.74%) 4.90 (↓55.86%) 43.44 (↓2.21%) 68.29 (↓0.09%) 81.68 (↓0.99%)

performance of GeoCLIP at the 200 km, 750 km, and 2500 km scales (way larger than 30 km) is
still much lower than the performance when using 100K MP16 gallery locations. It indicates that the
decline in performance is due to GeoCLIP’s weak generalization to new, unseen locations. We can
see that the gallery has a strong inductive bias that narrows the spatial scope, and makes the retrieval
model easier to overfit, but hurts its spatial generalizability.

Our LocDiff model, while also using anchor points for decoding (training is random), is almost
unaffected by the choice of anchor points. To align with GeoCLIP, we compare the same MP16
gallery and evenly sample grid points as decoding anchor points. We can see, at the smaller scales,
just like GeoCLIP, introducing the MP16 gallery helps improve the accuracy because its spatial
inductive bias helps offset the vagueness of decoding. However, at larger scales, the performance
of LocDiff is almost independent of the choice of anchors – both the way how we pick the anchor
points (MP16 or even grid) and the total number of anchor points (from 21k to 1M). It is a strong
indicator of better spatial generalizability for LocDiff.

5.3 Computational Efficiency

Though the mathematical derivation of SHDD encoding/decoding seems complicated, our method
does NOT introduce much computational cost. First, the SHDD encoding/decoding operations
are both deterministic, closed-form. For example, the d-dimensional (d = 256, 576, 1024) SHDD
encoding of a point is just a parallel evaluation of a list of two-variable functions, whose time
complexity is O(1) and space complexity is O(d). Second, during training, the SHDD encodings
can be precomputed and used as an embedding lookup table and there are no further computational
overheads. SHDD decoding is implemented as a matrix multiplication followed by an argmax
operation, which is also very efficient. See Table 4.

Encoding DDPM Decoding
CPU 0.0003s per location GPU 0.056s per image (200 steps, 16 augmentations) GPU 0.0012s per batch (512)

Table 4: Time efficiency for unit operations in LocDiff

We wish to emphasize that using an SHDD encoded multi-scale representation helps the diffusion
process to converge faster, because each dimension encodes information at the respective spatial
scales. For example, if at a certain step, the generated SHDD representation is 500km within the
ground-truth, then the dimensions with larger than 500km scales will remain mostly intact, and only
the finer dimensions need to be altered. In practice, our model takes about 2 million steps to converge
on YFCC, while the best results reported in [8] take 10 million steps.

6 Conclusion, Limitations and Future Work

In this paper, we propose a novel SHDD encoding-decoding framework that enables multi-scale
latent diffusion for spherical location generation. We also propose a CS-UNet architecture to learn
conditional diffusion and train a LocDiff model that addresses the image geolocalization task via
location generation. It achieves the state-of-the-art geolocalization performance over all existing
baselines on 5 global-scale image geolocalization datasets and demonstrates significantly better
spatial generalizability. In the future, we aim to leverage the gallery during the diffusion process and
explore different ways to further speed up decoding.
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A Appendix

A.1 Example of Diffusion Steps

Figure 3: Illustration of how the spherical probability mass concentration (mapped to a plane) corresponding to
the SHDD encodings changes along the backward process at step=0, 10, 20, 100, 200, respectively. The more
bright, the more probability mass.

A.2 Sparsity of Existing Positional Encoding Methods

Almost all location encoders can be formulated as the following equation [48]:

Enc(θ, ϕ) = NN(PE(θ, ϕ)), (15)

PE() is a position encoder that transforms the location p = (θ, ϕ) into a W -dimensional vector,
referred to as the position embedding. The neural network NN() : RW → Rd is a learnable function
that maps the position embedding PE(θ, ϕ) ∈ RW to the location embedding Enc(θ, ϕ) ∈ Rd.

1) tile is a vanilla location encoder used by many pioneering studies[4, 1, 43]. It divides geographic
regions into discrete global grids based on longitude and latitude and learns corresponding partition
embeddings based on the grid cell indicator vectors.

2) wrap [22] is a sinusoidal location encoder, normalizing latitude and longitude and processing
with sinusoidal functions before feeding into NNwrap(), which is composed of four residual blocks
implemented through linear layers.

3) wrap+ ffn [27] is a variant of wrap that substitutes NNwrap() with NNffn(), a simple FFN.

4) rbf [25] is a kernel-based location encoder. It randomly selects W points from the training dataset
as Radial Basis Function (RBF) anchor points. It then applies Gaussian kernels to each anchor
points.Each input point x⃗i is represented as a W -dimension feature vector using these kernels, which
is then processed by NNffn().

5) rff stands for Random Fourier Features [34] and it is another kernel-based location encoder. It
first encodes location x⃗ into a W dimension vector - PErff (x⃗) = φ(x⃗). Each component of φ(x⃗)
first projects x⃗ into a random direction ωi and makes a shift by bi. Then it wraps this line onto a
unit circle in R2 with the cosine function. PErff (x⃗) is further fed into NNffn() to get a location
embedding.

6) Space2Vec-grid and Space2Vec-theory [25] are two versions of sinusoidal multi-scale location
encoders on 2D Euclidean space. Both of them implement the position encoder PE(x⃗) as performing
a Fourier transformation on a 2D Euclidean space then fed into the NNffn(). Space2Vec-grid treats
x = (λ, φ) as a 2D coordinate while Space2Vec-theory be simulated by summing three cosine
grating functions oriented 60 degree apart.

7) xyz [27] is a vanilla 3D location encoder, converting the lat-lon spherical coordinates into 3D
Cartesian coordinates centered at the sphere center with position encoder PExyz(x⃗), then feeds the
3D coordinates into an MLP NNffn().

8) NeRF can be viewed as a multiscale version of xyz by employing Neural Radiance Fields (NeRF)
[28] as its position encoder.

9) Sphere2Vec [27], including Sphere2Vec-sphereC, Sphere2Vec-sphereC+, Sphere2Vec-sphereM ,
Sphere2Vec-sphereM+, and Sphere2Vec-dfs, is a series of multi-scale location encoders for spheri-
cal surface based on Double Fourier Sphere (DFS) and Space2Vec. The multi-scale representation of
Sphere2Vec is achieved by one-to-one mapping from each point xi = (λi, φi) ∈ S2 with S be the
total number of scales. They are the first location encoder series that preserves the spherical surface
distance between any two points to our knowledge.
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10) Siren (SH) [37] is a more recently proposed spherical location encoder, which claims a learned
Double Fourier Sphere location encoder. It uses spherical harmonic basis functions as the position
encoder PESiren (SH)(x⃗), followed by a sinusoidal representation network (SirenNets) as the NN().

These existing location embedding spaces all suffer from sparsity issues, primarily due to the inherent
correlations among the different dimensions of the position encoders. The dimensions of position
embeddings are frequently interdependent. As a result, many points in the position embedding space
become distant or isolated from one another.

A.3 Computation of Spherical Harmonics

To compute Ylm, one can use the following expression in terms of associated Legendre polynomials
Pm
l (x):

Ylm(θ, ϕ) =


(−1)m

√
2JP

|m|
l (cos θ) sin (|m|ϕ) m < 0

JP
|m|
l (cos θ) m = 0

(−1)m
√
2JP

|m|
l (cos θ) cos (|m|ϕ) m > 0

(16)

where J =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

and Pm
l (x) is further computed by

Pm
l (x) = (−1)m · 2l · (1− x2)m/2 ·

l∑
k=m

k!

(k −m)!
xk−m

(
l

k

)(
(l + k − 1)/2

l

)
(17)

A.4 Spatial Resolution of SHDD Encoding/Decoding

The spatial resolution of SHDD encoding/decoding (i.e., on what scales the mode-seeking decoder
can accurately locate the probability mass concentration of the spherical Dirac delta functions)
is bound by the degree L of Legendre polynomials. For an L-degree SHDD representation, the
spatial scale threshold at which it can accurately approximate spherical functions is π/L in radian
or approximately 20000/L in kilometers [16]. For example, for L = 15, 23, 31, the thresholds are
around 1300 km, 870 km, and 640 km, respectively. At scales significantly below half this threshold,
even if the diffusion model generates accurate coefficient vectors, the mode-seeking decoder can still
only decode vague locations with large variances. Figure 4 gives a visual intuition.

Figure 4: Illustration of the spatial resolutions with L = 15, L = 23 and L = 31. The bright regions are the
probability mass concentrations and points within these regions are similarly likely to be decoded as the location
predictions. The smaller the bright regions are, the lower errors the SHDD decoding brings.

Therefore, to uplift the performance of LocDiff, one straightforward way is to use larger L. We
conduct an ablation study of the effect of L on image geolocalization performance on the Im2GPS3K
dataset. The results are shown in Figure 5(a). We can see as L increases, while the model perfor-
mances at larger spatial scales (e.g., 750km, 2500km) only increase slightly, the performances at
smaller scales (e.g., 1km, 25km, 200km) see huge uplifting. This validates our hypothesis – a larger
L can make the mode-seeking decoder decoding vague locations with smaller variances, thus leading
to higher image geolocalization performance. The largest L we tried in Figure 5(a) is 47 which
corresponds to a spatial resolution of 200km. This is why we see huge performance improvements
on the 25km and 200km curves but not on the 1km curve since 1km is still significantly smaller
than the current spatial scale threshold.
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(a) (b)

Figure 5: (a): An illustration of how the image geolocalization performance on the Im2GPS3K dataset increases
as L increases. Different curves indicate performance metrics on different spatial scales. (b): A log-scale plot of
the maximum absolute values of each SHDD encoding dimension up to 64×64 = 4096 dimensions.

However, it is not recommended to unlimitedly increase L. There are two major reasons: The SHDD
encoding dimension increases quadratically with L, i.e., we need quadratic space to halve the spatial
resolution. It is expensive and difficult to train a diffusion model on very large encodings (e.g. to
achieve 50 km spatial resolution, we theoretically need 160,000 dimensions). We find that the higher
the dimension of SHDD encodings, the higher the maximum absolute values of the coefficients.
Figure 5(b) is a log-scale plot of the maximum absolute values of each SHDD encoding dimension up
to L = 63 (i.e., in total 64 × 64 = 4096 dimensions). The absolute values below 2500 dimensions are
in general manageable with only a few spikes. However, dimensions beyond this threshold become
unbearably large, which makes the probability computation very unstable and easy to overflow. Based
on these observations, we use up to L = 47 in our paper because now the dimension of SHDD
encoding goes to 2304, still within the manageable range.

Moreover, to address the high dimension issue when we use a large L, we find that applying a low-pass
filter to the dimensions is a good dimension reduction solution. See Figure 5(b). Many dimensions of
the SHDD encodings have very small absolute values and will not significantly influence the results
of SHDD encoding/decoding. Thus, we may set a low-pass filter analogous to Fourier transformation
and signal processing, which only keeps the dimensions that have adequately large coefficient values.
This can be further investigated in future works.

A.5 Pseudo-Code for LocDiff

Algorithm 1 Training LocDiff
Input : A dataset D with location-image pairs {(p, I)}. Each location is a tuple of latitude and longitude

p = (θ, ϕ). A Gaussian noise scheduler N (t), where t is the time step. SHDD encoder PESHDD.
Pretrained Image encoder EIm. CS-UNet model M with random initialization. SHDD KL-divergence
loss LSHDD-KL.

Output :A trained CS-UNet model M .
1 For p, I ∈ D:

compute the SHDD encoding of p: e← PESHDD(θ, ϕ);
compute the image embedding of I: eI ← EIm(I);
randomly draw a time step t;
add Gaussian noise to the SHDD encoding (forward process): e′ ← e+N (t);
use the CS-UNet to denoise the SHDD encoding conditioned on the image embedding (backward process):
ê←M(e′, eI, t);
compute the SHDD KL-divergence loss: l← LSHDD-KL(ê, e);
use gradient decent to minimize l and update M : M ← argminM l;

2 return M
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Algorithm 2 Inferencing LocDiff
Input : Image I. Random image augmentation AUG. Ensemble number N . DDPM sampler DDPM. DDPM

step T . Pretrained Image encoder EIm. Trained CS-UNet model M with random initialization. SHDD
mode-seeking decoder PDmode. Mode-seeking range hyperparameter ρ. An initial location p = (0, 0).

Output :An ensembled location prediction p̂.
3 For i = 1, 2, · · ·N :

generate a random augmentation of image I: Iaug ← AUG(I);
compute the image embedding of I: eaug ← EIm(Iaug);
randomly draw an SHDD encoding e′;
use the DDPM sampler and the trained CS-UNet M to sample an SHDD encoding conditioned on the image
embedding: ê← DDPM(M, e′, eaug, T );
use the SHDD decoder PDmode to decode a location from the sampled SHDD encoding: p̂← PDmode(ê, ρ);
p← p+ p̂

4 return the ensemble of N location predictions: p/N

A.6 A LocDiff-H Hybrid Appoach

We develop a hybrid approach which uses LocDiff’s predictions to narrow down the candidate regions
and then deploy GeoCLIP to generate the final predictions. More specifically, we first use LocDiff to
sample multiple times (e.g., 16) and get a rough distribution of candidate locations, i.e. they indicate
where the true answer is highly likely to reside. Then, we restrict the retrieval of GeoCLIP to the
neighborhoods (200 km radius) of these candidate locations. As shown in Table 1, we can see that
this hybrid approach yields substantially better results than both GeoCLIP and LocDiff alone. This
approach is similar to the recommendation systems’ retrieve and rerank approach. This flexible
hybrid approach points to an interesting future research direction. We can also replace GeoCLIP with
other state-of-the-art image geolocalization models such as PIGEON [10], to further improve the
model performance.

A.7 Inductive Bias of Gallery

The key factor that constrains the spatial generalizability of retrieval-based geolocalization models is
the inductive bias introduced by the image gallery. When the spatial distribution of the gallery’s image
locations aligns well with the image locations in the test dataset, the performance of the retrieval-
based models will be boosted, especially on low-error scales. However, without such inductive bias
(e.g., using evenly spaced grid points as gallery locations), the performance of the retrieval-based
models on all scales will suffer.

To better understand what the inductive bias of an image gallery is and how heavily it affects retrieval-
based models, we calculate the statistics that demonstrate how spatially aligned the MP16 gallery
used in GeoCLIP is with the Im2GPS3K test data. We measure how close test image locations are to
the gallery image locations by counting the number of gallery locations that are within 1km/25km
from a given test image location. Table 5 shows the statistics results. We can see that the MP16
image gallery’s locations indeed closely match the image locations in the Im2GPS3K test dataset. In
contrast, when we use a set of grid locations, there are much less locations falling into the 1km or 25
km buffer of the testing image locations.

Table 5: The percentage of test locations that are close (within 1 km/25 km) to multiple gallery locations.
Gallery MP16 Grid

# Gallery Locations > 1 > 10 > 50 > 100 > 1 > 10 > 50 > 100

Within 1 km 63.5% 32.7% 14.9% 9.78% 0.1% 0.0% 0.0% 0.0%
Within 25 km 95.2% 75.7% 51.9% 42.0% 38.9% 0.0% 0.0% 0.0%

Figure 6 is a set of visualizations of Table 3. It clearly demonstrates how GeoCLIP suffers greatly
from using a grid gallery without prior knowledge (i.e., without using the inductive bias brought by
the MP16 image gallery), while our method remains almost unaffected on larger spatial scales (200
km, 750 km, and 2500 km) and much less affected on smaller scales (25 km). These results clearly
demonstrate that the high performance of GeoCLIP on smaller spatial scales is based on the fact that
the MP16 image gallery used by GeoCLIP already contains candidate locations that are close enough
to true answers (i.e., test image locations). However, this is not the case for our method because
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(a) 1 km (b) 25 km (c) 200 km

(d) 750 km (e) 2500 km

Figure 6: From (a) to (e): the performance changes over different choices of galleries/anchor points. Different
plots indicate performance metrics under different spatial scales. For each plot, the X-axis indicates the choice
of gallery locations, starting from MP16 points, 1 million grid points, to 21K grid points. The y-axis indicates
the geolocalization performances on the corresponding spatial scale.

our model does not rely on such an image gallery either during training or during inferencing time.
Thus, our LocDiff model suffers much less when we switch to a grid location gallery. Moreover,
when we decrease the number of points in the grid gallery, the performances of GeoCLIP decrease
significantly while the performances of our LocDiff are almost unaffected.

A.8 Computational Complexity

We trained our model on a Linux server equipped with four NVIDIA RTX 5500 GPUs, each with
24GB of memory. We report the training time and space complexity on a single GPU in Table 6. We
do not have the training times for baseline models such as GeoCLIP and PIGEON because we did
not train them from scratch and such statistics are not reported in their papers.

It can be seen that 1024 is the maximum SHDD dimension a single GPU can handle due to GPU
memory constraints. For LoDiffusion models with SHDD dimensions beyond 1024, we either use
the low-pass filtering technique mentioned in Section A.4 to reduce the dimension to 1024, or split
the computation across multiple GPUs. Therefore their computational complexity is not separately
reported.

Table 6: Training time and space complexity. Each epoch undergoes 1500 iterations.
Degree L Hidden Dimension Second/Epoch Memory (MB)

15 256 130 5691
23 576 212 10599
31 1024 388 17407

19



The major factor that decides the inference time of LocDiff is the choice of the sampler. In our
experiment, we use the original DDPM sampler (i.e., no DDIM acceleration) with 200 sampling
steps. The inference time per image for LocDiff is 0.056s and for GeoCLIP 0.024 seconds.

A.9 Ablation Studies

A.9.1 Comparison with other location encoding/decoding techniques

As we have discussed, the superiority of using SHDD for location decoding is that its encoding space
is smoother than other location encoders that use neural networks such as rbf and Sphere2Vec [27].
To demonstrate this, we evenly sample 1 million locations on Earth, encode them into corresponding
location embeddings by using rbf and Sphere2Vec location encoder, and train a neural network
decoder to map the location embeddings back to locations. We also use the learned neural decoder in
the LocDiff training with weights frozen. The ablation study results are shown in Table 7. We can
see that the performances of rbf and Sphere2Vec are much worse than SHDD, especially on smaller
scales. This is because: (1) the learned decoder is not 100% accurate, i.e. it may decode an encoding
to a wrong location, and (2) if the encoding gets a small perturbation, the decoded location may have
a very large drift due to non-linearity.

Table 7: Comparing the performance of different encoders/decoders on Im2GPS3K. The NN is a 6-layer FFN
trained on 1 million corresponding location encodings evenly spaced on Earth.

Encoder Decoder 1 km 25 km 200 km 750 km 2500 km
rbf [24] NN 0.0 0.0 18.2 44.1 60.2

Sphere2Vec [27] NN 0.0 0.0 22.1 58.4 72.3
SHDD (L=47) SHDD (L=47) 10.9 34.0 53.3 72.5 85.2

To better understand the spatial drift part, Table 8 shows how much spatial drift will bring to the
decoded locations when we add a small Gaussian noise (variance = 0.01) to the corresponding
location encoding. We can see that compared with SHDD, both pretrained rbf and Sphere2Vec
models can have much larger spatial drifts when we add a small Gaussian noise (variance = 0.01) to
the corresponding location encoding. The larger the spatial drift, the less robust the encoding/decoding
process is to small hidden space perturbations. Since the diffusion model will not generate perfectly
noiseless encodings, such spatial drift indicates the intrinsic error of the corresponding location
encoding/decoding method.

Table 8: Comparing the spatial drifts when applying small Gaussian noise (variance = 0.01) to the encoding.
The NN is a 6-layer FFN trained on 1 million corresponding location encodings evenly spaced on Earth.

Encoder Decoder Perturbation Drift
rbf NN 102.4 km

Sphere2Vec NN 89.1 km
SHDD (L=47) SHDD (L=47) 5.3 km

A.9.2 Comparison with other losses

Table 9: Comparing the performance of using different training losses on Im2GPS3K.
Loss 1 km 25 km 200 km 750 km 2500 km
L1 0.0 0.5 20.3 30.6 43.5
L2 0.0 0.7 20.1 32.7 44.9

Cosine 7.5 32.2 53.0 71.5 84.9
SHDD (L=47) KL-divergence 10.9 34.0 53.3 72.5 85.2

Table 9 shows an ablation study on the impact of different loss functions. We can see that the SHDD
KL-divergence is significantly better than L1/L2 losses. Cosine distance, being similar to our SHDD
KL-divergence in terms of mathematical formulation (SHDD KL-divergence is the sum of exponential
element-wise multiplications, while cosine similarity is the sum of raw element-wise multiplications),
has comparable performance especially on larger scales. It would be a good approximation to reduce
computational costs. We will add more thorough experiments in the camera-ready version.
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A.9.3 Ablation studies on other modules

We investigate how variations in the width of the CS-UNet affect its performance (see Table 10). In
general, shrinking the bottleneck width w of the CS-UNet seems to help alleviate model overfitting
(we can adopt a lower dropout rate) and slightly boost performance, but make the model more difficult
to train.

Table 10: The bottleneck width w is the narrowest part of each C-Siren module. We report the performance
when input encoding dimension is 1024 (L = 31) for the sake of limited time.

Setting 1 km 25 km 200 km 750 km 2500 km
w = 32, d = 6 5.1 27.2 50.9 71.2 84.1
w = 128, d = 6 4.7 27.0 50.2 70.8 84.3

A.10 Training Hyper parameter Setup

Table 11: Training Set-up

Degree L
Dimensions Hyperparameters
d dI dT batch size lr epochs beta weight decay dropout anchor size

23, 47 576, 2304 768 200 512 0.0001 500 [0.9,0.99] 0.0005 0.3 2048

Table 11 lists the details of our training setup. We use an Adam optimizer.

21


	Introduction
	Related Work
	Preliminaries
	LocDiff Framework
	Problem Setup and Intuitions
	Spherical Harmonics Dirac Delta (SHDD) Encoding
	SHDD KL-Divergence
	SHDD Decoding
	Conditional SirenNet-Based UNet (CS-UNet)
	LocDiff

	Experiments
	Main Results
	Generalizability Experiment Results
	Computational Efficiency

	Conclusion, Limitations and Future Work
	Appendix
	Example of Diffusion Steps
	Sparsity of Existing Positional Encoding Methods
	Computation of Spherical Harmonics
	Spatial Resolution of SHDD Encoding/Decoding
	Pseudo-Code for LocDiff
	A LocDiff-H Hybrid Appoach
	Inductive Bias of Gallery
	Computational Complexity
	Ablation Studies
	Comparison with other location encoding/decoding techniques
	Comparison with other losses
	Ablation studies on other modules

	Training Hyper parameter Setup


