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Abstract

Machine learning models are increasingly used for decisions that directly affect
people’s lives. These models are often opaque, meaning that the people affected
cannot understand how or why the decision was made. However, according to
the General Data Protection Regulation, decision subjects have the right to an
explanation. Counterfactual explanations are a way to make machine learning
models more transparent by showing how attributes need to be changed to get a
different outcome. This type of explanation is considered easy to understand and
human-friendly. To be used in real life, explanations must be practical, which
means they must go beyond a purely theoretical framework. Research has fo-
cused on defining several objective functions to compute practical counterfactuals.
However, it has not yet been tested whether people perceive the explanations as
such in practice. To address this, we contribute by identifying properties that
explanations must satisfy to be practical for human subjects. The properties are
then used to evaluate the practicality of two counterfactual explanation methods
(CARE and WachterCF) by conducting a user study. The results show that human
subjects consider the explanations by CARE (a multi-objective approach) to be
more practical than the WachterCF (baseline) explanations. We also show that the
perception of explanations differs depending on the classification task by exploring
multiple datasets.

1 Introduction

Machine learning (ML) models are increasingly used for automated decision-making impacting
people’s lives [28]. Some typical applications for ML model decisions are approving a requested
loan [17], hiring an applicant [2], or setting the price rates for insurance contracts [27]. ML models
are often opaque, meaning users cannot trace back how the decision is made [14]. In light of this
automated decision-making, the European Union put forward a General Data Protection Regulation
(GDPR) [1]. The GDPR includes a “right to explanation” [13], meaning affected people are entitled
to request an explanation for a decision that has been made about them. To serve this right the
research field of explainability for ML models is continuously growing [20]. Explainability aims to
make the functioning of a model clear and easy to understand for a given audience [3]. However,
an ongoing debate in legal and ML communities discusses what this right should entail and what
specific requirements must be met [29]. Since the audience does not necessarily have technical skills
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Figure 1: Some counterfactual explanation methods, categorized into optimization-based and model-
based approaches.

or domain knowledge, explainability methods must also be suitable for non-technical users without
expertise.

We focus on a particular method of post-doc explanations, called counterfactual explanations [30].
A counterfactual explanation proposes minimal changes to the input data that lead to a different
model outcome. They can be seen as recommendations for what to change to achieve a desired
model outcome [4]. We focus on two methods for computing counterfactual explanations, the
original approach proposed by Wachter et al. [30], which we refer to as WachterCF, and a framework
proposed by Rasouli et al. [24], called CARE. Counterfactual explanations are viewed to be easy to
understand [30] and human-friendly [20]. Wachter et al. [30] state that counterfactual explanations
are “practically useful for understanding the reasons for a decision”. The Oxford Dictionary1

defines practical as “concerned with the actual doing or use of something rather than with theory
and ideas”. Consequently, explanations must go beyond a purely theoretical concept to serve as
practical explanations. However, there is limited work that attempts to evaluate the perception of
counterfactual explanations in practice, and previous work has offered criticism on their applicability
in real-life settings (see Section 2). Our contribution lies in first defining a set of properties that
counterfactual explanations should satisfy in order to be considered practical. These properties are
then used to define questions for a user study. The user study tests how users perceive counterfactual
explanations computed by CARE and WachterCF in two different contexts. The research questions
we explore in this work are as follows.

RQ: How practical are counterfactual explanations for human subjects?

Q1 What properties must counterfactual explanations serve to be practical for human subjects?
Q2 How do human subjects perceive counterfactual instances proposed by CARE compared to

WachterCF?
Q3 How does the perception of counterfactual explanations differ depending on the classification

task?

2 Related Work

In recent years, many methods for generating counterfactual explanations have been proposed [25].
A complete literature review of the proposed methods exceeds the scope of this paper; Figure 1
provides an overview. We distinguish between approaches that are optimization-based (based on
an optimization problem) [7][21][24][28][30] and ones that are model-based (based on a machine
learning models) [8][15][23][25][33]. In their work, Barocas et al. [5] show that the computation
of counterfactual explanations often relies on widely overlooked assumptions that are necessary for
counterfactual explanations to be accepted in real life. Laugel et al. [18] claim that assumptions
make counterfactual explanations unreliable in many contextual uses. Researchers have responded to
this criticism by developing counterfactual frameworks with different objective functions to satisfy
specific properties [28][24][21][7][11][16]. WachterCF only focuses on being close to the original

1https://languages.oup.com/google-dictionary-en/
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input data, but does not explicitly aim to satisfy any other practicality objective. In contrast, CARE
solves a multi-objective problem including four desirable properties, such as proximity (being a
neighbor of the ground-truth data [18]), connectedness (relationship between counterfactual instance
and training data), coherency (keeping the consistency of (un)changed features) and actionability
(include preference, e.g. restrictions or immutability of features). The following user studies have
looked at counterfactual explanations. Warren et al. [31] have examined how well users are able to
predict model outcomes after looking at counterfactual explanations. Förster et al. [11] examined the
coherency of counterfactual explanations.

3 Methodology

We determine what properties counterfactual explanations must satisfy to be practical based on
existing literature. We focus on properties that affect how human subjects perceive counterfactual
explanations. The remaining sub-questions are answered by performing a user study with human
subjects. The study aims to compare the perception of explanations provided by CARE with
explanations provided by WachterCF. We use a non-parametric, called Wilcoxon Sign Ranked test
[32] to determine if the results are significantly different. To measure the practicality of counterfactual
instances, we formulate questions mapped to practicality properties. Before conducting a user study,
the target group must be defined. Since any individual could be affected by automated decision-
making, we use convenience sampling [10] by collecting information from closely available people.
One distinction we make in the analysis is whether participants are familiar with machine learning
methods because we believe there may be a potential difference in the perception of explanations
depending on the prior knowledge of participants. We aim for 100 responses, preferably split evenly
between respondents with a technical and non-technical background.

To examine different classification tasks, we use two separate datasets, bot accessible through the
UCI machine learning repository [9]. The Adult Income dataset [12] is used to classify whether an
individual is likely to have an income of more than 50k per year, whereas the Student Performance
dataset [6] is used to predict if a student will pass a course. The two scenarios were evenly distributed
among the participants. The preparation of the Adult dataset follows Zhu [34]. For the student dataset,
we follow a similar structure. An overview of the final datasets can be find in the Appendix. For
the remaining steps until the computation of the counterfactual explanation, we follow Rasouli et
al. [24]. The data sets are split into 80% training and 20% test set. We use the same classification
model as Rasouli et al. [24], which is a multi-layer neural network. Based on that, we compute the
counterfactual instances using WachterCF and CARE. CARE provides the user with the possibility
of defining constraints for actionability. We pre-define these constraints following Rasouli et al. [24]
by setting gender and race as fix (immutable value) and age as ge (can only be greater or equal to the
current value).

4 Practicality

Considering that the recipient of the explanation is a human subject, it is crucial to make the
explanations human-friendly. Miller [19] summarizes human-friendly characteristics. Concerning
counterfactual explanations, we have defined the following set of properties that lead to practical
explanations. This set is used as a benchmark to evaluate how humans perceive counterfactual
explanations in practice.

• Contrastiveness: Humans are not interested in why an event happened but rather in why
that event happened instead of another. In the context of counterfactual explanations, we
measure contrastiveness by how well the user understands what needs to change to get the
opposite outcome.

• Selectivity: Generally, humans do not expect a complete cause of an event. Humans are
used to selecting a smaller set of causes and treating it as a complete explanation. Therefore,
counterfactual explanations can provide selectivity by changing only a subset of features as
well as providing different suggestions.

• Social: The explaining method is part of an interaction between the end-user and the system
explaining. As a result, the social environment, the target audience, and the use case need
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to be considered. For counterfactual explanations, this means that the proposed changes
should be made realistically in the given use case of the affected person.

• Truthful: A human-friendly explanation needs to make sense. In other words, the user must
perceive the counterfactual suggestions to reach the other result as plausible.

• Consistent with prior beliefs: As described by the confirmation bias [22], people tend to
ignore information that is inconsistent with their prior beliefs. Applied to counterfactual
explanations, this means that end-users are more likely to consider explanations that suggest
changes that are expected in advance.

5 Experimental Setup

We specify questions to measure how well the counterfactual instances satisfy the practicality
properties. We map the questions shown to the properties as we believe they represent expectations
of counterfactual explanations with respect to those properties. The person represented by the input
data is called Charlie.

Table 1: User Study Questions: The following questions are formulated based on the property set to
evaluate practicality.

Question Measurement Property
1 What attribute(s) would you expect to change for Charlie to
instead get the outcome of “earning above 50k” / “passing the
course”?

Multiple Choice:
List of features

Consistency
prior beliefs

2 How surprised are you with the suggested changes in attributes
to get the outcome of “earning above 50k” / “passing the course”?

Likert Scale:
1. Not at all
7. Very surprised

Consistency
prior beliefs

3 How well does the method explain to you what Charlie needs to
change to get “earning above 50k” / “passing the course”?

Likert Scale:
1. Not at all
7. Very well

Contrastiveness

4 Based on the explanation, what attribute(s) would you consider
as most important to change the model outcome?

Multiple Choice:
List of features

Consistency
prior beliefs

5 In your opinion, the amount of five different suggestions / one
suggestion is ___ to explain the model outcome.

Single Choice:
Too little/
Enough/
Too many

Selectivity

6 In your opinion, the variation of attributes in the suggestion(s) is
___ to explain the model outcome.

Single Choice:
Too little/
Enough/
Too much

Selectivity

7 Do you think Charlie could realistically act upon the suggestions
to change the model outcome to “earning above 50k” / “passing
the course”?

Likert Scale:
1. Not at all
7. Fully

Social

8 Do you think the suggestions make sense in order to retrieve the
model outcome to “earning above 50k” / “passing the course”?

Likert Scale:
1. Not at all
7. A lot

Truthful

9 Which method would you prefer as an explanation for the out-
come of the ML model?

Single Choice:
Method A
Method B

The study starts by introducing ML models, counterfactual explanations, and the underlying classifi-
cation task. For this study, 30 different instances from the two datasets are evenly randomized among
the participants. The participants are asked what properties they expect. This is followed by showing
the first counterfactual explanation computed by CARE and questions 2-8. After answering the
questions, they are shown the explanation computed by WachterCF and are asked the same questions.
Finally, the last question asks which method is preferred and gives an opportunity to leave a comment.
The final user study shows each participant the CARE explanations first. Another option would be to
randomize the order of explanation methods shown between participants. We chose the fixed order
with the reasoning that our focus is on evaluating CARE (a method intended for practicality) against
the baseline WachterCF method. By showing CARE first we ensure that CARE is evaluated without
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Figure 2: Responses to questions with quantitative responses (Likert scale and Single Choice). Red-
colored answers (bottom) indicate negative responses, yellow (middle) neutral, and green positive
(top). For each question, the responses for WachterCF are compared with CARE. All responses differ
significantly between the methods.

any influence. If CARE is not perceived to be more practical than the WachterCF explanation shown
second should obtain similar responses.

6 Results

Out of 135 complete responses, 69 participants received the Adult Income dataset, and 66 received
the Student Performance dataset. Additionally, 70 responses indicate that they are familiar with ML
models, while the remaining 65 imply not being that familiar with ML models. During our analysis,
we do not find any significant difference in the perception of counterfactual explanations based on
users’ technical literacy. Figure 2 shows a stacked bar chart for Questions 2,3,5,6, and 7, comparing
the responses of WachterCF and CARE. Looking at the graphs, it is noticeable that the counterfactual
explanations calculated with WachterCF received more negative responses than those calculated
with CARE. The Wilcoxon Sign Ranked confirms that the responses for WachterCF are significantly
different from the responses for CARE. From this, we can conclude that counterfactual instances
computed by CARE are considered more practical. Taking those results into account, we map back
to the defined set of practicality properties. Question 2 shows that CARE provides less surprising
explanations than WachterCF and is thus more consistent with prior beliefs. Question 3 shows CARE
provides a better explanation of what needs to be changed to get the different model outcome, which
maps to the attribute Contrastiveness. Questions 5 & 6 show that CARE is rated to select a better
subset of features than WachterCF. Question 7 evaluates a social perspective, showing that CARE
serves more realistic suggestions considering the specific use case. Question 8 shows that suggestions
by CARE are perceived to make more sense than suggestions by WachterCF, which maps to being
truthful.

By analyzing Questions 1 and 4 we can compute another estimator for being consistent with prior
beliefs. Question 1 asks what features participants expect to change. Question 4 elaborates on
what features are considered important after seeing the explanations. We analyze the responses by
computing a percentage of agreement, which reveals how many of the features considered as most
important after seeing the explanation were also selected in Question 1. The results show a slight
tendency that explanations provided by CARE have a higher percentage of agreements than ones by
WachterCF. However, according to the Wilcoxon Sign Ranked test, we do not have enough evidence
to show a significant difference for this comparison. Question 9 directly asks the participants what
method is preferred as an explanation. Out of the 135 answers, 113 selected CARE over WachterCF.
Therefore, we can conclude that humans subjectively prefer CARE over WachterCF.
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The responses show that the perception of WachterCF and CARE differs depending on the classi-
fication task. To further assess whether this difference influences the obtained results, we perform
the same analysis as before but split the responses according to the classification task assessed by
the users. The Student Performance data shows a similar pattern as the overall results shown in
Figure 2. CARE is seen as more practical compared to WachterCF and all differences are statistically
significant. On the contrary, the responses to the Adult Income dataset do not show the same results
(see Appendix). Only Questions 5 & 6 show a significant difference in answers, which ask to
indicate the perception regarding the practicality property Selectivity. All other questions do not
differ significantly. Question 7 even shows a slight tendency in favor of WachterCF. We propose three
reasons for this. First, when looking at the actual explanations, WachterCF often only changes the
attribute Age in both datasets. If so, Age decreases for the Student Performance dataset, but increases
for the Adult Income dataset. Decreasing the age is not an actionable explanation, but getting older is
happening without any active changes. Therefore, seeing a decrease in age is unsatisfying. Another
reason is that the student performance dataset contains more attributes to be modified than the adult
income dataset. More attributes may lead to more complexity in computing practical counterfactual
explanations. Furthermore, the decision of the Student Performance dataset is about whether a student
is likely to pass or fail a class is a high-impact decision compared to the Adult Income decision.
Participants may be more demanding regarding the practicality of the explanations when students’
lives are directly affected.

7 Discussion and Future Work

In this section, we discuss the limitations and weaknesses of the methodological design and reflect on
the results of the user study transitioning to possible future work.

One limitation of the user study is that the user study participants were selected through convenience
sampling [10]. This type of sampling is prone to bias and could lead to a judgment that may not
represent other social groups. Furthermore, the user study design does not represent a realistic
scenario. Participants judge cases of people they do not know and to whom they have no emotional
attachment. Another aspect of this is that the datasets have been preprocessed before conducting the
user study, which may not be the case in a real-life scenario.

In this paper, we show that the perception of counterfactual explanation is different for two scenarios.
This may suggest that the practicality depends not only on the computational method, but also on
the type of ML task (e.g., the decision to be made), the data used to make the decision, and the
complexity of that decision. In order to draw conclusions from this, further research is needed to
explore practical use cases for which counterfactual methods can be used. This can be done by
investigating how the perception differs depending on different decision types or the number of
features. In addition, it is interesting to address how the results differ if the users themselves were
affected by the decision, rather than evaluating an explanation for a stranger. Another area to explore
further is to use this framework to compare user perceptions among different explanation methods,
such as feature attribution methods (like LIME [26]) or causal explanations [31].

8 Conclusions

People affected by a decision made by an ML model have the right to receive explanations to
understand better why and how the model makes a particular decision. Counterfactual explanations
are a way to provide transparency by showing which and how attributes must change to achieve
the desired outcome. Research has focused on developing various frameworks for computing
counterfactuals. However, counterfactual explanations must be practical to be used by human subjects
in practice. To answer our research question about the practicality of counterfactual explanations, we
first define the following properties to measure practicality: contrasting, selective, social, truthful,
and consistent with prior beliefs of the user. To test how people perceive the explanations and
simultaneously answer the second and third sub-question, we conduct a user study to compare this
method against WachterCF as a baseline using two different classification tasks. The overall responses
show that people perceive explanations computed with CARE as significantly more practical than
those computed with WachterCF. Furthermore, we analyzed that looking at both used datasets
separately results in different outcomes, which indicates that the perception of an explanation might
differ depending on the classification task, the data, or the scenario.
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9 Appendix

Results based on the Adult Income dataset

Responses to Questions with quantitative responses (Likert scale and Single Choice) exclusively
for the classification task of the Adult Income dataset. Red-colored answers (bottom) indicate
negative responses, yellow (middle) neutral and green positive (top). For each question the responses
for WachterCF is compared with CARE. Based on the P values of a Wilcoxon Sign Ranked only
Questions 5 & 6 are significantly different. The P value for each question shown is accordingly: 0.95,
0.2, 0.001, 0.01, 0.5, 0.8
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Overview of preprocessed Adult Income dataset

Column Type Values
Age Continuous 17 - 90
Working Hours Continuous 2 - 99

Gender Discrete Female
Male

Race Discrete White
Other2

Education Level Discrete

Less than High School
High School Graduate
Some College
Associate’s Degree
Bachelor’s Degree
Master’s Degree
Doctoral Degree
Professional Degree

Marital Status Discrete

Single
Married
Separated
Divorced
Widowed

Occupation Discrete

Blue-Collar
White-Collar
Professional
Sales
Service
Other/Unknown

Industry Type Discrete

Government
Private
Self-Employed
Other/Unknown
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Overview of preprocessed Student Performance dataset

Column Type Values
Age Continuous 15 - 19
Absences Continuous 0 - 30

Gender Discrete Female
Male

Extra educational
support Discrete Yes

No
Family educational
support Discrete Yes

No

Paid tutor classes Discrete Yes
No

Study Time Discrete

Very low
Low
Medium
High
Very high

Freetime Discrete

Very low
Low
Medium
High
Very high

Going out Discrete

Very low
Low
Medium
High
Very high
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