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ABSTRACT

Information sharing is key in building team cognition and enables coordination and
cooperation. High-performing human teams also benefit from acting strategically
with hierarchical levels of iterated communication and rationalizability, meaning
a human agent can reason about the actions of their teammates in their decision-
making. Yet, the majority of prior work in Multi-Agent Reinforcement Learning
(MARL) does not support iterated rationalizability and only encourage inter-agent
communication, resulting in a suboptimal equilibrium cooperation strategy. In
this work, we show that reformulating an agent’s policy to be conditional on the
policies of its neighboring teammates inherently maximizes Mutual Information
(MI) lower-bound when optimizing under Policy Gradient (PG). Building on
the idea of decision-making under bounded rationality and cognitive hierarchy
theory, we show that our modified PG approach not only maximizes local agent
rewards but also implicitly reasons about MI between agents without the need
for any explicit ad-hoc regularization terms. Our approach, InfoPG, outperforms
baselines in learning emergent collaborative behaviors and sets the state-of-the-art
in decentralized cooperative MARL tasks. Our experiments validate the utility of
InfoPG by achieving higher sample efficiency and significantly larger cumulative
reward in several complex cooperative multi-agent domains.

1 INTRODUCTION

Information sharing is key in building team cognition, and enables agents to cooperate and successfully
achieve shared goals (Salas et al., 1992). In addition to communication, individuals in high-performing
human teams also benefit from the theory of mind (Frith & Frith, 2005) and making strategic
decisions by recursively reasoning about the actions (strategies) of other human members (Goodie
et al., 2012). Such hierarchical rationalization alongside with communication facilitate meaningful
cooperation in human teams (Tokadli & Dorneich, 2019). Similarly, collaborative Multi-agent
Reinforcement Learning (MARL) relies on meaningful cooperation among interacting agents in
a common environment (Oliehoek & Amato, 2016). Most of the prior works on collaborative
MARL are based on the maximum utility theory paradigm which assumes perfectly informed,
rational agents (Guan et al., 2021). Nevertheless, even under careful handcrafted or machine learned
coordination policies, it is unrealistic and perhaps too strong to assume agents are perfectly rational
in their decision-making (Wen et al., 2020; Gilovich et al., 2002; Simon, 1997; Paleja et al., 2021).

To learn cooperation protocols, prior MARL studies are commonly deployed under Decentralized
Partially Observable Markov Decision Processes (Dec-POMDP), in which agents interact to maximize
a shared discounted reward. More recently, fully-decentralized (F-Dec) MARL was introduced (Zhang
et al., 2018; Yang et al., 2020) to address the credit assignment problem caused by the shared-reward
paradigm in conventional Dec-POMDPs (Yang et al., 2020; Sutton, 1985). In an F-Dec MARL setting,
agents can have varying reward functions corresponding to different tasks (e.g., in a multi-task RL
where an agent solves multiple related MDP problems) which are only known to the corresponding
∗Co-first authors. These authors contributed equally to this work.
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agent and the collective goal is to maximize the globally averaged return over all agents. Nevertheless,
under an F-Dec setting, agents seek to maximize their own reward, which does not necessarily imply
the maximization of the team long-term return since agents do not inherently understand coordination.

Recently, strong empirical evidence has shown that Mutual Information (MI) is a statistic that corre-
lates with the degree of collaboration between pairs of agents (Trendafilov et al., 2015). Researchers
have shown that information redundancy is minimized among agents by maximizing the joint entropy
of agents’ decisions, which in turn, improves the overall performance in MARL (Malakar et al.,
2012). Therefore, recent work in MARL has sought to integrate entropy regularization terms as
means of maximizing MI among interacting agents (Kim et al., 2020; Wang et al., 2019; Jaques et al.,
2019). The formulaic calculation of MI relies upon the estimation of action-conditional distributions.
In most prior work, agents are equipped with conventional state-conditional policies, and researchers
employ techniques, such as variational inference, for estimating and optimizing an action-conditional
policy distribution to quantify MI (Wen et al., 2019; Kim et al., 2020). However, agents are not
explicitly given the ability to reason about their teammates’ action-decisions and, instead, have to
learn implicitly from sparse rewards or hand-engineered regularization and auxiliary loss terms.

Contributions – In this work, we propose a novel information-theoretic, fully-distributed cooperative
MARL framework, called InfoPG, by reformulating an agent’s policy to be directly conditional
on the policies of its instantaneous neighbors during Policy Gradient (PG) optimization. We study
cooperative MARL under the assumption of bounded rational agents and leverage action-conditional
policies into PG objective function to accommodate our assumption. By leveraging the k-level
reasoning (Ho & Su, 2013) paradigm from cognitive hierarchy theory, we propose a cooperative
MARL framework in which naive, nonstrategic agents are improved to sophisticated agents that
iteratively reason about the rationality of their teammates for decision-making. InfoPG implicitly
increases MI among agents’ k-level action-conditional policies to promote cooperativity. To learn
collaborative behavior, we build InfoPG on a communicative fully-decentralized structure where
agents learn to achieve consensus in their actions and maximize their shared utility by communicating
with their physical neighbors over a potentially time-varying communication graph. We show the
effectiveness of InfoPG across multiple, complex cooperative environments by empirically assessing
its performance against several baselines. The primary contributions of our work are as follows:

1. We derive InfoPG, an information-theoretic PG framework that leverages cognitive hierarchy
and action-conditional policies for maximizing MI among agents and maximizing agents’
individual rewards. We derive an analytical lower-bond for MI estimated during InfoPG and
provide mathematical reasoning underlying InfoPG’s performance.

2. We propose a fully-decentralized graph-based communication and k-level reasoning struc-
ture to enable theory of mind for coordinating agents and maximizing their shared utility.

3. We propose a generalized variant of InfoPG and derive an MI upper-bound to modulate
MI among agents depending on cooperativity of agents and environment feedback. We
demonstrate the utility of this generalization in solving an instance of the Byzantine Generals
Problem (BGP), in a fully decentralized setting.

4. We present quantitative results that show InfoPG sets the SOTA performance in learning
emergent cooperative behaviors by converging faster and accumulating higher team rewards.

2 RELATED WORK

Cooperative MARL studies can be subdivided into two main lines of research, (1) learning direct com-
munication among agents to promote coordination (Foerster et al., 2016; Das et al., 2018; Sukhbaatar
et al., 2016; Kim et al., 2019) and, (2) learning to coordinate without direct communication (Foer-
ster et al., 2017; Palmer et al., 2017; Seraj et al., 2021b). Our work can be categorized under the
former. Hierarchical approaches are also prevalent for learning coordination in MARL (Seraj &
Gombolay, 2020; Ghavamzadeh & Mahadevan, 2004; Amato et al., 2019; Seraj et al., 2021a). We
consider MARL problems in which the task in hand is of cooperative nature and agents can directly
communicate, when possible. Unlike these studies, however, we improve our interacting agents from
coexisting to strategic by enabling the recursive k-level reasoning for decision-making.

Researchers have shown that maximizing MI among agents leads to maximizing the joint entropy
of agents’ decisions, which in turn, improves the overall performance in MARL (Malakar et al.,
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2012; Kim et al., 2020). As such, prior work has sought to increase MI by introducing auxiliary MI
regularization terms to the objective function (Kim et al., 2020; Wang et al., 2019; Jaques et al., 2019).
These prior works adopt a centralized paradigm, making them less relevant to our F-Dec setting.
Model of Other Agents (MOA) was proposed by Jaques et al. (2019) as a decentralized approach
that seeks to locally push the MI lower-bound and promote collaboration among neighboring agents
through predicting next-state actions of other agents. In all of the mentioned approaches, the amount
of MI maximization objective that should be integrated into the overall policy objective is dictated
through a β regularization parameter. In our work, however, we reformulate an agent’s policy to be
directly conditional on the policies of its neighbors and therefore, we seek to reason about MI among
agents in our PG update without ad-hoc regularization or reward shaping.

Among prior work seeking to enable k-level reasoning for MARL, Wen et al. (2019) presented
Probabilistic Recursive Reasoning (PR2), an opponent modeling approach to decentralized MARL
in which agents create a variational estimate of their opponents’ level k − 1 actions and optimize a
joint Q-function to learn cooperative policies without direct communication. Wen et al. (2020) later
extended the PR2 algorithm for generalized recursive depth of reasoning. In InfoPG, we establish
the inherent connection between k-level reasoning and MI, a link that has not been explored in prior
work. Moreover, we bypass the need for modeling other agents through direct communication and
k-level action-conditional policies, and giving InfoPG agents the ability to recursively reason about
their teammates’ actions through received messages and with any arbitrary rationalization depths.

3 PRELIMINARIES

Problem Formulation – We formulate our setup as a Multi-Agent Fully Dec-POMDP (MAF-Dec-
POMDP), represented by an 8-tuple 〈{Gt}t≥0,N ,S,A,Ω, {Ri}i∈N ,P, γ〉. N is the set of all
interacting agents in the environment in which index i represents the index of an agent. Gt = 〈N , Et〉
is a time-varying, undirected communication graph in which agents i, j ∈ N are vertices and
Et ⊆ {(i, j) : i, j ∈ N , i 6= j} is the edge set. The two agents i and j can only share information at
time t if (i, j) ∈ Et. State space S is a discrete set of joint states, A represents the action space, Ω is
the observation space, and γ ∈ [0, 1) is the temporal discount factor for each unit of time.

At each step, t, an agent, i, receives a partial observation, oit ∈ Ω, takes an action, ait ∈ A, and
receives an immediate individual reward, rit ∈ {Ri}i∈N . Taking joint actions, ā, in the joint states, s̄,
leads to changing the joint states to s̄′ ∈ S , according to the state transition probabilities, P (s̄′|s̄, ā).
Our model is fully decentralized since agents take actions locally and receive individual rewards for
their actions according to their own reward function. Moreover, each agent is also equipped with a
local optimizer to update its individual policy through its local reward feedback. Accordingly, we can
reasonably assume that agents’ choices of actions are conditionally independent given the current
joint states (Zhang et al., 2018). In other words, if π̄ : S ×A → [0, 1] is the joint state-conditional
policy, we assume that π̄(ā|s̄) = Πi∈Nπ

i(ai|s̄). Note that Dec-POMDPs are allowed to facilitate
local inter-agent communication (Zhang et al., 2018; Oliehoek & Amato, 2016; Melo et al., 2011).

Policy Gradient (PG) and Actor-Critic (AC) Methods – The policy gradient methods target at
modeling and optimizing the policy πi directly by parametrizing the policy, πiθ(a

i
t|st). Actor-

Critic (AC) is a policy gradient method in which the goal is to maximize the objective by applying
gradient ascent and directly adjusting the parameters of policy, πiθ, through an actor network.
The actor, updates the policy distribution in the direction suggested by a critic, which estimates
the action-value function Qw(st, a

i
t) (Tesauro, 1995). By the policy gradient theorem (Sutton &

Barto, 2018), the gradient by which the objective in AC, J(θ), is maximized can be shown as
∇θJ(θ) = Eπiθ

[
∇θ log πiθ(a

i
t|oit)Qw(s̄t, a

i
t)
]
, where ait and oit are agent i’s action and observation.

Mutual Information (MI) – MI is a measure of the reduction in entropy of a probability distribution,
X , given another probability distribution Y , where H(X) denotes the entropy of X and H(X|Y )
denotes the entropy of the conditional distribution of X given Y (Kraskov et al., 2004; Poole et al.,
2019). By expanding the Shannon entropy of X and X|Y , we can compute the MI as in Eq. 1.

I(X;Y ) = H(X)−H(X|Y ) =
∑
y∈Y

pY (y)
∑
x∈X

pX|Y=y(x) log

(
pX|Y=y(x)

pX(x)

)
(1)

In our work, X and Y are distributions over actions given a specific state, for two interacting agents.
In an arbitrary Markov game with two agents i and j and with policies πi and πj , if πi gains MI by
viewing πj , then agent i will make a more informed decision about its sampled action and vice versa.
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Figure 1: An instance of the information flow in a k-level decision hierarchy between two agents i and j for
calculating their level-k strategies. Level-zero actions (e.g., ai,(0)) represent the naive non-strategic actions.

4 MUTUAL INFORMATION MAXIMIZING POLICY GRADIENT

In this section, we first present an algorithmic overview of the InfoPG framework and then introduce
the InfoPG objective by covering the logistics of building an iterated k-level decision making strategy
for agents with bounded rationality. We then explore the relation of InfoPG with MI and derive an
analytical lower-bound on the MI between the action-conditional policies of interacting agents.

4.1 ALGORITHMIC OVERVIEW

Consider an MAF-Dec-POMDP introduced in Section 3, with N agents where each agent is equipped
with an encoding and a communicative policy (see Fig. 1). At the beginning of a new rollout, each
agent receives a state observation from the environment and produces an initial action (i.e., a guess
action) using its encoding policy. Each agent i has a neighborhood of agents it can communicate
with, shown with j ∈ ∆i

t where |∆i
t| is the number of agent i’s physical neighbors (i.e., within close

proximity). Next, depending on the level of k in the decision hierarchy, agents communicate their
action guesses (high-dimensional latent distributions) with their neighbors k times and update their
action guess iteratively using their communicative policy. The level-k action is then executed by all
agents and a local reward is given to each agent separately. This process continues until either the
environment is solved successfully, or some maximum number of cycles has been attained. For each
timestep, t, of the policy rollout and for each agent i, the gradient of the log probability is computed,
scaled by the instantaneous advantage, Ait, and the encoding and communicative policies are updated.
This process repeats until convergence of the cumulative discounted rewards across all agents. Please
refer to Appendix, Section A.1 for pseudocode and details of our training and execution procedures.

4.2 DEEP REASONING: DECISION-MAKING UNDER k-LEVEL RATIONALIZATION

We leverage from cognitive hierarchy theory (Camerer et al., 2004) and strategic game theory (Myer-
son, 2013), wherein each agent has k-levels of conceptualization of the actions its neighbors might
take under bounded rationality. k-level reasoning assumes that agents in strategic games are not fully
rational and therefore, through hierarchies of iterated rationalizability, each agent bases its decisions
on its predictions about the likely actions of other agents (Ho & Su, 2013). According to k-level
theory, strategic agents can be categorized by the depth of their strategic thought (Nagel, 1995). For
example, consider the two agent case shown in Fig. 1, with k = 2. At k = 1 agent i makes decisions
based off its own observed state, and a guess of what agent j will do (Agent i will assume agent j is
naive and non-strategic). A more sophisticated agent i with a strategy of level k = 2 however, makes
decisions based off the rationalization that agent j has a level-one guess of i’s strategy. Inductively,
this line of reasoning can be extended to any k. Notice that the conditioning of agent i’s policy
on agent j’s perceived actions is an action-conditional distribution. In InfoPG, we give agents the
ability to communicate with their latent guess-action distributions in k iterated reasoning steps and
rationalize their action decisions at level k to best respond to their teammates’ level k − 1 actions.

In the following, we represent the level of rationality for an agent by the superscript (k) where
k ∈ N. Denoting πj,(k) as the level-k policy of agent j, it can be shown that under the k-level
reasoning, agent i’s policy at level k + 1, πi,(k+1), is precisely the best response of agent i to agent
j’s policy πj,(k) (Guan et al., 2021). In other words, πi,(k+1) ∈ BestResponse(πj,(k)). In theory,
this process can iteratively proceed until we obtain πi,(k+2) = πi,(k), which corresponds to reaching
the equilibrium strategies. In practice, however, for scenarios with many collaborating agents, the
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level of k is usually set to a reasonably small number for computational efficiency; since, in order
to calculate the policy πi,(k), agent i must calculate not only its own policy at level k, but also all
policies of all its neighbors for all k ∈ {1, 2, 3, · · · , k − 1} at each time-step t.

4.3 INFOPG OBJECTIVE

Our approach, InfoPG, equips each agent with an action-conditional policy that performs actions
based on an iterated k-level rationalization of its immediate neighbors’ actions. This process
can be graphically described as presented in Figure 1, in which the information flow in a k-level
reasoning between two agents i and j is shown. Note that in practice, any number of agents can
be applied. Considering agent i as the current agent, we represent i’s decision-making policy as
πitot = [πienc, π

i
com], in which πienc(a

i
t|oit) is the state-conditional policy that maps i’s observed states

to actions. πicom(a
i,(k)
t |ai,(k−1)

t , aj,(k−1)) is the action-conditional policy that maps agent i’s action
at level (k−1) along with the actions of i’s neighbors (in this case agent j) at level k−1, to an action
for agent i in the (k)-th level of decision hierarchy, ai,(k)

t . Therefore, pursuant to the general PG
objective, we define the basic form of our modified information-based objective, as in Eq. 2, where
∆i
t is the set of i’s immediate neighbors in communication graph at time t and Gt is the return.

∇InfoPG
θ J(θ) = Eπitot

[
Git(o

i
t, a

i
t)
∑
j∈∆it

∇θ log(πitot(a
i,(k)
t |ai,(k−1)

t , a
j,(k−1)
t , . . . , a

i,(0)
t , a

j,(0)
t , oit))

]
(2)

Eq. 2 describes the form of InfoPG’s objective function. Depending on the use case, we can replace
the return, Git, with action-values, Qit, shown in Eq. 3, and present the InfoPG as a Monte-Carlo PG
method. We can also replace the returns with the advantage function, Ait, as shown in Eq. 4, and
present the AC variant of the InfoPG objective (Sutton & Barto, 2018).

Git(o
i
t, a

i
t) = Qit(o

i
t, a

i
t) s.t. Qit(o

i
t, a

i
t) ≥ 0 (3)

Git(o
i
t, a

i
t) = Ait(o

i
t, a

i
t) = Qit(o

i
t, a

i
t)− V it (ot) (4)

Leveraging Eq. 3 and 4, we present two variants of the InfoPG objective. The first variant is the MI
maximizing PG objective, which utilizes Eq. 3. The non-negative action-value condition in Eq. 3
implies non-negative rewards from the environment, a common reward paradigm utilized in prior
work (Fellows et al., 2019; Liu et al., 2020; Kostrikov et al., 2018). By applying this condition, InfoPG
only moves in the direction of maximizing the MI between cooperating agents (see Theorem 2).
We refer to the second variant of our InfoPG objective shown in Eq. 4 as Advantage InfoPG (Adv.
InfoPG), in which we relax the non-negative rewards condition. Adv. InfoPG modulates the MI
among agents depending on cooperativity of agents and environment feedback (see Theorem 3).

4.4 BAYESIAN EXPANSION OF THE POLICY

The action-conditional policy conditions an agent’s action at the k-th level of the decision hierarchy
on the actions of other agents at level k− 1; however, to relate our k-level formulation to MI, we seek
to represent an agent’s action at a particular level k to be dependent on the actions of other agents at
same level k. We present Theorem 1 to introduce the gradient term in the InfoPG objective in Eq. 2
which relates level-k actions of the cooperating agents in their respective decision hierarchies. Please
refer to the Appendix, Section A.5 for a detailed proof of Theorem 1.
Theorem 1. The gradient of the log probability’s level-k action-distribution in the InfoPG objective
(Eq. 2) for an agent, i, with neighbors j ∈ ∆i

t and policy πitot that takes the Maximum a Posteriori
(MAP) action ai,(k)

t , can be calculated iteratively for each level k of rationalization via Eq. 5.

∇ log(πitot(a
i,(k)
t = MAP | ai,(k−1)

t , a
j,(k−1)
t , . . . , oit)) = ∇ log(πicom(a

i,(k)
t = MAP | aj,(k)

t = MAP))
(5)

4.5 INFOPG AND MUTUAL INFORMATION LOWER-BOUND

Using the fact that ∇ log(πitot(a
i,(k)
t |.)) is directly proportional to ∇ log(πicom(a

i,(k)
t |aj,(k)

t )) from
Eq. 5, we can show that the gradient of our communicative policy implicitly changes MI. Since MI
is empirically hard to estimate, we instead derive a lower-bound for MI which is dependent on the
action-conditional policy of an agent. We show that increasing the probability of taking an action
from the action-conditional policy will increase the derived lower-bound, and consequently, the MI.
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Theorem 2. Assuming the actions (a
i,(k)
t ) and aj,(k)

t to be the Maximum a Posteriori (MAP) actions,
the lower-bound to MI, I(k)(i; j), between any pair of agents i and j that exist in the communication
graph Gt can be calculated w.r.t to agent i’s communicative policy as shown in Eq. 6.

πicom(a
i,(k)
t |aj,(k)

t ) log(πicom(a
i,(k)
t |aj,(k)

t )) ≤ I(k)(i; j) (6)

Proof – Without loss of generality, we consider two agents i, j ∈ N with action-conditional policies
πi(ai|aj) and πj(aj |ai) (note that the time, t, and the rationalization level, (k), indices are removed
for notational brevity). We refer to the marginalizations of i’s and j’s action-conditional policies
as priors which can be denoted as p(ai) =

∑
aj∈A π

i(ai|aj) and p(aj) =
∑
ai∈A π

j(aj |ai). We
assume uniformity of the priors, as done previously by Prasad (2015), such that p(ai) = p(aj) = 1

|A| ,
where |A| is the action-space dimension. For a detailed discussion on the validity of the uniformity
of priors assumption, please refer to the Appendix, Section A.6. Since MI is a marginalization across
all actions in the action-space, a lower-bound exists at a particular aimax, which is the MAP action.
As such, starting from the basic definition of MI in Eq. 1, we derive:

I(i; j) =
∑
aj∈A

p(aj)
∑
ai∈A

πi(ai|aj) log

(
πi(ai|aj)
p(ai)

)
=
∑
aj∈A

1

|A|
∑
ai∈A

πi(ai|aj) log(|A|πi(ai|aj)) (7)

≥ |A|πi(aimax|aj)
(

log
(
πi(a

i
max|aj)

)
+ log (|A|)

)
≥ πi(aimax|aj) log

(
πi(aimax|aj)

)
� (8)

We now seek to relate the last term in Eq. 8 to the gradient term ∇ log(πicom(a
i,(k)
t |aj,(k)

t )) and
variation of MI. By monotonicity of log, maximizing log(πi(aimax|aj)) is equivalent to maximizing
the πi(aimax|aj) term. Therefore, according to Theorem 2 and Eq. 8, the gradient updates will raise
our lower-bound, which will maximize the MI. Since the sign of environment rewards and therefore,
the sign of Qt(ot, at) in Eq. 3 is strictly non-negative, the gradient ascent updates will always move
log(πicom(a

i,(k)
t |aj,(k)

t ) either up or not-at-all, which will have a proportional effect on the MI given
the lower-bound. Note that we leveraged the non-negative reward condition so that the rationalization
of ai,(k)

t given aj,(k)
t is only non-negatively reinforced. As such, if agent i’s action-conditional policy

on agent j’s action does not obtain a positive reward from the environment, the lower-bound of MI
stays constant, and thus so does MI. Conversely, if a positive reward is received by the agent, then the
lower-bound of MI will strictly increase, leading to lowering the conditional entropy for taking the
action that yielded the positive feedback from the environment.

4.6 ADVANTAGE INFOPG AND THE BYZANTINE GENERALS PROBLEM

While continually maximizing MI among agents is desired for improving the degree of coordination,
under some particular collaborative MARL scenarios such MI maximization may be detrimental. We
specifically discuss such scenarios in the context of Byzantine Generals Problem (BGP). The BGP
describes a decision-making scenario in which involved agents must achieve an optimal collaborative
strategy, but where at least one agent is corrupt and disseminates false information or is otherwise
unreliable (Lamport et al., 2019). BGP scenarios are highly applicable to cooperative MARL
problems where there exists an untrainable fraudulent agent with a bad policy (e.g., random) in
the team. Coordinating actions with such a fraudulent agent in a collaborative MARL setting can
be detrimental. We note that BGPs are particularly challenging to solve in the fully decentralized
settings (Peng et al., 2021; Allen-Zhu et al., 2020).

Here, we elaborate on our Adv. InfoPG variant introduced in Eq. 4 and show its utility for intelligently
modulating MI depending on the cooperativity of agents. Intuitively, the advantage function evaluates
how much better it is to take a specific action compared to the average, general action at the given
state. Without the non-negative reward condition in InfoPG, the Adv. InfoPG objective in Eq. 4 does
not always maximize the MI locally, but, instead, benefits from both positive and negative experiences
as measured by the advantage function to increase the MI in the long run. Although instantaneous
experiences may result in a negative advantage, Ait, and reducing the MI lower-bound in Eq. 6, we
show that Adv. InfoPG in fact regularizes an MI upper-bound, making it suitable for BGP scenarios
while also having the benefit of learning from larger number of samples. In Adv. InfoPG we equip
each agent with an action-conditional policy and show that under k-level reasoning, the tight bounds
of MI between agents is regularized (shifted up and down) depending on the sign of the received
advantage. We note that despite this local MI regularization, in the long run we expect the MI bounds
to increase since policy gradient seeks to maximize local advantages during gradient ascent.
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Upper-Bound of MI – Here, we derive an MI upper-bound dependent on the action-conditional
policy of an agent and show that the gradient updates in Adv. InfoPG have a proportional effect on
this upper-bound. We show that under k-level rationalization, the tight bound of MI between agents
is regularized (shifted up or down) depending on the sign of the received advantage value, Ait.
Theorem 3. Assuming the same preliminaries as in Theorem 2, the upper-bound to MI, I(k)(i; j),
between agents i and j w.r.t agent i’s level-k action-conditional policy can be calculated as in Eq. 9.

I(k)(i; j) ≤ 2 log(|A|) + 2 log(πicom(a
i,(k)
t |aj,(k)

t )) (9)

Proof – We start from the definition of conditional entropy. The conditional entropy is an expectation
across all ai and considering the fact that the − log(.) is a convex function, Jensen’s inequality (Ruel
& Ayres, 1999) can be applied to establish an upper-bound on conditional entropy. We derive:

H(πi|πj) = −
∑
ai∈A

πi(ai|aj) log(πi(ai|aj)) =
∑
ai∈A

πi(ai|aj)(− log(πi(ai|aj))) (10)

Jensen’s inequality−−−−−−−−−→ H(πi|πj) ≥ − log(
∑
ai∈A

πi(ai|aj)2) (11)

Now, we leverage the basic MI definition in Eq. 1. We note that H(p(ai)) has a constant value of
log(|A||) given the uniform prior assumption. Accordingly, plugging in the bound in Eq. 11 and
evaluating at the MAP action results in an upper-bound for MI, as shown below.

I(i; j) = H(p(ai))−H(πi|πj) = −H(πi|πj) + log(|A|) ≤ log(
∑
ai∈A

πi(ai|aj)2) + log(|A|) (12)

≤ log
(
|A|πi(aimax|aj)2

)
+ log(|A|) ≤ 2 log(|A|) + 2 log

(
πi(aimax|aj)

)
� (13)

Considering the Adv. InfoPG objective in Eq. 4, depending on the sign of Ait, the gradient ascent
either increases or decreases log(πicom(a

i,(k)
t |aj,(k)

t ), which will have a proportional regulatory effect
on the MI given our bounds in Eq. 6 and 9. Specifically, when agent i receives negative advantage
from the environment, it means agent i’s reasoning of ai,(k)

t given aj,(k)
t , resulted in a negative

outcome. Therefore, to reduce agent j’s negative influence, our gradient updates in Eq. 4 will
decrease the MI upper-bound between i and j so that the conditional entropy at level k is increased.
This bears similarity to Soft actor-critic (Haarnoja et al., 2018), where regularization with entropy
allows agents to explore more actions. As such, during Adv. InfoPG updates, the MI constraint
becomes adaptive to instantaneous advantage feedback. Such property can be effective in BGP
scenarios to reduce the negative effect of misleading information received from a fraudulent agent.

5 EMPIRICAL EVALUATION

Evaluation Environments – We empirically validate the utility of InfoPG against several baselines in
four cooperative MARL domains that require high degrees of coordination and learning collaborative
behaviors. Our testing environments include: (1) Cooperative Pong (Co-op Pong) (Terry et al., 2020),
(2) Pistonball (Terry et al., 2020), (3) Multiwalker (Gupta et al., 2017; Terry et al., 2020) and, (4)
StarCraft II (Vinyals et al., 2017), i.e., the 3M (three marines vs. three marines) challenge. We
modified the reward scheme in all four domains to be individualistic such that agents only receive
a local reward feedback as per our MAF-Dec-POMDP formulation in Section 3. For environment
descriptions and details, please refer to the Appendix, Section A.8.

Baselines – We benchmark our approach (both InfoPG in Eq. 3 and Adv. InfoPG in Eq. 4) against
four fully-decentralized baselines: (1) Non-communicative A2C (NC-A2C) (Sutton & Barto, 2018),
(2) Consensus Update (CU) (Zhang et al., 2018), (3) Model of Agents (MOA) (Jaques et al., 2019)
and, (4) Probabilistic Recursive Reasoning (PR2) (Wen et al., 2019). In the NC-A2C, each agent
is controlled via an individualized actor-critic network without communication. The CU approach
shares the graph-based communication among agents with InfoPG but lacks the k-level reasoning in
InfoPG’s architecture. Thus, the CU baseline is communicative and non-rational. MOA, proposed
by Jaques et al. (2019), is a decentralized cooperative MARL method in which agents benefit from
action-conditional policies and an MI regularizer dependent on the KL-Divergence between an agent’s
prediction of its neighbors’ actions and their true actions. PR2, proposed by Wen et al. (2019) is an
opponent modeling approach to decentralized MARL in which agents create a variational estimate
of their opponents’ level k − 1 actions and optimize a joint Q-function to learn cooperative policies
through k-level reasoning without direct communication.
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Figure 2: (Top Row) Team rewards obtained across episodes as training proceeds. The shaded regions represent
standard error. Our Adv. InfoPG continually outperforms all baselines across all domains and in both training
and testing (see Table 1). (Bottom Row) The MI ablation study results, comparing the MI variations between
InfoPG and MOA (MI-based baseline) where InfoPG demonstrates a higher final average MI estimate across all
domains. The shaded blue region represents the area between InfoPG’s lower and upper bounds on MI.

6 RESULTS, ABLATION STUDIES, AND DISCUSSION

In this section, we assess the performance and efficiency of our frameworks in the four introduced
domains and against several recent, fully-decentralized cooperative MARL approaches. Following an
analysis of performance under k-level reasoning and an MI ablation study, we present a case-study,
namely the fraudulent agent experiment, to investigate the utility of our MI-regularizing InfoPG
variant (i.e. Adv. InfoPG in Eq. 4) against MI-maximizing baselines, such as MOA (Jaques et al.,
2019) and InfoPG, in BGP scenarios. We provide further ablation studies, such as a level-k policy
interpretation for InfoPG and a scalability analysis in the Appendix, Section A.7.

Baseline Comparison – The top row in Fig. 2 depicts the team rewards obtained by each method
across episodes as training proceeds. In all four domains, both InfoPG and Adv. InfoPG demonstrate
sample-efficiency by converging faster than the baselines and achieving higher cumulative rewards.
Table 1 presents the mean (±standard error) cumulative team rewards and steps taken by agents
to win the game by each method at convergence. Table 1 shows that InfoPG and Adv. InfoPG
set the state-of-the-art for learning challenging emergent cooperative behaviors in both discrete
and continuous domains. Note that, while in Pistonball fewer number of taken steps means better
performance, in Co-op Pong and Multiwalker more steps shows a superior performance.

Mutual Information Variation Analysis – The bottom row in Fig. 2 shows our MI study results
comparing the MI variations between InfoPG and MOA (the MI-based baseline). The MI for InfoPG
is estimated as the average between lower and upper bounds defined in Eqs. 6 and 9. As depicted,
InfoPG demonstrates a higher final average MI estimate across all domains. Note the concurrency of
InfoPG’s increase in MI estimates (bottom row) and agents’ performance improvements (Fig. 2, top
row). This concurrency supports our claim that our proposed policy gradient, InfoPG, increases MI
among agents which results in learning emergent collaborative policies and behavior.

Deep Reasoning for Decision Making: Evaluating k-Level InfoPG – We evaluate the performance
of our method for deeper levels of reasoning k ∈ {2, 3} in Co-op Pong, Pistonball and Multiwalker
domains. The training results are presented in Fig. 2. As discussed in Section 4.2, in the smaller
domain with fewer collaborating agents, the Co-op Pong, agents reach the equilibrium cooperation
strategy (i.e., πi,(k+2) = πi,(k)) even with one step of reasoning, and increasing the level of k does
not significantly change the performance. However, in the more complex domains with more agents,
Pistonball and Multiwalker, as the level of rationalization goes deeper in InfoPG (i.e., k = 2 and
k = 3), agents can coordinate their actions better and improve the overall performance.

8
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Table 1: Reported results are Mean (Standard Error) from 100 testing trials. For all tests, the final training policy
at convergence is used for each method and for InfoPG and Adv. InfoPG, the best level of k is chosen.

Domain InfoPG Adv. InfoPG MOA CU NC-A2C PR2-AC
R #Steps R #Steps R #Steps R #Steps R #Steps R #Steps

Co-op Pong 0.127 202.9 0.25 212.9 -0.3 58.2 0.13 152.0 0.04 102.925 -0.84 36.8
(0.00) (1.35) (0.00) (1.24) (0.00) (0.32) (0.00) (0.96) (0.00) (0.93) (0.00) (0.34)

Pistonball 7.47 17.44 7.33 28.31 4.10 91.66 1.06 136.3 0.89 138.3 1.90 140.4
(0.02) (0.29) (0.02) (0.43) (0.03) (0.76) (0.04) (0.83) (0.04) (0.83) (0.02) (0.68)

Multiwalker 3.56 474.2 11.81 500.0 0.66 489.3 -1.7 490.2 -66 80.75 -84 94.17
(0.20) (1.39) (0.11) (0.80) (0.15) (1.09) (0.26) (1.30) (0.18) (0.20) (0.37) (1.40)

StarCraft II 4.40 30.79 3.73 44.5 2.78 27.7 0.24 58.72 0.00 60.0 0.64 27.4
(0.01) (0.05) (0.02) (0.13) (0.02) (0.07) (0.00) (0.06) (0.00) (0.00) (0.00) (0.08)

The Fraudulent Agent Experiment: Regularising MI – To assess our Adv. InfoPG’s (Eq. 4)
regulatory effect based on agents’ cooperativity, we perform an experiment, demonstrated in Fig. 3a,
which is performed in the Pistonball domain and is intended to simulate an instance of the BGP in
which the middle piston is equipped with a fully random policy throughout the training (i.e., the
Byzantine piston is not controllable by any InfoPG agent). Maximizing the MI with this fraudulent
agent is clearly not desirable and doing such will deteriorate the learning performance.

Fig. 3b presents the fraudulent agent experiment training results for Adv. InfoPG, InfoPG and
MOA. As shown and comparing with Fig. 2, existence of a fraudulent agent significantly deteriorates
the learning performance in MOA and InfoPG as these approaches always seek to maximize the
MI among agents. This is while InfoPG still outperforms MOA since by only using strictly non-
negative rewards, the coordination in InfoPG is only positively reinforced, meaning that InfoPG only
increases MI when the reward feedback is positive. Adv. InfoPG shows the most robust performance
compared to InfoPG and MOA. Adv. InfoPG modulates the MI depending on the observed short-term
coordination performance. As discussed in Section 4.6, if the advantage is negative, the gradient
ascent in Adv. InfoPG will decreases the MI upper-bound between agents, leading to increasing the
conditional entropy and taking more exploratory (i.e., less coordinated) actions.

(a) The Fraudulent Agent Experiment: Scenario (b) The Fraudulent Agent Experiment: Result

Figure 3: The fraudulent agent experiment scenario (Fig. 3a) and training results (Fig. 3b) in the Pistonball
domain, comparing the team reward performance for Adv. InfoPG (Eq. 4), InfoPG (Eq.3) and MOA.

Limitations and Future Work – Useful MI between agents becomes hard to capture in cases, such
as Co-op Pong domain, where an agent’s action influences its neighbors with some delay. Moreover,
MI maximization by applying the strictly non-negative reward condition in InfoPG objective (Eq. 3)
comes at the cost of zeroing out negative experiences which may have an impact on sample-efficiency.

7 CONCLUSION

We leverage iterated k-level reasoning from cognitive hierarchy theory and present a collaborative,
fully-decentralized MARL framework which explicitly maximizes MI among cooperating agents by
equipping each agent with an action-conditional policy and facilitating iterated inter-agent communi-
cation for hierarchical rationalizability of action-decisions. We analytically show that the design of
our MI-based PG method, increases an MI lower-bound, which coincides with improved cooperativity
among agents. We empirically show InfoPG’s superior performance against various baselines in
learning cooperative policies. Finally, we demonstrate that InfoPG’s regulatory effect on MI makes it
Byzantine-resilient and capable of solving BGPs in fully-decentralized settings.
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A APPENDIX

A.1 INFOPG PSEUDOCODE

Here, we provide a pseudocode to train our MI maximizing PG algorithm, InfoPG, in Algorithm 1.

Algorithm 1: Training the Mutual Information Maximizing Policy Gradient (InfoPG).
1: Input: Number of agents, N , max_cycles and agents’ level of iterated rationalizability, K
2: Initialize: For all agents {π1

tot, π
2
tot, · · · , πNtot} and {V 1, V 2, · · · , V N }

3: while not converged do
4: for t = 1 to max_cycles do
5: Reset environment and receive initial observation set: {o1

t , o
2
t , ..., o

N
t }

6: for i = 1 to N do
7: Sample initial "guess" action: ai,(0)

t ∼ πienc(∗ | oit), where πienc ∈ πitot
8: end for
9: for k = 1 to K do

10: for i = 1 to N do
11: Identify neighbors by obtaining neighbor list, j ∈ ∆i

t, using the adjacency graph, Gt
12: Sample MAP: ai,(k)

t ∼ πicom(∗ | ai,(k−1)
t , {aj,(k−1)

t | j ∈ ∆i
t}), where πicom ∈ πitot

13: end for
14: end for
15: Step through environment using {a1,(k)

t , a
2,(k)
t , · · · , aN ,(k)

t }, and receive next states and
rewards: {o1

t+1, o
2
t+1, ..., o

N
t+1}, {r1

t , r
2
t , ..., r

N
t }

16: for i = 1 to N do
17: Ait = rit + V i(oit+1)− V i(oit)
18: ∇πitot = ReLU(Ait)∇ log(πitot(a

i,(k)
t | · · · )) % For Adv. InfoPG remove the ReLU

19: ∇V i = (Ait)
2

20: Update: πitot = πitot + η∇πitot
21: Update: V i = V i + η∇V i
22: end for
23: {o1

t , o
2
t , ..., o

N
t } = {o1

t+1, o
2
t+1, ..., o

N
t+1}

24: end for
25: end while

Consider a MAF-Dec-POMDP introduced in Section 3, with N agents where each agent is equipped
with an encoding and a communicative policy (πenc and πcom, respectively), such that πtot =
[πenc, πcom] (lines 1-2). At the beginning of a new rollout, and for each timestep, t, within the
allowed maximum number of steps, max_cycles, each agent i receives a state observation oit from
the environment and produces an initial "guess" action, ai,(0)

t using its encoding policy (lines 5-8).
Each agent i has a neighborhood of agents it can communicate with, shown with j ∈ ∆i

t where |∆i
t|

is the number of agent i’s physical neighbors (i.e., within close proximity). Accordingly, agents
obtain the list of their neighbors by using the adjacency graph, Gt (line 11).

Next, depending on the specified level of iterated rationalizability in the decision hierarchy, K,
agents communicate their action guesses as higher-dimensional latent vector distributions with their
neighbors K times and update their action guess iteratively using their communicative policy (line
9-14). The level-k action is then executed by all agents and a local reward is given to each agent
separately (line 15). This process continues until either the environment is solved successfully, or
the allowed maximum number of steps, max_cycles, has been attained. For each timestep, t, of the
policy rollout and for each agent i, first the advantage value, Ait, is computed using the critic network
(line 17) and then, the gradient of the log probability is computed and scaled by the instantaneous
advantage (line 18). Note that the ReLU function in line 18 is proposed to enforce the non-negative
reward feedback condition in InfoPG, Eq. 3. However, other mechanisms could achieve the same
effect (e.g., shaping the reward function to only include positive values). Line 19 is showing the
gradient of our value estimate. The loss for our value estimate V (st) is the cumulative discounted
rewards subtracted by the true value of st, which is the advantage (the TD error). Therefore, the
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gradient in line 19 is the sum of squared individual advantages. Next, the encoding and communicative
policies are updated (line 20) and eventually, the critic network is updated (line 21). This process
repeats until convergence of the cumulative discounted rewards across all agents. We provide our
code at https://github.com/CORE-Robotics-Lab/InfoPG

A.2 INFOPG FOR CONTINUOUS ACTION-SPACES

To deploy InfoPG in continuous action-spaces, we follow common practice for continuous action-
space actor-critic methods. Continuous policies are presented as probability distributions with floating
values in a certain range (e.g., (−1, 1)). In this case, in order to facilitate exploration we will sample
agents’ actions from a normal probability distribution. As such, in continuous action-spaces, the
policy network (Actor) will normally have two output heads, instead of one. The two outputs of the
policy network are µ and σ, the mean and standard deviation (STD) of the probability distribution,
respectively. The sampled actions will be centered around the µ and the σ determines on average,
how far from the center the sample values will be. As the network gets more certain, the σ gets
smaller, meaning that we tend to exploit good actions rather than exploring.

In discrete action-spaces the loss-function was based on the log-probability (Eq. 3). In continuous
action-spaces, the log-probability of a normal distribution is used, as shown in Eq. 14.

logπθ (a|s) = − (x− µ)2

2σ2
− log

√
2πσ2 (14)

In Eq. 14, the first and second term are the negative log-probability and the entropy bonus, respectively.
By substituting the log-probability of the normal distribution in Eq. 14 back into the original InfoPG
objective in Eq. 2, we can directly deploy the InfoPG objectives in continuous domains, such as the
introduced Multiwalker (Section 5). Note that, in practice and for simplicity, the policy network
can only output the mean value, µ, while the STD value is fixed to a reasonable constant. Finally,
to compute the MAP action for a continuous action-space (Line 12 in Algorithm 1) we note that,
theoretically, the MAP action for a continuous space is just the mean action without any standard
deviation from the normal distribution.

A.3 INFOPG OBJECTIVE FUNCTION DERIVATION (EQ. 2)

The InfoPG definition as presented in Eq. 2 consists of a summation across all agents within the
communication range. This equation is a simplification from the original form which uses the
assumption of independence between each agents’ (k − 1)-level action probability distributions. To
arrive at the InfoPG objective function in Eq. 2, we start from Eq. 15 and convert the log probability
of the conditional distributions across all neighbors to a summation of log probability across all
neighbors. The process can be shown as in Eq. 15-17.

∇InfoPG
θ J(θ) = Eπitot

[
Git(o

i
t, a

i
t)∇θ log(πitot(a

i,(k)
t |∀0→k∀j∈∆it

[a
i,(k−1)
t , a

j,(k−1)
t ], oit))

]
(15)

= Eπitot

[
Git(o

i
t, a

i
t)∇θ log(

∏
0→k

∏
j∈∆it

πitot(a
i,(k)
t |ai,(k−1)

t , a
j,(k−1)
t , oit))

]
(16)

= Eπitot

[
Git(o

i
t, a

i
t)
∑
j∈∆it

∇θ log(πitot(a
i,(k)
t |ai,(k−1)

t , a
j,(k−1)
t , . . . , a

i,(0)
t , a

j,(0)
t , oit))

]
(17)

A.4 CONVERGENCE PROOF SKETCH FOR EQ. 2

Following the approach in prior work (Bhatnagar et al., 2009; Zhang et al., 2018), we present a
convergence proof sketch for InfoPG through the Two-Time-Scale (TTS) stochastic approximation
method, proposed by Borkar (1997). We note that the convergence proof for InfoPG closely follows
the general Policy Gradients (PG) convergence approach presented in Bhatnagar et al. (2009) and
Zhang et al. (2018), and we therefore only focus on presenting the core idea underlying convergence
of InfoPG with k-level rationalizability. Herein, we state that since InfoPG and Consensus Update
(CU) share the graph-based local communication and the fully-decentralized actor-critic training
paradigm, all assumptions made by Zhang et al. (2018) also apply to our work and therefore, we
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directly adopt the set of assumptions (i.e., specifically, assumptions 4.1 – 4.4) presented in Zhang
et al. (2018) without restating them.

For an actor-critic algorithm, e.g. InfoPG, showing convergence of both the actor and critic simulta-
neously is challenging because the noisy performance of the actor can affect the gradient on the critic
and vice versa. As such, we leverage the TTS approach, which states that in PG methods, the actor
learns at a slower rate than the critic (Borkar, 1997). Therefore, according to TTS, we can show the
convergence of InfoPG in two steps: (1) first, we fix the policy and analyze the convergence of the
critic and, (2) with a converged critic, we analyze the convergence of the actor.

Step 1: Critic Convergence – We use bar notation in the following to denote vectorized quantities
across agents in the environment such that, π̄θ = [π1

θ , · · · , πNθ ], where N is the number of agents.
Moreover, a level-k policy in InfoPG includes two parts: a state-conditional policy at level k = 0
and an action-conditional policy for higher levels of k. InfoPG first applies the level zero state-
conditional policy to get the initial “guess" action and then recursively applies the action-conditional
policy k times to recursively improve the level-k action-decision. We can show this process as
πiθ = π

i,(k≥0)
θ

(
π
i,(k=0)
θ (sit)

)
. PG seeks to maximize the objective function J̄(θ), shown in Eq. 18,

where d̄π(s̄t) denotes the stationary distribution of the MDP and R̄ denotes the joint reward function,
including local rewards for each agent. Additionally, we denote the transition probability of the MDP
as p̄(s̄t+1, r̄t+1|s̄t, āt). Since the formulation of PG objective in Eq. 18 is biased, it is commonly
replaced with the unbiased estimate of the rewards, or Q̄(s̄t, āt)− V̄ (s̄t, āt), as shown in Eq. 19

J̄(θ) =
∑
s̄t∈S̄

d̄π(s)
∑
āt∈Ā

π̄θ(āt|s̄t) ∗ R̄(s̄t, āt) (18)

=
∑
s̄t∈S̄

d̄π(s)
∑
āt∈Ā

π̄θ(āt|s̄t) ∗ (Q̄(s̄t, āt)− V̄ (s̄t)) (19)

The unbiased estimator in Eq. 19 can be replaced with the state-value function by using the recursive
definition of the action-value function (Sutton & Barto, 2018). This substitution results in a form
known as the TD-error (Sutton, 1985), where the bracketed term in Eq. 21 is the TD-error.

Q̄(s̄t, āt) = E
s̄t∼d̄π āt∼π̄θ

[
R̄(s̄t, āt) + γV̄ (s̄t+1)

]
(20)

J̄(θ) =
∑
s̄t∈S̄

d̄π(s)
∑
āt∈Ā

π̄θ(āt|s̄t) ∗

R̄(s̄t, āt) + γ
∑

s̄t+1∈S̄

p̄(s̄t+1|s̄t, āt)V̄ (s̄t+1)− V̄ (s̄t)

 (21)

Next, following the prior work (Bhatnagar et al., 2009; Zhang et al., 2018), we assume linear
function approximation since the TD-learning-based policy evaluation may fail to converge with
nonlinear function approximation (Tsitsiklis & Van Roy, 1997; Zhang et al., 2018). We note that
the value function is a mapping of states (of some dimensionality) to R. Therefore, we define
V̄ (s̄t) = ω̄Tφ(s̄t), where ω̄ is a one dimensional weight vector and φ(s̄t) is a feature map that
transforms the state vector toRK : φ(s̄t) = [φ̄1(s̄t), · · · , φ̄K(s̄t)]. Now, following Bhatnagar et al.
(2009), we define the Ordinary Differential Equation (ODE) associated with the recursive update of ω̄
via Eq. 22, which then can be simplified to Eq. 23 using a matrix notation described in the following.

˙̄ω =
∑
s̄t∈S̄

d̄π(s)
∑
āt∈Ā

π̄θ(āt|s̄t) ∗

R̄(s̄t, āt) + γ
∑

s̄t+1∈S̄

p̄(s̄t+1|s̄t, āt)ω̄Tφ(s̄t + 1)− ω̄Tφ(s̄t)

 (22)

˙̄ω = ΦTD[T (Φω̄)− Φ(ω̄)] (23)

Finding the asymptotic equilibrium of the critic, ω is equivalent to solving the above equation, when
˙̄ω = 0, which is simplified when switching to matrix vector notation described below:

1. D ∈ R|S̄|×|S̄| is a diagonal matrix with d̄π(s̄t) for all s̄t ∈ S̄ as its elements.

2. P ∈ R|S̄|×|S̄||Ā| is the probability matrix where p̄(s̄t+1|s̄t, āt)π̄θ(s̄t|āt) represents an
individual element.

16



Published as a conference paper at ICLR 2022

3. Φ ∈ R|S̄|×K̄ is the feature map whose rows are φ(s̄t) for all s̄t ∈ S̄.

4. R ∈ R|S̄|×|Ā| is a matrix where R̄(s̄t, āt) represents an individual element.

5. Ω ∈ R|K̄|×|K̄| is a diagonal matrix with discount factor γ as its elements.
6. T : RN → RN is an operator which is a mapping of the form: T (ω̄) = R+ PΩω̄.

Next, following Zhang et al. (2018), we make two assumptions that apply to InfoPG and are essential
to the rest of the convergence proof presented in the following.

Assumption 1 – The update of the policy parameter θ includes a local projection operator, Γ : RN →
χ ⊂ RN , that projects any θ onto the compact set χ. Also, we assume that χ is large enough to
include at least one local minimum of J̄(θ).

Assumption 2 – The instantaneous reward rit is uniformly bounded for any i ∈ N and t ≥ 0. We note
that the reward boundedness assumption is rather mild and is in accordance with prior work (Zhang
et al., 2018).

In analogous matrix-vector notation, and under the aforementioned assumptions made above and by
Zhang et al. (2018), for a static policy in the TTS convergence setting, the limt→∞ ω̄ = ω̄? almost
surely, where ω̄? satisfies the equilibrium constraint ˙̄ω = 0 shown below. We note the solution seen
below satisfies a similar convergence equation as seen in Bhatnagar et al. (2009).

˙̄ω = ΦTD[T (Φω̄?)− Φ(ω̄?)] = 0 (24)

= ΦTDT (Φω̄?) = ΦTDΦ(ω̄?) (25)

The above ODE explains the rate of change of the critic, and when the derivative reaches zero, the
critic has reached a stable equilibrium, and therefore, has converged.

Step 2: Actor Convergence – According to the TTS (Borkar, 1997), for the actor step, we assume
a fixed, converged critic and show a stabilized equilibrium of the policy. We assume there exists
an operator, Γ, which projects any vector x ∈ RN → χ ⊂ RN , where χ represents a compact set
bounded by a simplex inRN . The use of this projection is critical to the convergence of stochastic
TTS algorithms as stated by Bhatnagar et al. (2009); Zhang et al. (2018), since policies that exist
outside of the set can cause unstable equilibrium. Empirically, we apply the compactness of the set of
policy gradients by defining a maximum gradient norm, as stated in A.8. In Eq. 26, we define the Γ
operator for the vector field x(.) ∈ θ, which is assumed to be a continuous function.

Γ̂(x(y)) = lim
0≤η→0

Γ(y + ηx(y))− y
η

(26)

If the above limit does not converge to a singular value, we state Γ̂(x(y)) results in a set of convergent
points. With this notation we state the ODE of the policy, after being projected onto a compact set,
and note that given the assumptions made above and by Zhang et al. (2018), PG almost surely moves
θ̄ to an asymptotically stable equilibrium that satisfies the below Eq. 27. This proof analogy closely
follows the single-agent convergence proofs presented in Bhatnagar et al. (2009) and Tsitsiklis &
Van Roy (1997). Nevertheless, in our work, convergence to a stationary point for all agents is the goal.
While the TTS approach assumes the critic to have converged, the critic does not need to be a perfect
estimator. With small approximation error, Bhatnagar et al. (2009) proves that the below equation
still converges within the neighborhood of the optimal concatenated, joint policies for all agents. The
below ODE defines the derivative of the policy over time, and as the derivative approaches zero, the
actor reaches a stable equilibrium (or a set of equilibrium points, since in a fully decentralized setting,
the actor is a vector of joint policies for all agent, as described in Section 3) and thus, convergence of
the actor is achieved.

˙̄θ = Es̄t∼d̄π,āt∼π̄θ
[
∇ log(π̄θ) ∗ (Q̄(s̄t, āt)− V̄ (s̄t))

]
= 0 (27)

A.5 FULL PROOF OF THEOREM 1

Here, we derive the full proof of the Bayesian expansion of the policy (Theorem 1). As mentioned
before, given the Bayesian nature of the k-level hierarchy, actions conceived at similar levels of k
can be reasonably assumed to be independent. Without loss of generality, we assume a scenario

17



Published as a conference paper at ICLR 2022

with two cooperating agents i and j both with k levels of rationalization. An important notational
difference that will be used here is p(.). Policies are conventionally considered state-conditional
distributions of actions, where the action is the random variable. A specific action is usually either
sampled from the distribution or the MAP action is selected. Here, we denote p(X) to refer to the
probability distribution of a particular random variableX . Note that, evaluating p(X = x) returns the
specific probability that X = x (and not a distribution). In the following, we seek to determine the
distribution of actions, for i, at each level k using p(.) notation. This is determined by marginalizing
the level-k action of agent i across any specific action that i or j might take, which will be denoted as
x and y respectively. Additionally, a specific observation in the observation space will be denoted
as z. Accordingly, we can represent the probability of action a for agent i at time t across levels of
rationalization, k ∈ {0, 1, · · · ,K} as shown in Equations 28-30.

p(a
i,(0)
t ) =

∑
z∈S

p(a
i,(0)
t | oit = z)p(oit = z) (28)

p(a
i,(1)
t ) =

∑
x∈A

∑
y∈A

p(a
i,(1)
t | ai,(0)

t = x, a
j,(0)
t = y)p(a

i,(0)
t = x, a

j,(0)
t = y) (29)

...

p(a
i,(k)
t ) =

∑
x∈A

∑
y∈A

p(a
i,(k)
t | ai,(k−1)

t = x, a
j,(k−1)
t = y)p(a

i,(k−1)
t = x, a

j,(k−1)
t = y) (30)

At each level k ≥ 1, the probabilities of actions are directly proportional to the probabilities of i’s
and j’s actions at level k − 1 actions. Next, we can re-arrange the following Bayes’ rule, from Eq.31
to Eq. 32, to determine the probability of the joint distribution of the priors p(ai,(k−1)

t , a
j,(k−1)
t ):

p(a
j,(k)
t | ai,(k−1)

t , a
j,(k−1)
t ) =

p(a
i,(k−1)
t , a

j,(k−1)
t | aj,(k)

t )p(a
j,(k)
t )

p(a
i,(k−1)
t , a

j,(k−1)
t )

(31)

p(a
i,(k−1)
t , a

j,(k−1)
t ) =

p(a
i,(k−1)
t , a

j,(k−1)
t | aj,(k)

t )p(a
j,(k)
t )

p(a
j,(k)
t | ai,(k−1)

t , a
j,(k−1)
t )

(32)

Eq. 32 can be substituted back into the joint probability of the priors, p(ai,(k−1)
t , a

j,(k−1)
t ) in Eq. 30:

p(a
i,(k)
t ) =

∑
x∈A

∑
y∈A

p(a
i,(k)
t | ai,(k−1)

t = x, a
j,(k−1)
t = y)p(

a
i,(k−1)
t = x, a

j,(k−1)
t = y | aj,(k)

t )
p(a

j,(k)
t )

p(a
j,(k)
t | ai,(k−1)

t = x, a
j,(k−1)
t = y)

(33)

Now, we move the term p(a
j,(k)
t ) outside the summations, as it does not depend on the marginalization,

and multiply both the numerator and denominator in Eq. 33 by the joint probability of the priors,
p(a

i,(k−1)
t = x, a

j,(k−1)
t = y), to arrive at Eq. 34:

p(a
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(34)

Next, by simplification of the denominator we arrive at:

p(a
i,(k)
t ) = p(a

j,(k)
t )

∑
x∈A

∑
y∈A

p(a
i,(k)
t | ai,(k−1)

t = x, a
j,(k−1)
t = y)p(

a
i,(k−1)
t = x, a
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t = y | aj,(k)

t )
p(a
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p(a
j,(k)
t , a
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t = x, a

j,(k−1)
t = y)

(35)
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To simplify Eq.35, we first consider the transitivity of conditionals for the first two terms inside
the summations. Note that, for a specific Bayes’ tree in the form of our information graph shown
in Fig. 1, we can write

∑
x∈A

∑
y∈A p(a

i,(k)
t | ai,(k−1)

t , a
j,(k−1)
t )p(a

i,(k−1)
t , a

j,(k−1)
t | aj,(k)

t ) =

p(a
i,(k)
t | aj,(k)

t ). Next, considering the summations, we marginalize both the numerator and the
denominator in Eq. 35 across the joint action space. Accordingly, the numerator will simplify to 1
since we are summing the probabilities for all actions. Also, the marginalization across the joint
action space to the denominator is simplified to p(aj,(k)

t , a
i,(k−1)
t , a

j,(k−1)
t ) = p(a

j,(k)
t ). As such, by

substituting these simplifications in Eq. 35, we arrive at Eq. 36.

p(a
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t )
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t )

p(a
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t ) = p(a
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t ) (36)

In this form, we join parallels between p(ai,(k)
t ) and πitot(a

i,(k)
t | .). The πitot(a

i,(k)
t | .) is the

probability distribution of the k-level action a
i,(k)
t , which according to the initial definition, is

exactly the same as p(ai,(k)
t ) (same applies for p(aj,(k)

t )). Additionally, in the derivation of p(ai,(k)
t |

a
j,(k)
t ), we used p(aj,(k)

t | ai,(k−1)
t , a

j,(k−1)
t ); however, notice that this probability is exactly the

same as πicom(a
j,(k)
t | ai,(k−1)

t , a
j,(k−1)
t ), therefore, we can make the following equivalencies and

substitutions for both agents i and j.

πitot(a
i,(k)
t | .) = p(a

i,(k)
t ) = πicom(a

i,(k)
t | aj,(k)

t ) (37)
Now, considering that agent i acted on its k-level reasoning and executed the MAP action, the log
probability and its gradient of the action-distribution at the k-th level can be described as in Eq. 38-39:

log(πitot(a
i,(k)
t = MAP | .)) = log(πicom(a

i,(k)
t = MAP | aj,(k)

t = MAP)) (38)

∇ log(πitot(a
i,(k)
t = MAP | .)) =∇ log(πicom(a

i,(k)
t = MAP | aj,(k)

t = MAP)) (39)
As such, we arrive at the conclusion that was arrived upon near the end of Section 4.4: performing
gradient ascent on πitot inherently increases πicom(a

i,(k)
t | aj,(k)

t ). This fact is used to support the
mutual information bounds derived in Theorems 2 and 3, and is valid for any k ≥ 1.

A.6 DISCUSSION ON THE UNIFORMITY OF PRIORS ASSUMPTION

Similar assumption of uniform priors as ours in Section 4.5 have been used previously by Prasad
(2015) for the calculation of MI upper-bound. In our work, we defined p(ai) as a marginalization
of the action-conditional policy, πicom(ai|aj), across any potential aj . The marginal’s conceptual
meaning here is similar to asking the question, "What should the probability of ai be, if we did not
know aj?" For a given action-conditional policy, we could expect ai to be uniformly random because
the action-conditional policy is expected to only change the probability of a selected action based
on the k-level reasoning with other agents. If there is no action to reason upon, the agent has no
information with which to base its k-th action upon. It is important to note here that p(ai) is not a
marginalization of both the state-conditional and action-conditional policies. Since p(ai) is only a
marginalization of the action-conditional policy, we view the uniformly-random prior assumption as
a reasonable design choice.

A.7 SUPPLEMENTARY RESULTS

In this section we provide our supplementary results. We start by analysing and interpreting agents’
communicative policy in our fraudulent agent experiment in order to understand the effect of k-level
rationalization for decision-making in this scenario. Next, we present the agent-level performances
for InfoPG and compare with the baselines in all three evaluation environments. Next, we present an
scalability analysis in the Pistonball environment to investigate robustness to larger number of agents.
Eventually, we conclude this section by presenting a list of takeaways.

A.7.1 POLICY INTERPRETATION FOR THE FRAUDULENT AGENT EXPERIMENT

In this section, we present an analysis and interpretation of agents’ communicative policy in our
fraudulent agent experiment in order to understand the effect of k-level rationalization for decision-
making in this scenario. We test the learnt policy at convergence using Adv. InfoPG in the fraudulent
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(a) Action distributions for pistons at t = 0

(b) Action distributions for pistons at t = 10

(c) Action distributions for pistons at t = 25

(d) Action distributions for pistons at t = 32

(e) Action distributions for pistons at t = 37

Figure 4: Action distributions of piston agents across 37 timesteps for the fraudulent agent experiment introduced
in Section 6. Note that Piston 2 (not displayed) is the fraudulent agent with untrainable random policy.
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agent experiment, presented in Section 6. The results are shown in Figure 4 in which, we present
the action distributions of agents before and after rationalizing their decisions with their neighbors
through k-level reasoning. For each action distribution graph, the Y-axis is the probability of an
action and the X-axis represents actions, where u=move up, d=move down, and s=stay constant.

In Figure 4 we present sample illustrations of a test run in a BGP scenario for t = 0, 10, 25, 32, 37,
from start to the end of the episode. At t = 0 (Fig. 4a), we can see that the episode starts with
the ball on top of the right-most pistons (i.e. pistons 3 and 4). Note that pistons are indexed
left to right. With k = 1 reasoning, we show piston 3’s rationalization for its action decision in
three phases: first, ap3,(k=0), is the naive k = 0 action (blue); second, ap2,3,(k=1), is the k = 1
rationalization that incorporates piston 2’s random action (orange), and, third, ap2,3,4,(k=1), is the
k = 1 rationalization that incorporates both piston 2’s random action and piston 4’s k = 0 action
into piston 3’s k = 1 action decision (pink). Using a similar notation convention, ap3,4,(k=1) is
piston 4’s action rationalization given piston 3’s k = 0 action rationalization. Now, notice that the
spread of ap3,(k=0) at t = 0 is relatively uniform (blue), and given that piston 2 is randomly moving,
ap2,3,(k=1) remains unchanged (orange). This indicates piston 3 has learned to ignore piston 2, which
is the fraudulent agent. Additionally, notice that ap4,(k=0) at t = 0 is bimodal and has relatively
equal probabilities of moving either up or down; however, we can see for both pistons 3 and 4, after
rationalizing their actions with each other at k = 1, both action distributions become unimodal and
tend towards moving up, which is the desired action for moving the ball to left.

This coordination demonstrates an interesting strategy; piston 3 and piston 4 have learned that
coordinating actions with the randomly moving piston 2 is not desirable and therefore, they seek
to move the ball as high as possible, and toss it over piston 2. Empirical proof of this behavior can
be seen by the continuation of the spread of distributions at t = 10. At t = 25 a distinct change
occurs; piston 3’s action distribution, after k = 1 rationalization with piston 4, becomes uniform
again, while Piston 4 is still unimodal and tending up. We believe this behavior shows that piston 3
and 4 have realized the strategy to bypass piston 2 is to "launch" the ball over piston 2, which can be
accomplished by piston 4 moving up, while piston 3 remains stable, effectively creating a leftward
force for the ball to move left. At t = 32 we can see the "launching" is performed, and here the action
distributions of both piston 3 and 4 become relatively uniform again (Note that actions of piston 3
and 4 do not matter at this point since they are not directly located under the ball and therefore, do
not receive a reward for their actions). From t = 32 to t = 37, the ball traverses over pistons 0 and
1; however, note that piston 0 and 1 will not need to move the ball too much, since the ball already
has leftward momentum. Accordingly, piston 0 and 1 only need to coordinate to create a leftward
ramp to facilitate ball’s movement. As such, both piston 0 and piston 1 follow relatively uniform
distributions after k=0 and 1 rationalization. At t = 37, the ball is over piston 0 and has reached the
left wall, which denotes winning and end of the episode.

In summary, we show two key behaviors learnt by agents through our Adv. InfoPG in the fraudulent
agent experiment: 1) Piston 2 is untrustworthy and thus, coordinating with this agent is not desired,
which leads to unchanged action-distributions for Pistons 3 and 1 after iterated k-level reasoning with
this fraudulent agent. 2) Pistons 3 and 4 learn to avoid the fraudulent agent (piston 2) by "launching"
the ball over it, giving the ball a leftward momentum to reach the left wall.

A.7.2 A QUALITATIVE ANALYSIS FOR BOUNDED RATIONALITY

The postulate of k-level reasoning is that higher levels of k should allow for deeper decision rational-
ization and therefore better strategies. In this section, we qualitatively investigate different examples
of intelligent behavior induced by varying bounds of rationality. To address this, we specifically
further investigate InfoPG’s results in the MultiWalker and StarCraft II (SC2) domains due to their
complex mechanics and multi-faceted objectives. In the following, we first present our qualitative
analysis for SC2 and Multiwalker, respectively.

SC2 – Our qualitative analysis in SC2 is a demonstration of how bounded rationality and higher levels
of iterated reasoning benefits performance. In SC2, agents are positively rewarded for shooting and
killing enemy agents, and are negatively penalized for getting shot at. Therefore, a locally optimal
strategy is to run away from the enemy team to avoid any negative penalties, while a globally optimal
strategy is to kill and eliminate all the enemy agents to achieve high positive rewards.
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Figure 5: Comparing the learned policies by InfoPG at convergence in the SC2 domain with k = 0 and k = 1.
With k = 0 (Fig. 5.1–5.3), the naive agents disregard other agents actions and simply learn to run away to avoid
the negative penalties of getting shot at. This is while the more sophisticated agents with k = 1 (Fig. 5.4–5.6),
learn more strategic policies to work together to eliminate the enemy team and achieve high positive rewards.

Fig. 5 shows our qualitative results for analyzing the effects of assuming bounded-rational agents and
iterated reasoning in the SC2 domain. We compare the learned policies by InfoPG at convergence in
the SC2 domain with k = 0 and k = 1.

At k = 0 of the rationalization hierarchy, the fully naive and non-strategic level-0 agents choose
actions while completely disregarding other agents actions (i.e., have zero-order beliefs). As such, for
a level-0 policy, we expect to observe that agents simply run away from the enemy to avoid getting
shot at, since a single agent does not believe (zero-order belief) it can overcome the enemy team.
As seen in Fig. 5.1–5.3, the naive agents expectedly only learn to run away to avoid the negative
penalties of getting shot at. This fleeing behavior allows agents to maintain a reward of zero, as
shown in Fig. 2, indicating successful escape and convergence to the locally optimum solution.

At level k = 1, each agent is now more sophisticated and believes that the other agents have a level-0
policy and takes actions according to that. In this case, we observe a vastly different behavior. As
shown in Fig. 5.4–5.6, agents here learn more strategic policies to work together to eliminate the
enemy team and achieve high positive rewards. The agents begin a triangle-like formation towards
the enemy (Fig. 5.4). Enemy agents then begin to shoot the closest opposing player at the front of the
triangle formation. The other two agents in the team use this opportunity and start firing at the enemy
team while they shoot the front-most agent. As such, the remaining two agents manage to kill and
eliminate the enemy team. Through reasoning their level-1 actions based on their teammates level-0
action, InfoPG agents learn a sacrificial technique of exposing one agent as bait, which allows the
agents to converge to the globally optimum solution of killing the entire enemy team. This is also
reflected in Figure 2, where the k = 1 InfoPG achieves the highest cumulative rewards.

Multiwalker – Our qualitative analysis in Multiwalker is another demonstration of how higher levels
of iterated reasoning benefits performance. There are two objectives that the walkers need to satisfy:
(1) stabilization (both the package and the walkers) and (2) moving forward. Stabilization of the
package and the walkers are the primary goals, since dropping the package, or falling, results in
failing the game with a penalty. Walking (i.e., moving forward to the right) is an additional goal,
since every forward step yields a small proportional reward. Ultimately, the walkers should aim to
achieve both stabilization and walking at the same time, which is the globally optimum solution.

Fig. 6 shows our qualitative results for analyzing the effects of assuming bounded-rational agents and
iterated reasoning in the Multiwalker domain. At level k = 1, each walker believes that the other
walker has only a level-0, non-rational policy. We observe in Fig. 6-(a) that, with InfoPG and by
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Figure 6: Comparing the learned policies by InfoPG in the Multiwalker with k = 1, k = 2, and k = 3,
Fig. 5a-5c, respectively. With k = 1, agents only learn to perform a split to balance the package on top and
avoid falling. This is while with k = 3 agents learn to quickly walk forward. The middle stage of rationalization,
k = 2, achieves an in-between policy where agents split to balance, but also wiggle forward slowly.

k = 1, the walkers solve only the stabilization problem by learning to do the ”splits“, which is a
locally optimum solution. The walkers create a wide base with their legs and simply hold the package
statically with no forward progress (evidenced by the starting red flag). This technique requires some
degree of coordination since the walkers have to do the splits synchronously at the beginning of the
experiment; however, this is not nearly a complex enough strategy to achieve any positive rewards.
Looking at the reward convergence in Fig. 2, k = 1 achieves converges to the locally optimum
solution and achieves a reward of 0, since the walkers do not get any positive reward for moving nor
do they get any negative reward for dropping the package or falling.

At level k = 2, each walker now believes that the other walker has a level-1, bounded-rational
policy. Intuitively, assuming a more sophisticated policy for a teammate should lead to a better
overall strategy, since the best-response solution to such sophisticated policy needs a certain level of
sophistication Gershman et al. (2015); Ho & Su (2013). We observe in Fig. 6-(b) that, as expected, the
learned policies at level k = 2 of rationalization still includes performing the ”splits“ for balancing
while agents also learned to wiggle forward slowly and receive some positive reward.

As we increase the rationalization depth from k = 3, we see in Fig. 6-(c) that the walkers not
only stabilize the package, but also start moving forward (evidenced by the starting red flag out of
frame) with much more sophisticated strategies. The left-most walker learns to generate forward
momentum and walk more quickly than the front walker, which learns to walk more slowly and
maintain the stability of the package. Note that this illustrates the idea of role allocation, which is a
relatively complex strategy and indicative of higher levels of intelligence achieved through assuming
sophisticated, level-2 teammates. The walkers learn to coordinate their movements, because if the
left-most walker makes too jerky of a forward movement, the right-most walker adjusts by staying
more static to stabilize the package. In Fig. 2, the collective strategy at k = 3 can achieve rewards as
high as +10, which is the globally optimum solution.

A.7.3 SCALABILITY ANALYSIS: PISTONBALL

Here, we investigate InfoPG’s robustness to larger number of interacting agents in the Pistonball
environment. For this experiment, We selected our best-performing model, Adv. InfoPG, and the
best-performing baseline, MOA (Jaques et al., 2019), from our primary results in Section 6. We
increased the number of agents from five to ten and kept the communication range to be the same (i.e.,
one piston on each side). The results are presented in Fig. 7. As shown, Adv. InfoPG outperforms
MOA in both maximizing average individual and team reward performances during training.

InfoPG considers two way communication with each of its neighbors (there are |∆| neighbors which
are communicated with k times). IfD is the dimension of the communicated k-level action-vector, the
bandwidth of input and output communication channels is Θ(2|∆|kD), where each communication
channel is Θ(|∆|kD). We leave the choice of |∆|, k, and D to be hyper-parameters, all of which can
be lessened as the number of agents increase to inhibit computational complexity issues.

A.7.4 AGENT-WISE PERFORMANCE COMPARISON

As mentioned, the objective in a fully decentralized domain is to maximize the average return by each
individual agent, such that the obtained cumulative team reward is also maximized. We have show in
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Figure 7: Scalability comparison between Adv. InfoPG and the best-performing baseline, MOA (Jaques et al.,
2019), in the Pistonball domain with ten interacting agents. Adv. InfoPG outperforms MOA in both maximizing
average individual and team reward performances.

our primary results in Section 6 that InfoPG outperforms all baselines across all three domains in
achieving higher cumulative team reward. Here, we present the agent-level reward performances for
InfoPG and compare with the baselines across three domains. The results are presented in Fig. 8,
where sub-figures 8a-8d represent the individual agent performances in Co-op Pong, Pistonball,
Multiwalker and StarCraft II (3M), respectively. As shown, our InfoPG and its MI-regularizing
variant, Adv. InfoPG, continually outperform the other baselines in maximizing achieved individual
rewards for agents. Specifically, in all graphs for Adv. InfoPG, all agents maximize individual
rewards over time, and Adv. InfoPG achieves SOTA across all baselines.

A.8 EVALUATION ENVIRONMENTS: ADDITIONAL DETAILS AND PARAMETERS

Here we provide additional details regarding the employed evaluation environments for training and
testing InfoPG and cover the associated environment parameters related to our experiments. An
instance of the four environments are presented in Fig. 9.

1) Cooperative Pong (Co-op Pong) (Terry et al., 2020) – The objective in this game is to keep a
pong ball in play for as long as possible between two co-operating paddles. To fit the MAF-Dec-
POMDP paradigm, agents must receive individualistic rewards. In the Co-op Pong domain, each
paddle receives a reward of +1 if it hits an incoming pong ball successfully and a penalty of −1 if it
misses. The game ends either when a paddle misses or if max_cycles = 300 cycles have elapsed.
Therefore, in order to continue receiving positive rewards of +1, paddles are implicitly encouraged
to cooperate to maximize their accumulated rewards. For an episode of the game, the pong ball was
set to move at a velocity of 15[pixelssec. ] while the paddles move slightly slower at 13[pixelssec. ]. Since the
ball moves faster than the paddles, the paddles require "forecasting" their intended position when the
pong ball comes into their field-of-view (FOV), which is a 280×240 RGB image. An important facet
of this environment is the time-delayed nature of the actions. Consider a scenario when the left-side
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(a) Individual agent performances in Co-op Pong.

(b) Individual agent performances in Pistonball.

(c) Individual agent performances in Multiwalker.

(d) Individual agent performances in StarCraft II (3M).

Figure 8: Individual rewards obtained by each individual agents across episodes as training proceeds in the three
evaluation environments. Our Adv. InfoPG continually outperforms all baselines (Wen et al., 2019; Jaques et al.,
2019; Zhang et al., 2018; Sutton & Barto, 2018) across all domains.
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Figure 9: Instances of the utilized multi-agent cooperative environments. Domains are parts
of the PettingZoo (Terry et al., 2020) MARL research library and can be accessed online at
https://www.pettingzoo.ml/envs. The StarCraft II (Vinyals et al., 2017), can be accessed from
Deepmind’s repository available online at https://github.com/deepmind/pysc2.

paddle hits the ball at t1; this means that the right-side paddle will receive the ball at minimum, at
t2 = t1 + 280

15 . This measure is an underestimation, since the pong ball will not likely move in a
straight line drive (i.e. it may hit the sides of the walls) but it illustrates the point that the action of the
left-side paddle at t1 is particularly relevant to the action of the right-side paddle at t2; however, the
action of the left-side paddle at t2 is not particularly relevant to the right-side.

Therefore, in our experiments, to account for the time-delay in the action information, a "hub"
was designed where the action at the time of the last "hit" is shared to the opposing paddle, and a
zero-vector otherwise. This procedure was applied for both InfoPG and MOA Jaques et al. (2019) as
to fairly evaluate the communicative algorithms. In the case of MOA, the time-delayed action was
sought to be "predicted" by the opposing paddle’s model of agent.

2) Pistonball (Terry et al., 2020) - The goal in the this environment is to move a ball from right side
of the screen (e.g., right wall) to the left side of the screen (e.g., left wall) by activating/deactivating a
team of five vertically moving piston agents. The ball has momentum in motion and is elastic. In
order to encourage robustness, the ball was randomly placed on the pistons with a friction factor
of 0.3, mass of 0.75, and a relatively high elasticity factor of 1.5. An episode of the game ends if
agents move the ball to the left wall or after max_cycles = 200 cycles have elapsed. Each agent’s
observation is an RGB image of size 457 × 120 covering the two pistons (or the wall) around an
agent and the space above them. Each piston receives an individual reward which is a combination of
how much the corresponding agent directly contributed to moving the ball to left (i.e., with a value of
X ballt −X ballt−1 , where Xt represents the center position of the ball along the X-axis at time t), and a
negative time penalty of −0.007 per timestep. A piston is considered to be contributing directly to
moving the ball to left, if it is directly below any part of the ball. Given the ball’s radius of 20 pixels,
at each timestep, three pistons can be directly under the ball. Agents win an episode of the game if
they can coordinate efficiently to move the ball to the left wall within allowed maximum steps.

3) Multiwalker (Gupta et al., 2017; Terry et al., 2020) - The objective in this continuous-space
environment is for a team of two bipedal robots to carry a heavy package cooperatively and walk as
far right as possible. The weight of the package depends on its length which is determined by the
number of agents. We note that, the two-agent case is the most challenging scenario in Multiwalker.
Each robot exerts a variable force on two joints in its two legs, and therefore, the action-space is
of dimension four with values in range (−1, 1). The bipedal robots receive local rewards related
to individual balance and stability of their hull. The reward function includes a reward of +1 for a
scaled forward displacement of each bipedal robot’s hull. We set the maximum number of allowed
steps to max_cycles = 500 cycles, which would terminate at any point if a bipedal or the package
falls. If a bipedal robot falls, it will individually receive a penalty of −10, and, if the package falls
on the ground, each bipedal receives a penalty of −100. Each agent receives a 31-dimensional
observation vector. The first 24 elements of the observation vector represent the bipedal robot’s
internal kinematics and the rest (i.e, elements 24-31) relate to LIDAR observations of the package
position as well as the position of the adjacent bipedals.

4) StarCraft II (Vinyals et al., 2017) (The 3M (three marines vs. three marines) challenge) - The
goal in this domain is for a team of three friendly marines to find, shoot, and kill three enemy marines
as soon as possible, without dying or getting hit (Seraj et al., 2020; 2019). This domains is more
challenging than the previous ones since the state-space is larger and the communication graph is
time-varying. In this challenge, marines can move in four primitive directions and shoot an enemy
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marine within distance (i.e., multiple enemy marines can be in vision at once), and therefore, the
action-space dimension is also larger than the previous domains. Agents get negatively rewarded
when they are shot by enemy marines and are positively rewarded when shooting enemy marines.
3M presents a fundamentally more challenging environment than Pistonball, Multiwalker, and Pong,
as the state space is much larger, and agents are allowed to move in 2D over a large gameplay
arena. The action space is also larger (size 8) as agents can choose between: no action, moving in 4
directions, and shooting any one out of 3 enemy marines. Additionally, agents have a time-varying
communication graph (different from the other domains), because friendly marines move in and out
of the line of sight.

A.9 TRAINING AND EXECUTION DETAILS

Under the MAF-Dec-POMDP paradigm, each agent i ∈ N is equipped with its own optimizer
and policy πitot which consists of an encoding policy πienc and a communicative policy πicom (each
parameterized by θi). The encoding policy can be represented using a feed-forward neural network,
and the communicative policy can be represented by any class of Recurrent Neural Networks (RNNs),
such as the Gated Recurrent Unit (GRU) or Long Short-Term Memory (LSTM). For computational
efficiency, we chose to use a GRU or simplistic RNN architecture.

Additionally, while we formulaically denote actions for level k as ai,(k−1)
t , in execution we represent

these actions as finite-dimensional vectors to maximize information during inference. The size of
these vectors are known as policy latent size in the provided hyperparameter tables. This parameter
(also shared by other baselines) refers to the size of the latent vector prior to the final Softmax output
layer. During the encoding stage of InfoPG, each agent, i, receives an observed state vector, oti, and
encodes an action vector ai,(0)

t , using πienc. During k-level communication, each agent receives the
action vectors of neighboring agent j ∈ ∆i

t from level k−1 and performs a forward-pass on the RNN,
where the initial cell state is ai,(k−1)

t . The action probabilities for the discrete domains (i.e., Co-op
Pong and Pistonball) are outputted by the feed-forward network where the last layer size is equal
to the size of the action space and a Softmax activation. Note that for our continuous action-space
domain, Multiwalker, the final Softmax activation function is replaced with the Tanh activation.
Neighboring agents are determined using the adjacency graph Gt, and a distance hyper-parameter
specifying how “far” agent i can communicate (i.e., communication range). Gt is an undirected
time-varying graph, and as agents perform actions and change their relative position (depending on
the domain), the edges Et ⊆ {(i, j) : i, j ∈ N , i 6= j} are updated for the next timestep. This process
is carried out until convergence of the cumulative rewards of all N agents.

Specifics for Co-op Pong – The input observation in this domain, a 280× 240 RGB image, contains
information about where the pong ball exists in the FOV of each paddle. Since the ball is in motion,
we found higher performance could be achieved by setting the observation at time, t, to be the
difference between the observation at t and t − 1. As such, we encoded the input observation to
represent information about not just the position, but also the velocity of the ball. This procedure was
maintained for all baselines.

Another property we found critical to the performance of InfoPG agents in Co-op Pong was the type
of RNN for πicom. In Pong, rewards are rather sparse, since paddles only receive feedback when they
hit or miss a ball, while in other times and when ball is traversing the screen (which is the majority of
the time spent in the game) no feedback is received from the environment. Accordingly, we leveraged
curriculum learning (Bengio et al., 2009) such that we let agents first learn the mechanics of hitting
the pong ball and then, learn the benefit of communication. We achieved this behavior by using a
simple RNN (we distinguish this with VRNN for Vanilla RNN) cell for πicom, where the initial weight
matrix Wih was set to the identity matrix and all other parameters were set to a small constant. This
way, we effectively make the output of the πicom = πienc at the beginning episodes of training, while
as time elapses, the weight matrix is optimized to incorporate actions from the neighboring paddle.

Specifics for Pistonball – The agents each receive a 457 × 120 RGB image as their observation
input. In order to minimize feature size, each observation was first cropped to a size of 224× 224,
normalized and inputted into a pre-trained AlexNet model. AlexNet (Krizhevsky et al., 2012) is a
CNN that takes in images and outputs probability scores of classes. In our experiments, we utilized
the first four intermediate layers of AlexNet to produce rich feature observations to the input of the
encoding policy. This procedure was applied to all baselines.
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Hardware Specifics – All experiments were conducted on an NVIDIA Quadro RTX 8000 with
approximately 50 GB of Video Memory Capacity.

Training Hyperparameters – We present the training hyperparameters in our implementations and
experiments across methods and all three environments in Tables 2-6.

Table 2: Co-op Pong Training Hyperparameters.

Experiments Pong
InfoPG Adv InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Size of Latent Vector 30 30 30 30 30 30

Type of Com. Network VRNN VRNN - - GRU -
Epochs 4000 4000 4000 4000 4000 4000

MOA Loss Weight - - - - 0.1 -
Discount Factor 0.95 0.95 0.95 0.95 0.95 0.99

Batch Size 16 16 16 16 16 16
Max Gradient Norm 10 10 10 10 10 10
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16

Table 3: Pistonball Training Hyperparameters.

Experiments Pistonball
InfoPG Adv. InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Size of Latent Vector 20 20 20 20 20 20

Type of Com. Network GRU GRU - - GRU -
Epochs 1000 1000 1000 1000 1000 1000

MOA Loss Weight - - - - 1.0 -
Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99

Batch Size 4 4 4 4 4 4
Max Gradient Norm 0.75 0.75 0.75 0.75 0.75 4.0
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16

Table 4: Multiwalker Training Hyperparameters.

Experiments Multiwalker
InfoPG Adv. InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Size of Latent Vector 30 30 30 30 30 30

Type of Com. Network GRU GRU - - GRU -
Epochs 1000 1000 1000 1000 1000 1000

MOA Loss Weight - - - - 0.1 -
Discount Factor 0.95 0.95 0.95 0.95 0.95 0.95

Batch Size 16 16 16 16 16 16
Max Gradient Norm 5 5 5 5 5 5
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16
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Table 5: StarCraft II Mini-game (The 3M Challenge) Training Hyperparameters.

Experiments StarCraft II (3M Challenge)
InfoPG Adv. InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Size of Latent Vector 50 50 50 50 50 50

Type of Com. Network GRU GRU - - GRU -
Epochs 1000 1000 1000 1000 1000 1000

MOA Loss Weight - - - - 0.1 -
Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99

Batch Size 64 64 64 64 64 64
Max Gradient Norm 6 6 6 6 6 6
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16

Table 6: Pistonball Training Hyperparameters for the fraudulent agent experiment.

Experiments Fraud Pistonball
InfoPG Adv InfoPG MOA

Learning Rate 1e-3 1e-3 1e-3
Size of Latent Vector 20 20 20

Type of Com. Network GRU GRU GRU
Epochs 1000 1000 1000

MOA Loss Weight - - 1.0
Discount Factor 0.99 0.99 0.99

Batch Size 2 2 2
Max Gradient Norm 0.5 0.5 0.5
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