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ABSTRACT

Conventional federated learning (FL) frameworks follow a server-centric model
where the server determines session initiation and client participation. We introduce
Client-Centric Federated Learning (CCFL), a novel client-centric FL framework
that puts clients as the driving role of FL sessions. In CCFL, each client inde-
pendently and asynchronously updates its model by uploading a locally trained
model to the server and receiving a customized model tailored to its local task.
The server maintains a repository of cluster models, iteratively refining them us-
ing received client models. Our framework accommodates complex dynamics in
clients’ data distributions, characterized by time-varying mixtures of cluster distri-
butions, enabling rapid adaptation to new tasks with high performance. We propose
novel strategies for accurate server estimation of clients’ data distributions. CCFL
offers clients complete autonomy for model updates, enhances model accuracy,
and significantly reduces client computation, communication, and waiting time.
We provide a theoretical analysis of CCFL’s convergence. Extensive experiments
across various datasets and system settings highlight CCFL’s substantial advantages
in model performance and computation efficiency over baselines.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a distributed learning framework that allows
for collaborative training of a global model across multiple clients while keeping their raw data
local. To tackle the problem of clients’ non-iid data distributions, personalized FL (Tan et al., 2022)
frameworks have emerged to offer each client a tailored model. However, in nearly all works within
personalized FL, and even in the broader FL context, the central locus of control invariably resides
with the server. That is, the server typically initiates training sessions and determines which clients
should participate and when. Astonishingly, the following question has been conspicuously absent
from the discourse: Why should a client always comply with the server’s directives regarding model
uploads? Are there not situations where network connectivity issues arise, or, indeed, a client simply
does not want to share the model when server calls?

In this paper, we raise a brand-new FL framework: Client-Centric Federated Learning (CCFL),
which empowers each individual client to assume a dominant role in the FL process. In CCFL,
each client device collects data from a mixture of distributions, whose mixing ratios may vary over
time. Once a distribution shift is observed, the client may seek help from the server, who acts as
a service provider, in updating its local model to match the new distribution. In real-life scenarios,
this setting is commonplace. Consider a skincare maintenance application, where users’ skin types
exhibit complexity — perhaps featuring a combination of oiliness and dryness in different areas of
skin, reflecting a mixture of distributions. Additionally, users’ skin conditions may vary with seasons,
leading to shifts in distributions. Another example is a retail chain with various branches, each of
which sell commodities of different store categories. The commodities offered by these branches may
evolve based on changing customer preferences, creating a dynamic mixture of various distributions.
Note that in CCFL, each client possesses complete autonomy in deciding when to update its model,
and the servers plays an assistive role for the clients to accomadating to their new distributions.

To tackle clients’ data variations across multiple distributions, CCFL adopts the clustered FL setting
where K base cluster models are maintained at the server (Sattler et al., 2020a;b), which are used
to update clients’ models. In existing clustered FL works, a crucial consideration is to measure
the data distributions of clients. Many works distribute all cluster models to clients, leaving it to
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clients to determine the distribution based on local empirical loss (Ghosh et al., 2020; Mansour et al.,
2020; Ruan and Joe-Wong, 2022). However, such an approach poses several challenges. Firstly,
it places a significant communication burden to send all the cluster models. Secondly, it imposes
substantial computational demands on clients, requiring them to calculate losses for each cluster and
make comparisons. Some other approaches leverage distances between uploaded models to form
client groups (Duan et al., 2021a), imposing impractical synchronization requirements on clients for
data uploads. In sharp contrast, as illustrated in Figure 1, CCFL assigns the task of evaluating client
data distribution to the server. Based on the model uploaded by a client, the server analyzes its data
distribution, and updates the cluster models. Subsequently, the server generates a personalized model
and sends it to the client. This significantly simplifying clients’ communication and computation
compared with previous clustered FL solutions.

Figure 1: High-level view of CCFL.

In the context of above mentioned clustered FL, and build-
ing upon the client-centric foundation, we develop an asyn-
chronous CCFL framework that focuses on maximizing
clients’ performance and minimizing clients’ complexity.
Notably, we introduce an effective newcomer cold start
mechanism, a feature conspicuously absent in the majority
of related works (Duan et al., 2021a; Zeng et al., 2023). Fur-
thermore, our framework exhibits adaptability in addressing
client distribution drift, a challenge specifically addressed
in only one previous study (Duan et al., 2021b) within the
context of clustered FL. CCFL is the first clustered FL frame-
work that focuses on client’s autonomy, efficiency, and per-
formance. Compared to existing clustered FL works, client
involvement remains minimal, as they only need to conduct
local model training—a computationally modest task; users’
communication overhead is equally reduced, with solely uploading and downloading one single model,
and when to upload is left at their discretion. We provide convergence analysis that theoretically
validates our framework. Extensive experiments over different datasets and network settings attest to
the outstanding performance of CCFL. Notably, it significantly alleviates both communication and
computational costs compared to existing works.

2 RELATED WORK

Clustered Federated Learning (clustered FL). Hard clustering algorithms assume clients in the
same group have identical data distribution (Briggs et al., 2020; Ghosh et al., 2020; Mansour et al.,
2020); while soft clustering methods assume the data of each client follows a mixture of multiple
distributions (Ruan and Joe-Wong, 2022; Li et al., 2021). In most cases, expectation-maximization
(EM) methods are used to compute clients’ distribution (Long et al., 2023; Ma et al., 2022; Ghosh
et al., 2022), and global updates leverage methods based on FedAvg (Briggs et al., 2020). Some
works add proximal terms on clients’ objectives for personalization (Tang et al., 2021).

Asynchronous Federated Learning (asynchronous FL). Asynchronous FL operates on resource-
constrained devices (Xu et al., 2021). In typical asynchronous setups, the central server conducts
global aggregation immediately upon receiving a local model (Xie et al., 2019; Wang et al., 2022;
Chen et al., 2020), or a set of local models (Nguyen et al., 2022; Wu et al., 2020). These asynchronous
clients may be grouped into tiers for updating based on factors like staleness or model similarities
(Park et al., 2021; Wang and Wang, 2022), referred to as semi-asynchronous. However, this clustering
typically contributes to a single global model, and sometimes, the server still selects the clients (Zhang
et al., 2021). Existing clustered FL frameworks primarily operate within a synchronous setting. In the
context of asynchronous FL, clients are sometimes grouped only to control staleness. Our framework
is the first, to the best of our knowledge, to integrate clustered FL within an asynchronous setting.

User-centric FL frameworks. Few works have studied FL from a comprehensive user’s perspective.
Mestoukirdi et al. (2021; 2023) claim to be user-centric, but are indeed personalized FL frameworks
dealing with communication burdens. In Khan et al. (2023), the authors point out that existing
FL works take away clients’ autonomy to make decisions themselves, and propose a token-based
incentive mechanism that rewards personalized training. However, this work fails to consider the
asynchrony among clients, making it insufficient to provide full autonomy to clients. Note that the
shift in clients’ distribution is distinct from Federated Continual Learning (FCL)(Yoon et al., 2021),
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which primarily aims to minimize catastrophic forgetting. Our focus lies solely in enabling clients to
seamlessly adapt their models to new data during distribution shifts.

3 PROBLEM DEFINITION

Consider an FL system with one central server and many distributed clients. The server maintains K
cluster models, each with a validation dataset Dk corresponding to different distributions P1, . . . , PK .
The value of K is determined a priori, according to the type of service (e.g., genders or ethnicities in
the skincare service), or is deducted from a small amount of validation data collected in advance at
the server. Given a loss function l(w;x, y), each cluster k ∈ [K] aims to find an optimal model wk

that minimizes the objective

Fk(wk) = E(x,y)∼Pk
[l(wk;x, y)]. (1)

The training takes T global epochs. For each epoch t ∈ [T ], some client m collects local data
following a mixture of distribution P t

m =
∑K

k=1 µ
t
mkPk, with µt

mk ∈ [0, 1] and
∑K

k=1 µ
t
mk = 1.

Here µt
mk is the importance weight of cluster k to client m at epoch t. The importance weights may

vary over time, and are unknown to the client. Each time when client m’s data distribution shifts, it
may choose to fit the local model wt

m to the new distribution, by optimizing the local objective

ht
m(wt

m;wτ
m) ≜

1

mt
E(xi,yi)∼P t

m

mt∑
i=1

l(wt
m;xi, yi) +

ρ

2

∥∥wt
m −wτ

m

∥∥2 . (2)

Here mt is the number of data samples; ρ is some scaling parameter; τ < t is the last epoch when
client m uploads its model wτ

m to the server, and the server returns a model wτ
m.

4 CLIENT-CENTRIC FEDERATED LEARNING

Figure 2: CCFL workflow. Client m uploads model and timestamp tuple (wm, τ) to the server. Server
labels it at epoch t. In this figure, server estimates little distribution of P1, and would not update
cluster 1. An aggregated model based on client’s estimated distribution is sent back after update.

4.1 CLIENT UPDATE

The user-centric architecture of CCFL empowers users to initiate the uploading process autonomously.
To begin, client m receives an initialization tuple from the server, comprising the global model and a
timestamp, denoted as (w, t). Subsequently, the user adapts the global model w to its own dataset to
obtain a personalized model wm. After initialization, client m retains the discretion to select when to
upload the tuple of their local model and timestamp (wm, t), and then awaits the server’s response,
which serves to enhance their local performance.

Client Data Shifts. We assume the distribution shifts of clients between different epochs, i.e. for
client m, it is possible that µt

mk ̸= µt′

mk for all t ̸= t′, t, t′ ∈ [T ].
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Training and Uploading. In order to establish a mutually beneficial system, clients are required
to perform local training prior to model uploading (refer to Algorithm 2). The decision of when to
upload rests entirely with the clients themselves. Furthermore, clients are advised to do training and
uploading when there are shifts in data distribution to better align with the new data stream; or when
a substantial amount of time has elapsed since the last upload to ensure synchronization with the
server’s state. Through this preliminary training session before uploading, the server gains valuable
insights from the clients, facilitating the performance of cluster models.

Scalable Client Integration. We do not presuppose a fixed total number of clients. Our system is
designed to be fully open and dynamic. A new user simply fetches an initialization tuple from the
server, and starts the training and uploading process, seamlessly integrating into the system.

4.2 SERVER UPDATE

Algorithm 1: DistributionEstimation & UpdateRaTioCompute
Function DistributionEstimation(wm,w0, ...,wK , D0, ..., DK):

foreach k ∈ [K] do
lk ← F (wt

m;Dk); d1k ←
∥∥F (wtk

k ;Dk)− F (wt
m;Dk)

∥∥
1
; d2k ←

∥∥wt
m −wtk

k

∥∥
2

/* lbar, d1bar, d2bar are hyperparameters to control the scale */
lk ← lk − lbar, d1k ← d1k − d1bar, d2k ← d2k − d2bar
/* hyperparameters c1, c2, c1 + c2 ∈ [0, 1], ut

mk ∈ [0, 1],
∑

k u
t
mk = 1 */

ut
mk ← 1

K−1 ·
(
c1 ·

∑
i̸=k li∑
i li

+ c2 ·
∑

i̸=k d1i∑
i d1i

+ (1− c1 − c2) ·
∑

i̸=k d2i∑
i d2i

)
/* A > 0 is the amplifier, helping magnify the difference of

distribution estimation among clusters. */
ut
m0, ..., u

t
mK ← softmax(ut

m0 ·A, ..., ut
mK ·A)

return ut
m0, ..., u

t
mK

Function UpdateRaTioCompute(ut
m0, ..., u

t
mK , α0, τ):

foreach k ∈ [K] do
α10, ..., α1K ← ut

m0, ..., u
t
mK

/* If distribution content is less than preset bar α1bar,
do not update the cluster. */

α1max ← max(α1k). if α1k < α1bar then α1k ← 0; else then α1k ← α1k/α1max

/* a, b are hyper-parameters to control staleness. */
if tk − τ < b then α2k ← 1; else then α2k ← 1/ (a(tk − τ) + 1)
/* Hyper-parameter α0 governs the maximum extent of local

model modification to the global cluster model. */
αt
mk ← α0 · α1kα2k /* αt

mk ∈ [0, α0] */

return αt
m0, ..., α

t
mK

Throughout the entire process of CCFL process, the server passively waits for the clients’ uploads.
Upon receipt of an upload, the server first updates and labels the client with global epoch t, then the
server initiates a two-step evaluation process. Firstly, it checks if the client is too stale, i.e., when
client m uploads (wm; τ) at epoch t. If t − τ > τ0 (τ0 is a preset staleness threshold), the server
refrains from updating and instead transmits a personalized model aggregated by cluster models.
Otherwise, the server proceeds to estimate client m’s data distribution. Subsequently, it updates each
cluster using a cluster-specific updating parameter and dispatches the personalized model back to the
client.

Distribution Estimation. For each cluster k, a small public dataset Dk derived from Pk is stored
at the server to do the clients’ distribution estimation. Upon client m uploading wm at epoch
t (referred to as wt

m for clarity), the estimation of client m’s data distribution hinges on several
components, including wt

m, the latest models of clusters denoted as wtk
k (k ∈ [K]), where tk is

the last epoch when cluster k is updated, and the validation dataset Dk. For distribution k, this
estimation involves two distinct considerations. First, it takes into account the loss incurred by
wt

m on distribution Pk, which is quantified by the empirical loss on validation dataset Dk, i.e.
F (wt

m;Dk) = E(x,y)∼Dk
l(wt

m;x, y). If F (wt
m;Dk) < F (wt

m;Dk′), it signifies that client m’s
distribution P t

m may have a higher composition of distribution Pk compared to Pk′ . Second, if client
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m is not too stale (t− τ < τ0), it is likely to resemble the latest global cluster model. This similarity
is discernible either through the loss difference between the latest cluster model and the client’s model
on validation data, denoted as

∥∥F (wtk
k ;Dk)− F (wt

m;Dk)
∥∥
1
, or through the model distance, such

as the l2-norm distance,
∥∥wt

m −wtk
k

∥∥
2
. Smaller values of these metrics signify a higher degree of

similarity. Drawing from these observations, we employ Algorithm 1 to calculate the distribution
estimation ut

mk, k ∈ [K]. Based on the analysis presented in Section 5.2, we can reasonably posit
that ut

m0, . . . , u
t
mK serve as accurate estimations of the true importance weights µt

m0, . . . , µ
t
mK .

It’s important to note that due to the potential distribution shifts on the client side, the server must
recompute these weights every time a client initiates an upload.

Clusters Updating. The server updates the model of each cluster k as follows

wt
k = (1− αt

mk)w
tk
k + αt

mkw
t
m, (3)

where αt
mk is the updating ratio contributed by client m to cluster k at epoch t. The calculation

of αt
mk considers whether the client model predominantly originates from distribution Pk (by the

estimated proportion ut
mk), and whether the client model is too stale (by tk and the timestamp τ to

assess the degree of staleness). Detailed procedures for computing the updating ratio are elucidated
in Algorithm 1. Note that only clusters with a non-zero updating rate (αt

mk > 0) undergo updates
facilitated by client m’s model wt

m.

Aggregation and Feedback. If client m is not so stale (t − τ < τ0), when all corresponding
models finish updating, the server sends back the aggregated model wt

m =
∑K

k=1 u
t
mkw

tk
k to client

m. Otherwise, the new distribution would not be measured, and the server only sends back model
wt

m =
∑K

k=1 u
τ
mkw

tk
k based on the measures at the last upload epoch τ .

Algorithm 2: CCFL
Input: Server pre-trained model w0

k, server validation dataset Dk ∼ Pk (k ∈ [K]), staleness
threshold τ0 < T , server update shreshold α0 ∈ (0, 1)

Output: Local model parameter wm, global model parameter wk

Initialization: Server sends
(
w0, 0

)
to each client, w0 = 1

K

∑K
k=1 w

0
k. Global epoch t← 0.

Run Client() thread and Server() thread asynchronously in parallel.
Thread Server():

foreach k ∈ [K] do tk ← 0. while t ≤ T do
while no client uploads do

/* Server passively waits for upload from clients. */
Wait for client update. if client m uploads (wm, τ) then

t← t+ 1; wt
m ← ServerUpdate (wm, τ, t); send (wt

m, t) to client m.

Thread Client():
foreach client m in parallel do

Receive pair (wm, 0) from server. set local model wm ← wm, local timestamp tm ← 0.
while active do

if choose to upload then
Define hm(wm;w) = fm(wm;Dm) + ρ

2 ∥wm −wm∥2

foreach local iteration h do
wm,h ← wm,h−1 − γ∇hm(wm,h−1;wm) /* learning rate γ */

Upload (wm, tm) and wait for server response (wm, t); tm ← t

Function ServerUpdate(wm, τ, t):
/* If client deprecated, do not update global model. */

if t− τ > τ0 return wt
m =

∑K
k=1 u

τ
mkw

tk
k .

ut
m0, ..., u

t
mK ← DistributionEstimate(wm,w0, ...,wK , D0, ..., DK)

αt
m0, ..., α

t
mK ← UpdateRatioCompute(ut

m0, ..., u
t
mK , α0, τ )

foreach k ∈ [K] do if αt
mk > 0 then wtk

k ← (1− αt
mk)w

tk
k + αt

mkwm, tk ← t

return wt
m =

∑K
k=1 u

t
mkw

tk
k .

The entire workflow of CCFL is depicted in Figure 2 and described in Algorithm 2.
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4.3 CONVERGENCE ANALYSIS

We make some universal assumptions to assist the convergence analysis of CCFL.
Assumption 1. Fk is Lk-smooth and µk-strongly convex and for some Lk, µk > 0 for all k ∈ [K].
Assumption 2. Each client executes at least Hmin and at most Hmax local updates before updating.

Assumption 3. Denote ht
m(w;w) = f(w) + ρ

2 ∥w −w∥2, where w,w ∈ Rd are respectively local
and global models, we assume ∀m,∀t ∈ T , we have ∥∇f t

m(w)∥2 ≤ V1 and ∥∇ht
m(w;w)∥2 ≤ V2.

Assumption 4. The distance of different clusters are bounded by a0∆ ≤ ∥w∗
k −w∗

k′∥ ≤ ∆ for all
k ̸= k′, k, k′ ∈ [K], where ∆ ≥ 0, 0 ≤ a0 ≤ 1 and w∗

k := argminwk
Fk(wk).

Assumption 5. We assume there is always an upper bound on the l2-norm of cluster k’s model wk,
i.e, ∀k ∈ [K], ∥wk∥ ≤ ak∆, ak > 0.
Theorem 1. With above assumptions, for a small constant ϵ > 0, assume we choose

ρ ≥ 2V1+
1
2∥w−w∥2+

√
4∥w−w∥2(1+V1)ϵ

2∥w−w∥2 for all possible w,w in global and local iterations,

then if cluster k undergoes Sk updates, Algorithm 2 would converges to: E[∥∇Fk(w)∥2] ≤

E[Fk(w0)−Fk(wSk
)]

α0γϵSkHmin
+

(
Lk
2 +ρHmax+

ρH2
max
2

)
γHmaxV2

ϵHmin
+

√
V1(2

∑K
i=1 ai+(2K+1)ak+K)∆

γϵHmin
+(

Lk
2 +ρ

)
(2

∑K
i=1 ai+(2K+1)ak+K)

2
∆2

γϵHmin

Discussions. The theorem indicates that if a client’s model w undergoes continuous training on data
from distribution k, meaning that a portion of the client’s data consistently originates from distribution
k, then the l2-norm of the gradient of the model loss on cluster k will converge to a specific point
(always less than∞). For any data distribution k continuously sampled by a client, the proposed
algorithm guarantees the client’s model to have good performance on this particular distribution k.

5 EXPERIMENTS

5.1 SETUP

We create FL clustered datasets via three commonly used public datasets: FashionMNIST (Xiao
et al., 2017), CIFAR-100 (Krizhevsky et al., 2009), MiniImageNet-100 (Vinyals et al., 2016). In
order to simulate different distributions, we augment the datasets using rotation, and create the
Rotated FashionMNIST, Rotated CIFAR-100 and Rotated MiniImagenet-100 datasets. Each dataset
is applied by i ∗ 360

K (i = 0, ...,K − 1) degrees of rotation to the images, resulting in K clusters. In
our experiment, we try K = 2, 3, 4, 6 to simulate an FL setup with clear cluster structure. Rotated
FashionMNIST:Each rotated cluster has 60,000 training images and 10,000 testing images containing
10 classes. Rotated CIFAR-100: Each rotated cluster has 50,000 training images and 10,000 testing
images containing 100 classes. Rotated MiniImagenet-100: Each rotated cluster has 48,000 training
images and 12,000 testing images containing 100 classes. 2,000 images of testing images from each
cluster of each dataset are used to pre-train the cluster models. Training models structures are listed
in Appendix A.1 All the experiments are conducted using PyTorch version 1.9 on a single machine
equipped with two Intel Xeon 6226R CPUs, 384GB of memory, and four NVIDIA 3090 GPUs. We
compare our CCFL method with below baseline methods:

• FedSoft-Async. An asynchronous adaptation of the soft-clustering baseline Ruan and Joe-
Wong (2022) is employed. Clients receive all global models from the server, and distribution is
assessed by identifying the model with the smallest loss for each data point. Distribution values
µm0, . . . , µmK are transmitted to the server alongside the local model for global updates. The
clusters’ update ratio, denoted as αt

mk, integrates the locally computed distribution µmk and
staleness, given by αt

mk := α0 · µmkα2k, with α2k computed in a similar manner as in CCFL. As
there are no existing works addressing both asynchrony and soft-clustering concurrently in FL,
FedSoft-Async serves as the most suitable baseline method.

• Local. The clients only do local optimizations and never upload the local models.

In the initialization phase, clients perform computations using the averaged cluster model. Each client
possesses a dataset ranging from 500 to 2000 data points, with 40% to 90% originating from a primary
distribution and the remainder from other cluster distributions. Upon completing the initialization,
clients autonomously decide when to upload their models. After uploading, an accuracy evaluation is
conducted initially on a test set matching the client’s data distribution. Subsequently, upon receiving
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the updated model from the server, a second accuracy evaluation is conducted to compare the local
and global model improvements. Each upload-download cycle prompts clients to receive new data,
necessitating recalculations and interactions with the server for updates. In the experiments presented
in Table 1, the number of clients is 20 times the number of models. The value of global staleness
control τ0 equals to the number of clients. In the FashionMNIST experiments, on average, each client
undergoes 25 upload-download cycles, while in the CIFAR-100/MiniImagenet-100 experiments, each
client averages 20 cycles. We set cluster aggregation parameter α0 = 0.025, a = 10, b = 5, client
personalization parameter ρ = 0.1. Other parameters and explanations are left at Appendix A.1

5.2 BEHAVIOR OF CLUSTERS AND CLIENTS

Table 1: Client and Cluster Accuracy of FashionMNIST, CIFAR100, and MiniImagenet-100. Client
accuracy is represented as the average accuracy, along with the standard deviation, of all clients at the
final upload-download cycle. Cluster accuracy is depicted as the average accuracy, along with the
standard deviation, of all clusters across all cycles averagely across repeated experiments. "Cli Brf"
denotes the accuracy of the local model before uploading; "Cli Aft" represents the accuracy of the
model received by the client. Average accuracy over 3 trials are reported.

Dataset (cluster No.)
CCFL ACC. FedSoft-Async ACC. Local

Client ACC.Cli Bfr Cli Aft Cluster Cli Bfr Cli Aft Cluster
FashionMNIST (2) .799±.011 .836±.003 .840±.008 .798±.012 .836±.003 .833±.008 .784±.014

FashionMNIST (3) .783±.015 .822±.003 .833±.003 .780±.015 .819±.004 .822±.005 .741±.057

FashionMNIST (4) .768±.020 .801±.006 .830±.005 .763±.020 .785±.006 .795±.020 .693±.076

FashionMNIST (6) .760±.021 .779±.019 .811±.009 .753±.025 .750±.024 .740±.071 .694±.072

CIFAR-100 (2) .373±.022 .398±.006 .423±.015 .374±.026 .404±.004 .420±.001 .279±.030

CIFAR-100 (3) .292±.037 .313±.029 .370±.031 .281±.033 .301±.008 .354±.023 .211±.033

CIFAR-100 (4) .354±.029 .371±.012 .427±.017 .330±.037 .355±.017 .425±.022 .259±.035

CIFAR-100 (6) .302±.032 .319±.009 .373±.024 .278±.041 .303±.016 .382±.031 .212±.035

MiniImagenet (2) .345±.022 .372±.004 .388±.009 .346±.026 .378±.003 .393±.003 .226±.032

MiniImagenet (3) .290±.030 .311±.017 .358±.010 .275±.034 .306±.011 .352±.005 .184±.029

MiniImagenet (4) .346±.025 .371±.013 .406±.007 .323±.034 .366±.008 .403±.007 .215±.028

MiniImagenet (6) .312±.028 .336±.008 .387±.012 .283±.037 .325±.011 .383±.016 .192±.027

Figure 3: Accuracy of clients and clusters on FashionMNIST(3 clusters) and MiniImagenet (4
clusters). Average accuracy of clients is shown for equal times of upload-download cycles. Shaded
areas represent variances across 3 trials.

Accuracy Behavior. Table 1 presents a comprehensive overview of client and cluster accuracy.
Notably, both CCFL and FedSoft-Async exhibit significant enhancements in client performance
compared to only local training, underscoring the importance of clients staying synchronized with
the server. Across most experiments, CCFL outperforms FedSoft-Async for both clients and
clusters, particularly when dealing with larger K. Figure 3 provides a performance analysis for
a subset of experiments. Additional details can be found in Appendix A.3. In FashionMNIST
experiments, both CCFL and FedSoft-Async require a few training epochs for the downloaded
global model to surpass the performance of their locally uploaded counterparts. During this period,
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clusters may experience a temporary dip in performance, and we refer to it as the "preparation period".
This preparatory phase can be executed effectively through limited-scale α-testing before software
release. It’s worth noting that this phenomenon is not observed in CIFAR-100 and MiniImagenet
datasets due to their more complex prediction tasks, where the upload-download cycles with the
server significantly aid clients in mitigating overfitting issues arising from limited data availability.

Distribution Estimation. To assess the accuracy of the distribution estimation outlined in Algorithm
1 in representing the true distribution, we conduct empirical comparisons between the estimation
outcomes of CCFL and those obtained using FedSoft-Async. To quantify this assessment, we
employ the KL-divergence metric, which measures the information loss when one distribution
approximates another, denoted as KL(P ||Q) =

∑
P (x) log (P (x)/Q(x)), where P represents the

true distribution, and Q represents the estimated distribution. Lower KL divergence values signify
more accurate estimation. The KL-divergence results for all the aforementioned experiments are
depicted in Figure 4(b). We normalize the divergence rate of FedSoft-Async to 1 and record the
proportional ratio of CCFL. Across all experiments, CCFL exhibits superior distribution estimation
performance compared to FedSoft-Async, whose estimation method is commonly utilized in
clustered FL works for distribution analysis.

Figure 4: (a) is one distribution estimation made in MiniImagenet (6clusters) experiment; CCFL
and FedSoft-Async results are contrasted to the true distribution. (b) is the KL-divergence of
distribution estimation of CCFL and FedSoft-Async to the true distribution across all experiments.
(c) is the communication and computation overhead contrast of FedSoft-Async with CCFL.
FM(k) denotes FashionMNIST (k clusters), Ci as CIFAR-100, M-I as MiniImagenet-100.
Communication and Computation Overhead. We conduct a comparative analysis of the commu-
nication and computation overhead between FedSoft-Async and CCFL, as illustrated in Figure
4(c). Specifically, we focus on download sessions for communication overhead evaluation, as both
methods upload one local model during upload sessions. We normalize both the communication
and computation overhead of CCFL to 1, and record the proportional ratio of FedSoft-Async.
Due to the fact that clients in CCFL solely download an aggregated global model and do not engage
in additional computations beyond local model training, the communication and computation over-
head is significantly reduced compared to FedSoft-Async. This highlights the lightweight and
client-centric nature of our approach.

5.3 ABLATION STUDY

In order to comprehensively evaluate the robustness and performance of our framework, we conduct
an ablation study on the FashionMNIST(4 clusters) and CIFAR100(4 clusters) datasets. The results
of this study are depicted in Figure 5. Multiple Clients: We conduct experiments with varying
numbers of clients of 100, 250, 500, 1000. Remarkably, the average accuracy of both clients and
clusters exhibited minimal variation across different client counts. This observation underscores
the robustness of our system. Different ρ Values: We experiment with ρ values set to 0.01, 0.1,
0.5, and 1. The results on both FashionMNIST and CIFAR100 datasets reveal that smaller ρ values
consistently lead to improved cluster accuracy. However, smaller ρ values, as observed in CIFAR-100,
result in suboptimal client local training performance before uploading, presenting a challenge. This
can be attributed to similarities among cluster models, arising from generating clusters via various
degrees of image rotation. These inherent similarities improve the aggregated data performance
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across diverse distributions, consistent with Ruan and Joe-Wong (2022). Additionally, smaller ρ
values increase the risk of client overfitting to local data, further degrading local performance. Global
Adjustments: To better regulate clients’ contributions to global models, we introduce an adjustment
technique in our experiments. During each client’s update session, we record the values of lk, d1k,
and d2k for each cluster k. Over time, this data accumulation create a reference database resembling
normal distributions. Subsequently, after a certain number of epochs, the uploaded models undergo
adjustments based on thresholds derived from the aforementioned database: if any of the uploaded
model’s lk, d1k, and d2k for given cluster k exceeds 70% of the database, this client model is refused
by the server to update global model k. This adjustment begins either after half of the training session,
after 7/10 of the session, or not at all. Though accuracy does not changes, we believe this adjustment
mechanism acts as a filter, potentially preventing certain clients’ models from negatively impacting
the server’s model due to the non-iid nature of clients’ data distribution. Ablation study with different
size of public dataset on the server and data distribution without changes can be found in A.4. This
section sheds light on the versatility and robustness of our CCFL framework, showcasing its adaptive
ability to various scenarios and configurations while maintaining stable performance.

Figure 5: Ablation study on FashionMNIST (4 clusters) and CIFAR-100 (4 clusters). The clients
undergo average 20 (FashionMNIST) / 10 (CIFAR-100) upload-download cycles in every experiment.
Average accuracy of clients and clusters are recorded.

6 CONCLUSION
In summary, our paper introduces the Client-Centric Federated Learning (CCFL) framework, an
approach that redefines the traditional server-centric FL paradigm. In this setting, clients inde-
pendently decide when to upload their local models, resulting in rapid and personalized model
updates from the server, who maintains multiple cluster models. Compared to existing clustered FL
works, it significantly reduces computation and communication costs for clients. Moreover, CCFL
accommodates dynamic clients’ data distributions. Our experiments on FashionMNIST, CIFAR100
and MiniImagenet-100 datasets underscore CCFL’s robustness and performance across different
configurations. In conclusion, CCFL bridges the gap between user-centricity and model refinement,
making it a pioneering framework in the FL landscape.
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A APPENDIX

A.1 MODEL STRUCTURES, HYPER-PARAMETERS AND EXPLANATIONS.

We use CNN models to train FashionMNIST and ResNet18 to train Cifar-100 and MiniImagenet-100.
The model structures are as follows.

• CNN model: This CNN model consists of two convolutional layers with 5x5 kernels and ReLU
activation, each followed by max-pooling layers with 2x2 kernels. This is followed by two fully-
connected layers with 512 and 10 neurons, respectively. The model takes 28x28 grayscale images
as input and produces class probabilities for 10 classes. It employs ReLU activation throughout.

• ResNet18: ResNet-18 is characterized by its residual blocks, and it’s a smaller variant of the original
ResNet architecture. The model consists of two types of residual blocks: BasicBlock, containing
two convolutional layers with 3x3 kernels and ReLU activations, along with batch normalization. It
also includes shortcut connections to handle different input and output dimensions when the stride
is not equal to 1; BottleNeck, including three convolutional layers with 1x1, 3x3, and 1x1 kernels,
along with ReLU activations and batch normalization and uses shortcut connections for dimension
matching. The ResNet-18 architecture is structured around an initial convolutional layer with 64
output channels and a 3x3 kernel with padding set to 1, followed by four stages of residual blocks.
Each stage contains a specific number of residual blocks, with the configuration typically set as [2,
2, 2, 2].Within each residual block, the block type can be either BasicBlock or BottleNeck. The
number of output channels in the convolutional layers is typically set according to the block type:
64 for BasicBlock and 256 for BottleNeck. Stride values are often set to 1 for BasicBlock and
2 for BottleNeck to achieve downsampling. The expansion factor is 1 for BasicBlock and 4 for
BottleNeck. The model uses adaptive average pooling to produce a fixed-sized output, typically
(1, 1) spatial dimensions, and a fully-connected layer for classification, with the number of output
classes of 100 for CIFAR-100 and activation functions serving as essential hyperparameters.

For all experiments, batch size is chosen as 128. For CNN model, Adam optimizer is chosen with
weight decay of 0.005 and learning rate of 0.01. For ResNet models, SGD opitimizer is chosen with
weight decay of 5e-4, momentum of 0.9 and learning rate as 0.1. Cross entropy loss is computed for
optimization through the experiments. Distribution estimation and server updating parameters are
listed as follows in Table 2.

In the experiment, each client is initially assigned a main cluster index before training. During the
training’s outset, every client is randomly provided with 500-2000 data samples, with 40%-90%
sourced from the designated main cluster and the remainder from other cluster distributions. Clients
conduct local training and autonomously decide when to upload their models. If a client initiates an
upload session, the accuracy of the uploaded model is first evaluated on the test sets (consisting of
the same distribution as their training sets), termed as "Client Before Accuracy." Subsequently, upon
downloading the new personalized model, the accuracy of the received model is assessed as "Client
After Accuracy." After each update of every single client, he would receive new data sampled as the
same way mentioned above. Since the distribution has changed, the client needs to do training on
new data again and decides the next upload.
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Table 2: Distribution estimation and server updating parameters. min means to use the minimum of
the computed lk (or d1k, d2k) as bar. ave means to use the average of the computed α1k as bar. If
multiple values are resented in A, it means to do softmax multiple times with respective given value.
Global adjustments described in section 5.3 starts from given percent of total epochs.

Dataset (cluster No.)
Distribution Estimation Server Updating Adjusting

c1 c2 A lbar d1bar d2bar α1bar %
FashionMNIST (2) 0.5 0.4 3 8 0 0 ave 50
FashionMNIST (3) 0.5 0.25 3 8 0 0 ave 50
FashionMNIST (4) 0.5 0.25 7 8 0 0 ave 50
FashionMNIST (6) 0.7 0.2 15 8 0 0 ave 50

CIFAR-100 (2) 0.5 0.2 1 40 0 0 ave 50
CIFAR-100 (3) 0.5 0.2 10 min min min ave 50
CIFAR-100 (4) 0.5 0.2 10 min min min ave 50
CIFAR-100 (6) 0.5 0.2 10 min min min ave 50

MiniImagenet (2) 0.5 0.2 1 70 0 0 ave 50
MiniImagenet (3) 0.5 0.4 7 min min min ave 50
MiniImagenet (4) 0.6 0.3 15 min min min ave 50
MiniImagenet (6) 0.6 0.3 10, 10 min min min ave 50

A.2 PROOF OF THEOREM 1.

Without the loss of generality, we assume client m uploads (wt
m, τ) to the server at epoch t. We

assume the client is not stale (t−τ < τ0), and cluster k’s model wtk
k would be updated with parameter

αt
mk > 0. We assume wt

m is the result of applying Hmin ≤ H ≤ Hmax local updates to wτ
m. We

define Hk(w;w) = Fk(w) +
ρ
2 ∥w −w∥2. For convenience we denote wt

m,h as wh (h ∈ [H]), wτ
m

as wτ .

Conditioning on wh−1, for ∀h ∈ [H] we have

E[Fk(wh)− Fk(w
∗)] ≤ E[Hk(wh;wτ )− Fk(w

∗)] ≤ E[Hk(wh;wτ )]− Fk(w
∗) (4)

With the updating function

wh = wh−1 − γ∇hm(wh−1;w) (5)

and Taloy’s Expansion f(w − y) = f(x)− ⟨∇f(x), y⟩+ 1
2∇

2f(x)y2 and using Lk-smoothness,

Hk(wh;wτ )

= Hk (wh−1 − γ∇hm(wh−1;wτ );wτ )

= Hk(wh−1;wτ )− ⟨∇Hk(wh−1;wτ ), γ∇hm(wh−1;wτ )⟩

+
1

2
∇2Hk(wh−1;wτ )γ

2 ∥∇hm(wh−1;wτ )∥2

≤ Hk(wh−1;wτ )− ⟨∇Hk(wh−1;wτ ), γ∇hm(wh−1;wτ )⟩+
1

2
Lkγ

2 ∥∇hm(wh−1;wτ )∥2

(6)

Since ∥wh−1 −wτ∥2 ≤ H2
maxγ

2V2 and ∥hm(wh−1;wτ )∥2 ≤ V2, with equation 6,
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E[Fk(wh)− Fk(w
∗)]

≤ Hk(wh−1;wτ )− Fk(w
∗)− γE[⟨∇Hk(wh−1;wτ ),∇hm(wh−1;wτ )⟩]

+
1

2
Lkγ

2E[∥∇hm(wh−1;wτ )∥2]

= Fk(wh−1)− Fk(w
∗) +

ρ

2
∥wh−1 −wτ∥2 − γE[⟨∇Hk(wh−1;wτ ),∇hm(wh−1;wτ )⟩]

+
1

2
Lkγ

2E[∥∇hm(wh−1;wτ )∥2]

≤ Fk(wh−1)− Fk(w
∗)− γE[⟨∇Hk(wh−1;wτ ),∇hm(wh−1;wτ )⟩] +

Lkγ
2

2
V2 +

ρH2
maxγ

2

2
V2

(7)

Take a small constant ϵ > 0, and with inequality of arithmetic and geometric mean, if we choose

some ρ ≥ 2V1+
1
2∥wh−1−wτ∥2+

√
4∥wh−1−wτ∥2(1+V1)ϵ

2∥wh−1−wτ∥2 for all possible wh−1,wτ , we have

⟨∇Hk(wh−1;wτ ),∇hm(wh−1;wτ )⟩ − ϵ ∥∇Fk(wh−1)∥2

= ⟨∇Fk(wh−1) + ρ(wh−1 −wτ ),∇fm(wh−1) + ρ(wh−1 −wτ )⟩ − ϵ ∥∇Fk(wh−1)∥2

= ⟨∇Fk(wh−1),∇fm(wh−1)⟩+ ρ⟨∇Fk(wh−1) +∇fm(wh−1), wh−1 −wτ ⟩
+ ρ2 ∥wh−1 −wτ∥2 − ϵ ∥∇Fk(wh−1)∥2

≥ −1

2
∥∇Fk(wh−1)∥2 −

1

2
∥∇fm(wh−1)∥2 −

ρ

2
∥∇Fk(wh−1) + fm(wh−1)∥2

− ρ

2
∥wh−1 −wτ∥2 + ρ2 ∥wh−1 −wτ∥2 − ϵ ∥∇Fk(wh−1)∥2

≥ −1

2
∥∇Fk(wh−1)∥2 −

1

2
∥∇fm(wh−1)∥2 − ρ ∥∇Fk(wh−1)∥2 − ρ ∥∇fm(wh−1)∥2

− ρ

2
∥wh−1 −wτ∥2 + ρ2 ∥wh−1 −wτ∥2 − ϵ ∥∇Fk(wh−1)∥2

= ∥wh−1 −wτ∥2 ρ2 −
(
∥∇Fk(wh−1)∥2 + ∥∇fm(wh−1)∥2 +

1

2
∥wh−1 −wτ∥2

)
ρ

−
(
1

2
∥∇Fk(wh−1)∥2 +

1

2
∥∇fm(wh−1)∥2 + ϵ ∥∇Fk(wh−1)∥2

)
≥ ∥wh−1 −wτ∥2 ρ2 −

(
2V1 +

1

2
∥wh−1 −wτ∥2

)
ρ− (1 + V1)ϵ ≥ 0

(8)

Thus, we have

γ⟨∇Hk(wh−1;wτ ),∇hm(wh−1;wτ )⟩ ≥ γϵ ∥∇Fk(wh−1)∥2 (9)

Taking equation 9 into equation 7, we have

E[Fk(wh)−Fk(w∗)] ≤ Fk(wh−1)−Fk(w∗)−γϵ ∥∇Fk(wh−1)∥2+
Lkγ

2

2
V2+

ρH2
maxγ

2

2
V2 (10)

By iterating equation 10 for h = 0, ...,H − 1, we have

E[Fk(wh)− Fk(w0)] ≤ −γϵ
H−1∑
h=0

∥∇Fk(wh)∥2 +
HmaxLkγ

2

2
V2 +

ρH3
maxγ

2

2
V2 (11)

Since w0 is initiated from wτ , we can rewrite above equation as
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E[Fk(wh)− Fk(wτ )] ≤ −γϵ
H−1∑
h=0

∥∇Fk(wh)∥2 +
HmaxLγ

2

2
V2 +

ρH3
maxV2

2
V2 (12)

We know that cluster k is not updated in every iteration t. If we relabel the iterations when cluster k
is updated as 0, 1, 2, ..., s− 1, s = t, then we have ws

k = (1−αs
mk)w

s−1
k +αs

mkw
s
m. For simplicity,

we denote ws
k as ws, αs

mk as αs, then

E[Fk(ws)− Fk(ws−1)]

≤ E[Hk(ws;ws−1)− Fk(ws−1)]

= E[Hk((1− αs)ws−1 + αsw
s
m;ws−1)− Fk(ws−1)]

= E[Hk((1− αs)ws−1 + αswH ;ws−1)− Fk(ws−1)]

≤ E[(1− αs)Hk(ws−1;ws−1) + αsHk(wH ;ws−1)− Fk(ws−1)]

= E[αs (Fk(wH)− F (ws−1)) +
αsρ

2
∥wH −ws−1∥2]

≤ αsE[Fk(wH)− Fk(ws−1)] + αsρ ∥wH −wτ∥2 + αsρ ∥wτ −ws−1∥2

(13)

We have

∥wτ −ws−1∥
=
∥∥wτ

m −ws−1
k

∥∥
=

∥∥∥∥∥
K∑
i=1

us
miw

ti,τ
i −ws−1

k

∥∥∥∥∥
=

∥∥∥∥∥
K∑
i=1

us
miw

ti,τ
i −wτ

k +wτ
k −ws−1

k

∥∥∥∥∥
=

∥∥∥∥∥
K∑
i=1

us
mi

(
w

ti,τ
i −wτ

k

)
+
(
wτ

k −ws−1
k

)∥∥∥∥∥
≤

K∑
i=1

us
mi

∥∥∥wti,τ
i −wτ

k

∥∥∥+ ∥∥wτ
k −ws−1

k

∥∥
≤

K∑
i=1

∥∥∥wti,τ
i −wτ

k

∥∥∥+ ∥∥wτ
k −ws−1

k

∥∥

(14)

where ti,τ ≤ τ is the last updating epoch before epoch τ for cluster i ∈ [K]. We can notice that

∥∥∥wti,τ
i −wτ

k

∥∥∥
=
∥∥∥wti,τ

i −w∗
i +w∗

i −w∗
k +w∗

k −wτ
k

∥∥∥
≤
∥∥∥wti,τ

i −w∗
i

∥∥∥+ ∥w∗
i −w∗

k∥+ ∥w∗
k −wτ

k∥

(15)

Since ∥wk∥ ≤ ak∆, then ∥wk −w∗
k∥ ≤ 2ak∆, thus∥∥∥wti,τ

i −wτ
k

∥∥∥ ≤ 2ai∆+∆+ 2ak∆ = (2ai + 2ak + 1)∆ (16)

And, ∥∥wτ
k −ws−1

k

∥∥ =
∥∥wτ

k −w∗
k +w∗

k −ws−1
k

∥∥
≤ ∥wτ

k −w∗
k∥+

∥∥w∗ −ws−1
k

∥∥ ≤ 2ak∆+ 2ak∆ = 4ak∆
(17)
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Thus,

∥wτ −ws−1∥ ≤

(
2

K∑
i=1

ai + (2K + 1)ak +K

)
∆ (18)

And with ∥wH −wτ∥2 ≤ H2
maxγ

2V2, from equation 13 we have

E[Fk(ws)− Fk(ws−1)]

≤ αsE[Fk(wH)− Fk(ws−1)] + αsρH
2
maxγ

2V2 + αsρ

(
2

K∑
i=1

ai + (2K + 1)ak +K

)2

∆2

≤ αsE[Fk(wH)− Fk(wτ ) + Fk(wτ )− Fk(ws−1)] + αsρH
2
maxγ

2V2

+ αsρ

(
2

K∑
i=1

ai + (2K + 1)ak +K

)2

∆2

(19)

Using Lk-smoothness, we have

E[Fk(wτ )− Fk(ws−1)]

≤ ⟨∇Fk(ws−1),wτ −ws−1⟩+
Lk

2
∥wτ −ws−1∥2

≤ ∥Fk(ws−1)∥ ∥wτ −ws−1∥+
Lk

2
∥wτ −ws−1∥2

≤
√
V1

(
2

K∑
i=1

ai + (2K + 1)ak +K

)
∆+

Lk

2

(
2

K∑
i=1

ai + (2K + 1)ak +K

)2

∆2

(20)

With the inequalities from equation 12, equation 20, we can rewrite equation 19 into

E[Fk(ws)− Fk(ws−1)]

≤ −αsγϵ

H−1∑
h=0

∥∇Fk(wh)∥2 +
HmaxLkγ

2

2
αsV2 +

ρH3
maxγ

2

2
αsV2

+ αs

√
V1

(
2

K∑
i=1

ai + (2K + 1)ak +K

)
∆+

αsL

2

(
2

K∑
i=1

ai + (2K + 1)ak +K

)2

∆2

+ αsρH
2
maxγ

2V2 + αsρ

(
2

K∑
i=1

ai + (2K + 1)ak +K

)2

∆2

= −αsγϵ

H−1∑
h=0

∥∇Fk(wh)∥2 +
(
Lk

2
+ ρHmax +

ρH2
max

2

)
γ2HmaxαsV2

+ αs

√
V1

(
2

K∑
i=1

ai + (2K + 1)ak +K

)
∆

+ αs

(
L

2
+ ρ

)(
2

K∑
i=1

ai + (2K + 1)ak +K

)2

∆2

(21)

Denoting Hs as the number of the local iterations applied on client m before be uploads at epoch s,
by rearranging terms in equation 21, we have
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Hs−1∑
h=0

∥∇Fk(wh)∥2

≤ E[Fk(ws−1)− Fk(ws)]

αsγϵ
+

(
Lk

2 + ρHmax +
ρH2

max

2

)
γHmaxV2

ϵ

+

√
V1

(
2
∑K

i=1 ai + (2K + 1)ak +K
)
∆

γϵ

+

(
L
2 + ρ

) (
2
∑K

i=1 ai + (2K + 1)ak +K
)2

∆2

γϵ

(22)

Denote τs as if client m uploads at epoch s, the last time of client’s communication (client last
uploads at epoch τs before s), by taking total expectation, after Sk global epoch on cluster k, where
Sk is the total number of validate updates on cluster k, we have

E[∥∇Fk(w)∥2]
= Eτs,s∈{0,...,T−1},h∈{0,...,H′

t−1}[∥∇F (wτs,h)∥
2
]

=
1∑Sk

s=1 Hs

Sk∑
s=1

Hs−1∑
h=0

∥∇Fk(wh)∥2

≤ E[Fk(w0)− Fk(wSk
)]

α0γϵSkHmin
+

(
L
2 + ρHmax +

ρH2
max

2

)
γHmaxV2

ϵHmin

+

√
V1

(
2
∑K

i=1 ai + (2K + 1)ak +K
)
∆

γϵHmin

+

(
Lk

2 + ρ
) (

2
∑K

i=1 ai + (2K + 1)ak +K
)2

∆2

γϵHmin

(23)
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A.3 OTHER EXPERIMENT RESULTS.

Figure 6: Timeflow accuracy of clients and clusters on FashionMNIST(1cluster). Average accuracy
of clients is shown for equal times of upload-download cycles.

Figure 7: Timeflow accuracy of clients and clusters on FashionMNIST(2clusters). Average accuracy
of clients is shown for equal times of upload-download cycles.

Figure 8: Timeflow accuracy of clients and clusters on FashionMNIST(4clusters). Average accuracy
of clients is shown for equal times of upload-download cycles.

Figure 9: Timeflow accuracy of clients and clusters on FashionMNIST(6clusters). Average accuracy
of clients is shown for equal times of upload-download cycles.

18



Under review as a conference paper at ICLR 2024

Figure 10: Timeflow accuracy of clients and clusters on CIFAR-100(1cluster). Average accuracy of
clients is shown for equal times of upload-download cycles.

Figure 11: Timeflow accuracy of clients and cluseters on CIFAR-100(2clusters). Average accuracy of
clients is shown for equal times of upload-download cycles.

Figure 12: Timeflow accuracy of clients and clusters on CIFAR-100(3clusters). Average accuracy of
clients is shown for equal times of upload-download cycles.

Figure 13: Timeflow accuracy of clients and clusters on CIFAR-100(4clusters). Average accuracy of
clients is shown for equal times of upload-download cycles.

Figure 14: Timeflow accuracy of clients and clusters on CIFAR-100(6clusters). Average accuracy of
clients is shown for equal times of upload-download cycles.
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Figure 15: Timeflow accuracy of clients and clusters on MiniImagenet-100(2clusters). Average
accuracy of clients is shown for equal times of upload-download cycles.

Figure 16: Timeflow accuracy of clients and clusters on MiniImagenet-100(3clusters). Average
accuracy of clients is shown for equal times of upload-download cycles.

Figure 17: Timeflow accuracy of clients and clusters on MiniImagenet-100(6clusters). Average
accuracy of clients is shown for equal times of upload-download cycles.
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A.4 MORE ABLATION STUDY.

Figure 18: Timeflow accuracy of clients and clusters on FashionMNIST(4clusters) with different
size of public dataset on the server. Average accuracy of clients is shown for equal times of upload-
download cycles.

Figure 19: Timeflow accuracy of clients and clusters on FashionMNIST(2clusters) without change
of distribution. The clients’ distribution stay the same from beginning to end. Average accuracy of
clients is shown for equal times of upload-download cycles.

Figure 20: Timeflow accuracy of clients and clusters on FashionMNIST(3clusters) without change
of distribution. The clients’ distribution stay the same from beginning to end. Average accuracy of
clients is shown for equal times of upload-download cycles.

Figure 21: Timeflow accuracy of clients and clusters on FashionMNIST(4clusters) without change
of distribution. The clients’ distribution stay the same from beginning to end. Average accuracy of
clients is shown for equal times of upload-download cycles.
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Figure 18 illustrates varying sizes of the public dataset per cluster on the server (1000/2000/4000
data samples). This experiment is done by 4 clusters and 100 clients undergoing 2000 global epochs.
The figure demonstrates a slight reduction in both client and cluster accuracy with a relatively
smaller size of the public dataset (size of 1000). However, there’s minimal disparity in the overall
accuracy behavior between a dataset size of 2000 and 4000." Figure 19, 20 and 21 depict scenarios
in FashionMNIST (2 clusters), FashionMNIST (3 clusters), and FashionMNIST (4 clusters) where
clients’ distributions remain consistent from start to finish. These experiments are done by 20 times
the number of the clients of that of clusters. Each client averagely undergoes 20 upload-download
cycles. These figures illustrate that our proposed method, CCFL, exhibits higher accuracy for both
clusters and clients compared to the baseline methods.
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