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ABSTRACT

Visual instruction datasets from various distributors are released at different times
and often contain a significant number of redundant text-image pairs, depending
on their task compositions (i.e., skills) or reference sources. This redundancy
greatly limits the efficient deployment of lifelong adaptable Multimodal Large
Language Models (MLLMs), hindering their ability to refine existing skills and
acquire new competencies over time. To address this, we reframe the problem
of Lifelong Instruction Tuning (LiIT) via data selection, where the model auto-
matically selects beneficial samples to learn from earlier and new datasets based
on the current state of acquired knowledge in the model. Based on empirical
analyses which show that selecting the best data subset using a static importance
measure is often ineffective for multi-task datasets with evolving distributions,
we propose LAMP, a new multi-way and adaptive data selection approach that
dynamically balances sample efficiency and effectiveness during LiIT. We first
construct pseudo-skill clusters by grouping gradient-based sample vectors. Next,
we select the best-performing data selector for each skill cluster from a pool of
selector experts, including our newly proposed scoring function, Image Ground-
ing score. This data selector samples a subset of the most important samples from
each skill cluster for training. To prevent the continuous increase in the size of the
dataset pool during LiIT, which would result in excessive computation, we further
introduce a cluster-wise permanent data pruning strategy to remove the most se-
mantically redundant samples from each cluster, keeping computational require-
ments manageable. We validate the effectiveness and efficiency of LAMP over
a sequence of various multimodal instruction tuning datasets with various tasks,
including (Knowledge) VQA, multilingual, grounding, reasoning, language-only,
and multi-image comprehension tasks. Training with samples selected by LAMP
alleviates catastrophic forgetting, especially for rare tasks, and promotes forward
transfer across the continuum using only a fraction of the original datasets.

1 INTRODUCTION

Multimodal instruction tuning (Liu et al., 2023b; Zhang et al., 2023a; Liu et al., 2023a; Gan et al.,
2024; Yoon et al., 2024) has been actively explored to enhance visual reasoning or the generation
ability of Multimodal Large Language Models (MLLMs) (Zhu et al., 2023; Li et al., 2023a; Tang
et al., 2023; Team et al., 2023; Munasinghe et al., 2023; Yu et al., 2024; Zhang et al., 2024) by train-
ing models on human or machine-generated multi-task visual instruction tuning datasets (Li et al.,
2023c; Yin et al., 2023; Xu et al., 2024; Chen et al., 2024). While many distributors continue to
release new high-quality instruction-tuning tasks and datasets, continually adapting large models to
these massive multi-task datasets over time is prohibitively costly and inefficient. Given a pre-trained
MLLM and the continuous expansion of the dataset pool with a stream of multi-task instruction-
tuning datasets, as commonly observed in the research community today, the challenge lies in
developing an ever-evolving, instruction-following MLLM in the most data- and computation-
efficient manner. This research question poses a realistic, sustainable instruction tuning scenario
for MLLMs, distinct from conventional continual learning (Zenke et al., 2017; Yoon et al., 2018;
Van de Ven & Tolias, 2019), which focuses on learning a sequence of disjoint tasks. Specifically,
at each time step, we assume a new multimodal multi-task instruction-tuning dataset is added to the
training pool, which already contains previous datasets. The model’s goal is to learn from this con-
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Figure 1: Illustration of LAMP. When a new dataset is incorporated into the data pool at the beginning of
each timestep, LAMP extracts sample vectors and forms pseudo-task clusters based on their similarity. Using
a set of scoring functions, LAMP predicts the most suitable scoring function for each cluster and trains an
MLLM on the selected samples. To prevent excessive computation as the pool size grows, we introduce dataset
compression by permanently removing redundant samples.

tinually expanding dataset pool, a scenario we refer to as Lifelong Instruction Tuning (LiIT). This
setting poses the unique challenges of (1) data redundancies over time due to significant overlap be-
tween datasets, (2) imbalanced task representations due to over-representation of simple tasks like
captioning, (3) learning rare tasks, and (4) learning new output modalities.

Our initial experiments with sequential multimodal instruction tuning, i.e., training on a sequence
of instruction tuning datasets, show catastrophic forgetting, especially when new output modalities
like bounding boxes and key points are introduced. While experience replay on a small subset of
past datasets alleviates forgetting to some extent, it is insufficient for retaining rare or unique tasks
that appear only once, due to the skewed task distribution. This issue is compounded by the loosely
defined nature of ‘tasks’ in instruction tuning (e.g., multi-turn conversations across multiple tasks on
the same image) and the lack of sample-wise task labels. Therefore, we address the problem of LiIT
from a data selection perspective, enabling the model to learn skills in a balanced way over time
and avoid overfitting to dominant tasks. Specifically, we explore how to prune past and incoming
datasets to create a balanced training set at each time step, considering the model’s current state.

To build an efficient lifelong-evolving MLLM, we introduce LAMP: Lifelong and Adaptive Multi-
way Pruning, an efficient and dynamic multimodal data selection strategy. At each time step, LAMP
selects the most beneficial samples for the current model from the data pool, adapting to the model’s
evolving knowledge and changing dataset distributions. This is crucial for LiIT, as sample impor-
tance shifts over time. LAMP operates in two major steps: (1) Task-based clustering. When a new
dataset is introduced, we integrate it into the training data pool and create pseudo-task clusters using
gradient vectors to represent data samples. (2) Cluster-wise data selection. We select influential
samples from each cluster for model training. Motivated by the observation that different score
functions (Paul et al., 2021; Toneva et al.; Coleman et al.) define sample importance differently, we
propose a new multi-way data selection approach that chooses the best scoring function from a
pool of experts based on its discriminativeness (measured by entropy). This selects a skill-balanced
subset of highly influential samples from the current training data pool. As the size of the data pool
continues to grow with time, the inference step for computing scores and data representations in
LAMP, as in most existing data selection strategies, can become prohibitively expensive. Hence,
to maintain a sufficiently diverse yet computationally manageable data pool, LAMP performs an
additional step: (3) Permanent data pruning that removes semantically redundant samples from
the data pool at the end of each time step, thereby continually controlling its size during LiIT.

To better assess the influence of multimodal samples, we also propose a new scoring function, called
the image grounding score (IG), that measures the relative change in sample perplexity when the
model is grounded by visual information. This metric prioritizes samples that effectively utilize and
improve the multimodal skills of the MLLM and serves as an effective data selector in LAMP.

We design the experimental setup for this previously unexplored scenario of lifelong multimodal
instruction tuning using the pre-trained LLaVA 1.5 (Liu et al., 2023a) model over a stream of five
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visual instruction tuning datasets. As discussed earlier, experience replay is insufficient for allevi-
ating forgetting, however, a randomly selected subset from the data pool of past and new datasets
brings down the forgetting rate from 26% to nearly 2%. Score-based data-selection strategies largely
fail in this setting due to their inability to select task-balanced data subsets from multi-task datasets.
LAMP not only minimizes the forgetting to a mere 0.9% using only a fraction of the training data
pool, but also promotes forward transfer of skills and consistently achieves >100% relative gains.

LAMP provides an intuitive framework for dynamic data selection in the temporal scenario. We
conduct extensive ablations of LAMP to find its best-performing settings. One of our significant
findings is that hidden layer outputs represent the semantic component whereas gradient vectors
represent the skill component of samples. Hence, gradient vectors are more effective at pooling
samples into pseudo-task clusters (see examples in Figures 2 and 4). Further, we find that gradients
from the middle layer of the model lead to best overall performance, suggesting that skill retention
could be localized to a few layers in LLMs. We also find that zero-order gradients (Hinton, 2022;
Sung et al., 2024) are promising and computationally cheaper alternatives to backpropagated gradi-
ents for pseudo-task clustering. Analysis of the skill-wise breakdown of performance reveals that
language-only skills are the easiest to retain and improve, whereas multilingual multimodal skills
exhibit significant forgetting in LiIT.

In summary, to the best of our knowledge, we are the first to explore the realistic setting of lifelong
multimodal instruction tuning where the temporal stream of datasets may contain new skills, over-
lapping or rare tasks, and redundant samples. Our proposed method, LAMP, demonstrates superior
retention as well as forward transfer of skills over time.

2 RELATED WORK

Multimodal Instruction Tuning Datasets. While multimodal data, such as image-text pairs, has
increased significantly, multimodal instruction-following data remains relatively scarce due to the
time-consuming nature of human data collection. To address this, recent works (Liu et al., 2023b;
Zhang et al., 2023a; Chen et al., 2023; Zhu et al., 2023; He et al., 2024a) have leveraged generative
models to collect such data from existing image datasets. Li et al. (2023c) introduce the M3IT
dataset with 2.4 million instances and 400 task instructions, translated into 80 languages. Xu et al.
(2024) develop VISION-FLAN, a large-scale dataset of 187 tasks with expert-written instructions,
ensuring diversity through iterative refinement. MultiInstruct (Xu et al., 2023) features 62 tasks
across 10 categories, sourced from 21 open datasets.

Continual Instruction Tuning. In the era of multimodal LLMs, instructional datasets have raised
several timely research problems. Therefore, it is crucial to develop sustainable models that can ad-
dress emerging data and real-world challenges. Inspired by continual learning (Van de Ven & Tolias,
2019; Srinivasan et al., 2022; Lee et al., 2024b), a paradigm focused on enabling models to adapt
to non-i.i.d., time-variant tasks, continual instruction tuning (CIT) (Chen et al., 2024; Zhang et al.,
2023b) has recently been studied for (multimodal) LLMs that allows the model to adapt to multiple
instruction tuning datasets sequentially without costly retraining. KPIG (He et al., 2024b) introduces
a new CIT method that helps LLMs capture task-specific information and avoid overfitting general
instructions by computing key-part information gain on masked parts to replay data and refine train-
ing dynamically. EProj (He et al., 2023) and Fwd-Prompt (Zheng et al., 2024) expand the CIT to
the training of large multimodal models. EProj introduces new regularization and model expansion
methods based on task correlations for continual instruction tuning of LMMs. Fwd-Prompt proposes
a prompt-based approach that projects the prompt gradient into the residual space to minimize task
interference while utilizing pre-trained knowledge, reducing negative forward transfer.

Data Selection. Data selection has been explored in the form of coreset selection in many works
(Welling, 2009; Chen et al., 2010; Feldman et al., 2011). Uncertainty/loss/error-based methods es-
timate the difficulty of a sample from model confidence (Swayamdipta et al., 2020) or its training
dynamics (Toneva et al.; Paul et al., 2021; Bachem et al., 2015). Zheng et al. (2023) address catas-
trophic accuracy drop at high pruning rates; Maharana et al. (2024) represent datasetd as undirected
graphs and employ message passing to select the best subset. Gadre et al. (2024) investigate data
selection for CLIP Radford et al. (2021) models. Evans et al. (2024) use learnability score (Minder-
mann et al., 2022) to accelerate training of CLIP models.
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Figure 2: A: Sample distributions for different visual language tasks in M3IT (Li et al., 2023b)
based on two importance scores, EL2N and entropy. B: t-SNE visualization of sample vectors
based on their gradients and features. C: Histogram of Perplexity and Image Grounding scores. We
visualize a few samples from M3IT with prompts (black) and ground-truth answers (blue).

3 LIMITATIONS OF SCORE-BASED DATA SELECTION IN LIFELONG
MULTIMODAL INSTRUCTION TUNING

3.1 LOCALITY OF THE SAMPLE IMPORTANCE: DATA SELECTION DEPENDS ON THE DATA

Score-based selection methods are widely used to assess the importance of training samples across
modalities (Zheng et al., 2023; Liu et al., 2024; Marion et al., 2023; Evans et al., 2024; Gadre et al.,
2024). We analyze two importance scores in multimodal instruction tuning: the EL2N score (Paul
et al., 2021) and entropy score (Coleman et al.). EL2N measures the L2-norm of the output error
vector, while entropy reflects the uncertainty in the output probabilities. Using the M3IT dataset (Li
et al., 2023b), which includes eight tasks: captioning, multilingual (Chinese), classification, gener-
ation, knowledge VQA (kvqa), reasoning, videoQA, and VQA, we compute score distributions. As
shown in Figure 2A, relying on a single importance score metric, such as EL2N or entropy, is in-
sufficient to differentiate meaningful samples across a diverse range of tasks. For instance, selecting
higher EL2N scores tends to favor for generalization (Paul et al., 2021), captioning samples over
kvqa, leading to a skewed dataset.

In addition, the effectiveness of different importance scores varies based on the task and dataset at
hand. The perplexity score is effective for filtering out low-quality samples in VQA that generally
occur in the tail end of its distribution (see Figure 2C). Tasks such as kvqa (in purple) and captioning
(in blue) are more separable via their entropy scores than EL2N scores. Moreover, Zheng et al.
(2023); Swayamdipta et al. (2020) show that the most effective training subset contains a balanced
mix of easy, difficult, and ambiguous samples. A biased score estimator may assign higher or lower
scores to too many samples, making it hard to select the most effective subset. Thus, we need a
different, generalizable strategy for assessing sample importance across multiple datasets during
multimodal instruction tuning.

3.2 IMPORTANCE OF VISION-LANGUAGE DATA WITH IMAGE GROUNDING SCORE

The perplexity score measures the likelihood of a given sequence of tokens as predicted by an
autoregressive generative model and has been used for selecting samples with higher instruction
following difficulty in language datasets (Li et al., 2024). For MLLMs, the perplexity function
additionally conditions on the input image tokens within the model. A lower perplexity score implies
that the model assigns a higher probability to the output tokens. We compute the perplexity of a
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multimodal data instance zi for an MLLM with weights θ as:

PPL(zi) = exp(
1

|zi|
∑
ej∈zi

NLL(ej)), where NLL(ej) = −log(ej |e<j , I;θ). (1)

where NLL(ej) indicates the negative log-likelihood of token ej in the sequence zi comprising of
image I and tokens e. As discussed in the previous section, perplexity is useful for detecting low-
quality multimodal samples (see Figure 2C top). Motivated by the effectiveness and generalizability
of the perplexity score (Marion et al., 2023; Li et al., 2024), we further modify this scoring func-
tion to distill the importance of the image in a multimodal data instance. We compute the image
grounding score of a multimodal data instance zi with image I and tokens e as:

IG(zi) =
PPL(e)

PPL(e, I)
(2)

A higher IG score is assigned when the model assigns a higher probability to the text when condi-
tioned on the image, compared to when the image is absent. Conversely, a lower IG score indicates
that the image has little to no effect on the text’s probability. As shown in Figure 2C bottom, an
image-query pair with a higher IG score requires the model to carefully understand the visual scene
(e.g., reading the text on a sign in the image). In contrast, examples where the model can predict the
answer without seeing the images represent lower IG scores. Thus, the IG scoring function allows
us to discard multimodal samples that do not leverage the multimodal functionality of MLLMs.

4 LIFELONG MULTIMODAL INSTRUCTION TUNING VIA MULTI-WAY DATA
SELECTION

4.1 PROBLEM STATEMENT

This paper tackles the problem of LiIT over a sequence of multiple large datasets. Let D0, ...,DT−1

be a set of accessible datasets where Dt = {xt
i, p

t
i}

Nt
i=1 denotes the dataset released in the timestep

t, composed of Ni image-text pairs. Formally, we aim to train a multimodal model over multiple
observed datasets for a given computational budget, such as FLOPs or training iterations. Given the
model f parameterized by θ, the training objective at time step T is formulated as follows:

argmin
θ

1

T + 1

T∑
t=0

N̂t−1∑
i=0

L
(
f
(
x̂t
i, p̂

t
i;θ

)
, ŷti

)
s.t. T · (N̂t − 1) ≤ τ, (3)

where N̂t = r(Nt, T, τ) ∈ N , N̂t ≤ Nt, and τ is the computational budget. r(·) denotes a decay
function conditioned on T and τ , and ŷ indicates the ground truth answer corresponding to the
input data sample. Here, we constrain the minibatch iterations for multimodal instruction tuning per
training timestep, by subsampling D̂ = {x̂i, p̂i}N̂i=1, where D̂ ⊆ D, D̂ ∼ P (D̂ | D, T, τ). When
a new multimodal instruction tuning dataset DT is released, {D̂t}Tt=0 is (re-) drawn for finetuning θ.

We propose the LAMP data selection method for the problem of lifelong multimodal instruction
tuning and describe each of its steps in detail in the following sections.

4.2 PSEUDO-TASK CLUSTERING VIA GRADIENTS

In the LiIT scenario, the model continuously updates its weights to incorporate new knowledge
and refine its capabilities in specific tasks by training on unseen, meaningful data. The relative
importance of each data sample evolves with changes in the model’s state and expansion of the data
pool at each time step. Therefore, adjusting the relative importance of samples within the data pool
over time is crucial to faster and better optimization under restricted conditions. We accomplish
this by first using gradient vectors from the model’s current state to estimate skill clusters within
the training data pool. As shown in Figure 2B and Figure 4, we find that gradient vectors are
significantly more separable by skills than hidden state outputs of the model.

For a model with weights θl for layer l, we compute the gradients of θl for a sample (zi, yi) =
((xi, pi), ŷi) using backpropagation. We obtain the data representation for the sample by concate-
nating weight gradient vectors ∇θzi = [∇θ0zi;∇θ1zi; ...;∇θL−1

zi], where L denotes the number
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of layers, and construct pseudo-task clusters in the data pool by performing k-means clustering over
data representations of the seen and unseen datasets (see Figure 1). However, in practice, we find
that not all gradients are necessary for distinguishing samples into multiple meaningful skills. Fol-
lowing Yoon et al. (2022), we cluster samples based on the gradients of essential layers, which leads
to better performance compared to using gradients from all layers and is more memory-efficient as
well (see discussion in Section 6).

4.3 ENTROPY-BASED MULTI-WAY DATA SELECTION

As discussed in Section 3.1, different scoring functions provide distinct advantages when select-
ing meaningful samples from a wide range of vision-language instruction tuning tasks, such as
in-domain VQA, open-ended VQA, multilingual QA, visual grounding, commonsense reasoning,
scientific/physical understanding, and OCR. To address the limitations of relying on a single data
selection (pruning) method and promote collaborative decision-making when evaluating sample im-
portance, based on the model’s current state and data diversity, we propose a novel and versatile,
multi-way data pruning strategy. First, we construct a function pool S = {s0(·), ..., sN−1(·)} where
sn(·) denotes n-th sample selection operation based on the corresponding importance score func-
tion. Here, we aim to identify the function ŝ that maximizes the entropy of the distribution of scores
over the samples of each pseudo-task cluster. For the k-th cluster Ck with m samples, we first ex-
tract the corresponding scores for each sn using model weights θ at time step t. We approximate the
distribution of scores, P θ

n , by binning the range of normalized scores and calculating densities p̂bn
over the B(k)

n bins. Omitting cluster index k for brevity, the selection of ŝ is formulated as:

ŝ(k) = argmax
sn

H
(
P̂ θ

n

)
, where P̂ θ

n = {p̂bn(x)}, ∀b ∈ B(k) and x ∈ Ck. (4)

A score function that yields higher average entropy in its distribution compared to other functions
indicates a better ability to assess the uncertainty of the system (i.e., the model θ at timestep t).
Moreover, we employ the CCS (Zheng et al., 2023) sampling strategy that aims to select a balanced
representation of seen and unseen samples as well as frequent and rare tasks by sampling uniformly
over the range of a score function. Hence, it is even more imperative to use a score function that
is discriminative over its entire range. Since the resulting pseudo-task clusters may vary in size,
we define a training budget T and divide it uniformly over the k clusters. The leftover data budget
from clusters with sizes |ci| smaller than T/k are equally distributed over other clusters. This results
in the selection of a skill-balanced subset from the pool of multi-task datasets in lifelong learning.
Importantly, our proposed multi-way approach is highly flexible since the scoring function pool can
be seamlessly extended with new scoring functions based on users’ needs.

4.4 COMBINED PERMANENT-TEMPORAL DATA PRUNING BY REMOVING REDUNDANCY

The steps of LAMP outlined in the previous sections enable the model to effectively select the most
beneficial samples for each pseudo-task (i.e., skill) and train on them adaptively, based on the current
model and evolving dataset distributions. However, as the data pool grows with the release of new
instruction-tuning datasets, the computational burden of updating gradient-based sample vectors
and ranking their importance increases. To keep the computational requirements manageable over
time, we further implement a permanent data pruning strategy to iteratively reduce the size of the
entire dataset pool. At the end of training at each timestep, we measure pairwise cosine similarities
between samples within each cluster and prune those with maximum similarities, as they are highly
redundant and contain overlapping knowledge. The similarity is computed in the semantic space
which is well represented using hidden layer outputs of the model as shown in Figure 4 (Abbas
et al., 2023; Sorscher et al., 2022). Larger clusters are prioritized for pruning to fit a predefined
data pool budget D until all clusters retain a uniform number of samples. We refer to the version of
LAMP with this combined permanent-temporal pruning as LITE-LAMP.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model. We conduct our experiments using the LLaVA 1.5 multimodal large language model (Liu
et al., 2023a). It is trained on top of the Vicuna LLM (Chiang et al., 2023) using a corpus of approx-

6
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Table 1: Comparison of multimodal instruction tuning datasets. Distribution of various skills in
the datasets. RE: Referring Expression, OD: Object Detection, KD: Keypoint Detection.

Training Datasets Dataset Size
Skills

VQA Knowledge
VQA Captioning Multi-

lingual
Non-text
Output

Video
QA

Complex
Reasoning

Language
Only

LLaVA-1.5 (Liu et al., 2023b) 665K ✓ ✓ ✓ ✗ RE ✗ ✓ ✓
M3IT (Li et al., 2023c) 2.1M ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
MiniGPT4 (Zhu et al., 2023) 3K ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
MANTIS (Jiang et al., 2024) 666K ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
LaMM (Yin et al., 2023) 250K ✓ ✗ ✓ ✗ OD & KD ✗ ✗ ✗
VisionFLAN (Xu et al., 2024) 191K ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

imately 600K image-text caption pairs for pretaining of the vision projectors from the pre-trained
CLIP visual encoder ViT-L/14 (Radford et al., 2021). Further, it is trained on the LLaVA instruc-
tion tuning dataset consisting of 665K text-only and vision-language instances. We adopt LoRA
finetuning (Hu et al., 2021) of the LLaVA-1.5-7B model with the recommended hyperparameters.1

Datasets. For training, in addition to the LLaVA-665K instruction tuning dataset at t = 0, we
consider the following order of datasets: M3IT (Li et al., 2023c), MiniGPT4 (Zhu et al., 2023),
MANTIS (Jiang et al., 2024), LAMM (Yin et al., 2023) and VisionFLAN (Xu et al., 2024). Each
dataset’s temporal order, size, and skill composition are summarized in Table 1. We select standard
evaluation datasets to measure performance on the skills enumerated in Table 1. These datasets and
their corresponding task-specific evaluation metrics are listed in Table 4.

Metrics. We report various evaluation metrics from existing literature designed for understand-
ing the continual learning phenomena in machine learning. The Average Accuracy (acc) at final
timestep t = T is the average of the model’s performance across all skills (and across datasets
within each skill). The Relative Gain (r) metric (Scialom et al., 2022) is the average of skill
performances as a % of the respective upper bounds i.e., rT = 1

S

∑S
s=1

P t
s

upper bounds × 100%.
We consider the best performances in each skill group in the sequential learning setting to be the
upper bound in performances and report r for the final time step T . We also report the Forget-
ting Rate(f ) which is the % drop in performance averaged across all skills and timesteps i.e.,
f = 1

S×T

∑S
s=1

∑T
t=1

min(P t
s−P t−1

s ,0)

P t−1
s

× 100%.

LAMP Setup. The optimal value of k in the pseudo-task clustering step is computed from a grid
search over values of k between 5 and 50, and selected absed on the WSS value of clusters.2 In the
score-based sample selection step, we use a bin size of 50 and discard the top and bottom 5% of
samples for computing entropy as well as for CCS sampling, to remove outliers, low-quality sam-
ples, and uninformative data (Zheng et al., 2023). We use perplexity, image grounding (Section 3.2),
EL2N (Paul et al., 2021) and entropy (Coleman et al.) score functions for S throughout the paper.

Baselines. We present baseline numbers on (1) Sequential and Multi-task training, (2) Random
selection for experience replay (10% of past datasets), (3) Score-based selection methods, including
Random, EL2N (Paul et al., 2021), Entropy (Coleman et al.), Perplexity (Marion et al., 2023),
and (3) recent competitive data pruning baselines: SemDeDup (Abbas et al., 2023), Density-based
Pruning (Abbas et al., 2024), and COINCIDE (Lee et al., 2024a). See Appendix for details.

5.2 MAIN RESULTS

We present the main experimental results in Table 2 and show a breakdown of skill-wise accuracies
at each time step for various methods in Figure 3. Our main findings are as follows:

Sequential training leads to catastrophic forgetting of skills. Multiple skills learned at t=0
(LLaVA) are forgotten at t=1,2 upon training the model on datasets containing a different set of
skills. The M3IT dataset (t=1) does not contain grounding tasks and results in large drops in per-
formance for the same. Similarly, the MiniGPT4 dataset (t=2) predominantly contains high-quality
captions and causes forgetting of all other skills. The MANTIS dataset (t=3) improves performance
on the MMMU dataset because it contains training instances with documents, charts, and visualiza-
tion images. At t=4, the LAMM dataset contains object detection and keypoint detection tasks that

1https://github.com/haotian-liu/LLaVA/tree/main
2Within the sum of squares (WSS) is sum of squared distance between samples and their cluster centroids.
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Table 2: Overall results for lifelong multimodal instruction tuning. Comparison of performance
of LLaVA models trained on datasets selected using LAMP vs. other data selection methods.

Pruning Strategy Data size at t Relative Gain % (↑) Forgetting Rate % (↓) Avg. Acc. (↑)

Sequential Full 68.0 26.0 32.0
Multi-task Full 92.5 - 46.1

Random Experience Replay Full 89.5 6.6 43.4

Random 25k 95.3 2.1 47.2
EL2N (Paul et al., 2021) 25k 82.4 12.2 43.9
Entropy 25k 79.6 15.1 41.6
Perplexity (Marion et al., 2023) 25k 91.4 9.6 45.2
Image-grounding (ours) 25k 92.3 5.6 45.6

SemDeDup (Abbas et al., 2023) 25k 76.4 6.4 38.5
Density-based (Abbas et al., 2024) 25k 78.1 5.1 39.6
COINCIDE (Lee et al., 2024a) 25k 89.5 3.9 44.7

LAMP 25k 102.3 0.9 50.5
LAMP 50k 107.2 0.2 51.7
LAMP 100k 109.7 0.4 52.5
LITE-LAMP 25k 99.7 1.3 49.6

Figure 3: Average accuracies per skill over time. Comparison of average accuracies over time for
each skill in our evaluation suite using various data selection methods. Higher is better.

promote recovery of the referring comprehension skill learned at t = 0, presumably due to a sim-
ilarity in their non-textual output modalities. Finally, VisionFLAN (t=5) recovers performance on
all skills except grounding and MMMU. Surprisingly, VisionFLAN also induces recovery of multi-
lingual and unimodal skills (MMLU) despite not containing those tasks in its dataset composition.
This method incurs nearly 26% forgetting across all timesteps and retains only 68% of its all-time
high performances at the final timestep (see Table 2).

Random experience replay and pruning alleviate forgetting. Random experience replay using
10% data from past datasets significantly improves skills retention over sequential training, bringing
down the forgetting rate from 26% to 6.6%. Random pruning of the combined set of past and
incoming datasets results in better retention of skills with only a 2.1% forgetting rate using a fraction
of the datasets for training as seen in Figure 3. This result demonstrates the need for applying data
selection methods to the combined datasets rather than in isolation and serves as a strong baseline for
lifelong multimodal instruction tuning. Notably, random pruning also improves the language-only
skill of the underlying LLM in LLaVA. However, random pruning achieves a relative gain of 95%,
falling short of reaching the best performance seen during sequential training.

LAMP minimizes forgetting and promotes forward transfer. LAMP outperforms all existing
data selection methods for retaining and learning skills via instruction tuning over time. Score-
based data selection methods generally fall short of random pruning because selecting samples from
multi-task datasets based on scores leads to a skewed representation of tasks in the subset (see
Figure 2). Our proposed scoring function, Image grounding, prioritizes the data samples where the
outputs are strongly grounded in images (see Fig. 2C) and achieves relatively higher performance
for multimodal tasks. SemDeDup (Abbas et al., 2023), DBP (Abbas et al., 2024), and COINCIDE
(Lee et al., 2024a) rely on hidden layer outputs from the model to represent and prune data samples
which can lead to imbalanced task distributions in the selected subset.

The use of gradient vectors in LAMP to pool samples into pseudo-task clusters before pruning
ensures that all skills are well-represented at each time step resulting in the lowest forgetting rate
i.e., 0.9%. Further, the multi-way score-based selection of important samples within those clusters
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What is around 
the baseball 

field?

The answer is 
fence.

What type of 
vehicle is in 
the background?

The answer is 
bus.

What is on the 
green chair?

The answer is 
bird.

How many 
players are 
standing and 
watching?

The answer 
is two.

Query

Nearest-neighbors in gradient vector space Nearest-neighbors in hidden state output space

dim=0 dim=15 dim=31 dim=0 dim=15 dim=31

有几个长颈鹿？How many 
giraffes are 

there?

Describe the 
image.

A baseball player 
is swinging at a 
pitch by a wall 
that says France.

Translate from 
English to Czech. 
A person playing 
cricket in an all 
green outfit.

Člověk hraje kriket 
v zeleném obleku.

Describe the 
image.

A man running 
on a baseball 

field in 
front of a 
crowd.

这里有三只猫
There are 

three giraffes 
here.

有几只猫How many cats 
are there?

这里有三只猫
There are 
three cats 

here.

有几头牛？
How many cows 
are there?

There are two 
cows here.

这里有两头牛。
有几个小孩？How many 
children are 

there?

这里有三个小孩。
There are three 
childeren here.

动物园里两只长
颈鹿正在试图吃
挂在木杆上的食

物

Two giraffes in 
the zoo are 
trying to eat 
food hanging on 
a wooden pole

A giraffe 
standing on grass 
inside a fenced 

area.

Describe the 
image.

A person holds 
a carrot out 
for a giraffe.

Describe the 
image.

Figure 4: Nearest neighbor samples for query samples from VQA (top) and Chinese VQA (bottom)
tasks in the gradient (left) and feature spaces (right).

Table 3: Ablation results for LAMP. Comparison of performance of the LAMP method to its
ablated versions for lifelong multimodal instruction tuning.

Ablation Type Values Relative Gain % (↑) Forgetting Rate % (↓) Avg. Acc. (↑)

Within-cluster Pruning Multi-way 102.3 0.9 50.5
Image Grounding Score 96.3 2.7 48.8

EL2N 97.4 1.5 49.1

Data Representations Gradients (middle layer) 102.3 0.9 50.5
Gradients (first layer) 97.2 1.8 47.9
Gradients (last layer) 101.5 1.3 50.1
Gradients (all layers) 98.9 2.5 49.1

Hidden layer outputs (all layers) 96.5 4.3 47.4

Cluster Budget Uniform 102.3 0.9 50.5
Density-based 101.7 0.5 49.5

promotes forward transfer of skills and results in >100% relative gain unlike any other method in
Table 2. The relative gain increases by nearly 5% on doubling the data budget from 25K to 50K
samples and shows signs of plateauing with further increase in data.

Semantic deduplication for managing data complexity over time is effective. LITE-LAMP em-
ploys semantic deduplication of the training pool at the end of each timestep to reduce the com-
putation complexity of extracting data representations at the next step. For the deduplication size
of 100K samples (4x of training budget) across all timesteps, LITE-LAMP suffers minor drops in
performance and forgetting as compared to LAMP.

6 ANALYSIS

Relative gains per skill. We present the skill-wise breakdown of relative gains of each method
discussed in Table 2, in Figure 5A. The largest increases are observed for the language-only skill
across all methods, except the image-grounding score which deprioritizes unimodal samples. This
result is especially striking because none of the datasets in our experimental setting contain samples
similar to those in the MMLU evaluation dataset. It suggests that the underlying LLM in LLaVA
can recover this skill from similar multimodal samples. The next highest gains are seen for the
knowledge VQA dataset, using our image-grounding score and the LAMP method. Multilingual
skills appear to be the hardest skills to learn and retain over time, potentially because they utilize a
different part of the model’s vocabulary than other tasks and are included in the M3IT dataset only.

Multi-way pruning vs. single pruner. LAMP uses one among various importance score functions
(or pruner experts) for each cluster to select a representative subset of importance samples from the
cluster. This works better than using any one single metric across all clusters as shown in Table 3.
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layer=0 layer=15 layer=31

A. Relative gain % of various data selection methods for each skill B. t-SNE plots of gradient vectors from diff. layers of the model

Figure 5: A: Relative gain % for different skills using various data selection methods in the
lifelong multimodal instruction tuning setting. B: t-SNE visualization of gradient vectors of the
M3IT dataset from layers of varying depth in the LLaVA model.

Importantly, this serves as a flexible framework for swapping or adding advanced ‘expert’ pruners,
e.g., learnability score (Mindermann et al., 2022; Evans et al., 2024).

Source of data representations. Various data selection works propose different ways of represent-
ing data samples in a high-dimensional space. Methods designed for pruning pretraining datasets
or single-task finetuning can effectively use semantic representations such as sentence embeddings
(Abbas et al., 2023) and hidden state outputs (Sorscher et al., 2022; Maharana et al., 2024). However,
we observe subpar performance with the use of semantic representations for pseudo-task clustering,
as reported in Table 3. Gradient vectors are better representations of the skill component of a data
sample as we show in Figure 4. Further, we experimented with gradients from all layers (similar
to Xia et al. (2024); Liu et al. (2024)) as well as individual layers of the model. We observed the
best performance with gradients from the middle layer only. Gradients from the last layer also work
relatively well with LAMP but those from the first layer work poorly. This discrepancy correlates
with the compactness of task clusters in the t-SNE plots of gradients from the corresponding layers,
as demonstrated in Figure 5B.

Sampling budget across clusters. As outlined in Section 4, we sample a subset with an equal
number of samples from each pseudo-task cluster in LAMP. The budgets leftover from smaller
clusters are distributed equally across the remaining clusters. We experimented with more intuitive
budgets for each cluster i.e., based on the density of the cluster members (Abbas et al., 2024).
However, it did not result in significant changes in the performance.

Efficiency. Most data selection methods require extra steps to select an influential data subset and
incur computational costs. LAMP expends additional memory and inference-time compute to effec-
tively select data. We experiment with three methods to reduce this cost: (1) Zero-order gradients
(Hinton, 2022), (2) Varying size of data pool in LITE-LAMP, and (3) gradients from a smaller model
i.e., TinyLLaVA (Zhou et al., 2024). Using zero-order gradients instead of full gradients leads to a
2% drop in average accuracy and a 2.4% drop in relative gains. TinyLLaVA gradients demonstrate
a similar drop, in addition to a higher forgetting rate. Conversely, the performance of LITE-LAMP
improves with increasing size of the data pool post-deduplication (see Table 5).

7 CONCLUSION

Valuable visual instruction tuning datasets from various sources are released over time and often
contain overlapping text-image pairs. To efficiently train lifelong adaptive MLLMs on these growing
datasets, a scenario we call Lifelong Instruction Tuning (LiIT), we reformulate data selection so
the model automatically selects meaningful samples from both old and new datasets, maintaining
balance when incorporating new data. We observe that assessing sample informativeness with a
static importance measure is challenging in LiIT, as it depends on the model’s evolving capabilities
and the shifting dataset distribution. To address this, we propose a scalable lifelong multimodal
instruction tuning approach that dynamically balances sample efficiency and effectiveness through
temporal multi-way data pruning. We show that training with samples selected by this method
reduces catastrophic forgetting and enhances forward gain, using only a fraction of the original
dataset, particularly for rare tasks with limited resources.
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ETHICS STATEMENT

The intended use of LAMP is to enhance the vision-language instruction-following capabilities of
MLLMs by training them on an integrated, ever-growing instructional dataset over time. This system
does not pose any specific potential for misuse beyond the general risks associated with AI technol-
ogy. However, instruction-tuned frameworks, including LAMP, are required to carefully consider
the selection of training datasets and the intended purpose of usage to ensure the development of a
reliable and trustworthy video-language inference system that supports stable, reliable, and safe AI.

REPRODUCIBILITY STATEMENT

This paper fully discloses all the information needed to reproduce the main experimental results
of the paper to the extent that it affects the main claims and/or conclusions. To maximize repro-
ducibility, we have included our code in the supplementary material. Also, we report all of our
hyperparameter settings and model details in the Appendix.
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Table 4: Evaluation datasets used for measuring the performance of the trained model at each time
step in our continual learning experiments.

Skill Evaluation Datasets Evaluation Metric
VQA GQA (Hudson & Manning, 2019), LLaVA-

Bench (Liu et al., 2023a)
Accuracy

Knowledge VQA ScienceQA (Lu et al., 2022), OK-VQA (Marino
et al., 2019), A-OK-VQA (Schwenk et al.,
2022)

Accuracy

Multilingual (Chinese) COCO-CN, Flickr-8K-CN (Li et al., 2023b) BLEU Score

Grounding RefCOCO, RefCOCO+, RefCOCOg
(Kazemzadeh et al., 2014; Yu et al., 2016)

IOU

Reasoning MMMU (Yue et al., 2024) Accuracy

Language MMLU (Hendrycks et al., 2021a;b) Accuracy

APPENDIX

A BASELINES

Sequential Training. In this method, the model is naively trained on the stream of instruction
tuning datasets without any experience replay. Generally, this method sets a lower bound on the
performance of the model on each evaluation task.

Multi-task Training. This method comprises pooling all of the datasets across time steps and
training the model on this pooled dataset in one go. Generally, this method sets an upper bound on
the performance of the model on various skill sets. However, if there are low-resource tasks in the
dataset, it can lead to low performance on those tasks.

Coverage-based Coreset Selection (CCS). Zheng et al. (2023) introduces the method CCS where
they divide a range of difficulty scores into equal-sized bins and randomly data samples from each
bin with a uniform budget. This approach is motivated by maximizing coverage over the semantic
space while ensuring an equal distribution of easy and difficult samples in the selected subset. Easy
samples promote learning whereas difficult samples are information-dense and promote generaliza-
tion. We use this method in LAMP for score-based selection.

Score-based Selection. Multiple importance score functions have been proposed over the years
for various data types. We select the following for baseline experiments: (1) Perplexity: This metric
is widely used for filtering language corpora (Marion et al., 2023), (2) EL2N (Paul et al., 2021):
This metric is the L2-norm of the output error vector and is effective at low pruning ratios (or high
retention rates), (3) Entropy (Coleman et al.): This score function is the entropy value of the output
probability vector.

Embedding-based Selection. SemDeDup (Abbas et al., 2023) extracts semantic embeddings for
pertaining datasets using a universal embedding transformer such as CLIP (Radford et al., 2021) for
image-text pairs or Sentence Transformer3 for natural language corpora and performs deduplication
within k-means clusters. DBP (Abbas et al., 2024) assigns pruning budget to the clusters in SemD-
eDup using a cluster complexity score. COINCIDE (Lee et al., 2024a) clusters feature vectors into a
large number of cluster e.g., k=10,000 to identify skill-concept clusters and samples non-uniformly
from the clusters using a difficulty score metric.

3https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_
hub_universal_encoder
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Table 5: Efficiency Results. Comparison of performance of efficient versions of the LAMP method
for lifelong multimodal instruction tuning. T = Training data size; |D| = Size of data pool after
permanent pruning in LITE-LAMP.

Method Relative Gain % (↑) Forgetting Rate % (↓) Avg. Acc. (↑)

LAMP (T=25k) 102.3 0.9 50.5

+ TinyLLaVA gradients (Zhou et al., 2024) 99.6 2.9 48.1

+ Zero-order gradients (Hinton, 2022) 99.9 1.5 48.5

LITE-LAMP (|D|=100k) 99.7 1.3 49.6
LITE-LAMP (|D|=200k) 101.8 1.1 50.1
LITE-LAMP (|D|=500k) 102.5 0.7 50.8

Table 6: Efficiency Analysis. Comparison of total time taken for various data selection methods
across all time steps in our experiments with 25k training samples at each t. Numbers are in hours.

Method Random Selection Scoring-based LESS(Xia et al., 2024) COINCIDE (Lee et al., 2024a) LAMP LITE-LAMP

Data scoring - 48 92 48 92 34
k-means clustering - - - 3.5 3.5 1.4

Training 21 21 21 21 21 21

Total 21 69 113 72.5 116.5 56.4

B EXPERIMENTAL SETUP

Additional Details on LAMP Setup. We use random projections (Park et al., 2023; Xia et al.,
2024) to reduce the dimensionality of gradient vectors extracted for the pseudo-task clustering step.
We use a constant projection dimension of 8192 throughout our experiments.

C ADDITIONAL RESULTS

Visual Chat Skill. Multimodal LLMs are equipped with chat-style multi-turn conversational skills
due to the chat capabilities of the underlying LLM as well as instruction tuning data tailored to
the skill. The LLaVA instruction tuning dataset contains such data; hence, the LLaVA model can
hold multi-turn chats with a user. However, the multi-turn visual chat task is not well-defined and
lacks quantitative evaluation metrics or benchmarks. Nevertheless, we are interested in seeing if
the multi-turn chat skill is retained in the LLaVA model during lifelong learning, especially since
none of the fine-tuning datasets, except for LLaVA-665K, contain conversational data. We perform
qualitative evaluation of the visual chat skill using a single representative example demonstrated in
Fig. 6. In this example, the model is queried for VQA, knowledge VQA, and referring expression
comprehension tasks based on a single image. As seen in Fig. 6, the LLaVA model (at t=0 in our
experiments) can perform all these tasks effectively in a multi-turn chat scenario, except for fine-
grained visual reasoning. The models trained using sequential learning and random pruning in our
experiments lose this skill, as shown in Fig. 7. The models’ answers become less verbose and they
provide inaccurate answers for most tasks. We present results from our our method in Fig. 8. LAMP
identifies the multi-turn chat as a distinct task during the pseudo-task clustering step and selects
samples from this cluster for training at each time step. Thus, it can retain this skill effectively even
after many steps of fine-tuning on other datasets.

Efficiency Analysis. We present a comparison of the time taken by various data selection methods
for our experimental setting (for training with 25k samples at each time step) in Table 6. Results
are presented for 8 A100 GPUs. The total time taken to train the model without any methodical
data selection (i.e., random pruning) is approximately 21 hours. Scoring-based selection methods
generally require a forward pass of the model to extract the score (e.g., EL2N, entropy), which takes
nearly 48 hours on 8A100 GPUs for all datasets in our experiments. The COINCIDE (Lee et al.,
2024a) takes a similar amount of time since it uses a forward pass to extract hidden layer outputs
from the models as data representations. LESS (Xia et al., 2024) and our proposed method LAMP
require longer time i.e., 92 hours, to perform a backward pass over the model and extract gradients.
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What are the meals I 
can cook with these?

With the variety of fruits and 

vegetables in the refrigerator, you can 

prepare a range of healthy and delicious 

meals. Some examples include:

1. Fruit salad: Combine the apples, 

oranges, and bananas to create a 

refreshing and nutritious fruit salad.

2. Vegetable stir-fry: Chop the 

broccoli, carrots, and peppers into 

bite-sized pieces and saute them in a 

pan with some oil, garlic, and your 

choice of seasonings.

3. Smoothie: Blend the apples, oranges, 

and bananas with some yogurt or milk to 

create a nutritious and delicious 

smoothie.

4. Roasted vegetables: Toss the carrots, 

broccoli, and peppers with olive oil, 

salt, and pepper, then roast them in the 

oven for a flavorful side dish.

5. Vegetable soup: Combine the 

vegetables with a broth, and add herbs 

and spices for a comforting and healthy 

vegetable soup.

These are just a few examples of the 

many meals you can create using the 

fruits and vegetables in your 

refrigerator.

I would like to cook the fruit salad. 

Where is the apple located in the 

image?

In the image, the apples are located on 

the top shelf of the refrigerator, along 

with the other fruits and vegetables.

Please provide the bounding box 

coordinate of the region this sentence 

describes: green apple.

What is behind the apples?

Behind the apples, there are oranges and 

grapes.

Give me the recipe.

Here's a simple recipe for a fruit salad using 

the apples, oranges, and grapes available in 

the refrigerator:

Ingredients:

- 2 green apples, peeled and sliced

- 2 oranges, peeled and segmented

- 1 cup grapes, halved

- 1/4 cup honey (optional)

- 1/4 cup lemon juice (optional)

- 1/4 cup chopped fresh mint leaves (optional)

- Instructions:

1. In a large bowl, combine the sliced apples, 

segmented oranges, and halved grapes.

2. If desired, drizzle the fruit salad with 

honey and lemon juice for a sweet and tangy 

flavor.

3. Gently toss the fruit salad to combine the 

flavors.

4. If using mint leaves, add them to the bowl 

and toss again.

5. Serve the fruit salad chilled or at room 

temperature.

This recipe is a versatile and healthy option 

for a refreshing and nutritious meal or snack.

Figure 6: Visual Chat with LLaVA at t=0 (Liu et al., 2023a). We use a representation chat example
to evaluate the visual chat capability of MLLMs trained using various methods in our experiments.

What are the meals I can cook with these?

salad

I would like to cook the salad. Where is the 

apple located in the image?

top left

Please provide the bounding box coordinate of 

the region this sentence describes: green apple.

What is behind the apples?

The grapes

Give me the recipe.

Fruit salad

What are the meals I can cook with these?

salad

I would like to cook the salad. Where is the 

apple located in the image?

top right

Please provide the bounding box coordinate of 

the region this sentence describes: green apple.

What is behind the apples?

eggs

Give me the recipe.

No recipe

Figure 7: Visual Chat with LLaVA at t=5 using sequential training (left) and random pruning
(right) baselines in our experiments. The conversational ability of the LLaVA model is greatly
diminished over time using these baseline data selection methods.

However, with LITE-LAMP, we can reduce this time drastically due to systematic compression of
the dataset at each timestep.
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What are the meals I 
can cook with these?

With the variety of fruits and 

vegetables available in the 

refrigerator, you can prepare a range 

of healthy and delicious meals. Some 

ideas include a mixed fruit salad, a 

vegetable stir-fry, a colorful fruit 

and vegetable smoothie, a vegetable 

soup, or a fresh vegetable and fruit 

salsa. These meals can be enjoyed as 

standalone dishes or as side dishes to 

complement other main courses. The 

fruits and vegetables provide a diverse 

range of flavors, textures, and 

nutrients, making them an excellent 

choice for creating nutritious and 

satisfying meals.

I would like to cook the fruit salad. 

Where is the apple located in the 

image?

The apple is located on the top shelf 

of the refrigerator, along with other 

fruits and vegetables.

Please provide the bounding box 

coordinate of the region this sentence 

describes: green apple.

What is behind the apples?

Behind the apples, there are oranges 

and grapes.

Give me the recipe.

- 1 cucumber

- 1 bunch of broccoli

- 1 bunch of carrots

- 1 bunch of grapes

- 1 bunch of bananas

- 1 cup of blue water bottles

- 1 cup of white eggs

Instructions:

1. Wash all fruits and vegetables thoroughly.

2. Cut the green apple into bite-sized pieces.

3. Peel the orange and cut it into segments.

4. Cut the red bell pepper into bite-sized 

pieces.

5. Wash and chop the lettuce, cucumber, and 

broccoli.

6. Peel the carrots and cut them into bite-sized 

pieces.

7. In a large bowl, combine the apple, orange, 

bell pepper, lettuce, cucumber, broccoli, 

carrots, and grapes.

8. Pour the blue water bottles and white eggs 

over the fruit salad, and mix well.

9. Cover the bowl and refrigerate the fruit 

salad for at least 30 minutes to allow the 

flavors to meld together.

10. Serve the fruit salad chilled.

This recipe is a simple and healthy way to enjoy 

the variety of fruits and vegetables available 

in your refrigerator. You can customize the 

ingredients and add any additional fruits or 

vegetables you prefer.

Here's a simple recipe for a fruit 

salad using the fruits available in 

the refrigerator:

Ingredients:

- 1 green apple

- 1 orange

- 1 red bell pepper

- 1 head of lettuce

Figure 8: Visual Chat with LLaVA at t=5 using our proposed dynamic data selection method
LAMP. Unlike other methods (see Fig. 7, the LAMP method identifies conversation as a distinct
task in the pseudo-task clustering step and retains sufficient samples from this task at each time step
to prevent forgetting the skill.
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