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Abstract001

Autoregressive models have become the de002
facto choice for sequence generation tasks, but003
standard approaches treat digits as indepen-004
dent tokens and apply cross-entropy loss, over-005
looking the coherent structure of numerical006
sequences. This paper introduces Numerical007
Token Integrity Loss (NTIL) to address this gap.008
NTIL operates at two levels: (1) token-level,009
where it extends the Earth Mover’s Distance010
(EMD) to preserve ordinal relationships be-011
tween numerical values, and (2) sequence-level,012
where it penalizes the overall discrepancy be-013
tween the predicted and actual sequences. This014
dual approach improves numerical prediction015
and integrates effectively with LLMs/MLLMs.016
Extensive experiments show significant perfor-017
mance improvements with NTIL.018

1 Introduction019

In recent years, sequence generation has become a020

crucial approach for implementing a broad range021

of AI applications, including visual question an-022

swering (Wang et al., 2024d; Reich and Schultz,023

2024; Fan et al., 2024; Liu et al., 2024b), key in-024

formation extraction (Kim et al., 2024; Yu et al.,025

2024; Kang et al., 2024; Wang et al., 2024a), object026

detection (Wen et al., 2024), math reasoning (Zhao027

et al., 2024), text spotting (Li et al., 2024), and028

automatic audio recognition (Zhou et al., 2024).029

Autoregressive models, especially large lan-030

guage models (LLMs) such as GPT (Achiam et al.,031

2023), LLaMA (Touvron et al., 2023; Dubey et al.,032

2024), Qwen (Yang et al., 2024; Wang et al., 2024c)033

series, with multi-modal large language models034

(MLLMs) based on them, now dominate the se-035

quence generation tasks. During training, these036

models generate sequences token-by-token, typi-037

cally using cross-entropy (CE) loss, to minimize038

the negative log-likelihood of the ground truth to-039

ken at each time step. However, CE loss has sev-040

eral inherent limitations when predicting numerical041
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Figure 1: Sequence-level digit token loss illustration.

values. Specifically, CE suffers from Limitation 042

1 that it ignores the inherent closeness between 043

numerical tokens, where each digit in a numeri- 044

cal prediction is not independent but related to its 045

neighboring digits. For example, in Figure 2(a) 046

and 2(b), for the ground truth token “3”, the CE 047

loss yields same values of −log(0.5) for different 048

prediction distributions. However, the distribution 049

in Figure 2(b) is more accurate, as it assigns higher 050

probability to the neighboring token “2”. 051

CE also suffers from Limitation 2 that it fails to 052

capture the holistic numerical error when sequen- 053

tial tokens are involved, as it focuses on the pre- 054

cision of each token rather than the overall value. 055

In an autoregressive generation manner, producing 056

a numerical value typically requires consecutive 057

time steps. For example, the target value “0.98” 058

requires the prediction of four sequential tokens 059

— “0”, “.”, “9”, “8”. Thus, a prediction such as 060

1.01 (“1”,“.”,“0”,“1”) incurs a high CE loss as the 061

first, third and fourth tokens are significantly differ- 062

ent from the target tokens. Conversely, a prediction 063

like 1.98 (“1”,“.”,“9”,“8”) could yield a lower CE 064

loss due to a closer match at the token level, despite 065

the overall numerical difference being larger (1.00 066

vs. 0.03). This discrepancy shows the limitation of 067

CE in evaluating predictions holistically. 068

To overcome the above issues, we introduce 069
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Figure 2: Cross-entropy fails to distinguish predictions,
whereas EMD correlates smaller loss for better pre-
dicted distributions.

a novel sequence-level numerical prediction loss:070

Numerical Token Integrity Loss (NTIL). At the071

token-level, NTIL replaces the traditional CE loss072

with Earth Mover’s Distance (EMD) (Rubner et al.,073

1998). Additionally, we enhance the EMD with074

an Exponential Position-based Weighting scheme075

(Section 3.1), which leverages place-value num-076

ber systems to better capture the nuanced differ-077

ences between numerical distributions at each time078

step. At the sequence-level, NTIL evaluates the079

overall numerical difference between predicted and080

actual sequences through Multi-token Numerical081

Optimization (Section 3.2), considering all time082

steps holistically, as illustrated in Figure 1. It en-083

ables NTIL to effectively model the actual value of084

digit sequences, and capture discrepancies across085

the consecutive numerical range, moving beyond086

simple token-by-token comparison.087

To the best of the authors’ knowledge, it is088

the first time that EMD is used as an optimiza-089

tion method for autoregressive models. Moreover,090

our holistic approach is the first of its kind to im-091

prove sequential numerical prediction by consid-092

ering numerical tokens across multiple time steps.093

Our method can be seamlessly integrated into both094

LLMs and MLLMs. Experimental results show095

that NTIL boosts performance in tasks requiring096

precise numerical outputs, such as object detection,097

text spotting, and math reasoning (Section 4).098

2 Related Work099

The Earth Mover’s Distance (EMD) measures the100

minimal cost of transforming one distribution into101

another, and has become a valuable metric in102

deep learning applications. Notably, Wasserstein103

GAN (Arjovsky et al., 2017) uses EMD as its104

loss function to stabilize training in GANs. Cu-105

turi (2013) and Courty et al. (2016) also adopted106

EMD for smoothing the training procedure. De- 107

spite the success of EMD, it has not been applied 108

to autoregressive models. Most recently, autore- 109

gressive models, especially LLMs, have advanced 110

NLP (Radford et al., 2019; Touvron et al., 2023), 111

and multi-modal tasks (Alayrac et al., 2022; Wang 112

et al., 2024c). While the tasks mentioned above 113

require high precision in numerical value predic- 114

tion, none of the previous works have specifically 115

optimized for this criterion. Our work addresses 116

this gap by focusing on advancing the sequential 117

numerical prediction for autoregressive models. 118

3 Method 119

This section details the components of the pro- 120

posed method. Section 3.1 proposes exponential 121

weighted EMD to single digits; Section 3.2 de- 122

scribes how we go through multiple digital tokens 123

to derive a simple yet effective numerical measure. 124

3.1 Exponential Position-Based Weighting 125

For token-level prediction, to address Limitation 1 126

in Section 1, we replace the conventional CE loss 127

with EMD to account for the ordinal relationship 128

during optimization. The preliminaries for both 129

CE and EMD objectives, and the simplification via 130

numerical prediction, are outlined in Appendix D. 131

Furthermore, we extend EMD to account for the 132

place-value number systems, where leading digits 133

have greater numerical significance. We implement 134

an exponential weighting scheme to progressively 135

assign weights based on digit positions, to scale 136

their contributions to the loss accordingly: 137

Wexp =
[
(1 + σ)n−i−1

]n−1

i=0
, (1) 138

where σ is the exponential increment rate, and n 139

is the length of consecutive digits. This imple- 140

mentation helps the model understand the order 141

relationship between consecutive numbers. 142

3.2 Multi-Token Numerical Optimization 143

To overcome Limitation 2 outlined in Section 1, 144

we propose the following procedure and losses. 145

Differentiable Numerical Value Construction. 146

In this step, we construct the complete numerical 147

value from consecutive discrete digital tokens. Fig- 148

ure 3 illustrates how we obtain the digit index from 149

the predicted distribution using argmax to derive 150

the integer representation. To maintain differentia- 151

bility, we employ the Gumbel-softmax approxi- 152

mation with reduced temperature and noise param- 153

eters to ensure consistent results. The resulting 154
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tensor is element-wise multiplied with positional155

indices, scaled by the appropriate powers of 10,156

and aggregated to obtain the final value. For fur-157

ther implementation details, see Appendix C.158
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Figure 3: Constructing a numerical value from tokens.

Relative Deviation Metric. For numerical compar-159

ison, while absolute difference provides a straight-160

forward measure equivalent to L1 loss, we propose161

a normalized metric defined as:162

Lrelative =
|X − Y |

max (X,Y ) + ϵ
, (2)163

where X is the sequence-level numerical prediction164

(e.g., “234”) and Y is the ground truth, and ϵ is165

a small quantity to avoid division by zero. This166

normalization ensures consistency across different167

magnitude ranges.168

Magnitude Deviation Metric We also apply a nor-169

malized metric on the order of magnitude as:170

Lmagnitude = log

(
max(X,Y )

min(X,Y )

)
. (3)171

The objective penalizes the difference in the or-172

der of magnitude between two values. For example,173

given the pairs (1, 10) and (1, 100), which have174

similar Lrelatvie values 0.90 and 0.99, but differ in175

Lmagnitude value: log
(
10
1

)
≈ 2.30 for the first pair176

and log
(
100
1

)
≈ 4.61 for the second. This results177

in a larger penalty for greater differences in magni-178

tude. The final formulation of NTIL combines the179

above loss functions, with tunable hyperparameters180

to weight their individual contributions.181

L = Wexp EMD+α · Lrelative + β · Lmagnitude

(4)182

4 Experiments and Results183

This section presents a comprehensive empirical184

evaluation of the proposed NTIL across various185

LLMs/MLLMs (Section 4.1). CE (Shannon, 1948)186

and EMD (Rubner et al., 1998) are chosen as base-187

lines due to their widespread adoption. The evalua-188

tion encompasses multiple task domains that focus189

on numerical prediction including Image Ground-190

ing, Scene Text Detection, Clock Time Recogni-191

tion, Mathematical Reasoning and Arithmetic Cal-192

culations. Appendix B provides details on tasks,193
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Figure 4: Results for quantitative analysis.

datasets, and evaluation metrics. We also conduct 194

systematic ablation studies to evaluate the critical 195

components of our approach. Implementation de- 196

tails are available in Appendix A. 197

4.1 Main Results 198

4.2 Results of MLLMs 199

Image Grounding As shown in Table 1, our 200

method outperforms both CE and EMD across 201

nearly all datasets and VLM backbones, as evi- 202

denced by the overall performance improvements. 203

Scene Text Detection Table 2 shows that our 204

method improves accuracy across multiple datasets, 205

demonstrating its effectiveness in predicting multi- 206

ple object coordinates. 207

Clock Time Recognition Table 4 demonstrates 208

that NTIL surpasses CE and EMD significantly in 209

performance across all model architectures. 210

Mathematical Reasoning As shown in Table 5, 211

our method outperforms CE and EMD across all 212

datasets, with the most significant improvements 213

seen in the Mathvision dataset using the Qwen2-VL 214

(2b) and in Mathvista with the Yi-VL (6b). 215

4.3 Results of LLMs 216

Arithmetic Calculation As shown in Table 3, our 217

method improves accuracy across multiple LLMs, 218

though LLaMA3 shows minimal gains, possibly 219

due to its extensive pre-training. Overall, the ma- 220

jority of cases show that for numerical predictions, 221

while EMD performs comparably or marginally 222
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RefCOCO RefCOCO+ RefCOCOg
Model Method

Val TestA TestB Val TestA TestB Val Test Avg

CE 0.839 0.865 0.784 0.740 0.797 0.664 0.792 0.797 0.785
EMD 0.841 0.864 0.796 0.749 0.805 0.669 0.789 0.799 0.789PaliGemma

(3b) (Beyer et al., 2024) Ours 0.844 0.873 0.791 0.750 0.812 0.678 0.804 0.802 0.795
CE 0.855 0.880 0.813 0.801 0.843 0.741 0.799 0.816 0.818
EMD 0.856 0.879 0.822 0.798 0.845 0.743 0.798 0.816 0.820LLaVA-1.5

(7b) (Liu et al., 2024a) Ours 0.858 0.885 0.815 0.800 0.853 0.747 0.802 0.817 0.822
CE 0.767 0.796 0.734 0.706 0.757 0.651 0.722 0.731 0.733
EMD 0.779 0.805 0.738 0.719 0.762 0.657 0.721 0.737 0.740Yi-VL

(6b) (Young et al., 2024) Ours 0.777 0.808 0.741 0.717 0.770 0.665 0.727 0.743 0.744
CE 0.897 0.928 0.850 0.841 0.896 0.776 0.851 0.867 0.863
EMD 0.889 0.931 0.843 0.838 0.889 0.772 0.853 0.858 0.859Qwen2-VL

(2b) (Wang et al., 2024c) Ours 0.898 0.932 0.849 0.844 0.891 0.788 0.858 0.863 0.866
CE 0.892 0.929 0.841 0.842 0.902 0.784 0.843 0.848 0.860
EMD 0.886 0.926 0.834 0.843 0.901 0.768 0.836 0.843 0.855Qwen2-VL

(7b) (Wang et al., 2024c) Ours 0.889 0.931 0.840 0.844 0.904 0.786 0.848 0.853 0.862

Table 1: Performance comparison (Acc@0.5) of models on image grounding tasks.

Dataset
Model Method CTW1500 ICDAR1500 TD500 Total-Text Avg

CE 0.220 0.129 0.183 0.259 0.193
EMD 0.314 0.124 0.252 0.307 0.241PaliGemma

(3b) Ours 0.369 0.155 0.257 0.318 0.263
CE 0.682 0.370 0.753 0.673 0.586
EMD 0.668 0.398 0.778 0.678 0.594Yi-VL

(6b) Ours 0.680 0.403 0.752 0.678 0.597
CE 0.786 0.538 0.851 0.827 0.720
EMD 0.786 0.535 0.867 0.808 0.718Qwen2-VL

(2b) Ours 0.776 0.577 0.854 0.835 0.732
CE 0.771 0.648 0.889 0.864 0.764
EMD 0.762 0.625 0.874 0.860 0.751Qwen2-VL

(7b) Ours 0.770 0.669 0.869 0.872 0.770
CE 0.735 0.490 0.821 0.786 0.675
EMD 0.724 0.545 0.840 0.776 0.690LLaVA-1.5

(7b) Ours 0.739 0.547 0.839 0.791 0.698

Table 2: Performance (Acc@0.5) on scene text detection tasks.

Model
Accuracy (%)

CE EMD Ours
Baichuan2 (7b)
(Yang et al., 2023)

44.3 46.6 46.9

Qwen2.5 (1.5b)
(Team, 2024)

40.3 40.7 42.4

LLaMA3 (8b)
(Dubey et al., 2024)

61.9 61.8 61.9

Yi (6b)
(Young et al., 2024)

53.0 54.6 54.4

MiniCPM3 (4b)
(Hu et al., 2024)

66.8 68.2 68.6

Table 3: Performance comparison of accu-
racies on the arithmetic calculation task.

Metric Method LLaVA-1.5
(7b)

Qwen2-VL
(7b)

Qwen2-VL
(2b)

Yi-VL
(6b)

CE 95.1 75.0 81.3 76.2
EMD 95.3 78.7 81.7 75.1Accuracy

(%) ↑ Ours 98.3 80.5 85.3 87.4
CE 8.52 30.84 32.34 56.58
EMD 7.98 30.78 31.98 54.78Time gap

(minute) ↓ Ours 4.14 27.72 24.66 26.58

Table 4: Performance of the clock time recognition task.

Dataset Method Qwen2-vl
(2b)

Qwen2-vl
(7b)

LLaVA-1.5
(7b)

Yi-VL
(6b)

PaliGemma
(3b)

CE 0.139 0.184 0.146 0.143 0.097
EMD 0.130 0.188 0.148 0.142 0.088Mathvision
Ours 0.145 0.191 0.146 0.153 0.098
CE 0.248 0.315 0.140 0.187 0.143
EMD 0.262 0.303 0.157 0.192 0.149Mathvista
Ours 0.251 0.300 0.170 0.222 0.157

Table 5: Performance of the math reasoning task.

better than CE loss, NTIL consistently delivers su-223

perior results in most scenarios. This underscores224

the effectiveness and generalizability of NTIL.225

4.4 Ablation Analysis226

Table 6 indicates that incorporating all components227

of NTIL generally leads to better performance, as228

evidenced by the highest scores in most metrics229

when all components are enabled. As an exception,230

the inclusion of Magnitude leads to worse results231

in Mathvision for LLaVA-1.5, which indicates the232

fluctuation of applying Magnitude in some cases.233

PaliGemma LLaVA-1.5 Qwen2-VL Yi-VL

Exp Rel Mag Mathvision Mathvista Mathvision Mathvista Clock_Time Clock_Time

× ✓ ✓ 0.096 0.137 0.151 0.166 0.798 0.834
✓ × ✓ 0.095 0.137 0.145 0.154 0.790 0.856
✓ ✓ × 0.094 0.142 0.160 0.143 0.816 0.876
✓ ✓ ✓ 0.098 0.157 0.146 0.170 0.853 0.874

Table 6: Ablations on NTIL. Exp: Exponential Position-
Based Weighting. REL: Relative Deviation Metric.
Mag: Magnitude Deviation Metric.

4.5 Quantitative Analysis 234

As shown in Figure 4(a), NTIL achieves the low- 235

est absolute errors among all models, indicating 236

more consistent performance compared to CE and 237

EMD. Figure 4(b) and 4(c) illustrate that NTIL pro- 238

duces more accurate predictions with distributions 239

more concentrated around the ground truth. Over- 240

all, NITL offers more stability and lower variability. 241

Qualitative examples can be seen in Appendix E. 242

5 Conclusion 243

We propose NTIL, which improves numerical pre- 244

diction accuracy in LLMs at both the token and 245

sequence levels. Experiments show improvement 246

across multiple datasets and models, highlighting 247

effectiveness of NTIL. 248
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Limitations249

The limitations of the NTIL include its degradation250

to EMD loss when predicting a single token, which251

diminishes its effectiveness for broader sequence-252

level tasks. Additionally, the exponential position-253

based weighting scheme, while effective in many254

cases, had limited or negative impact in certain con-255

figurations, such as with the Mathvision dataset and256

LLaVA-1.5 model. Future exploration could focus257

on refining the exponential position-based weight-258

ing scheme with adaptive strategies to address its259

inconsistent impact.260
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A Implementation514

The proposed loss function is incorporated into the515

model’s training objective through linear combi-516

nation with a weighting coefficient λ = 0.3. The517

hyperparameters governing the loss computation518

are maintained at α = β = σ = 0.2 throughout519

all experiments, unless otherwise specified. All520

tasks are trained with a learning rate of 10−5 for521

fine-tuning. Our experiments are conducted based522

on a widely used open source training repository1.523

B Dataset524

This section provides a detailed description of each525

task along with the corresponding evaluation met-526

rics. The illustrations for each task are presented527

in Figure 5.528

Image Grounding. Grounding task aims to output529

the bounding box of the corresponding object given530

a description. We compare on the referring expres-531

sion comprehension (REC) task on RefCOCO (Lin532

et al., 2014), RefCOCO+ (Yu et al., 2016) and Ref-533

COCOg (Mao et al., 2016) datasets. The Average534

Accuracy at IoU ≥ 0.5 (Acc@0.5) is used as the535

evaluation metric.536

Scene Text Detection. The scene text detec-537

tion task focuses on detecting text in natural im-538

ages. We selected several commonly used datasets:539

TD500 (Yao et al., 2012), ICDAR2015 (Karatzas540

et al., 2015), CTW1500 (Yuliang et al., 2017) and541

Total-Text (Ch’ng and Chan, 2017) for scene text542

detection tasks. We utilize the identical metric em-543

ployed in the image grounding task.544

Clock Time Recognition. The perception of clock545

aims to recognize the specific time by images of546

clocks. We compare the performance of accuracy547

and time gap on a widely-used TIME (gpiosenka,548

2022) dataset. The output are formatted as the label549

of “2_55”, as shown in Figure 6. We use overall550

accuracy as an metric, and additionally count the551

time gap between the prediction and the ground552

truth for further evaluation. For example, the time553

gap between prediction “4_35” and ground truth554

“6_20” is 1.75 hours.555

Mathematical Reasoning. Completing the mathe-556

matical reasoning tasks requires models to under-557

stand the context and the image of the mathematical558

field. We select the MathVista (Lu et al., 2023) and559

MathVision (Wang et al., 2024b) datasets to evalu-560

ate models. We utilize exact matching accuracy to561

evaluate math reasoning task.562

1https://github.com/hiyouga/LLaMA-Factory

Arithmetic Calculations. Calculation task in- 563

volves training LLMs to perform numerical op- 564

erations accurately. In this task, the “arith- 565

metic_mix” subset from the widely-used mathemat- 566

ics dataset (Saxton et al., 2019) is used for training 567

and evaluation, which contains 2M training and 10k 568

test items. In this task, exact matching accuracy is 569

applied as the evaluation metric. 570

C Gumbel Softmax 571

The Gumbel softmax, also known as Concrete Dis-
tribution, is a continuous differentiable approxi-
mation to categorical sampling. It replaces the
non-differentiable argmax operation with a soft-
max function and Gumbel noise. Given logits πi,
the Gumbel softmax sample yi is computed as:

yi = softmax ((log(πi) + gi)/τ) ,

where gi is the Gumbel noise, which is i.i.d. sam- 572

ples drawn from the Gumbel(0, 1) distribution, 573

and τ is the temperature parameter. 574

The Gumbel noise term gi introduces stochastic- 575

ity into the sampling process, enabling exploration 576

of the probability space while maintaining differen- 577

tiability. Moreover, using Gumbel noise also works 578

like regularization, which helps provide gradient 579

information near the decision boundary, to improve 580

generalization ability. The temperature parameter 581

τ controls the sharpness of the distribution: as τ 582

approaches 0, the samples become more discrete 583

and closer to one-hot vectors, while higher tem- 584

peratures make the distribution more uniform. In 585

our implementation, we use τ = 0.1 to ensure that 586

the results are consistent with the original argmax 587

results. 588

Gumbel softmax is differentiable as it replaces 589

the discrete argmax with a continuous softmax 590

function, allowing gradients to flow through the 591

sampling process during backpropagation. Thus, 592

Gumbel softmax is widely used in scenarios re- 593

quiring discrete latent variables in neural networks, 594

such as in VAEs(Jang et al., 2016) or reinforcement 595

learning(Huijben et al., 2022; Wan et al., 2020). 596

D Preliminaries 597

This section first briefly introduces the autoregres- 598

sive decoding process based on cross-entropy in 599

Section D.1, and then compares and analyzes Earth 600

Mover’s Distance (EMD) in Section D.2. 601
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(a)  Image Grounding
Question: Where is person bottom left?
Answer: [0.005, 0.332, 0.249, 0.984]

(d)  Mathematic Reasoning
Question: Find the perimeter of 

the parallelogram.
Answer: 78

(b)  Scene Text Detection
Question: Locate texts in the image.
Answer: [0.388, 0.371, 0.626, 0.440]

[0.418, 0.595, 0.610, 0.653]

(c)  Clock Time Recognition
Question: What's the time of 

this clock?
Answer: 9_20

(e)  Arithmetic Calculation
Question: Calculate 

(-8)/(-14)*2240/7680.
Answer: 1/6

Figure 5: The illustrations for each task.

D.1 Autoregressive Prediction with Cross602

Entropy603

Autoregressive models operate through sequential604

decoding, generating tokens one at a time condi-605

tioned on previously generated tokens. For each606

position, the model outputs a probability distribu-607

tion across the vocabulary, employing the Softmax608

function to select the most probable token during609

training.610

In the context of language modeling tasks, cross-611

entropy loss serves as the fundamental training612

objective for autoregressive models. This loss613

function quantifies the divergence between the pre-614

dicted probability distribution and the ground truth615

distribution:616

L = −
∑
i

pi log (qi) , (5)617

Åwhere pi represents the one-hot encoded ground618

truth distribution, and qi denotes the model’s pre-619

dicted probability.620

While cross-entropy loss effectively minimizes621

distributional differences between predictions and622

labels during training, it exhibits a fundamental623

limitation in autoregressive decoding: the func-624

tion treats each class independently, disregarding625

the inherent relationships between different classes.626

This limitation becomes particularly problematic 627

when modeling numerical sequences where ordinal 628

relationships between values carry semantic signif- 629

icance(Hou et al., 2016), as shown in Figure 2. 630

D.2 Earth Mover’s Distance 631

To introduce a distance term when calculating 632

the above-mentioned distribution differences, one 633

method is Earth Mover’s Distance (EMD), also 634

known as Wasserstein distance. It is an evaluation 635

based on optimal transport theory, measuring the 636

minimal cost of transforming one distribution into 637

the other: 638

EMD(P,Q) = min
γ∈Γ(P,Q)

n∑
i=1

m∑
j=1

γij · d (xi, yj) ,

(6) 639

where P = {(pi, xi)} and Q = {(qi, yi)} are two 640

discrete distributions, with pi and qj are the masses 641

at the points xi and yj , respectively. The transport 642

plans, represented as Γ(P,Q), are all possible ways 643

to move the mass, and γij represents the amount of 644

mass that is transported from pi to qj . The distance 645

matrix d (xi, yj) indicates the cost of transporting 646

masses between points xi and yj . A widely-used 647

distance matrix d is Euclidean distance. 648

Since the distance between labels is explicitly 649

considered, predicted values closer to the label are 650
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associated with smaller distance terms. Thus, the651

Earth Mover’s Distance effectively incorporates652

distance-based weighting. As illustrated in Fig-653

ure 2, when the distribution is more concentrated654

around the label, the EMD loss becomes smaller,655

thereby reflecting the differences between distribu-656

tions.657

D.3 Predicting Digits with EMD658

This section presents our approach to refining dis-659

tance metrics for numerical representation at the660

digit level. In traditional autoregressive models,661

cross-entropy loss is typically employed to predict662

the probability distributions of individual tokens.663

However, this method treats each numerical digit664

as an independent entity, disregarding the continu-665

ous relationships between numbers. For example,666

when the target digit is 4, a model prediction of667

3 should ideally be considered closer to accurate668

than a prediction of 9, as it represents a smaller669

numerical deviation. To address this limitation, we670

propose incorporating a distance metric that cap-671

tures these intrinsic numerical relationships more672

accurately.673

Computational Complexity. As established674

in D.2, Earth Mover’s Distance (EMD) provides a675

robust measure for distributional distances, mak-676

ing it particularly well-suited for numerical pre-677

diction tasks. Prior research has applied EMD678

to align hidden representations within neural net-679

works, often requiring the transport plan (γij in680

Equ. (6)) to be approximated or recalculated dy-681

namically during training. However, the compu-682

tational demands of EMD present practical chal-683

lenges, especially in large-scale deep learning appli-684

cations. Solving the underlying optimization prob-685

lem in Equ. (6) has a computational complexity of686

O
(
(n×m)3

)
, which can be prohibitive. Regular-687

ized EMD (Cuturi, 2013) addresses this by employ-688

ing the Sinkhorn-Knopp algorithm to iteratively689

refine the transport plan γij in Equ. (6), reducing690

complexity to O (k × n×m), where each itera-691

tion involves an O(n×m) matrix operation.692

Numerical Prediction Optimization with EMD.693

When estimating the transport plan, the algorithm’s694

complexity is generally quadratic. However, when695

restricted to one-dimensional numerical distribu-696

tions, where the prediction and target values are697

aligned in position (i = j), the transport plan can698

be simplified to an identity matrix. Thus, Earth699

Mover’s Distance emerges as a highly suitable met-700

ric for capturing digit-level numerical distance, for-701

mulated as: 702

EMD(P,Q) =
∑
i

|xi − yi| · |i− argmax (Q)| ,

(7) 703

where the distance matrix d (xi, yj) = 704

|i− argmax (Q)| refers to the index distance of 705

each digit to the label. Given that the predicted 706

probability distribution P is obtained through the 707

softmax transformation, and the ground truth label 708

Q is represented as a one-hot vector, the gradient 709

of EMD with respect to component xi can be 710

expressed as: 711

∂ EMD

∂xi
= {|k − 1| , |k − 2| , ..., |k − n|} . (8) 712

where k = argmax (Q) denotes the index of the 713

label element in the one-hot vector. This gradient 714

exhibits an inverse relationship with the proximity 715

between the predicted distribution and the ground 716

truth: as the prediction approaches the true label, 717

the magnitude of the gradient diminishes. This 718

characteristic is particularly advantageous for nu- 719

merical prediction tasks, as it inherently accounts 720

for the ordinal relationships between numerical 721

classes, and addresses the fundamental limitation 722

of the conventional cross-entropy. 723

E Qualitative Examples 724

Visualizations of the outputs of different losses are 725

shown in Figure 6, and the examples are taken from 726

experimental results using LLaVA-1.5. For image 727

grounding task (Figure 6(a)), the task was to pre- 728

dict the location of “horse back left” in an image. 729

The CE loss (blue box) performed poorly, with pre- 730

dictions far from the ground truth. EMD (red box) 731

showed an improvement, capturing spatial features 732

better, while NTIL (green box) provided the most 733

accurate predictions, closely matching the ground 734

truth (black box). Overall, NTIL outperformed 735

both CE and EMD, demonstrating its effectiveness 736

in this task. 737

Figure 6(b) presents a qualitative comparision 738

for clock time recognition task. In this case, NTIL 739

provides the most accurate prediction of the clock 740

time, correctly identifying 2:55, which matches 741

the ground truth. EMD performs better than CE, 742

predicting 2:50, but it is still slightly off. CE, how- 743

ever, predicts 5:10, a significant deviation. Overall, 744

NTIL outperforms both EMD and CE in predicting 745

the clock time accurately. 746
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CE Prediction: [0.0, 0.138, 0.174, 0.754]

EMD Prediction: [0.447, 0.348, 0.687, 0.875]

NTIL Prediction: [0.567, 0.342, 0.77, 0.774]

Ground Truth: [0.581, 0.34, 0.757, 0.816]

Question:Where is the horse back left?

(a) Example in Image Grounding. Blue box is CE prediction, red box is EMD prediction, green box is NTIL prediction.
Black box is ground truth.

CE Prediction: 5_10

EMD Prediction: 2_50

NTIL Prediction: 2_55

Ground Truth: 2_55

Question:What's the time of this clock?

(b) Example in clock time recognition.

Figure 6: Comparisons between CE, EMD and NTIL.
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