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ABSTRACT

Unsupervised feature selection aims to select a subset from the original features
that are most useful for the downstream tasks without external guidance informa-
tion. While most unsupervised feature selection methods focus on ranking features
based on the intrinsic properties of data, they do not pay much attention to the
relationships between features, which often leads to redundancy among the selected
features. In this paper, we propose a two-stage Second-Order unsupervised Feature
selection via knowledge contrastive disTillation (SOFT) model that incorporates
the second-order covariance matrix with the first-order data matrix for unsuper-
vised feature selection. In the first stage, we learn a sparse attention matrix that
can represent second-order relations between features. In the second stage, we
build a relational graph based on the learned attention matrix and perform graph
segmentation for feature selection. Experimental results on 12 public datasets
show that SOFT outperforms classical and recent state-of-the-art methods, which
demonstrates the effectiveness of our proposed method.

1 INTRODUCTION

In the digital world, huge amounts of high-dimensional data (Guyon et al., 2004; Bajwa et al., 2016;
Yang et al., 2019; Maoying et al., 2020) are captured every day. Due to the existence of irrelevant
or redundant features, data in high dimensions may significantly increase the computational costs
and bring challenges for efficient and effective data management. Dimensionality reduction is one of
the most well-known techniques to address the above issue, which can be categorized into feature
transformation and feature selection. Feature transformation, also known as representation learning,
aims to project the original high-dimensional features into a new low-dimensional feature space. The
new feature space is usually a linear or nonlinear combination of the original features and does not
have semantic meanings, so it is hard to be interpreted. On the other hand, feature selection methods
try to select a subset of relevant features from all available features based on a predefined criterion,
maintaining physical meanings of the original features for better interpretability.

Without label information, unsupervised feature selection methods aim to select a feature subset that
can preserve the intrinsic structure of the whole feature set accurately. There are many algorithms
designed to solve the unsupervised feature selection problem. ReliefF (Robnik-Šikonja & Kononenko,
2003), HSIC (Gretton et al., 2005), Laplacian Score (He et al., 2005), SPEC (Zhao & Liu, 2007),
SPFS (Zhao et al., 2011) evaluate features by their capability in preserving the pairwise sample
similarity. UDFS (Yang et al., 2011), FSASL (Du & Shen, 2015), and TSFS (Mirzaei et al., 2020)
employ pseudo labels as the supervision to guide the feature selection along with a sparse constraint.
Most of these methods apply the linear feature selection matrices and select the representative features
by ranking their feature weight vector. Such operations treat the feature set independently and fail
to tackle the complex high-order relationship (Zhang et al., 2017; Zhu et al., 2020) among original
features which inevitably brings in the redundancy among the selected features.

Contributions: We propose a two-stage Second-Order unsupervised Feature selection via knowledge
contrastive disTillation (SOFT) model that incorporates the second-order covariance matrix with the
first-order data. In the first stage, SOFT learns a sparse attention matrix to explore the second-order
feature relationships. In the second stage, we perform graph segmentation on the learned attention
matrix for feature selection. In summary, we highlight our contributions as follows: (1) We consider
the second-order feature relationship in the unsupervised feature selection problem and propose
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the SOFT algorithm to distill knowledge from both original features and their second-order feature
covariance matrix; (2) Our SOFT learns a mask matrix on or off the covariance matrix and obtains
the attention matrix and masked matrix. Throughout distilling the structural knowledge, the sparse
attention matrix contains such knowledge as much as possible while excluding that from the masked
matrix as well; (3) Different from selecting features according to weights, we propose a graph
segmentation-based feature selection method on the attention matrix, where only one representative
feature is selected from each segment to avoid redundancy; and (4) Experimental results validate that
our SOFT model outperforms classical and recent state-of-the-art models on 12 public datasets. We
also provide in-depth exploration for both stages to demonstrate the effectiveness of SOFT.

2 METHODOLOGY

Figure 1: Visualization of feature relations
of Sonar and Waveform datasets. Selected
features by LapScore are marked by red lines.

Motivation. Unsupervised feature selection aims to
select a small portion of the original features that
are most useful for the downstream tasks without
external guidance. Most previous methods focus on
ranking features based on the values of individual fea-
tures (He et al., 2005; Zhao & Liu, 2007; Yang et al.,
2011) while neglect the high-order relationships be-
tween features. Unfortunately, this might lead to the
redundancy of the selected features and further deteri-
orate downstream tasks. Figure 1 provides an illustra-
tive example of selection results on Sonar (Rossi &
Ahmed, 2015) and Waveform (Breiman et al., 1984)
by Laplacian Score (LapScore) (He et al., 2005). The
heatmap shows the initial relationships between fea-
tures based on the covariance matrix of features. We
remove the diagonal values and calculate the abso-
lute values of covariance, which are normalized for
visualization. In this example, we select the top four
features on Sonar and Waveform by LapScore, which are highlighted with red lines in Figure 1.
Obviously, features a and b, features c and d on Sonar are from two groups within of high similarity,
indicating that one feature might be denoted by the other. Similarly, On Waveform, features e, f , and
h contain highly relevant information as well. However, features from the same feature group might
lead to redundancy, which disobeys the purpose of feature selection. This drives us to explore the
complex relationships derived from the second-order feature covariance matrix in the unsupervised
feature selection problem. Motivated by the above situation, we design a method that can avoid such
redundancy by considering both first-order data and second-order data.

Framework Overview. To incorporate the correlation feature information, we propose a two-stage
model SOFT, which takes the first-order data matrix and second-order feature correlation matrix
as inputs. In the first stage, SOFT learns a mask on the feature correlation matrix via knowledge
contrastive distillation, which is beneficial to preserve the data structure. In the second stage, we
select the features on the masked correlation matrix via graph segmentation.

Figure 2 shows the overview of our SOFT framework. With the first-order data matrix and second-
order correlation feature matrix as inputs, we aim to learn a mask matrix applying to the feature
correlation matrix for feature selection. By this means, we can obtain the attention matrix and
masked matrix by the learnable mask on or off the feature matrix, respectively. The key idea of
SOFT is to distill the structural knowledge via making the attention matrix contain such knowledge
as much as possible while excluding that from the masked matrix as well. The green and red lines in
Figure 2 demonstrate the knowledge contrastive distilling process. To achieve this, we adopt a shared
Graph Convolution Network (GCN) (Kipf & Welling, 2016) to generate attention/original/masked
representations from the attention/feature/masked matrices, respectively. Then we use pseudo labels
generated by attention representation as positive guidance for original representation and negative
guidance for masked representation so that attention representation and original representation are
close to each other and far away from masked representation. Throughout the above knowledge
contrastive distilling process, we can get a sparse and effective feature relation matrix that represent
the second-order correlation, where each node denotes a feature and weights of edges are the
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Figure 2: SOFT model framework. The inputs of our SOFT model consists of the first-order data
matrix and second-order correlation feature matrix. The green line shows that attention representation
is expected to preserve the intrinsic information from the pseudo labels and gets close to original
representation, while the red line presents that the masked representation contains little structural
information and gets away from the attention representation. Finally, we could get a sparse and
effective feature relation matrix that can represent the second-order correlation.

corresponding values in the learned attention matrix. In the second stage, different from the existing
work, which calculates the weight of each feature and suffers from the redundant feature issue (shown
in Figure 1), our attention matrix delivers the weight for a pair of features. To proceed with the
feature selection, we use graph segmentation to cut the attention matrix into partitions and select one
feature that has the highest relationship to others from each partition as the final selection result. By
this means, the redundancy among the selected features can be mitigated.

Table 1: Notations and description

Notation Dimension Description

n scalar Number of input samples
d scalar Number of features
c scalar Number of clusters
X n× d Input data matrix
MF d× d Input feature matrix
MA d× d Attention matrix
MM d× d Masked matrix
GF n× d Representations generated byX andMF

GA n× d Representations generated byX andMA

GM n× d Representations generated byX andMM

PF n× c Predictions of samples byGF

PA n× c Pseudo labels generated byGA

PM n× c Predictions of samples byGM

Attention Matrix Learning. Given n data in-
stances with d features, we have the first-order
n×d data matrixX and the d×d second-order
feature matrix MF = X> × X . Our SOFT
model calculates a learnable mask for feature
selection. In the first stage, SOFT consists of
four components, attention layer, shared GCN,
pseudo label generation, and contrastive learn-
ing. We use Θ = {θM , θG, θC} to denote the
trainable parameters set in the SOFT model,
where θM , θG, and θC denote the parameters
of the attention layer, shared GCN and con-
trastive learning, respectively. Note that the
pseudo labels are generated from the attention
matrix and shared GCN, which are controlled by θM and θG. Therefore, no learnable parameters are
needed for pseudo label generation. Table 1 shows the notations used in our SOFT model and their
descriptions. Each part is detailed as follows.

Attention Layer. The initialized feature matrix MF may not be good enough to represent the
relationship between features, so we add an attention layer to better capture second-order feature
interactions by highlighting the important relations and reducing others through a learnable mask θM .
The attention matrix MA, which represents the important part of MF , is calculated as follows:

MA = MF � θM , (1)

where � is the element-wise product. Due to the symmetry of MF , θM is forced to be symmetric by
adding a d× d parameter matrix with its transpose. With the learnable mask θM and the attention
matrix MA, We assume that the input feature matrix MF can be decomposed as a summation
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formulation of attention matrix MA and masked matrix MM . Then we define the masked matrix
MM by the following function:

MM = MF −MA. (2)

To make the learned attention matrix MA sparse enough to identify crucial and principle relations,
we apply `2,1-norm to learnable mask θM on both row and column level, which is:

L2,1 = ‖θM‖2,1 + ‖θ>M‖2,1. (3)

Shared Graph Convolutional Network. GCN (Kipf & Welling, 2016) helps generate embeddings that
contain both data information and feature relationship information. We apply a shared 2-layer GCN
to extract the attention/original/masked representations from the attention/feature/masked matrices,
respectively. In Kipf & Welling (2016), nodes of graphs denote samples, while in our case, nodes of
graphs are features. Therefore, the computation of the GCN layer is a little different from Kipf &
Welling (2016) and is described by the following equation:

G
(l+1)
θG

= ReLU(G
(l)
θG
D̃−

1
2 M̃D̃−

1
2 θ

(l)
G ), (4)

where M is the input relationship matrix, M̃ = M + Id, Id ∈ Rd×d is the identity matrix, D̃ is the
degree matrix of M̃ , and θ(l)

G is a layer-specific trainable weight matrix. G(l) denotes the embeddings
in the l-th layer, and G(0) = X . In our case, we use a shared 2-layer GCN to process samples with
different input relationship matrices MA, MF , and MM . Thus we have the attention representation
GA, original representation GF , and masked representation GM , respectively.

Pseudo Label Generation. In the unsupervised feature selection, pseudo labels are usually used as
the criterion to guide feature selection. In our experiments, we use Principal Component Analysis
(PCA) (Wold et al., 1987) and K-means to generate pseudo labels (Caron et al., 2018). The embed-
dings processed by the clustering part is generated by attention matrix MA, which is also the matrix
we expect to learn in the SOFT model. PCA helps get principal features, and K-means clustering
generates pseudo labels PA for the input samples X .

Contrastive Learning. With the above representations, we expect that attention representation
and original representation are close to each other but far away from masked representation. To
achieve such contrastive learning, we design two losses to measure the predictive abilities of different
representations and compare them with the pseudo labels. Specially, we employ a 2-layer Multi-Layer
Perceptron (MLP) to get predictions of the samples with original representation GF and masked
representation GM about which clusters they belong to,

P
(l+1)
θC

= σ(P
(l)
θC
× θ(l)

C ), (5)

where θ(l)
C is a layer-specific trainable weight matrix, P (l) denotes the embeddings in the l-th

layer, and P (0) = GF or P (0) = GM for the original representation and masked representation,
respectively. We use σ(·) = ReLU(·) as the activation function for layers before the last layer, and
σ(·) = Softmax(·) for the last layer. In our experiments, we adopt a shared 2-layer MLP and obtain
PF and PM for original representation GF and masked representation GM .

Pseudo labels PA generated by the clustering part are used for the following positive and negative
training. By positive guidance for PF , we get a cross-entropy loss LF for PF , which is defined as:

LF = −
n∑
i=1

c∑
j=1

(PAij logPFij + (1− PAij) log(1− PFij)), (6)

where PFij denotes the probability that the i-th sample belongs to cluster j based on MF . PAij = 1
if the i-th sample belongs to cluster j based on the clustering result, otherwise PAij = 0. Eq. (7) is
designed to make PF similar to pseudo labels PA. While by negative guidance for predictions of
the masked part PM , we apply attention loss described in Li et al. (2018b) to reduce the weights of
unimportant relations, which is stated as follows based on our notations:

LM =

n∑
i=1

c∑
j=1

PAijPMij , (7)
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where PMij denotes the probability that the i-th instance belongs to cluster j based on MM . Through
minimizing Eq. (7), the model tends to put instances to a cluster that they do not belong to, thus
driving predictions PM generated by masked representation different from pseudo labels PA, which
would finally lead to the difference of masked representation GM and attention representation GA.

Objective Function. Combining Eq. (3), Eq. (6), and Eq. (7), Our overall objective function of SOFT
can be written as follows:

minΘ LF + αLM + βL2,1, (8)

where α and β are hyperparameters for LM and L2,1, respectively. We adopt Adam opti-
mizer (Kingma & Ba, 2014) to minimize the objective function. The detailed algorithm can be
found in Appendix A.

Feature Selection on Attention Matrix. Different from the traditional feature selection methods
that return a weight vector to choose the top-ranked features, here, our attention matrix provides the
weight of a pair of features. To proceed with the feature selection, we build a feature graph based
on the attention matrix. Nodes of the graph denote features, and edges are the relationship between
features in the attention matrix. Then we perform graph segmentation for feature selection.

Graph Construction. Instead of transforming the attention matrix MA to a graph immediately, we
add two additional processes so that the generated graph is more suitable for graph segmentation
and feature selection. The first one is to remove some irrelevant features. We calculate a score for
each feature by S =

∑d
i=1MAi, where S is the summation of each row or column of the attention

matrix, which measures the importance of each feature. We delete the last 10% features based on the
sorted S. The second step is to set all values smaller than the median value in MA to zero so that the
number of unimportant edges is largely reduced. We also set all negative values in MA to zero to
make sure no negative edges would exist in the constructed graph.

Graph Segmentation. With the processed graph, we apply the graph segmentation method provided
by Karypis & Kumar (1998) and cut the graph into k parts, where k is the number of features we aim
to select. For each partition, we choose the feature that has the largest value in S, since we consider
features in the same partition are highly related.

Through learning attention matrix in the first stage of our method, we incorporate both first-order data
and second-order data and get a refined feature relation matrix that can better reflect feature relations.
Then in the second stage, we build a graph based on the learned attention matrix and perform graph
segmentation, which groups high-correlated features together. Therefore, by selecting features from
each partition, our method reduces redundancies among the selected features. Our proposed method
focuses on learning pair-wise relationships of features and uses graph segmentation to select features.
The time complexity of our method is O(nd2). If the number of samples is larger than the number of
features (n > d), the space complexity of our method is O(nd), otherwise O(d2).

3 EXPERIMENTAL RESULTS

Experimental Settings. We introduce the experimental settings below.

Datasets. We select 12 public feature selection benchmark datasets of different types for evaluation:
COIL20 (Nene et al., 1996), Colon (Alon et al., 1999), Gisette (Guyon et al., 2004), Lung-Cancer
(L.Cancer) (Hong & Yang, 1991), Madelon (Guyon et al., 2007), MovementLibras (M.Libras) (Dias
et al., 2009), NCI9 (Ross et al., 2000), ORL (Cai et al., 2006), Sonar (Rossi & Ahmed, 2015), UAV1
and UAV2 (Zhao et al., 2018), and Waveform (Wave.) (Breiman et al., 1984). The instance numbers of
these dataset range from 32 to 19937, the feature numbers range from 40 to 9712, and the true cluster
numbers are from 2 to 40. The sample/feature ratios of these datasets range from 0.01 to more than
350, indicating the diversity of the datasets. Detailed dataset statistics can be found in Appendix B.

Comparative Methods and Implementation. We choose 10 classical and recent state-of-the-art
unsupervised feature selection methods for comparison. Laplacian Score (LapScore) (He et al.,
2005) selects features by scoring features with a Gaussian Laplacian matrix. SPEC (Zhao & Liu,
2007) is a more general framework for feature selection based on spectral graph theory, where
LapScore is a special case of it. MCFS (Cai et al., 2010) uses spectral analysis and sparse regression
to select features and capture the multi-cluster data structure. UDFS (Yang et al., 2011) selects
features by discriminative analysis and `2,1 minimization. NDFS (Li et al., 2012) selects the most
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Table 2: Results of different UFS methods on 10% selected features in terms of accuracy

Dataset LapScore SPEC MCFS UDFS NDFS LRPFS NSSLFS TSFS CAE InfFS SOFT

COIL20 0.56±0.03 0.59±0.02 0.63±0.02 0.55±0.03 0.61±0.02 0.57±0.02 0.64±0.04 0.61±0.04 0.65±0.02 0.58±0.05 0.67±0.01
Colon 0.54±0.01 0.55±0.00 0.53±0.00 0.52±0.00 0.55±0.00 0.55±0.01 0.55±0.00 0.54±0.03 0.53±0.01 0.55±0.07 0.56±0.00
Gisette 0.67±0.00 0.70±0.00 0.80±0.00 0.58±0.00 0.74±0.01 N/A+ N/A+ 0.57±0.00 0.62±0.00 0.61±0.04 0.81±0.00
L.Cancer 0.75±0.00 0.59±0.00 0.69±0.00 0.65±0.01 0.69±0.00 0.78±0.00 0.78±0.00 0.60±0.05 0.56±0.02 0.69±0.10 0.78±0.01
Madelon 0.51±0.00 0.51±0.00 0.53±0.00 0.51±0.00 0.60±0.00 0.50±0.00 0.53±0.00 0.57±0.03 0.56±0.00 0.52±0.03 0.60±0.00
M.Libras 0.27±0.01 0.29±0.01 0.38±0.01 0.35±0.02 0.43±0.01 0.39±0.01 0.37±0.01 0.36±0.03 0.43±0.02 0.44±0.03 0.46±0.00
NCI9 0.44±0.02 0.43±0.02 0.38±0.02 0.44±0.03 0.43±0.02 0.42±0.03 0.37±0.03 0.44±0.02 0.46±0.04 0.40±0.03 0.44±0.03
ORL 0.49±0.02 0.56±0.02 0.56±0.02 0.47±0.02 0.57±0.02 0.43±0.02 0.56±0.03 0.57±0.01 0.51±0.01 0.52±0.02 0.58±0.01
Sonar 0.57±0.00 0.54±0.00 0.58±0.00 0.54±0.00 0.52±0.00 0.52±0.00 0.64±0.00 0.56±0.04 0.56±0.00 0.58±0.00 0.64±0.00
UAV1 0.56±0.00 0.67±0.00 0.54±0.00 0.55±0.00 0.65±0.00 N/A+ 0.60±0.00 0.65±0.01 0.56±0.00 0.55±0.00 0.78±0.01
UAV2 0.80±0.00 0.60±0.00 0.76±0.00 0.81±0.00 0.58±0.00 0.55±0.00 0.56±0.00 0.64±0.01 0.81±0.00 0.58±0.02 0.82±0.00
Wave. 0.51±0.00 0.34±0.00 0.51±0.00 0.52±0.00 0.49±0.00 0.48±0.00 0.37±0.00 0.52±0.00 0.51±0.00 0.51±0.00 0.54±0.00

Average 0.55 0.53 0.57 0.54 0.57 0.52 0.54 0.55 0.56 0.54 0.64

N/A: “∗” indicates the algorithmic running error, and “+” means the out-of-64GB-memory error.

(a) COIL20 (b) Colon (c) Gisette

(d) Lung-Cancer (e) Madelon (f) MovementLibras

(g) NCI9 (h) ORL (i) Sonar

(j) UAV1 (k) UAV2 (l) Waveform

Figure 3: Performance of 12 UFS methods on different percents of selected features. On each dataset,
only top 5 methods on average performance are displayed for better visualization.

discriminative features with a nonnegative constraint and `2,1 regularization. LRPFS (Zheng et al.,
2018) adopts a low-rank constraint to preserve the subspace structure information. NSSLFS (Zheng
et al., 2019) learns the feature weight matrix with the `2,1-norm and the non-negative constraint
based on the low-dimensional sparse subspace learning. TSFS (Mirzaei et al., 2020) employs
a teacher-student scheme for deep feature selection. CAE (Balın et al., 2019) uses the concrete
distribution and the reparametrization trick to differentiate through an reconstruction loss and select
input features. InfFS (Roffo et al., 2020) is a fast graph-based approach which ranks and selects
features by considering the possible subsets of features as paths on a graph.

For LapScore, SPEC, MCFS, UDFS, and NDFS, we adopt implementations and default settings
provided by scikit-feature (Li et al., 2018a). For LRPFS and NSSLFS, we set the values of hyperpa-
rameters in their objective functions to 1.0. For TSFS, CAE (non-linear version), and InfFS, we use
default settings provided in their open-source codes. The settings of our SOFT model are as follows.
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Figure 4: Visualization of attention matrix and learnable mask during iterations on MovementLibras.

In the stage of Attention Matrix learning, we implement the networks by PyTorch. The Learnable
Mask is initialized by the normal distribution. The weights α and β in the objective function are 1
and 0.001, respectively. We adopt adam optimizer (Kingma & Ba, 2014) to minimize the objective
function and set the learning rate to 1e-4. We run a total of 300 epochs to learn the attention matrix.
In the stage of graph segmentation, we first remove 10% features as irrelevances based on the learned
attention matrix and set the least 50% values of the remaining 90% features in attention matrix to
zero before graph construction. Then we perform graph segmentation and select 1 feature from each
partition. For the re-implementation, the link of code and datasets can be found in Appendix C.

Evaluation Metric. We employ k-means++ (Arthur & Vassilvitskii, 2006) on the selected features,
and compare the obtained partition and ground truth by clustering accuracy, settings of which follows
scikit-feature (Li et al., 2018a).

Algorithmic Performance. Table 2 shows the experimental results of different unsupervised feature
selection methods on 10% selected features in terms of accuracy. The best results are highlighted in
bold. “N/A” means the corresponding method cannot process the dataset successfully due to running
error or out of memory error. We can see that our SOFT model achieves the best on 11 of the 12
datasets. One of the possible reasons is that SOFT explores the second-order relationships among
features, while other competitive methods only used the first-order data, while we incorporated
second-order data in the feature selection process. By grouping features based on the learned
attention matrix, our method can avoid the redundancy described in Section 2. Moreover, the average
accuracy of SOFT is significantly better than other methods with large margins of 5% to 10%, which
demonstrates the positive effects of second-order feature exploration on the unsupervised feature
selection problem. Beyond the algorithmic effectiveness, we also provide the algorithmic execution
time of different algorithms in Appendix D.

Next, we show the performance of all the methods on selecting different percents of features in
Figure 3. LapScore achieves the best performance with 20% selected features on Madelon, LRPFS
is always the best among these methods on L.Cancer, NSSLFS outperforms other methods with
15% and 20% selected features on Colon, and TSFS with 15% selected features is ranked the first
on NCI9. It is worthy to note that sometimes the performance of SOFT is not so stable as other
methods, such as on L.Cancer when the number of selected features increased. This is because the
comparison methods generate a ranking list for features and select features based on the feature
ranking scores, while SOFT select features based on the graph segmentation result. With the number
of selected features increasing, the feature partitions might change notably, which results in a different
selection. In general, SOFT delivers the compromising features with different percents compared
with others, especially when the percent of selected features is relatively small. For results with all
percentages and datasets, SOFA outperforms all other methods with an average accuracy of 61%,
which is significantly better than two recent methods (CAE achieves 54%, and InfFS gets 51%).

In-depth Exploration of SOFT. We provide the in-depth exploration of SOFT from the following
aspects. Additional experimental results can be found in Appendix E-H.

Parameter Analysis. There are two parameters in the objective function of SOFT, α and β, denoting
the weight of attention loss and `2,1-norm loss, respectively. We vary α and β from 1e− 3 to 1e+ 3
to explore the impact of these two parameters on the final performance. Figure 5(a) shows the results
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(a) Parameter analysis (b) Attention matrices (c) Strategies

Figure 5: In-depth exploration of SOFT. (a) Parameter analysis of α and β on Colon, (b-c) perfor-
mance of feature selection with different attention matrices and different feature selection strategies.

on Colon with 10% selected features. We can see that despite the large range of parameter values,
the final performance does not change much, indicating that the Learnable Mask is well learned and
SOFT might not be sensitive to the value of α and β in a large range.

Visualization of Attention Matrix and Learnable Mask. To further analyze the performance of SOFT,
we visualize the Attention Matrix and the corresponding Learnable Mask in different epochs on
MovementLibras, which is shown in Figure 4. The darker color indicates the stronger correlation of
the corresponding pair of features. To better recognize feature relations, we remove the diagonal
values for visualization. In the beginning, there is no identified pattern in the Learnable Mask because
the learnable mask is randomly initialized. As the training epochs increased, the learnable mask
becomes sparser and seeks the dataset-dependent patterns. While the attention matrix is generated by
an element-wise product of the original feature matrix and the learnable mask, the attention matrix
became sparser as well. Therefore, the most important part of the attention matrix for representing
samples was highlighted through network training.

Then we do a further step to explore the effectiveness of the learned attention matrix by comparing
our results with two designated baseline methods. The first one is the First Order method, which
only uses intrinsic properties of the data. We remove the GCN part of SOFT and utilizes a vectorial
learnable mask for the first order network. The First Order learns the ranking scores for features,
which is denoted by the Learnable Mask. The second one is the Covariance method, which uses the
original feature matrix directly for the second stage of SOFT. Figure 5(b) shows the experimental
result in terms of accuracy. On almost all the datasets, both SOFT and Covariance performed better
than First Order, which demonstrates the effectiveness of incorporating feature relation in feature
selection. While sometimes Covariance achieves a better result than SOFT, SOFT performed the best
in most cases and achieved the best on average, proving that SOFT could learn a sparse and effective
feature relation matrix to represent the second-order correlation.

Feature Selection Strategy. We adopt two baseline methods for feature selection from Attention
Matrix as the comparison with the graph segmentation method in SOFT. The first baseline method,
Weight Sum, utilizes a row-sum method to get the total relation value of each feature to all other
features as the ranking scores for features. Features with the highest scores are selected. The second
baseline method, Largest Weight, each time finds the largest value in Attention Matrix and selects
the corresponding feature pair until k features are selected. Comparison results among Weight Sum,
Largest Weight, and the graph segmentation in SOFT are shown in Figure 5(c). Overall, the graph
segmentation method in SOFT has a significant advantage over the baseline methods. This results
from that SOFT avoids selecting highly correlated features by graph segmentation, thus reducing
redundancies and bringing in more complementary features for performance boosting.

4 RELATED WORK

We briefly review related work on unsupervised feature selection and deep feature selection below.

Unsupervised Feature Selection. In the past decades, a large amount of unlabeled data are generated.
To solve the feature selection problem for the unlabeled data, researchers have proposed many
unsupervised feature selection methods (Liu et al., 2016; Li et al., 2016a), which can be divided
into three main categories: Filter, Wrapper, and Hybrid. Filter methods evaluate features based on
the data itself. Dash et al. (1997) propose one of the earliest filter unsupervised feature selection
method, Sequential backward selection method for Unsupervised Data (SUD). SUD introduces a
similarity matrix representing the pair-wise similarity between objects. By measuring the entropy

8
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of the data, the relevance of each feature is quantified as a ranking score. Features with the highest
scores are selected. Another example is Laplacian Score (He et al., 2005), which weights features
according to their ability to preserve a predefined manifold structure represented by the Laplacian
matrix. Similarly, SPECtrum decomposition (SPEC) (Zhao & Liu, 2007) also introduces an object
similarity matrix. SPEC measures the consistencies between features and nontrivial eigenvectors
of the Laplacian matrix and ranks features based on the consistencies. Wrapper methods select the
most relevant features by using a clustering algorithm. (Dy & Brodley, 2004) introduce a method
to select feature subsets using Expectation Maximization (EM) (Dempster et al., 1977) clustering
and evaluate them with maximum likelihood and the scatter separability criterion. Kim et al. (2002)
present an evolutionary multi-objective local selection algorithm to search feature subsets with
K-means (Hartigan & Wong, 1979) and EM (Dempster et al., 1977) clustering. Instead of selecting
feature subsets, Law et al. (2004) propose to estimate a set of real-valued quantities carried out by an
EM algorithm through adopting a minimum message length (Wallace & Dowe, 2000) penalty. Hybrid
methods try to take advantages of both approaches by adopting a two-stage process: filter stage and
wrapper stage. In the filter stage, the features are scored based on the intrinsic properties of the data.
And in the wrapper stage, feature sets are generated by a specific clustering algorithm. For instance,
Dash & Liu (2000) adopt the method of Dash et al. (1997) for the filter stage to sort the features
and the method of Dy & Brodley (2004) for the wrapper stage to build clusters. Solorio-Fernández
et al. (2016) combine the spectral feature selection framework using the Laplacian Score (He et al.,
2005) ranking and a modified Calinski–Harabasz index (Caliński & Harabasz, 1974). Different from
the above-mentioned methods which are based on ranking, Kim & Gao (2006) propose a method
that starts with the wrapper stage by Least-Square-Estimation based evaluation and then selects
feature set through a Bayesian network in the filter stage. InfFS (Roffo et al., 2020) is a graph-based
filtering approach, which evaluates the values of paths in a graph and selects discrete input features
by exploiting properties of power series of matrices and the concept of absorbing Markov chains.

Deep Feature Selection. Recently, deep learning techniques have gained much attention and brought
in some studies on deep feature selection (Chang et al., 2017; Taherkhani et al., 2018). DFS (Li et al.,
2016b) adds a weight layer to Multi-layer Perceptron (MLP) together with a sparse regularization
term so as to take advantage of deep structures to model nonlinearity. Zhao et al. (2015) propose to
combine deep neural networks with sparse representation for grouped heterogeneous feature selection.
The model first converts the multi-modal data into a unified representation, then selects features
through solving a sparse group lasso (Friedman et al., 2010) problem. In recent years, some studies
also involve data reconstruction error in deep unsupervised feature selection. AEFS (Han et al.,
2018) jointly learns a self-representation autoencoder model and the importance weights of each
feature for feature selection. Furthermore, GAFS (Feng & Duarte, 2018) not only adopts a single
layer autoencoder but also incorporates the spectral graph analysis for learning. UDSFS (Cong et al.,
2016) selects the most discriminative features and meanwhile designates appropriate weights to
the feature dimensions by utilizing the group sparsity of the features. TSFS (Mirzaei et al., 2020)
presents a teacher-student scheme for deep feature selection, in which a teacher network is used to
learn low-dimensional representations, and a student network is employed for feature selection by
minimizing the reconstruction error. CAE (Balın et al., 2019) uses a concrete selector layer as the
encoder and a standard neural network as the decoder, stochastically selects discrete input features by
concrete random variables and the reparametrization trick to get a subset of input features.

5 CONCLUSION

In this paper, we proposed a two-stage framework named SOFT for unsupervised feature selection,
which incorporated second-order data with first-order data. Specifically, in the first stage, we
first obtained the Attention Matrix and Masked Matrix by applying a learnable mask on and off
the input Feature Matrix. Then we generated Attention/Original/Masked Representations from
Attention/Feature/Masked Matrices by a shared Graph Convolutional Network. To train the learnable
mask, we used pseudo labels generated by Attention Representation as positive guidance for Original
Representation and negative guidance for Masked Representation, such that Attention Representation
and Original Representation were similar to each other and different from Masked Representation. In
the second stage, we constructed a graph based on the well-learned Attention Matrix and utilized graph
segmentation to separate the graph into several parts. We chose one feature from each partition as the
feature selection result. Experiments on public datasets demonstrated that our method outperformed
classical and recent state-of-the-art methods on tackling the unsupervised feature selection problem.
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A ALGORITHM OF SOFT

Algorithm 1 Second-Order unsupervised Feature selection via knowledge contrastive disTillation

Input: Input Data Matrix X; Feature Matrix MF = X> ×X;
Output: k selected features;

1: Initialize Θ = {θM , θG, θC};
2: repeat
3: Generate Attention Matrix MA and Masked Matrix MM by applying Learnable Mask on or

off MF ;
4: Use GCN to process X with MA, MF and MM to generate Attention Representation GA,

Original Representation GF and Masked Representation GM ;
5: Adopt clustering on GA to get pseudo labels PA;
6: Employ MLP on Original Representation GF and Masked Representation GM to get predic-

tions PF and PM ;
7: Use PA as positive guidance for PF , and negative guidance for PM to train the objective

function;
8: until the model is converged.
9: Build a graph based on MA via removing noisy features;

10: Apply graph segmentation on the graph to get k partitions and select one feature from each
partition.

Algorithm 1 describes the whole process of SOFT. Through learning Attention Matrix in the first
stage of our method, we incorporate both first-order data and second-order data and get a refined
feature relation matrix that can better reflect feature relations. Then in the second stage, we build a
graph based on the learned Attention Matrix and adopt the graph segmentation method, which groups
high-correlated features together.

B DATASET STATISTICS

We select 12 public feature selection benchmark datasets of different types for evaluation:
COIL20 (Nene et al., 1996), Colon (Alon et al., 1999), Gisette (Guyon et al., 2004), Lung-Cancer
(L.Cancer) (Hong & Yang, 1991), Madelon (Guyon et al., 2007), MovementLibras (M.Libras) (Dias
et al., 2009), NCI9 (Ross et al., 2000), ORL (Cai et al., 2006), Sonar (Rossi & Ahmed, 2015),
UAV1 and UAV2 (Zhao et al., 2018), and Waveform (Wave.) (Breiman et al., 1984). Tabel 3 shows
the statistics of these datasets, where the sample/feature ratios range from 0.01 to more than 350,
indicating the diversity of the datasets.

Table 3: Statistics of datasets

Dataset Type #Sample #Feature #Cluster Ratio Density

COIL20 Face Image 1440 1024 20 1.41 0.656
Colon Biological 62 2000 2 0.03 0.584
Gisette Handwritten 13500 5000 2 2.70 0.130
L.Cancer Biological 32 56 2 0.57 0.940
Madelon Artificial 2600 500 2 5.20 1.000
Mov.Libras Gesture 360 90 15 4.00 1.000
NCI9 Biological 60 9712 9 0.01 0.503
ORL Face Image 400 1024 40 0.39 1.000
Sonar Sonar Signal 208 60 2 3.47 0.999
UAV1 Traffic 19380 54 2 358.89 0.972
UAV2 Traffic 17256 54 2 319.56 0.983
Wave. Artificial 5000 40 3 125.00 0.997

C RE-IMPLEMENTATION

Codes and datasets of our work can be found at https://github.com/ICLR2022submission/SOFT.
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D TIME COST

We record the running time for each method on 10% selected features, which is detailed in Table 4.
When the number of features is much larger than the number of instances, our method runs relatively
slow but faster than methods employing the matrix inverse calculation like UDFS. But when there
are much more samples than features, our method is faster than others except for LapScore, NSSLFS,
and InfFS. This is because SOFT focuses on relations between features, where the number of features
contributes more to the time cost than the number of instances. In general, the speed of SOFT is
acceptable even for large-scale datasets.

Table 4: Time cost of experiments in seconds

Dataset LapScore SPEC MCFS UDFS NDFS LRPFS NSSLFS TSFS CAE InfFS SOFT

COIL20 11.71 23.98 41.81 27.92 18.85 78.21 126.69 62.83 102.55 8.35 180.18
Colon 0.81 1.13 2.32 31.67 6.88 2.19 93.42 3.96 88.55 1.65 46.38
Gisette 52.65 1070.95 101.09 8024.12 2011.81 N/A N/A 687.24 1599.45 529.53 15129.18
L.Cancer 0.57 0.87 0.69 0.85 0.63 0.03 0.17 2.79 138.78 0.10 1.86
Madelon 7.59 24.32 30.33 82.30 345.65 994.50 72.60 81.75 293.36 3.40 75.84
M.Libras 3.61 4.38 4.28 4.23 3.29 1.82 1.05 16.19 256.30 0.23 3.80
NCI9 3.61 3.46 105.29 3664.82 527.26 41.98 1833.71 11.42 333.74 42.55 1034.50
ORL 10.59 13.22 26.42 16.28 13.14 5.22 55.67 31.41 376.19 1.78 55.54
Sonar 0.98 1.25 1.15 1.11 1.02 0.56 0.39 7.93 414.20 0.05 2.17
UAV1 51.38 871.47 5176.43 27726.59 13020.19 N/A 41.65 508.86 605.86 5.02 57.40
UAV2 42.62 545.45 3770.58 17091.52 10011.04 81824.85 43.82 445.54 660.85 2.72 51.52
Wave. 7.07 31.46 128.46 515.26 857.80 2168.23 8.28 136.66 748.83 1.10 15.26
Note: All experiments ran on a physical machine with Ubuntu 18.04, total memory of 64GB, AMD Ryzen Threadripper 2920X 12-Core Processor,

and an NVIDIA GP102 GPU.

Figure 6: Stability of different methods with 10% selected features on COIL20 and L.Cancer.

E STABILITY TEST

The “stability” of a feature selection algorithm refers to the robustness of its feature preferences,
with respect to data sampling and to its stochastic nature. An algorithm is “unstable” if a small
change in data leads to large changes in the chosen feature subset. A typical approach to measure
stability is to first take M bootstrap samples of the provided data set, apply feature selection to each
one of them, and then measure the variability in the M feature sets obtained. Here we conduct the
stability tests on COIL20 and L.Cancer. Specifically, we generate M = 50 bootstrap folds and run
different unsupervised selection methods on these bootstrap folds. And then, we use the stability
measurement proposed by Nogueira et al. (2017) ranging from -1 to 1, which returns the stability
score with confidence intervals. The large value means more stable. The collection of the M feature
sets can therefore be modeled as a binary matrix Z of size M × d, where d is the dimension of
features. A row in Z represents a feature set, and a column represents the selection of a given feature
over the M repeats as follows:

Z =


z1,1 z1,2 · · · z1,d

z2,1 z2,2 · · · z2,d

...
...

. . .
...

zM,1 zM,2 · · · zM,d

 . (9)
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Based on Z , Nogueira et al. (2017) define the stability score as follows:

Φ̂(Z) = 1−
∑d
f=1 s

2
f

k̄(d− k̄)
,with

k̄ =
1

M

M∑
i=1

d∑
f=1

zi,f , s
2
f =

M

M − 1
p̂f (1− p̂f ), p̂f =

1

M

M∑
i=1

zi,f ,

(10)

where k̄ is the average number of features selected over the M feature set, s2
f is the unbiased sample

variance of the selection of the f th feature, and here p̂f denotes the mean of the f th column of Z .

Figure 6 shows the stability test of different feature selection methods on COIL20 and L. Cancer.
Our SOFT algorithm performs very stable with high scores and small intervals and excels others by a
large margin in terms of stability scores.

F DIFFERENT WAYS TO GENERATE PSEUDO LABELS

SOFT is flexible with different pseudo label generation methods. So far, we use PCA + K-means to
generate pseudo labels that are further used to guide feature selection. Here we test the performance of
SOFT with other ways to generate pseudo labels in Table 5. Specifically, two popular deep clustering
methods DEC (Xie et al., 2016) and IMSAT (Hu et al., 2017) with their default parameters are used
here. We can see some improvements by the deep clustering methods. For example, SOFT with
DEC and IMSAT outperforms our default setting (PCA + K-means) on COIL20 and NCI9, which
demonstrates the power of deep methods. But in general, the default setting is slightly better than the
deep methods. We conjecture that some dedicated network architecture design is needed based on the
data property to pursue better performance. If we compare the results in Table 5 and Table 2, SOFT
with DEC and IMSAT to generate pseudo label still excels other baselines by a large margin on the
average level. Moreover, we also report the execution time of SOFT with different ways to generate
pseudo labels. Previously, SOFT might leave an impression of high computational cost just because
of the long execution time on Gisette dataset. Actually, the majority of the running time is occupied
by PCA. The speed of SOFT on Gisette dataset can be dramatically accelerated from 15129.18 to
739.55 or 1068.37 by second with DEC or IMSAT.

Table 5: Performance and execution time of SOFT with different ways to generate pseudo label

10% selected features by accuracy Execution time by second

Dataset PCA+K-means DEC IMSAT PCA+K-means DEC IMSAT

COIL20 0.67±0.01 0.75±0.03 0.73±0.03 180.18 22.23 36.83
Colon 0.56±0.00 0.55±0.00 0.55±0.00 46.38 40.75 55.17
Gisette 0.81±0.00 0.73±0.00 0.76±0.00 15129.18 739.55 1068.37
L.Cancer 0.78±0.01 0.72±0.00 0.69±0.02 1.86 2.75 6.19
Madelon 0.60±0.00 0.56±0.00 0.56±0.00 75.84 18.25 35.79
M.Libras 0.46±0.00 0.46±0.02 0.49±0.02 3.80 4.17 8.03
NCI9 0.44±0.03 0.50±0.04 0.50±0.04 1034.50 6186.08 4550.16
ORL 0.58±0.01 0.63±0.02 0.58±0.02 55.54 15.06 23.86
Sonar 0.64±0.00 0.52±0.00 0.53±0.00 2.17 3.42 6.61
UAV1 0.78±0.01 0.67±0.00 0.66±0.00 57.40 94.37 166.51
UAV2 0.82±0.00 0.83±0.00 0.81±0.00 51.52 84.69 149.89
Wave. 0.54±0.00 0.55±0.00 0.51±0.00 15.26 25.21 44.79

Average 0.64 0.62 0.61 1387.80 603.04 512.68

G DIFFERENT GRAPH SEGMENTATION METHODS

Graph segmentation on the attention matrix is a crucial stage of SOFT. Here we change the graph
segmentation algorithms with multilevel recursive bisection on different percents of selected features.
Figure 7 shows our SOFT performance and standard deviations on different percents of selected
features without and with multilevel recursive bisection. We can see that more smoothness over
different percents is brought by multilevel recursive bisection on L.Cancer and UAV2, compared with
the default one. The standard deviations on different percents of selected features are narrowed by
multilevel recursive bisection as well.

16



Under review as a conference paper at ICLR 2022

(a) Accuracy (b) Standard deviation

Figure 7: SOFT performance and its standard deviation on different percents of selected features
without and with multilevel recursive bisection. Default means without multilevel recursive bisection,
and BiSec means with multilevel recursive bisection.

H ABLATION STUDY ON NOISE REMOVAL FROM THE ATTENTION MATRIX

In the graph construction of SOFT, we have two ways to remove noises, including setting the values
that are smaller than the median to be zero and deleting 10% features according to their importance.
More details can be referred to in the paragraph of Graph Construction. Here we provide the ablation
study on noise removal from the attention matrix in Table 6. Our default setting brings improvements
on 7 out of 12 datasets compared with the single noise removal way and non-noise removal. On the
average level, our default setting is also slightly better than others.

Table 6: Ablation study on noise removal from the attention matrix

Dataset Both (Our default) Remove Values<Median Delete 10% No Noise Removal

COIL20 0.67±0.01 0.71±0.03 0.73±0.03 0.74±0.03
Colon 0.56±0.00 0.55±0.01 0.56±0.01 0.55±0.00
Gisette 0.81±0.00 0.72±0.00 0.74±0.00 0.73±0.00
L.Cancer 0.78±0.01 0.72±0.04 0.69±0.00 0.72±0.04
Madelon 0.60±0.00 0.58±0.00 0.58±0.00 0.58±0.00
M.Libras 0.46±0.00 0.49±0.02 0.46±0.01 0.49±0.02
NCI9 0.44±0.03 0.48±0.02 0.48±0.04 0.52±0.03
ORL 0.58±0.01 0.61±0.02 0.58±0.02 0.64±0.03
Sonar 0.64±0.00 0.53±0.00 0.50±0.00 0.52±0.00
UAV1 0.78±0.01 0.78±0.00 0.78±0.00 0.78±0.00
UAV2 0.82±0.00 0.81±0.00 0.81±0.00 0.81±0.00
Wave. 0.54±0.00 0.50±0.00 0.50±0.00 0.50±0.00

Average 0.64 0.62 0.62 0.63
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