

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO ADAPT: IN-CONTEXT LEARNING BEYOND STATIONARITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer models have become foundational across a wide range of scientific and engineering domains due to their strong empirical performance. A key capability underlying their success is in-context learning (ICL): when presented with a short prompt from an unseen task, transformers can perform per-token and next-token predictions without any parameter updates. Recent theoretical efforts have begun to uncover the mechanisms behind this phenomenon, particularly in supervised regression settings. However, these analyses predominantly assume stationary task distributions, which overlook a broad class of real-world scenarios where the target function varies over time. In this work, we bridge this gap by providing a theoretical analysis of ICL under non-stationary regression problems. We study how the gated linear attention (GLA) mechanism adapts to evolving input-output relationships and rigorously characterize its advantages over standard linear attention in this dynamic setting. To model non-stationarity, we adopt a first-order autoregressive process and show that GLA achieves lower training and testing errors by adaptively modulating the influence of past inputs—effectively implementing a learnable recency bias. Our theoretical findings are further supported by empirical results, which validate the benefits of gating mechanisms in non-stationary ICL tasks.

1 INTRODUCTION

Transformer-based architectures (Vaswani et al., 2017) have emerged as a powerful and versatile modeling framework, achieving state-of-the-art results across a wide spectrum of scientific and engineering domains. Their remarkable effectiveness has been demonstrated in natural language processing (Radford et al., 2019; Brown et al., 2020), recommendation systems (Zhou et al., 2018; Chen et al., 2019), reinforcement learning (Chen et al., 2021; Janner et al., 2021), computer vision (Dosovitskiy et al., 2020), and multi-modal signal processing (Tsai et al., 2019), as well as in more specialized areas such as quantum information (Ma et al., 2025) and wireless communication systems (Kim et al., 2023). A particularly notable instance is their pivotal role in the development of large language models like GPT-4 (Achiam et al., 2023), where the Transformer backbone enables highly advanced generative capabilities.

A distinctive and increasingly studied feature of Transformer models is in-context learning (ICL) (Min et al., 2021), which allows the model to perform previously unseen tasks at inference time by conditioning on sequences of input-output examples, without requiring any explicit parameter updates. This emergent capability has spurred a growing body of research aiming to understand the underlying mechanisms that enable such behavior (Brown et al., 2020; Min et al., 2021; Dong et al., 2022; Wies et al., 2023; Zhang et al., 2023; Bai et al., 2023; Li et al., 2024a; Bertsch et al., 2024; Akyürek et al., 2024; Jiang et al., 2025a; Song et al., 2024; Wu et al., 2023; Qin et al., 2025). In particular, recent theoretical works have investigated the realization of ICL in supervised regression settings, showing that certain architectural components—such as linear attention mechanisms—can effectively emulate simple learning algorithms, e.g., a single step of gradient descent, when the input data distribution is stationary (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023; Zhang et al., 2024; Huang et al., 2023; Chen et al., 2024; Yang et al., 2024; Zhang et al., 2025; Mahankali et al., 2023; Ahn et al., 2023; Li et al., 2024b; 2025; Fu et al., 2024; Ding et al.). These findings offer valuable insights into the algorithmic behaviors implicitly encoded by architectural

054 design, shedding light on the interplay between representation, memory, and adaptation in modern
 055 Transformer models.

056 However, much of the existing theoretical understanding is limited to stationary data settings, where
 057 the input-output relationships remain consistent across in-context examples and the query point.
 058 In contrast, many practical scenarios—including time-series forecasting, streaming data, and natural
 059 language—exhibit non-stationarity, where the underlying target function evolves over time. In such
 060 settings, recency bias, or the increased predictive relevance of more recent examples, plays a crucial
 061 role in accurate prediction. Empirically, linear attention mechanisms are often insufficient for these
 062 non-stationary tasks, motivating the introduction of architectural variants that incorporate inductive
 063 biases better suited for adaptation, such as gated linear attention (GLA) (Yang et al., 2023; Jiang
 064 et al., 2025b), RetNet (Sun et al., 2023), Gateloop (Katsch, 2023), RWKV-6 (Peng et al., 2024), as
 065 well as state-space models like Mamba-2 (Gu & Dao, 2023). These methods have achieved strong
 066 performance in non-stationary sequence modeling, yet there remains a lack of formal theoretical
 067 understanding of their behavior in ICL settings.

068 **Contribution:** In this paper, we aim to bridge this gap by presenting a theoretical analysis
 069 of ICL in non-stationary or time-varying regression problems. We investigate how the GLA
 070 mechanism adapts to evolving input-output relationships and provide a rigorous characterization of
 071 its advantages over standard linear attention in this setting. To model non-stationarity, we adopt
 072 a first-order autoregressive process, which allows us to analytically capture temporal variations in
 073 the regression targets. Within this framework, we show that standard linear attention incurs higher
 074 training and testing errors due to its limited capacity to adapt to distributional shifts over time. In
 075 contrast, GLA exhibits inherent adaptability by dynamically modulating the contributions of past
 076 inputs, effectively inducing a learnable recency bias. This gating mechanism enables the model to
 077 better accommodate time-varying input-output mappings, thereby achieving more robust in-context
 078 generalization. Our analysis underscores the importance of architectural components—particularly
 079 gating—in equipping transformer models with the ability to implement adaptive learning algorithms
 080 in non-stationary environments. Experimental results further corroborate our theoretical findings.
 081 Collectively, our work contributes a theoretical perspective that clarifies the design choices behind
 082 transformer variants and offers a conceptual framework for understanding and developing architec-
 083 tures suited for adaptive ICL.

084 **Notation** We use bold capital letters (e.g., \mathbf{Y}) to denote matrices, bold lowercase letters (e.g.,
 085 \mathbf{y}) to denote vectors, and italic letters (e.g., y) to denote scalar quantities. Elements of matrices
 086 are denoted in parentheses, as in Matlab notation. For example, $\mathbf{Y}(s_1, s_2)$ denotes the element in
 087 position (s_1, s_2) of the matrix \mathbf{Y} . The inner product of $\mathbf{A} \in \mathbb{R}^{d_1 \times d_2}$ and $\mathbf{B} \in \mathbb{R}^{d_1 \times d_2}$ can be
 088 denoted as $\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{s_1=1}^{d_1} \sum_{s_2=1}^{d_2} \mathbf{A}(s_1, s_2) \mathbf{B}(s_1, s_2)$. $\|\mathbf{X}\|_F$ represents the Frobenius norm of
 089 \mathbf{X} . $\mathbf{0}_d$ and $\mathbf{0}_{d \times d}$ denote the zero vector in \mathbb{R}^d and the zero matrix in $\mathbb{R}^{d \times d}$, respectively. For a
 090 positive integer K , $[K]$ denotes the set $\{1, \dots, K\}$.

092 1.1 RELATED WORKS

094 A growing body of work has investigated the emergent phenomenon of ICL, with a focus on un-
 095 derstanding its behavior in stationary regression tasks. For example, (Garg et al., 2022) empirically
 096 demonstrated the ICL capabilities of transformers by analyzing prompts where each input is labeled
 097 by a task-specific function drawn from a predefined function class, such as linear models. Along
 098 similar lines, (Akyürek et al., 2022) investigated linear regression and introduced a transformer
 099 construction capable of performing a single gradient descent (GD) step using in-context examples.
 100 Building upon this, (Von Oswald et al., 2023) designed weight matrices for linear attention-only
 101 transformers that replicate GD updates in linear regression tasks, and notably, they observed that the
 102 learned weights resemble those obtained through end-to-end training on ICL prompts.

103 Further progress has been made by studying the convergence behavior of transformer architectures.
 104 In particular, (Zhang et al., 2024) showed that, for a single-layer linear self-attention model, gradient
 105 flow with carefully chosen random initialization converges to a global minimum, yielding low pre-
 106 diction error on anisotropic Gaussian data. Complementary work by (Huang et al., 2023) initiated
 107 the theoretical study of softmax attention, analyzing the training dynamics of one-layer, single-head
 transformers and providing convergence guarantees for linear regression. This line of research was

subsequently extended by (Chen et al., 2024; Yang et al., 2024; Zhang et al., 2025), who provided sufficient conditions for the convergence of multi-head softmax transformers trained with GD in ICL scenarios. Alternative theoretical perspectives have also been explored: for instance, (Mahankali et al., 2023) demonstrated that a transformer performing a single GD step on a least-squares objective can serve as a global minimizer of the pre-training loss, offering a different interpretation of training objectives in ICL. Similarly, (Ahn et al., 2023) showed that a single-layer model, when trained on random linear regression tasks, implicitly learns to perform a preconditioned GD step at test time, further reinforcing the connection between ICL and optimization-based learning rules. Meanwhile, (Li et al., 2024b; 2025) offered a theoretical interpretation of GLA through the lens of weighted preconditioned GD, although their analysis remains limited to stationary regression settings. Beyond first-order methods, more advanced optimization techniques have also been considered; for example, (Fu et al., 2024) analyzed the convergence behavior of second-order methods in ICL, highlighting their potential for accelerated adaptation relative to first-order approaches.

2 IN-CONTEXT LEARNING TIME-VARYING FUNCTIONS

This work builds upon the well-established in-context learning (ICL) framework introduced in (Garg et al., 2022), which aims to train models capable of performing ICL within a specified function class. As discussed in prior work, significant efforts have been devoted to elucidating the mechanisms underlying ICL. In particular, a number of studies (Garg et al., 2022; Akyürek et al., 2022; Mahankali et al.; Ahn et al., 2023; Huang et al., 2024; Zhang et al., 2024; Li et al., 2024b; 2025; Zhang et al., 2025) have investigated the dynamics of ICL in transformer architectures through the lens of linear regression tasks, where the target function is typically assumed to take the form $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$. However, these studies commonly rely on the simplifying assumption that the regression weight vector \mathbf{w} remains fixed throughout the task. This stationarity assumption creates a theoretical-practical gap, as it does not faithfully reflect real-world scenarios in which data distributions are often non-stationary and the underlying regression weights may vary across different input samples.

In-context Learning Time-varying Functions To bridge this gap and advance the theoretical understanding of ICL in non-stationary settings, we introduce a more realistic framework in which the labels in the training prompt are generated by time-varying functions. Formally, let $\mathcal{D}_{\mathcal{X}}$ denote a distribution over inputs and $\mathcal{D}_{\mathcal{F}_i}$ a time-varying distribution over functions in \mathcal{F}_i . A prompt P is defined as a sequence $(\mathbf{x}_1, f_1(\mathbf{x}_1), \dots, \mathbf{x}_n, f_n(\mathbf{x}_n), \mathbf{x}_{\text{query}})$, where the inputs $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and query $\mathbf{x}_{\text{query}} = \mathbf{x}_{n+1} \in \mathbb{R}^d$ are drawn from $\mathcal{D}_{\mathcal{X}}$, and each f_i is drawn from $\mathcal{D}_{\mathcal{F}_i}$. One may consider two canonical types of time-varying functions inspired by the literature: (i) Deterministic time-varying functions: Here, $f_i = f(\cdot, i/(n+1))$, where f is assumed to vary smoothly over rescaled time. This setting captures gradual and predictable evolution in the underlying mapping, as extensively studied in time-varying nonlinear regression models (Zhang & Wu, 2012; 2015). (ii) Stochastic time-varying functions: In this case, the evolution of f_i is modeled as a stochastic process, allowing for random fluctuations in the function mapping. A representative model is $f_i(x) = \gamma f_{i-1}(x) + e_i(x)$, where $0 < \gamma < 1$ is a forgetting factor modeling gradual drift in task mappings and $e_i(x)$ is a zero-mean stochastic perturbation.

We say that a model \mathcal{M} can *in-context learn* the time-varying function class \mathcal{F}_i up to accuracy ϵ , with respect to $(\mathcal{F}_i, \mathcal{D}_{\mathcal{X}})$, if it can predict $f_{n+1}(\mathbf{x}_{\text{query}})$ based on the prompt P with average error

$$\mathbb{E}_P [\ell(\mathcal{M}(P), f_{n+1}(\mathbf{x}_{\text{query}}))] \leq \epsilon, \quad (1)$$

where $\ell(\cdot, \cdot)$ denotes an appropriate loss function, such as squared error. Within this framework, we can then pose the following central question:

Question: Can we train a model to in-context learn a given time-varying function class?

In this work, to facilitate theoretical analysis while preserving non-stationarity, we consider a simple yet expressive instantiation of the function class:

$$y_i = f_i(\mathbf{x}_i) = \langle \mathbf{w}_i, \mathbf{x}_i \rangle \in \mathbb{R}, i \in [n+1], \quad (2)$$

where each weight vector \mathbf{w}_i evolves according to a first-order autoregressive process given by

$$\mathbf{w}_i = \gamma \mathbf{w}_{i-1} + \mathbf{e}_i, i \in [n+1]. \quad (3)$$

162 Here, $\gamma \geq 0$ is the autoregressive coefficient that controls the temporal correlation of the weight
 163 vectors, the sequence \mathbf{w}_i follows a random walk model, which is a widely adopted generative model
 164 in signal processing and adaptive filtering literature (Sayed, 2011). To facilitate tractable analysis,
 165 we further assume that the initial weight vector is drawn i.i.d. as $\mathbf{w}_0 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \sigma_w^2 \mathbf{I})$, the noisy terms
 166 are i.i.d. Gaussian with $\mathbf{e}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \sigma_e^2 \mathbf{I})$, and the input vectors are i.i.d. samples from a zero-
 167 mean Gaussian distribution with covariance matrix $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{\Lambda})$. Moreover, we assume that the
 168 random variables \mathbf{w}_{i-1} , \mathbf{e}_i , and \mathbf{x}_i are mutually independent. Following a long line of theoretical
 169 work on in-context learning (Mahankali et al.; Ahn et al., 2023; Zhang et al., 2024; Chen et al., 2024;
 170 Yang et al., 2024; Li et al., 2024b; 2025; Zhang et al., 2025), we adopt Gaussian assumptions in our
 171 analysis. This modeling choice enables sharp and explicit characterizations of both the training and
 172 test errors—rather than only providing loose upper bounds—and is therefore essential for isolating
 173 how key quantities such as γ govern the behavior of the learned in-context learner.
 174

175 **Gated Linear Attention** In the non-stationary regression setting introduced above, where the un-
 176 derlying task weights evolve gradually over time, it is crucial for the model to effectively capture
 177 pairwise correlations while adapting to the dynamics of changing tasks. Although standard lin-
 178 ear attention mechanisms offer computational efficiency and scalability, they lack the flexibility to
 179 modulate the influence of prior context based on its relevance to the current input—an ability that is
 180 particularly important in nonstationary environments.

181 To address this limitation, we employ Gated Linear Attention (GLA) (Yang et al., 2023; Li et al.,
 182 2024b; 2025), which enhances linear attention by introducing a gating mechanism that controls the
 183 flow of past information. This structure enables the model to selectively integrate relevant histori-
 184 cal patterns while suppressing outdated ones, thereby offering a better inductive bias for capturing
 185 evolving structures in non-stationary tasks.

186 Formally, we consider the following implementation of GLA. Let $\mathbf{W}_Q \in \mathbb{R}^{(d+1) \times (d+1)}$, $\mathbf{W}_K \in$
 187 $\mathbb{R}^{(d+1) \times (d+1)}$, and $\mathbf{W}_V \in \mathbb{R}^{(d+1) \times (d+1)}$ denote the query, key, and value weight matrices, respec-
 188 tively. To streamline the subsequent analysis, we follow prior works (Ahn et al., 2023; Huang et al.,
 189 2024; Zhang et al., 2024; Li et al., 2024b; 2025; Zhang et al., 2025) and construct the prompt by
 190 evaluating each function f_i on the sampled inputs and pairing each input with its corresponding
 191 output.:
 192

$$193 \mathbf{Z} = [\mathbf{z}_1 \quad \cdots \quad \mathbf{z}_n \quad \mathbf{z}_{n+1}] = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n & \mathbf{x}_{n+1} \\ y_1 & \cdots & y_n & 0 \end{bmatrix} \in \mathbb{R}^{(d+1) \times (n+1)}. \quad (4)$$

195 For each input \mathbf{z}_i , we define the corresponding query, key, and value vectors as $\mathbf{q}_i = \mathbf{W}_Q \mathbf{z}_i$, $\mathbf{k}_i =$
 196 $\mathbf{W}_K \mathbf{z}_i$ and $\mathbf{v}_i = \mathbf{W}_V \mathbf{z}_i$. The output of GLA at position i is given by:
 197

$$198 \mathbf{o}_i = \mathbf{S}_i \mathbf{q}_i \text{ and } \mathbf{S}_i = \lambda \mathbf{S}_{i-1} + \mathbf{v}_i \mathbf{k}_i^\top, \quad (5)$$

200 where $\lambda \in (0, 1]$ is a forgetting factor that determines how quickly the attention mechanism dis-
 201 counts earlier information. For ease of theoretical analysis, we adopt a simplified formulation where
 202 a single global forgetting factor λ is used, rather than assigning a separate, data-dependent gating
 203 coefficient to each token as done in the original GLA model. By unrolling the recursive update in
 204 (5), we obtain:
 205

$$206 \mathbf{S}_{n+1} = \lambda \mathbf{S}_n + \mathbf{v}_{n+1} \mathbf{k}_{n+1}^\top = \sum_{i=1}^{n+1} \lambda^{n+1-i} \mathbf{v}_i \mathbf{k}_i^\top = \mathbf{W}_V \left(\sum_{i=1}^{n+1} \lambda^{n+1-i} \mathbf{z}_i \mathbf{z}_i^\top \right) \mathbf{W}_K^\top, \quad (6)$$

208 which leads to the following expression for the output vector:
 209

$$210 \mathbf{o}_{n+1} = \mathbf{S}_{n+1} \mathbf{q}_{n+1} = \mathbf{W}_V \left(\sum_{i=1}^{n+1} \lambda^{n+1-i} \mathbf{z}_i \mathbf{z}_i^\top \right) \mathbf{W}_K^\top \mathbf{W}_Q \mathbf{z}_{n+1}. \quad (7)$$

213 It is worth noting that when $\lambda = 1$, the weighted sum degenerates into an unweighted accumulation,
 214 i.e., $\sum_{i=1}^{n+1} \mathbf{z}_i \mathbf{z}_i^\top = \mathbf{Z} \mathbf{Z}^\top$, under which the GLA formulation reduces to the standard linear attention
 215 model. This highlights that GLA generalizes linear attention by introducing a learnable memory
 decay.

216 Since the final prediction is taken as the last entry of the token vector output by the GLA layer, only
 217 a subset of the entries in the weight matrices \mathbf{W}_V and \mathbf{W}_Q , \mathbf{W}_K influence the output. To simplify
 218 the notation and subsequent analysis, we merge the query and key matrices into a single matrix and
 219 define

$$220 \quad \mathbf{W}_V = \begin{bmatrix} \mathbf{W}_{11}^V & \mathbf{w}_{12}^V \\ \mathbf{w}_{21}^V & w_{-1}^V \end{bmatrix} \in \mathbb{R}^{(d+1) \times (d+1)} \text{ and } \mathbf{W}_{KQ} = \begin{bmatrix} \mathbf{W}_{11}^{KQ} & \mathbf{w}_{12}^{KQ} \\ \mathbf{w}_{21}^{KQ} & w_{-1}^{KQ} \end{bmatrix} \in \mathbb{R}^{(d+1) \times (d+1)}, \quad (8)$$

223 where $\mathbf{W}_{11}^V, \mathbf{W}_{11}^{KQ} \in \mathbb{R}^{d \times d}$, $\mathbf{w}_{12}^V, \mathbf{w}_{21}^V, \mathbf{w}_{12}^{KQ}, \mathbf{w}_{21}^{KQ} \in \mathbb{R}^{d \times 1}$ and $w_{-1}^V, w_{-1}^{KQ} \in \mathbb{R}$. Using this
 224 decomposition, we express the predicted output as
 225

$$226 \quad \hat{y}_{n+1} = \mathbf{o}_{n+1}(d+1) = \begin{bmatrix} \mathbf{w}_{21}^V & w_{-1}^V \end{bmatrix} \left(\sum_{i=1}^{n+1} \lambda^{n+1-i} \mathbf{z}_i \mathbf{z}_i^\top \right) \begin{bmatrix} \mathbf{W}_{11}^{KQ} \\ \mathbf{w}_{21}^{KQ} \end{bmatrix} \mathbf{x}_{n+1}. \quad (9)$$

229 Note that only the last row of \mathbf{W}_V and the first d columns of \mathbf{W}_{KQ} contribute to the final prediction.
 230 Therefore, without loss of generality, we may set the remaining entries in \mathbf{W}_V and \mathbf{W}_{KQ} to zero in
 231 the subsequent analysis.

233 3 THEORETICAL ANALYSIS OF GLA FOR TIME-VARYING REGRESSION

235 In this work, we investigate the convergence behavior, training error, and testing error of ICL linear
 236 predictors based on the GLA model for time-varying functions. Each task prompt corresponds to an
 237 embedding matrix \mathbf{Z}_τ , for $\tau = 1, \dots, B$, constructed according to the transformation defined in (4):
 238

$$239 \quad \mathbf{Z}_\tau = [\mathbf{z}_{\tau,1} \quad \dots \quad \mathbf{z}_{\tau,n} \quad \mathbf{z}_{\tau,n+1}] = \begin{bmatrix} \mathbf{x}_{\tau,1} & \dots & \mathbf{x}_{\tau,n} & \mathbf{x}_{\tau,n+1} \\ \langle \mathbf{w}_{\tau,1}, \mathbf{x}_{\tau,1} \rangle & \dots & \langle \mathbf{w}_{\tau,n}, \mathbf{x}_{\tau,n} \rangle & 0 \end{bmatrix}. \quad (10)$$

242 We denote the prediction produced by the GLA model on the query input of task τ as $\hat{y}_{\tau,n+1}$, whose
 243 exact form is given in (9). The empirical risk over B independent task prompts is then defined as:

$$244 \quad l(\boldsymbol{\theta}) = \frac{1}{2B} \sum_{\tau=1}^B (\hat{y}_{\tau,n+1} - \langle \mathbf{w}_{\tau,n+1}, \mathbf{x}_{\tau,n+1} \rangle)^2, \quad (11)$$

247 where the model parameters are denoted by $\boldsymbol{\theta} = \{\mathbf{W}_{KQ}, \mathbf{W}_V\}$. To analyze the learning dynamics,
 248 we consider the population risk induced in the limit as the number of training prompts tends to
 249 infinity, i.e., $B \rightarrow \infty$:

$$251 \quad L(\boldsymbol{\theta}) = \lim_{B \rightarrow \infty} l(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}_{\mathbf{w}_{n+1}, \mathbf{x}_{n+1}} [(\hat{y}_{n+1} - \langle \mathbf{w}_{n+1}, \mathbf{x}_{n+1} \rangle)^2], \quad (12)$$

253 where we omit the task index τ for notational simplicity.

254 We study the evolution of the model parameters under gradient flow, which characterizes the
 255 continuous-time limit of gradient descent with infinitesimal step sizes. The parameter dynamics
 256 are governed by the ordinary differential equation $\frac{d\boldsymbol{\theta}}{dt} = -\nabla L(\boldsymbol{\theta})$.

258 In the following, we analyze the gradient flow dynamics under an initialization that satisfies the
 259 following assumption.

260 **Assumption 1.** (Initialization) Let $\sigma > 0$ be a parameter and $\boldsymbol{\Theta} \in \mathbb{R}^{d \times d}$ be any matrix satisfying
 261 $\|\boldsymbol{\Theta} \boldsymbol{\Theta}^\top\|_F = 1$ and $\boldsymbol{\Lambda} \boldsymbol{\Theta} \neq \mathbf{0}_{d \times d} \in \mathbb{R}^{d \times d}$. We assume

$$262 \quad \mathbf{W}_V(0) = \sigma \begin{bmatrix} \mathbf{0}_{d \times d} & \mathbf{0}_d \\ \mathbf{0}_d^\top & 1 \end{bmatrix} \in \mathbb{R}^{(d+1) \times (d+1)} \text{ and } \mathbf{W}_{KQ}(0) = \sigma \begin{bmatrix} \boldsymbol{\Theta} \boldsymbol{\Theta}^\top & \mathbf{0}_d \\ \mathbf{0}_d^\top & 0 \end{bmatrix} \in \mathbb{R}^{(d+1) \times (d+1)}. \quad (13)$$

265 This initialization follows the scheme proposed in (Zhang et al., 2024). Under this setup, we next
 266 show that the gradient flow dynamics with respect to the population loss converge to a specific global
 267 optimum. Specifically, we establish the following result.

268 **Theorem 1.** (Convergence of gradient flow) Consider gradient flow over the population loss in
 269 (12). Assume that the initial task weight $\mathbf{w}_0 \stackrel{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \sigma_w^2 \mathbf{I})$, noises $\mathbf{e}_i \stackrel{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \sigma_e^2 \mathbf{I})$ and inputs

270 $\mathbf{x}_i \stackrel{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{\Lambda})$. Suppose the initialization satisfies Assumption 1 with initialization scale $\sigma > 0$
 271 satisfying $\sigma < \sqrt{\frac{2D_1}{\sqrt{d}\|\mathbf{\Lambda}\|}}$ where
 272

$$273 \quad D_1 = \begin{cases} \frac{\gamma^{n+2} - \gamma^{2n+2}}{1-\gamma} \sigma_w^2 + \frac{\gamma - \gamma^{n+1} - \gamma^{n+2} + \gamma^{2n+2}}{(1-\gamma)^2(1+\gamma)} \sigma_e^2, & \lambda = 1, \gamma \neq 1, \\ \lambda^{2n+2} n \sigma_w^2 + \left(\frac{\lambda^2(1-\lambda^{2n})}{(1-\lambda^2)^2} - \frac{\lambda^{2n+2}}{1-\lambda^2} n \right) \sigma_e^2, & \lambda \neq 1, \gamma \neq 1, \lambda = \gamma, \\ \frac{\lambda^{n+1} \gamma^{n+2} - \lambda \gamma^{2n+2}}{\lambda - \gamma} \sigma_w^2 + \left(\frac{\lambda \gamma(1-\lambda^n \gamma^n)}{(1-\gamma^2)(1-\lambda\gamma)} - \frac{\lambda^{n+1} \gamma^{n+2} - \lambda \gamma^{2n+2}}{(\lambda - \gamma)(1-\gamma^2)} \right) \sigma_e^2, & \lambda \neq 1, \gamma \neq 1, \lambda \neq \gamma, \end{cases}$$

279 and $\tilde{\mathbf{\Lambda}} = D_2(2\mathbf{\Lambda} + \text{trace}(\mathbf{\Lambda})\mathbf{I}) + D_3\mathbf{\Lambda}$ with
 280

$$281 \quad D_2 = \begin{cases} \frac{\gamma^2 - \gamma^{2n+2}}{1-\gamma^2} \sigma_w^2 + \left(\frac{n}{1-\gamma^2} - \frac{\gamma^2 - \gamma^{2n+2}}{(1-\gamma^2)^2} \right) \sigma_e^2, & \lambda = 1, \gamma \neq 1, \\ \lambda^{2n+2} n \sigma_w^2 - \left(\frac{n \lambda^{2n+2}}{1-\lambda^2} - \frac{\lambda^4 - \lambda^{2n+2}}{(1-\lambda^2)^2} \right) \sigma_e^2, & \lambda \neq 1, \gamma \neq 1, \lambda = \gamma, \\ \frac{\gamma^2 \lambda^{2n+2} - \lambda^2 \gamma^{2n+2}}{\lambda^2 - \gamma^2} \sigma_w^2 - \left(\frac{\gamma^2 \lambda^{2n+2} - \lambda^2 \gamma^{2n+2}}{(\lambda^2 - \gamma^2)(1-\gamma^2)} - \frac{\lambda^2 - \lambda^{2n+2}}{(1-\gamma^2)(1-\lambda^2)} \right) \sigma_e^2, & \lambda \neq 1, \gamma \neq 1, \lambda \neq \gamma, \end{cases}$$

285 and

$$286 \quad D_3 = \begin{cases} \left(2 \frac{\gamma^3 - \gamma^{2n+1}}{(1-\gamma)^2(1+\gamma)} - 2 \frac{\gamma^{n+2} - \gamma^{2n+1}}{(1-\gamma)^2} \right) \sigma_w^2 + \left(\frac{2}{\gamma^2 - 1} \left(\frac{\gamma^3 - \gamma^{2n+1}}{(1-\gamma)^2(1+\gamma)} - \frac{\gamma^{n+2} - \gamma^{2n+1}}{(1-\gamma)^2} \right) \right. \\ \left. - \frac{2\gamma}{(\gamma^2 - 1)(1-\gamma)} (n - 1 - \frac{\gamma^n - \gamma}{\gamma - 1}) \right) \sigma_e^2, & \lambda = 1, \gamma \neq 1, \\ \lambda^{2n+2} n(n-1) \sigma_w^2 + \left(\frac{2n(\lambda^4 - \lambda^{2n+2})}{(1-\lambda^2)^2} - \frac{2(\lambda^{2n+4} - n\lambda^6 + (n-1)\lambda^4)}{(1-\lambda^2)^3} \right. \\ \left. - \frac{\lambda^{2n+2} n(n-1)}{1-\lambda^2} \right) \sigma_e^2, & \lambda \neq 1, \gamma \neq 1, \lambda = \gamma, \\ \left(\frac{2\gamma^3 \lambda^{2n+3} - 2\lambda^5 \gamma^{2n+1}}{\lambda(\lambda - \gamma)^2(\lambda + \gamma)} - \frac{2\gamma^{n+2} \lambda^{n+2} - 2\gamma^{2n+1} \lambda^3}{\lambda - \gamma} \right) \sigma_w^2 + \left(\frac{2\gamma^{-1}(\lambda^4 - \lambda^{2n+2})}{(1-\gamma^2)(\lambda - \gamma)(1-\lambda^2)} \right. \\ \left. - \frac{2(\lambda^3 - \lambda^{n+2} \gamma^{n-1})}{(1-\gamma^2)(\lambda - \gamma)(1-\lambda\gamma)} - \frac{2\gamma^3 \lambda^{2n+3} - 2\lambda^5 \gamma^{2n+1}}{\lambda(\lambda - \gamma)^2(\lambda + \gamma)(1-\gamma^2)} + \frac{2\gamma^{n+2} \lambda^{n+2} - 2\gamma^{2n+1} \lambda^3}{(\lambda - \gamma)(1-\gamma^2)} \right) \sigma_e^2, & \lambda \neq 1, \gamma \neq 1, \lambda \neq \gamma. \end{cases}$$

294 Then gradient flow converges to a global minimum of the population loss (12). Moreover, $\mathbf{W}_{KQ}(0)$
 295 and $\mathbf{W}_V(0)$ respectively converge to

$$296 \quad \lim_{t \rightarrow \infty} \mathbf{W}_V(t) = \sqrt{D_1 \|\tilde{\mathbf{\Lambda}}^{-1}\|_F} \begin{bmatrix} \mathbf{0}_{d \times d} & \mathbf{0}_d \\ \mathbf{0}_d^\top & 1 \end{bmatrix} \quad \text{and} \quad \lim_{t \rightarrow \infty} \mathbf{W}_{KQ}(t) = \sqrt{D_1 \|\tilde{\mathbf{\Lambda}}^{-1}\|_F^{-1}} \begin{bmatrix} \tilde{\mathbf{\Lambda}}^{-1} & \mathbf{0}_d \\ \mathbf{0}_d^\top & 0 \end{bmatrix}. \quad (14)$$

299 The proof is deferred to Appendix B. Despite the non-stationary nature of the regression model
 300 considered in this work, we establish that gradient flow converges to a global minimum even under
 301 random initialization. The closed-form solution in (14) reveals that the location of the global
 302 optimum is explicitly determined by λ and γ , highlighting their structural influence on the solution.
 303 While the main theorem focuses on the regime $0 < \lambda \leq 1$ and $0 < \gamma < 1$, a more general result
 304 accommodating arbitrary $\lambda > 0$ and $\gamma > 0$ is established in Theorem 4 of Appendix B. Moreover,
 305 in the limiting case where $\lambda = \gamma = 1$ and $\sigma_e^2 = 0$, the expression reduces precisely to that in (Zhang
 306 et al., 2024, Theorem 4), thereby recovering the stationary setting as a special case of our more
 307 general formulation.

308 **Training error** We now analyze the training error of the learned network. At the global optimum—
 309 i.e., when the parameters converge to $\lim_{t \rightarrow \infty} \mathbf{W}_V(t)$ and $\lim_{t \rightarrow \infty} \mathbf{W}_{KQ}(t)$ in (14), a straightfor-
 310 ward calculation yields the prediction \hat{y}_{n+1} as follows:

$$311 \quad \hat{y}_{n+1} = D_1 \begin{bmatrix} \mathbf{0}_d^\top & 1 \end{bmatrix} \left(\sum_{i=1}^{n+1} \lambda^{n+1-i} \mathbf{z}_i \mathbf{z}_i^\top \right) \begin{bmatrix} \tilde{\mathbf{\Lambda}}^{-1} \\ \mathbf{0}_d^\top \end{bmatrix} \mathbf{x}_{n+1} = D_1 \left(\sum_{i=1}^n \lambda^{n+1-i} \mathbf{w}_i^\top \mathbf{x}_i \mathbf{x}_i^\top \right) \tilde{\mathbf{\Lambda}}^{-1} \mathbf{x}_{n+1}. \quad (15)$$

314 This expression confirms that, for sufficiently long prompts, the trained model successfully in-
 315 context learns the family of linear predictors. We emphasize that both λ and γ jointly influence
 316 the degree of time variation in the underlying model. We next quantify the training error at the
 317 global optimum.

318 **Theorem 2. (Training error)** Assuming the conditions in Theorem 1 hold, the recovery error be-
 319 tween (15) and (2) is

$$320 \quad \mathbb{E}[(\hat{y}_{n+1} - y_{n+1})^2] = D_1^2 \text{trace} (D_2(\mathbf{\Lambda} \text{trace}(\tilde{\mathbf{\Lambda}}^{-1} \mathbf{\Lambda} \tilde{\mathbf{\Lambda}}^{-1} \mathbf{\Lambda}) + 2\mathbf{\Lambda} \tilde{\mathbf{\Lambda}}^{-1} \mathbf{\Lambda} \tilde{\mathbf{\Lambda}}^{-1} \mathbf{\Lambda}) \\ 321 \quad + D_3 \mathbf{\Lambda} \tilde{\mathbf{\Lambda}}^{-1} \mathbf{\Lambda} \tilde{\mathbf{\Lambda}}^{-1} \mathbf{\Lambda}) + D_4 \text{trace}(\mathbf{\Lambda}) - 2D_1^2 \text{trace}(\mathbf{\Lambda} \tilde{\mathbf{\Lambda}}^{-1} \mathbf{\Lambda}), \quad (16)$$

323 where $D_4 = \gamma^{2n+2} \sigma_w^2 + \frac{1 - \gamma^{2n+2}}{1 - \gamma^2} \sigma_e^2$.

324 The proof is provided in Appendix C. Equation (16) illustrates that the training error depends jointly
 325 on the parameters λ and γ . Consequently, for fixed λ (or γ), there exists an optimal value of γ (or
 326 λ) that minimizes the error. Although the expressions of D_i suggest a symmetric structure in λ
 327 and γ , it does not necessarily imply that choosing $\lambda = \gamma$ minimizes the recovery error. In fact, the
 328 error involves a subtle balance between the σ_w^2 - and σ_e^2 -dependent terms as well as the trace terms
 329 with $\tilde{\Lambda}^{-1}$. When $\lambda = \gamma$, the simplification of D_i may amplify certain noise-dependent factors and
 330 deteriorate the overall error. This observation highlights that the optimal choice of λ depends not
 331 only on the apparent algebraic symmetry but also on the interplay between noise statistics, system
 332 dimension, and the spectral structure of Λ .

333 We next consider a special case with $\Lambda = \mathbf{I}$, in which (16) reduces to $\mathbb{E}[(\hat{y}_{n+1} - y_{n+1})^2] =$
 334 $\frac{D_1^2(d^2D_2+2dD_2+dD_3)+dD_4a^2-2aD_1^2}{a^2}$ with $a = (2+d)D_2 + D_3$. Note that, when γ is fixed, D_1 , D_2 ,
 335 and D_3 are monotonically increasing functions of λ . Accordingly, in this expression, the numerator
 336 comprises positive terms that grow with D_1 , D_2 , and D_3 , while the negative terms and the division
 337 by a^2 partially counterbalance this growth. As a result, the function is generally non-monotonic.
 338 Nevertheless, under certain parameter configurations, it may exhibit convexity with respect to λ
 339 over $(0, 1]$. The subsequent experiments provide direct validation of these theoretical observations.
 340

341 **Testing error** In this part, we characterize the prediction performance of the trained transformer
 342 when evaluated on a test prompt drawn from a potentially different task distribution. Notably, the
 343 model parameters are fixed at their global optimum obtained from training, and the test prompt may
 344 differ in its length, data distribution, and underlying dynamics. We consider test prompts of the form

$$\begin{aligned} \bar{\mathbf{Z}} = [\bar{\mathbf{z}}_1 & \cdots & \bar{\mathbf{z}}_m & \bar{\mathbf{z}}_{m+1}] = \begin{bmatrix} \bar{\mathbf{x}}_1 & \cdots & \bar{\mathbf{x}}_m & \bar{\mathbf{x}}_{m+1} \\ \bar{y}_1 & \cdots & \bar{y}_m & 0 \end{bmatrix} \\ &= \begin{bmatrix} \langle \bar{\mathbf{w}}_1, \bar{\mathbf{x}}_1 \rangle & \cdots & \langle \bar{\mathbf{w}}_m, \bar{\mathbf{x}}_m \rangle & \bar{\mathbf{x}}_{m+1} \\ \langle \bar{\mathbf{w}}_1, \bar{\mathbf{x}}_1 \rangle & \cdots & \langle \bar{\mathbf{w}}_m, \bar{\mathbf{x}}_m \rangle & 0 \end{bmatrix}, \end{aligned} \quad (17)$$

350 where the latent task weights $\{\bar{\mathbf{w}}_i\}_{i=1}^{m+1}$ evolve according to the first-order autoregressive model
 351 $\bar{\mathbf{w}}_i = \bar{\gamma} \cdot \bar{\mathbf{w}}_{i-1} + \bar{\mathbf{e}}_i$, $i = 1, \dots, m+1$. To distinguish between training and testing distributions,
 352 we assume that the initial weight vector satisfies $\bar{\mathbf{w}}_0 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \bar{\sigma}_w^2 \mathbf{I})$, and the driving noise
 353 $\bar{\mathbf{e}}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \bar{\sigma}_e^2 \mathbf{I})$. The inputs are drawn independently as $\bar{\mathbf{x}}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \bar{\Lambda})$, and we assume mutual
 354 independence among random variables $\bar{\mathbf{w}}_{i-1}$, $\bar{\mathbf{e}}_i$, and $\bar{\mathbf{x}}_i$.
 355

356 Given a forgetting factor $\bar{\lambda}$, the prediction \tilde{y}_{m+1} produced by the model at test time (evaluated at the
 357 training global optimum) is

$$\tilde{y}_{m+1} = D_1 \left(\sum_{i=1}^m \bar{\lambda}^{m+1-i} \bar{\mathbf{w}}_i^\top \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^\top \right) \tilde{\Lambda}^{-1} \bar{\mathbf{x}}_{m+1}. \quad (18)$$

361 We now characterize the mean squared prediction error on the test prompt:

362 **Theorem 3.** *(Testing error) Under the assumptions in Theorem 4, the expected prediction error of
 363 the model on the test prompt is given by*

$$\begin{aligned} \mathbb{E}[(\tilde{y}_{m+1} - \bar{y}_{m+1})^2] &= D_1^2 \text{trace}(\bar{D}_2(\bar{\Lambda} \text{trace}(\tilde{\Lambda}^{-1} \bar{\Lambda} \tilde{\Lambda}^{-1} \bar{\Lambda}) + 2\bar{\Lambda} \tilde{\Lambda}^{-1} \bar{\Lambda} \tilde{\Lambda}^{-1} \bar{\Lambda})) \\ &\quad + \bar{D}_3 \bar{\Lambda} \tilde{\Lambda}^{-1} \bar{\Lambda} \tilde{\Lambda}^{-1} \bar{\Lambda}) + \bar{D}_4 \text{trace}(\bar{\Lambda}) - 2D_1 \cdot \bar{D}_1 \text{trace}(\bar{\Lambda} \tilde{\Lambda}^{-1} \bar{\Lambda}), \end{aligned} \quad (19)$$

368 where \bar{D}_i for $i = 1, \dots, 4$ are defined analogously to the D_i constants from training, with the
 369 substitution $\lambda \rightarrow \bar{\lambda}$, $\gamma \rightarrow \bar{\gamma}$, $\sigma_w^2 \rightarrow \bar{\sigma}_w^2$, $\sigma_e^2 \rightarrow \bar{\sigma}_e^2$, and $n \rightarrow m$.
 370

371 The proof has been provided in Appendix D. This result quantifies the generalization behavior of
 372 the trained model when applied to unseen prompts sampled from a potentially different distribution.
 373 Notably, the prediction error depends jointly on the training and testing task statistics through the
 374 interaction between $\tilde{\Lambda}$ and $\bar{\Lambda}$. Moreover, the expected error $\mathbb{E}[(\tilde{y}_{m+1} - \bar{y}_{m+1})^2]$ is inherently nonze-
 375 ro due to the stochastic nature of the task evolution—specifically, the noise in the dynamics of $\bar{\mathbf{w}}_i$. This highlights the importance of employing
 376 GLA, which adaptively modulates the influence of past observations and better accommodates tem-
 377 poral variations in the underlying regression weights. In the subsequent experimental section, we
 378 empirically demonstrate the effectiveness of the GLA mechanism in handling non-stationary tasks.
 379

378

379 **Comparison with Adaptive Signal Processing** The non-stationary regression setting considered
 380 in this paper is closely related to classical problems in adaptive signal processing, where the under-
 381 lying model parameters evolve gradually over time (Sayed, 2011; Das et al., 2015; Abdolee et al.,
 382 2016; Qin et al., 2020; Claser & Nascimento, 2021; Yu et al., 2021; Wang et al., 2022). To track
 383 such non-stationary dynamics, a wide range of online algorithms have been developed, including
 384 the least mean squares (LMS) algorithm, the affine projection algorithm (APA), and the recursive
 385 least squares (RLS) algorithm. These methods are designed to update model parameters iteratively
 386 in response to streaming data, with the goal of minimizing instantaneous or long-term prediction
 387 error. Under non-stationary models such as the first-order autoregressive process described in (3),
 388 the corresponding theoretical error analyses for these methods also indicate that, for a fixed γ , there
 389 exists an optimal choice of step size (in LMS/APA) or forgetting factor (in RLS) that minimizes the
 390 tracking error.

391 While classical adaptive signal processing methods explicitly update model parameters over time
 392 based on streaming observations, the paradigm studied in this paper—in-context learning with the
 393 GLA model—adopts a fundamentally different approach. Instead of relying on explicit parameter
 394 updates, as in LMS, APA, or RLS, the GLA implicitly adapts to task dynamics via internal repre-
 395 sentations conditioned on the prompt. In particular, the gating mechanism in GLA enables the model
 396 to selectively integrate past information in a soft and differentiable manner, thereby tracking non-
 397 stationary structures without modifying its parameters. This architectural distinction offers a new
 398 perspective on learning in non-stationary environments, where adaptation arises not from external
 399 optimization procedures, but from the model’s forward computation itself.

4 EXPERIMENTAL RESULTS

400 In this section, we present experiments to validate the theoretical analysis and demonstrate the
 401 advantages of GLA in non-stationary models. The experiments are conducted under the fol-
 402 lowing settings. The training and testing losses are defined as $\frac{1}{B} \sum_{\tau=1}^B (\hat{y}_{\tau, n+1} - y_{\tau, n+1})^2$ and
 403 $(\bar{y}_{m+1} - \bar{y}_{m+1})^2$, respectively. Unless otherwise specified, we set $d = 10$, $n = 100$, $\sigma_w^2 = 1$,
 404 $\sigma_e^2 = 0.01$, and $B = 10^7$. The AdamW optimizer is adopted with learning rate 10^{-2} , weight decay
 405 0.05, and momentum parameter 0.9. Each model is trained for 2000 epochs with a batch size of 5000
 406 samples. The loss associated with the optimal λ is highlighted by a star. **Although the theoretical**
 407 **analysis imposes a constraint on the initialization matrix, our experiments use a random Gaussian**
 408 **initialization and still observe the predicted behavior, indicating that the constraint is not necessary**
 409 **in practice.**

410 Figure 1: Training and testing performance of the one-layer GLA model with different λ and γ .

411 The first experiment compares the training and testing performance of the one-layer GLA mod-
 412 el under varying choices of γ and λ . As shown in Figure 1a, when the autoregressive coefficient
 413 γ decreases and the impact of noise becomes more pronounced, an appropriate choice of λ is re-
 414 quired to attain the lowest training loss. During testing, we evaluate the GLA model trained with
 415 $\lambda = 0.9$ under different sequence lengths $m \in \{10, 50, 100\}$. The results in Figures 1b to 1d
 416 show that, across different values of γ , selecting an appropriate λ remains crucial for minimizing
 417 the test loss. These results highlight the role of GLA in stabilizing learning under non-stationary
 418 conditions. By introducing a gating mechanism into linear attention, GLA effectively regulates the
 419 influence of past inputs, thereby mitigating error accumulation and enhancing the models adapt-
 420 ability to distributional shifts. Consequently, GLA achieves longer effective memory and improved
 421 generalization, underscoring its advantage in handling time-varying data. **As mentioned previously,**

432

433 a one-layer GLA model applied to a first-order autoregressive process functions analogously to an
 434 adaptive filter. To illustrate this, we compare its performance with LMS and RLS algorithms. We set
 435 the LMS step size to 0.01 and the RLS forgetting factor to 0.98, train on sequences of length 1000,
 436 and perform 10,000 Monte Carlo trials, averaging the results. The training errors for LMS and RLS
 437 are respectively [0.2639 0.3168 0.6058 1.0072 1.4758] and [0.2555 0.3746 0.6658 0.8881 1.2916]
 438 for $\gamma = [0.8 0.85 0.925 0.95 0.975]$. Compared to LMS and RLS, which require fixed or slowly
 439 adapting parameters, a one-layer GLA model achieves lower training errors (see Figure 1a) because
 440 it possesses higher representational flexibility. Furthermore, LMS and RLS adapt only to a single
 441 sequence at a time, requiring retraining for each new input, and therefore cannot leverage cross-
 442 sequence information. In contrast, GLA’s learnable weights are shared across sequences, allowing
 443 the model to generalize and adapt efficiently to new inputs without retraining.

444

445

446

447 Figure 2: (a-b) Training and testing performance of the multi-layer GLA model with $\gamma = 0.95$ and
 448 different λ ; (c) convergence performance of the one-layer GLA model; (d) convergence performance
 449 for GLA models with different layers.

450

451

452 In the second experiment, we investigate the impact of network depth on the performance of the
 453 GLA model. As illustrated in Figures 2a and 2b, increasing the number of layers consistently
 454 enhances both training and testing performance, suggesting that deeper architectures can more
 455 effectively capture long-range dependencies in non-stationary sequences. Conceptually, each GLA
 456 layer implements a linear adaptive filter whose effective behavior is determined by its gating weights.
 457 When multiple layers are stacked, these adaptive filters operate at different timescales, enabling the
 458 network to simultaneously capture short-term fluctuations and longer-term trends in the evolving
 459 regression weights. This multi-timescale structure explains why deeper GLA models achieve better
 460 performance under non-stationary regression: a single layer can track only one effective timescale
 461 of drift, while multiple layers collectively approximate a richer family of dynamic predictors. While
 462 formal theoretical analysis for multi-layer GLA models is not yet established, the empirical results
 463 underscore the critical role of the adaptive gating mechanism in regulating information flow across
 464 layers, thereby mitigating error accumulation and improving generalization.

465

466

467 Under the same experimental settings as the first two experiments, we examine the training conver-
 468 gence of the one-layer GLA with the optimal λ corresponding to the minimum loss, and of the multi-
 469 layer GLA with $\lambda = 0.85$. With random Gaussian initialization and a sufficiently large number of
 470 training samples, Figure 2c shows that the one-layer GLA achieves linear convergence, in agreement
 471 with our previous analysis. Figure 2d further demonstrates that the multi-layer GLA maintains linear
 472 convergence, indicating that the adaptive gating mechanism effectively stabilizes gradient propa-
 473 gation across layers. A rigorous theoretical characterization of convergence for multi-layer GLA is left
 474 for future work.

475

476

477 In the third experiment, we assess the ICL capability of GLA and Linear Attention (LA) models on
 478 a real-world language task. We focus on sentiment classification using the SST-2 dataset (Socher
 479 et al., 2013), which contains 67,349 training samples and 872 validation samples with binary labels
 480 (positive/negative). To initialize the models, we employ GPT-2 (small) (Radford et al., 2019), which
 481 consists of 12 layers, a hidden size of 768, 12 attention heads, and approximately 117M parameters.
 482 We then replace the original softmax attention with (i) linear attention, resulting in LinearGPT2,
 483 and (ii) gated linear attention, resulting in GatedLinearGPT2. Both models are optimized using
 484 AdamW with a learning rate of 5×10^{-5} , weight decay of 0.05, and momentum parameter of 0.9
 485 for 1,000 iterations. For ICL fine-tuning, we provide 20 in-context demonstrations per instance,
 486 computing the loss only on label tokens. During evaluation on the SST-2 validation set, we vary
 487 the number of demonstrations $K \in \{1, 5, 10, 15, 20\}$. Performance is assessed using two metrics:
 488 (1) Accuracy, defined as the standard prediction accuracy; and (2) Confidence, calculated for each

486

487 correctly classified example by converting the models logits over positive, negative to probabilities
 488 ($p_{\text{pos}}, p_{\text{neg}}$) and taking $\max(p_{\text{pos}}, p_{\text{neg}})$, with the reported value being the average over all correctly
 489 classified examples. As shown in Figures 3a and 3b, when $\lambda = 0.9$, GLA achieves the highest
 490 accuracy and confidence, outperforming LA by a clear margin. This empirical advantage can be at-
 491 tributed to its gating mechanism: unlike LA, which implicitly assumes a stationary linear regression
 492 structure, GLA is able to adapt to the non-stationarity of real-world data by selectively integrating
 493 or discarding historical information—an ability that proves critical for reliable prediction.

494

495

500 (a) SST-2 Accuracy (b) SST-2 Confidence (c) MNLI Accuracy (d) MNLI Confidence
 501 Figure 3: Accuracy and confidence of GatedLinearGPT2 vs. LinearGPT2 on SST-2 sentiment clas-
 502 sification (left two) and MNLI natural language inference (right two) across different numbers of
 503 demonstrations.

504

505

506 In the final experiment, we evaluate the ICL capabilities of GLA and Linear Attention (LA) mod-
 507 els on a more challenging natural language inference task, which requires determining the logical
 508 relationship between a premise-hypothesis pair (entailment, contradiction, or neutral) across a broad
 509 range of text genres. We use the Multi-Genre Natural Language Inference (MNLI) dataset (Williams
 510 et al., 2018), which spans multiple genres and contains approximately 393k training examples with
 511 three class labels. Following the same setup as in the third experiment, we provide 10 in-context
 512 demonstrations per instance for ICL fine-tuning constrained by context length and compute the loss
 513 only on the label tokens. For evaluation on the MNLI validation set, we vary the number of demon-
 514 strations $K \in \{1, 3, 5, 7, 10\}$. As shown in Figures 3c and 3d, GLA consistently achieves higher
 515 accuracy and confidence than LA, highlighting the benefit of the gating mechanism.

516

517

518 5 CONCLUSION

519

520

521 This work presents a theoretical investigation of in-context learning in non-stationary regression
 522 problems, addressing an important gap in the current understanding of transformer models. Under
 523 a first-order autoregressive model of non-stationarity, we show that GLA outperforms standard
 524 linear attention by dynamically reweighting past inputs, enabling more accurate prediction in time-
 525 varying settings. Our analysis provides rigorous justification for the advantage of gating in captur-
 526 ing distributional shifts and highlights its role as an architectural inductive bias in adaptive learning.
 527 These findings not only deepen the theoretical foundations of ICL in dynamic environments but
 528 also suggest broader implications for the design of transformer variants in real-world applications
 529 characterized by non-stationarity.

530

531 A natural direction for future work is to generalize the first-order autoregressive assumption to a
 532 broader class of dynamic-weight models. In particular, allowing more flexible temporal evolutions—
 533 such as higher-order dynamics, stochastic drift, or slowly varying adversarial changes—would further
 534 illuminate how in-context learning behaves in general non-stationary settings. A second direction for
 535 future work is to develop a rigorous theoretical characterization of how gating mechanisms interact
 536 across multiple GLA layers. While our experiments show that stacking layers consistently improves
 537 performance, a principled analysis of how multi-layer structures capture multiple timescales of drift
 538 remains an important open problem. The third future direction is to analyze the global optimization
 539 landscape of the GLA model studied in this paper. Our numerical experiments suggest that random
 Gaussian initialization consistently converges to a global minimum under gradient flow, even when
 the theoretical initialization conditions are violated. This indicates the existence of a benign global
 optimum and motivates a deeper theoretical study of the model’s optimization landscape.

540 REFERENCES
541

542 Reza Abdolee, Vida Vakilian, and Benoit Champagne. Tracking performance and optimal adaptation
543 step-sizes of diffusion-lms networks. *IEEE Transactions on Control of Network Systems*, 5(1):
544 67–78, 2016.

545 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
546 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
547 report. *arXiv preprint arXiv:2303.08774*, 2023.

548 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
549 ment preconditioned gradient descent for in-context learning. *Advances in Neural Information
550 Processing Systems*, 36:45614–45650, 2023.

551 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learn-
552 ing algorithm is in-context learning? investigations with linear models. *arXiv preprint arX-
553 iv:2211.15661*, 2022.

554 Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Archi-
555 tectures and algorithms. *arXiv preprint arXiv:2401.12973*, 2024.

556 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
557 Provable in-context learning with in-context algorithm selection. *Advances in neural information
558 processing systems*, 36:57125–57211, 2023.

559 Amanda Bertsch, Maor Ivgi, Emily Xiao, Uri Alon, Jonathan Berant, Matthew R Gormley, and
560 Graham Neubig. In-context learning with long-context models: An in-depth exploration. *arXiv
561 preprint arXiv:2405.00200*, 2024.

562 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
563 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
564 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

565 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
566 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
567 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

568 Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer
569 for e-commerce recommendation in alibaba. In *Proceedings of the 1st international workshop on
570 deep learning practice for high-dimensional sparse data*, pp. 1–4, 2019.

571 Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
572 softmax attention for in-context learning: Emergence, convergence, and optimality. *arXiv preprint
573 arXiv:2402.19442*, 2024.

574 Raffaello Claser and Vitor H Nascimento. On the tracking performance of adaptive filters and their
575 combinations. *IEEE Transactions on Signal Processing*, 69:3104–3116, 2021.

576 Bijit Kumar Das, Luis A Azpicueta Ruiz, Mrityunjoy Chakraborty, and Jerónimo Arenas-García. On
577 steady state tracking performance of adaptive networks. In *2015 IEEE International Conference
578 on Digital Signal Processing (DSP)*, pp. 843–847. IEEE, 2015.

579 Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. Causallm is not
580 optimal for in-context learning. In *The Twelfth International Conference on Learning Repre-
581 sentations*.

582 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
583 Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint arXiv:2301.00234*,
584 2022.

585 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
586 Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth
587 16x16 words: Transformers for image recognition at scale. In *International Conference on Learn-
588 ing Representations*, 2020.

594 Deqing Fu, Tian-qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn to achieve second-order
 595 convergence rates for in-context linear regression. *Advances in Neural Information Processing*
 596 *Systems*, 37:98675–98716, 2024.

597

598 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
 599 in-context? a case study of simple function classes. *Advances in Neural Information Processing*
 600 *Systems*, 35:30583–30598, 2022.

601 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 602 *preprint arXiv:2312.00752*, 2023.

603

604 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. *arXiv preprint*
 605 *arXiv:2310.05249*, 2023.

606

607 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In *Proceedings*
 608 *of the 41st International Conference on Machine Learning*, pp. 19660–19722, 2024.

609 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
 610 modeling problem. *Advances in neural information processing systems*, 34:1273–1286, 2021.

611

612 Jiachen Jiang, Yuxin Dong, Jinxin Zhou, and Zhihui Zhu. From compression to expansion: A
 613 layerwise analysis of in-context learning. *arXiv preprint arXiv:2505.17322*, 2025a.

614

615 Jiachen Jiang, Zhen Qin, and Zhihui Zhu. In-context learning for non-stationary mimo equalization.
 616 *arXiv preprint arXiv:2510.08711*, 2025b.

617

618 Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. *arXiv*
 619 *preprint arXiv:2311.01927*, 2023.

620

621 Seungnyun Kim, Anho Lee, Hyungyu Ju, Khoa Anh Ngo, Jihoon Moon, and Byonghyo Shim.
 622 Transformer-based channel parameter acquisition for terahertz ultra-massive mimo systems. *IEEE*
Transactions on Vehicular Technology, 72(11):15127–15132, 2023.

623

624 Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhui Chen. Long-context llms struggle with
 625 long in-context learning. *arXiv preprint arXiv:2404.02060*, 2024a.

626

627 Yingcong Li, Ankit S Rawat, and Samet Oymak. Fine-grained analysis of in-context linear estimation:
 628 Data, architecture, and beyond. *Advances in Neural Information Processing Systems*, 37:
 138324–138364, 2024b.

629

630 Yingcong Li, Davoud Ataee Tarzanagh, Ankit Singh Rawat, Maryam Fazel, and Samet Oymak.
 631 Gating is weighting: Understanding gated linear attention through in-context learning. *arXiv*
preprint arXiv:2504.04308, 2025.

632

633 Hailan Ma, Zhenhong Sun, Daoyi Dong, Chunlin Chen, and Herschel Rabitz. Tomography of
 634 quantum states from structured measurements via quantum-aware transformer. *IEEE Transactions*
on Cybernetics, 2025.

635

636 Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is prov-
 637 ably the optimal in-context learner with one layer of linear self-attention. *arXiv preprint arX-*
iv:2307.03576, 2023.

638

639 Arvind V Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One step of gradient descent is prov-
 640 ably the optimal in-context learner with one layer of linear self-attention. In *The Twelfth Interna-*
641 tional Conference on Learning Representations.

642

643 Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn
 644 in context. *arXiv preprint arXiv:2110.15943*, 2021.

645

646 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
 647 Cheah, Xingjian Du, Teddy Ferdinand, Haowen Hou, et al. Eagle and finch: Rwkv with matrix-
 valued states and dynamic recurrence. *arXiv preprint arXiv:2404.05892*, 2024.

648 Zhen Qin, Jun Tao, and Yili Xia. A proportionate recursive least squares algorithm and its performance analysis. *IEEE Transactions on Circuits and Systems II: Express Briefs*, 68(1):506–510,
 649 2020.

650

651 Zhen Qin, Jinxin Zhou, and Zhihui Zhu. On the convergence of gradient descent on learning trans-
 652 formers with residual connections. *arXiv preprint arXiv:2506.05249*, 2025.

653

654 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 655 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

656

657 Ali H Sayed. *Adaptive filters*. John Wiley & Sons, 2011.

658

659 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
 660 and Christopher Potts. Recursive deep models for semantic compositionality over a sentimen-
 661 t treebank. In *Proceedings of the 2013 conference on empirical methods in natural language
 662 processing*, pp. 1631–1642, 2013.

663

664 Bingqing Song, Boran Han, Shuai Zhang, Jie Ding, and Mingyi Hong. Unraveling the gradien-
 665 t descent dynamics of transformers. *Advances in Neural Information Processing Systems*, 37:
 92317–92351, 2024.

666

667 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 668 Furu Wei. Retentive network: A successor to transformer for large language models. *arXiv
 669 preprint arXiv:2307.08621*, 2023.

670

671 Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
 672 Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences. In
 673 *Proceedings of the conference. Association for computational linguistics. Meeting*, volume 2019,
 674 pp. 6558, 2019.

675

676 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 677 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 678 tion processing systems*, 30, 2017.

679

680 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 681 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 682 descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

683

684 Yu Wang, Zhen Qin, Jun Tao, and Le Yang. Performance analysis of prls-based time-varying s-
 685 parse system identification. In *2022 IEEE 12th Sensor Array and Multichannel Signal Processing
 686 Workshop (SAM)*, pp. 251–255. IEEE, 2022.

687

688 Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. *Advances
 689 in Neural Information Processing Systems*, 36:36637–36651, 2023.

690

691 Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
 692 tence understanding through inference. In *Proceedings of the 2018 conference of the North Amer-
 693 ican chapter of the association for computational linguistics: human language technologies, vol-
 694 ume 1 (long papers)*, pp. 1112–1122, 2018.

695

696 Yongtao Wu, Fanghui Liu, Grigoris Chrysos, and Volkan Cevher. On the convergence of encoder-
 697 only shallow transformers. *Advances in Neural Information Processing Systems*, 36:52197–
 698 52237, 2023.

699

700 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 701 transformers with hardware-efficient training. *arXiv preprint arXiv:2312.06635*, 2023.

702

703 Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:
 704 Contextual generalization of trained transformers. *arXiv preprint arXiv:2408.10147*, 2024.

705

706 Yi Yu, Rodrigo C de Lamare, Tao Yang, and Qiangming Cai. Tracking analyses of m-estimate based
 707 lms and nlms algorithms. In *2021 IEEE Statistical Signal Processing Workshop (SSP)*, pp. 1–5.
 708 IEEE, 2021.

702 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
703 *Journal of Machine Learning Research*, 25(49):1–55, 2024.
704

705 Ting Zhang and Wei Biao Wu. Inference of time-varying regression models. 2012.
706 Ting Zhang and Wei Biao Wu. Time-varying nonlinear regression models: nonparametric estimation
707 and model selection. 2015.
708

709 Yedi Zhang, Aaditya K Singh, Peter E Latham, and Andrew Saxe. Training dynamics of in-context
710 learning in linear attention. *arXiv preprint arXiv:2501.16265*, 2025.
711

712 Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. What makes good examples for visual in-context
713 learning? *Advances in Neural Information Processing Systems*, 36:17773–17794, 2023.
714

715 Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
716 Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In *Proceedings
717 of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
718 1059–1068, 2018.
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755