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Abstract

Complementarity Determining Regions (CDRs)
are critical segments of an antibody that facili-
tate binding to specific antigens. Current com-
putational methods for CDR design utilize re-
construction losses and do not jointly optimize
binding energy, a crucial metric for antibody effi-
cacy. Rather, binding energy optimization is done
through computationally expensive Online Rein-
forcement Learning (RL) pipelines rely heavily
on unreliable binding energy estimators. In this
paper, we propose AbFlowNet, a novel generative
framework that integrates GFlowNet with Diffu-
sion models. By framing each diffusion step as
a state in the GFlowNet framework, AbFlowNet
jointly optimizes standard diffusion losses and
binding energy by directly incorporating energy
signals into the training process, thereby unify-
ing diffusion and reward optimization in a sin-
gle procedure. Experimental results show that
AbFlowNet outperforms the base diffusion model
by 3.06% in amino acid recovery, 20.40% in ge-
ometric reconstruction (RMSD), and 3.60% in
binding energy improvement ratio. ABFlowNet
also decreases Top-1 total energy and binding en-
ergy errors by 24.8% and 38.1% without pseudo-
labeling the test dataset or using computationally
expensive online RL regimes. !

1. Introduction

Antibodies are essential molecules of the adaptive immune
system, with their complementarity-determining regions
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(CDRs) serving as the primary determinants of antigen
recognition and binding specificity. Compared to the rest of
the antibody, CDRs exhibit remarkable variability, enabling
the immune system to recognize diverse antigens (Polonelli
et al., 2008). CDRs are crucial for therapeutic antibody
development, particularly in humanization where CDRs
from non-human antibodies are transferred onto human an-
tibodies to help it target new antigens, using techniques
like CDR grafting (Jones et al., 1986) and shuffling (Jirholt
et al., 1998). Daclizumab, the first FDA-approved human-
ized drug, was developed in 1997 by humanizing a mouse
antibody to treat multiple sclerosis (Tsurushita et al., 2005).
Since then, thousands of other drugs have been developed
using CDR-based antibody modifications (Lu et al., 2020).

While transferring known animal CDRs has proven effective,
there has been immense research interest into designing de
novo CDRs to target novel antigens (Tang et al., 2024) and
neoantigens (Zhang et al., 2021). The computational (in sil-
ico) design of CDRs presents a significant challenge due to
the vast search space - a CDR sequence with L amino acids
has 20% possible combinations, not accounting for struc-
tural variations. Traditional Monte Carlo search-based ap-
proaches use biophysical energy functions (Adolf-Bryfogle
et al., 2018a; Lapidoth et al., 2015; Adolf-Bryfogle et al.,
2018Db) to guide the search process but are computationally
intensive and often get trapped in local optima (Luo et al.,
2022; Jin et al., 2022). Deep Learning (DL) approaches
using either Graph Neural Networks (Gao et al., 2023; Jin
et al., 2022; Kong et al., 2023; 2022) or Diffusion models
(Luo et al., 2022; Peng et al., 2023; Zhu et al., 2024) can
learn the distribution of existing CDRs and sample new ones.
However, unlike search-based approaches, DL methods do
not explicitly optimize biophysical energy functions which
has led to new research on online Reinforcement Learning
(RL) (Sutton et al., 1998) post-training using these functions
as rewards (Zhou et al., 2024; Ren et al., 2025; Wen et al.,
2024). However these online RL regimes are extremely
computationally expensive and highly dependent on the pro-
grams used to estimate said energy functions which are not
always reliable (Vreven et al., 2012). Some approaches
(Zhou et al., 2024; Wen et al., 2024) use the test dataset
itself during RL which raises concerns about dataset bias
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Figure 1. AbFlowNet reframes the diffusion process as a GFlowNet where each partially denoised CDR is a state and the transition
probabilities are flows through edges. The initial state’s flow is learned and the final state’s flow is the binding energy of the reference
CDR. To train, we simply enforce forward and backward flow parity, in addition to the diffusion losses.

(Deng et al., 2023). Furthermore, Zhou et al. (2024) has
shown that RL improves binding energy but reduces two key
structural metrics: Amino Acid Recovery and Root Mean
Square Deviation with respect to the reference CDR.

Given the limitations of RL, GFlowNets have emerged as a
promising alternative for optimizing Image Diffusion mod-
els (Venkatraman et al., 2024; Zhang et al., 2024a;b). In this
work, we introduce AbFlowNet to address these concerns
in biophysical energy optimization. As shown in Figure
1, we reframe the denoising diffusion process (Ho et al.,
2020; Leach et al., 2022) in a GFlowNet (Bengio et al.,
2021) framework where each partially denoised structure is
a GFlowNet state and the forward and backwards transition
probabilities are flows through edges. The flow of a state
is the sum of all flow’s of all trajectories through that state.
The final fully-denoised state’s flow is the binding energy
reward. We use the Trajectory Balance objective (Bengio
et al., 2021) to enforce that the forward and backward flow
for a trajectory (a full denoising sequence starting from ran-
dom noise and ending at a CDR structure) must be equal.
As a result, the diffusion model implicitly learns better state
transitions that lead to higher rewards.

Practically, AbFlowNet can be implemented by adding a
single learned parameter and adding a TB loss term to the
original loss terms. AbFlowNet shows convincing improve-
ments over the base diffusion model, DiffAb (Luo et al.,
2022), for the same number of gradient updates. Concretely,
when averaged over all six CDR regions, AbFlowNet im-
proves amino acid recovery (AAR) by 3.06%, root mean
square deviation (RMSD) by 20.40% and samples 3.60%
more CDRs that have better binding energy than the refer-
ence CDR. AbFlowNet also improves over DiffAb in Top-1
total energy and binding energy by 24.8% and 38.1%. Un-
like online RL approaches such as AbDPO (Zhou et al.,
2024), AbFlowNet is orders-of-magnitude less expensive,
does not need repeated use of unreliable energy estimators
and does not rely on pseudo-labeling the test set. Our key

contributions are:

1. We present AbFlowNet, the first application of the
GFlowNet framework for direct binding energy op-
timization in de novo diffusion-based CDR design.
AbFlowNet improves over the base diffusion model in
all metrics.

2. AbFlowNet is competitive with RL-based methods
(Zhou et al., 2024) without using the test set complexes
to generate synthetic CDR data for training, thereby
mitigating data leakage concerns.

3. Unlike existing RL-based approaches (Zhou et al.,
2024; Wen et al., 2024) which reduce AAR and RMSD,
AbFlowNet improves AAR by +3.06% and RMSD by
+20.40%.

2. Related Works

Computational CDR Design Classical approaches to
CDR design, such as RAbD (Adolf-Bryfogle et al., 2018a)
and AbDesign (Lapidoth et al., 2015), rely on Monte
Carlo algorithms that sample and optimize antibody struc-
tures based on biophysical energy functions. These meth-
ods, while effective in certain contexts, are computation-
ally expensive and often get trapped in local optima due
to the rugged energy landscape (Luo et al., 2022; Kong
et al., 2023). In recent years, deep learning methods have
emerged as promising alternatives. Notable Graph Neural
Network-based models include HERN (Jin et al., 2022),
MEAN (Kong et al., 2022), AbGNN (Gao et al., 2023), and
dyMEAN (Kong et al., 2023). This methods have shown
high AAR and RMSD but are limited in generation diver-
sity due to their GNN structure. Diffusion-based models
can generate multiple CDR given a complex which can be
later ranked heuristically. Notable Diffusion-based mod-
els include AbDiffuser (Martinkus et al., 2024), DiffAb
(Luo et al., 2022), AbDesign (Peng et al., 2023), RFanti-
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Figure 2. Antibody-antigen complex.

body (Bennett et al., 2025), and AbX (Zhu et al., 2024).
AbX is the current state-of-the-art CDR design model and
uses a large Protein Language Model (Lin et al., 2022) to
enforce evolutionary plausibility of the generated CDRs.

Binding Energy Optimization For CDR Design A key
metric for CDR effectiveness is binding affinity. One com-
monly used energy metric is binding energy AG. Since
binding energy is a singular value for the entire com-
plex, it is a sparse training signal which is often opti-
mized via Reinforcement Learning (Sutton et al., 1998).
AbDPO (Zhou et al., 2024) post-trains a base DiffAb
model by repeatedly sampling new CDRs, ranking them
based on binding affinity, determined with Rossetta
InterfaceAnalyzer (Chaudhury et al., 2010) and us-
ing DPO (Rafailov et al., 2024). However, this RL training
phase significantly lowers AAR and RMSD compared to
the base method. AlignAb (Wen et al., 2024) points out
that there are multiple valid energy-based rewards and fine-
tune separate models for each reward using DPO. AbNovo
(Ren et al., 2025) follows the approach of AbDPO with
AbX instead of DiffAb as the base model and used Noise
Contrastive Alignment (NCA) (Chen et al., 2024) as the RL
objective instead of DPO.

One notable weakness of all online RL methods is the need
to compute binding energy for newly designed CDRs. In
silico methods such as Rosetta (Chaudhury et al., 2010;
Adolf-Bryfogle et al., 2018a) or OpenMM Yank (Eastman
et al., 2017; Rizzi et al., 2020) have only moderate core-
lation with the real binding energy(Vreven et al., 2012).
Furthermore, the generated CDRs are not guaranteed to be
geometrically plausible which might reduce the reliability
of energy estimators further. In contrast, AbFlowNet does
not require computing the energy of newly generated CDRs
and can, in principle, be trained solely on in vitro affinity
data of CDRs in the training set.

3. Background
3.1. Antibody-Antigen Complex

As shown in Figure 2, antibodies are composed of two
heavy chains and two light chains. Each chain consists
of a variable region and a constant region. The variable
regions of both the heavy chain (Vy) and the light chain

(VL) contain three complementarity determining regions
(CDRs): CDRI1, CDR2, and CDR3, making a total of six
CDRs per antibody. These regions are highly diverse due to
genetic recombination and somatic hypermutation, allowing
antibodies to recognize a vast array of antigens. The CDRs
form a binding site that is complementary in shape and
chemical properties to the antigen’s binding site (epitope).
In Figure 2, the third CDR in the heavy chain (CDR-H3)
is highlighted due to its critical in determining the binding
affinity to the antigen. The sequence and structure of CDRs
vary widely among antibodies, enabling the immune system
to recognize and respond to a wide range of antigens. CDRs
interact with the antigen through non-covalent bonds (e.g.,
hydrogen bonds, electrostatic interactions, van der Waals
forces) (Polonelli et al., 2008). In our work, we aim to
design the sequences and structures of the CDR regions
(often referred to as the framework regions), conditioned
on the non-CDR regions of the antibody and on the target
antigen.

3.2. GFlowNet

GFlowNets are generative models that learn to sample from
a desired distribution by modeling flows on a directed
acyclic graph (DAG) (Bengio et al., 2021). Given a DAG
G = (S, .A) with state space S and action space A, and
a positive reward function R : X — R defined on ter-
minal states X', a GFlowNet learns a policy that generates
trajectories terminating at states with probability propor-
tional to their rewards. Formally, a GFlowNet defines a
flow F on trajectories 7 = (s — s1 — ... — s,,) from
the initial state s to terminal states. The state flow of state
s is defined as F'(s) = > _ _,, ) F(7) and the edge
Sflow between states s and s’ is defined as F'(s — §') =
ZT:(.“_)S_M,_“) F (7). The following flow matching con-
straint (incoming flow = outgoing flow) is satisfied for all
non-boundary states F'(s) = >, gea F'(s" — 5) =
> (s—ssnea F'(s = ). For terminal states s,,, the flow is
the non-negative reward: F'(s,,) = R(sy).

Flows also induce forward and backward transition poli-

cies: Pp(s'|s) = F(;(j)sl) and Pg(s|s') = F%sg;;')_ A

GFlowNet aims to learn policies such that the terminal state
flows match their rewards.

Trajectory Balance Trajectory Balance (TB) (Malkin
et al., 2022) provides an elegant training objective for
GFlowNets that enforces consistency between forward gen-
eration and backward reconstruction across entire trajecto-
ries. For any complete trajectory 7 = (sg — s1 — ... —
Sn) terminating at state x, TB enforces the constraint:

=

F(so) [ [ Pr(silsi-1) = F(sn) [] Po(se-alse) (1)

t=1
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Here, the flow of the terminal state s,, is F'(sy,) = R(sp).
The flow of the initial state F'(sg) is the sum of the flow
over all trajectories which is not tractable. Therefore, the
authors of TB propose approximating F'(sg) with Zy where
6 is a neural network. This yields the final constraint:
ZeHPF (silse1) H (sialst) (@

t=1 t=1

4. Methodology

In Section 4.1, we discuss the training objectives of the base
diffusion model, and in Section 4.2, we describe our refram-
ing of the diffusion process as a GFlowNet. Equation 18
presents our final training objective, which jointly optimizes
the diffusion losses and the binding energy.

4.1. Denoising Objective

We train a diffusion probabilistic model parameterized
by a neural network for CDR design. Following Luo
et al. (2022), we condition on the antigen structure
and the antibody framework to generate CDR. The
model is trained using the standard denoising objective
across three protein properties: amino acid type d; €
{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S, T, W,

Y,V}, 3D coordinate z; € R3, and 3D orientation
O, € SO(3) where SO(3) is the Lie group of 3D rotations.

Assume the CDR to be generated has m amino acids with
index from [ + 1 to [ + m. They are denoted as S* =
{stlj =1+4+1,...,1+ m} where s’ = (d},z%,0"). Our
goal is to model the distribution of S° given the structure
of the antibody-antigen complex C = {(d;,z;,0;) | i €

{L,...,N}I\{l+1,....l +m}}.

Multinomial Diffusion for Amino Acid Types The for-
ward diffusion process for amino acid types is based on the
multinomial diffusion process (Hoogeboom et al., 2021):

t
g(d'[d:) = Mul ((1 — Bloe) oh(d ) + ﬁ%, . 1)
3)
p(d;!|S",C) = Mul (Fy(S", C)[)) @)

where p is the forward diffusion process, ¢ is the backward
denoising process, Mul() is the Multinomial function and
oh() is the one-hot function. nype is the probability of
resampling another amino acid uniformly over the 20 types
and Fy(-)[j] is a neural network model that predicts the
probability of the amino acid type for the j-th amino acid on
the CDR. The training objective is to minimize the expected
KL divergence between the posterior distribution ¢ and the
predicted distribution p:

type = Z D KL

q(dj~|d5, d3)|lp(d5 | S", ©))

7777

&)

Diffusion for 3D Coordinates The forward and backward
diffusion processes for the coordinate x; are defined as:

g(zflaf) =N (x§- 1— Bl “,Bpos) (6)

p(xé_l\st, a)y=N <:ct.

J

:uI)(St C) me) (7)

1 , :
ol S",€) = = | @} = —=2Z—=G(S", O]
1- pos 1 Qpos
(®)
where 3¢ . controls the rate of diffusion in ¢. The denoising

pos
diffusion process p uses the reparameterization trick (Ho

et al., 2020) and Gy(+)[/] is a neural network that predicts
the standard Gauss1an noise €; ~ N (0,1 ) added instead of

predicting x ! directly where & Aoy = Ht (1= Bhog)-

The training objective is to minimize the expected MSE
between G and e:

pos =E ZHej

OV )

SO(3) Denoising for Amino Acid Orientations Follow-
ing Leach et al. (2022); Luo et al. (2022), the denoising
process for orientation directly attempts to predict the final
orientation O? from O;». The transitions are defined as:

4(0}109) = TG0 OLA(y/ab,, OF), 1 ab,,)

(10)

p(O571S",C) = IGsoe) <O§1’H0(Stac)[j]» (t)ri)
1D

where a’,; = [1'._, (1 — 35,;) with 8¢, being the variance
increased with step ¢, ZGso(3) denotes the isotropic Gaussian
distribution on SO(3) (Leach et al., 2022) and A(y,z) =
exp(’y log(m)) is the geodesic interpolation (or “scaling’)
of the rotation 2 € SO(3) from the identity. Hy(-)[j] is a
neural network that denoises the orientation and outputs the
denoised orientation matrix. The training objective simply
minimizes the difference between the real and predicted
orientation matrices:

1 Sl
Lo =E | —>_|I(09)7 05" —I|? (12)
J
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4.2. Trajectory Balance Objective

In addition to the denoising objectives, we aim to optimize
the binding energy of the generated CDR with respect to the
antigen and antibody. However, binding energy can only
be computed for the final CDR after a complete denoising
process, making it a sparse reward. To address this, we
use the Trajectory Balance (TB) objective (Malkin et al.,
2022) which propagates rewards back through the diffusion
trajectory by enforcing global flow-matching constraints.

We begin by defining a GFlowNet state as the partially
denoised CDR at timestep t. A CDR is composed of a se-
quence of amino acids and the transition probability for each
amino acid location j is the product of the three indepen-
dent denoising processes (Equations 13 and 14). We define
the GFlowNet edge flow as the transition probability of the
entire CDR, which is simply the product of the probability
of each location (Equations 15 and 16):

a(s5ls") = a(djld;™") - alajlai™) - q(O51057Y) (13)

p(sih | s5) =p(si™" | 5%,0)

:p(d_tj_l ‘ St7O) ! p(x;’_l | Stvc) ’ p(O;’_l ‘ St7C)

(14)
I4+m

St|St 1 Hq J|St 1 (15)
l+m

St 1|St Hp t|st 1 (16)

For each data point during a mini-batch update, we uni-
formly sample a timestep ¢ to compute Ltype, Lfm and
Lt.. However, we require a complete trajectory to en-
force TB. Therefore, we compute all forward ¢(S;_1|S:)
and backward probabilities p(S;|S;—1;6) for tin (0,T).
Following Kim et al. (2024), we precompute the reward
R(S°) = exp(—« - BindingEnergy(S?)) for each CDR S°
in the training dataset and enforce the TB objective:

Zy T1 o (8157 10) \°
Ltg = | log =0 7 (17)

T _

R(S%) 1= a(S*~1157)
where Zjy is the estimated initial state flow and R(z) is the
binding energy reward. Therefore, the overall training ob-
jective combines the denoising losses and the TB objective:

L= IE’tNUmfurm( ..... T) [Lfype + Lf)os + Lf)n] +’LU'LTB (] 8)

where w is a scaling factor for balancing the denoising
objectives computed per diffusion step and the TB objective
calculated over the entire trajectory.

4.3. Sampling Algorithm

For sequence-structure co-design, we construct S7 by
sampling amino acid types for each position from the
uniform distribution d] ~ Uniform(20), CDR positions
from the standard normal distribution: x;f ~ N(0,I3),
and orientations from the uniform distribution over SO(3):
OJT ~ Uniform(SO(3)). AbFlowNet iteratively denoises
the sequence and structures following the standard diffu-
sion process until £ = 0. Upon generating the amino
acid sequence and the structure of the backbone, we opti-
mize the side-chain angles using PackRotamersMover
in PyRosetta (Chaudhury et al., 2010).

Crucially, AbFlowNet applies the GFlowNet balance ob-
jective solely during training, not during inference. This
approach enables AbFlowNet to operate as a standard dif-
fusion model at sampling time, without requiring energy
calculations via the Rosetta InterfaceAnalyzer.

5. Experiments

Dataset Curation We use the Structural Antibody
Database (SAbDab) (Dunbar et al., 2014) as the training
dataset. We first remove structures whose resolution is
less than 4A and discard antibodies targeting non-protein
antigens (Luo et al., 2022). We cluster antibodies in the
database according to CDR-H3 sequences at 50% sequence
identity using MMSeq2 (Steinegger & Soding, 2017). Our
final training dataset contains 9410 antigen-antibody com-
plexes. We evaluate sequence-structure codesign on RAbD
test dataset, consisting of 60 diverse antibody-antigen com-
plexes (Adolf-Bryfogle et al., 2018b). We also evaluate on
the test set proposed by DiffAb (Luo et al., 2022) which con-
tains 19 complexes with antigens from several well-known
pathogens including SARS-CoV-2, MERS, influenza, and
so on. For both test sets, we strictly remove the overlap be-
tween the training set and the testing sets using a CDR-H3
sequence identity threshold of 50%.

Metrics We use standard metrics to evaluate designed an-
tibodies (Adolf-Bryfogle et al., 2018b; Luo et al., 2022; Zhu
et al., 2024), namely, (1) AAR: the amino acid recovery rate
measured by the sequence identity between the reference
CDR sequences and the generated sequences, (2) RMSD:
the C,, root-mean-square deviation (RMSD) between the
generated structure and the original structure, and (3) IMP:
the percentage of designed CDRs with lower (better) bind-
ing energy (AG) than the original CDR. The binding energy
is calculated by InterfaceAnalyzer in the Rosetta
software package (Adolf-Bryfogle et al., 2018a; Chaudhury
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Table 1. Top-1 CDR Eixa and CDR-Ag AG (kcal/mol) for de novo CDR-H3 design. ({) indicates lower is better. We also show the

percentage reduction over DiffAb with the same sampling budget.

Methods Sampling | CDR Eiya (1) CDR-Ag AG (]) | Test Set Used Code
Budget (with A) (with A) in Sampling | Availability
Reference | | 4.52 -13.72 — | —
GNN Baselines
HERN (Jin et al., 2022) 2,528 7594.94 1159.34 — Yes
MEAN (Kong et al., 2022) 2,528 3113.70 114.98 — Yes
dyMEAN! (Kong et al., 2023) 2,528 15025.67 2391.00 — Yes
dyMEAN? 2,528 3234.30 1619.24 — Yes
Diffusion-Based
DiffAb (Luo et al., 2022) 2,528 211.00 9.54 — Yes
AbDPO (Zhou et al., 2024)" 2,528 162.75 (123.4%)  -4.85 (161.9%) Yes No
DiffAb 100 480.25 11.20 — Yes
AbFlowNet (Ours) 100 362.03 (124.8%) 1.71 (138.1%) No Yes

TAbDPO is not open-sourced and cannot be independently reproduced. Results are shown for reference only. Improvements for AbDPO
and AbFlowNet are relative to DiffAb under the same sampling budget.

et al., 2010). Diffusion models are capable of generating
diverse data points from the target distribution by randomly
sampling from the initial distribution (Ho et al., 2020; Leach
et al., 2022). This is especially advantageous in CDR design
where we can generate multiple candidates CDRs in silico
and select only the most promising CDR for in vitro valida-
tion according to some desirable property. To this end, the
authors of AbDPO (Zhou et al., 2024) proposed: (1) Top-
1 CDR E¢ota1: total energy of the whole designed CDR
(kcal/mol) of the best CDR out of N; (2) Top-1 CDR-Ag
AG : the difference in total energy between the bound state
and the unbound state of that CDR and antigen. Following
AbDPO, we generate N CDRs for each antigen-antibody
complex in the RAbD test dataset and choose the best CDR
ranked by E¢ota1 + AG.

Model Architecture and Hyperparameters We use the
transformer-based parametrization defined in Luo et al.
(2022) to encode antigen-antibody complex C' and condi-
tionally generate d}, ; and O%. We add a learnable parame-
ter to predict a Zy which is learned solely through backprop-
agation since Zy global estimation of the initial state’s flow
independent of individual training samples. Following Dif-
fAb (Luo et al., 2022), we train both DiffAb and AbFlowNet
for 200, 000 steps using Adam optimizer (Kingma & Ba,
2014) with learning rate 1e — 6. For AbFlowNet, computing
TB loss requires sampling full trajectories which is compu-
tationally expensive (~ 20 seconds per step). Therefore, we
train first 195, 000 steps without TB loss and set TB loss
weight w = 5e — 6 for the final 5000 steps. We present
details about parameter sweep over w in Appendix A.2 and
discuss the effect of training longer in Appendix A.3.

Baselines Our primary point of comparison is AbDPO
(Zhou et al., 2024), an online RL method that post-trains a
DiffAb model to optimize CDR-H3 binding energy. AbDPO
samples 10,122 CDRs per test complex to construct a pref-
erence dataset and updates the model via Direct Preference
Optimization (DPO) (Rafailov et al., 2024). We also report
results from several graph neural network (GNN) baselines
— HERN (Jin et al., 2022), MEAN (Kong et al., 2022), and
DyMEAN (Kong et al., 2023). Unlike the other baselines,
which rely on side-chain packing algorithms to determine
optimal side-chain orientations, DyMEAN jointly gener-
ates both the CDR backbone and side-chain orientations.
We report two versions of DyMEAN: DyMEAN!, which
jointly generates side-chain orientations, and DyMEAN?,
which uses the generated backbone but packs side-chains
with PyRosetta PackRotamersMover. Results for
methods using sampling budget of N = 2, 528 were taken
from Zhou et al. (2024). We use N = 100 when evaluating
AbFlowNet for computational efficiency.

6. Results

In Section 6.1, we show that AbFlowNet significantly im-
proves Top-1 energy-based metrics and is comparable to
AbDPO (Zhou et al., 2024), a far more computationally
expensive method. In Section 6.2 we demonstrate that
AbFlowNet’s joint optimization improves upon the base
diffusion model across all metrics for the same number of
training steps. Finally, in Section 6.3, we highlight a quali-
tative example of the CDR-H3 designed for the PDB 5MES
complex by DiffAb and AbFlowNet.
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6.1. De novo CDR-H3 design using Top-1 Energies

The H3 region is especially difficult for all models to gen-
erate because the H3 loop undergoes independent mutation
before joining the rest of the antibody sequence (Graves
et al., 2020), introducing variability and significantly affect-
ing the structure and function of the antibody.

Table 1 shows that AbFlowNet is competitive with
AbDPO without relying on test-set structures. Specif-
ically, AbFlowNet significantly outperforms DiffAb at
N = 100, achieving performance gains comparable to
those reported by AbDPO (Zhou et al., 2024), despite not
using test-set complexes to generate preference datasets.
To evaluate relative improvement, we apply the formula
(METHOD - BASELINE) / (REFERENCE - BASELINE),
which normalizes performance gains with respect to the
baseline and reference. We further validate our findings
on the DiffAb test benchmark (Luo et al., 2022), which
includes 19 complexes with antigens from SARS-CoV-2,
MERS, and influenza; full results are provided in Appendix
Table 4.

Compared to AbDPO (Zhou et al., 2024), which is an on-
line RL method that post-trains a DiffAb model to optimize
CDR binding energy, AbFlowNet offers several advantages.
AbDPO samples 10,122 CDRs per test complex to construct
a preference dataset, and updates the model via Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024). This
approach has two main limitations: (1) sampling at this
scale and computing binding energies is computationally ex-
pensive, and (2) using test-set antibody—antigen complexes
during RL introduces potential bias. In contrast, AbFlowNet
relies solely on precomputed binding energies from the
9,410 training examples, eliminating the need for expensive
sampling and reward computation during optimization.

Additionally, AbFlowNet maintains strong reconstruction
performance, whereas DPO-based RL reduces it. AbDPO,
which post-trains only on binding energy, does not preserve
the training distribution as well and leads to a 9.96% reduc-
tion in average AAR and an increase in RMSD by 0.14 A.
By jointly optimizing for both reconstruction and binding,
AbFlowNet achieves better AAR and RMSD scores (see
Section 6.2, Table 2). Thus, AbFlowNet improves binding
energy without sacrificing structural accuracy.

Finally, we note that both CDR Eiy,; and CDR-Ag AG are
Top-1 metrics that select the best-scoring sample among N
generated CDR-H3s. These metrics are inherently sensitive
to the sampling budget. For example, DiffAb’s Eiy, im-
proves significantly from 480.25 kcal/mol at N = 100 to
211.00 kcal/mol at N = 2,528. While our evaluation of
AbFlowNet uses a modest budget of 100 samples for effi-
ciency, increasing N would likely yield even better results.
This suggests that AbFlowNet’s performance could scale

further with additional samples—without relying on test-
set structures or incurring the computational cost of online
reward evaluation.

6.2. Joint Optimization Outperforms Diffusion Baseline

Table 2. Evaluation of the generated antibody CDRs (sequence-
structure co-design) on the RAbD test dataset (60 sequences) using
AAR (%), RMSD (A) and IMP (%) metrics.

CDR Method AAR?T RMSD| IMPt
H1 Diffab 64.23% 1.153A  69.27%
AbFlowNet 63.49% 0.974A  73.66%
H2  Diffab 3587%  1.095A  46.79%
AbFlowNet 38.06% 0.8488A  60.07%
H3  Diffab 2434% 3.236A 14.38%
AbFlowNet 25.08% 3.194A  12.65%
L1 DiffAb 53.69% 1.153A  55.51%
AbFlowNet 55.62% 0.974A  56.83%
L2 DiffAb 50.46%  0.795A  68.78%
AbFlowNet 54.09% 0.7828A  70.64%
L3 DiffAb 44.87% 3.840A  36.98%
AbFlowNet 44.68% 13108 34.70%

Table 2 shows the performance of AbFlowNet and the base-
line diffusion model DiffAb on the RaBD dataset. Both
models were trained with identical hyperparameters and the
same number of gradient updates; the only difference is that
AbFlowNet incorporates the TB objective from Eq. 18.

AbFlowNet outperforms DiffAb in all three metrics:
+3.06% in AAR, +20.40% in RMSD and +3.60% in IMP.
For the CDR-L3 chain, in particular, the RMSD achieved
by AbFlowNet is considerably lower than those of other
methods. We find consistent improvements in most CDR
regions when using the test set proposed by DiffAb (Luo
et al., 2022), shown in Appendix 3.

6.3. Qualitative Example

Figure 3 (d) shows Protein Data Bank entry SMES is a com-
plex where a chimeric mouse-human Fab antibody fragment
chaperon is bound to the Mcl-1 antigen. The antigen, a
chimeric human/mouse Mcl-1 homolog is over-expressed
in various tumors and prevents tumor cells from undergoing
apoptosis. The Fab antibody serves to stabilize the complex,
allowing researchers to resolve at at 2.24 A resolution by X-
ray diffraction (Johannes et al., 2017). Figure 3 (a) and (b)
show that the CDR-H3 region designed by AbFlowNet es-
tablishes tighter adhesion between the antibody and antigen.
However, de novo generation methods still underperform the
reference H3, in which side chains contribute a significant
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(c) Ref. H3 AG = —7.93 (d) Reference All CDRs
Figure 3. De novo Generated and Reference CDR-H3s for SMES
complex. For DiffAb and AbFlowNet, we generated 100 CDRs
and selected the one with the highest AG.

fraction of binding affinity. Indeed, CDR side chains may
account for the majority of an antibody’s binding affinity
and specificity (Peng et al., 2014; Robin et al., 2014). Be-
cause diffusion-based generators produce only the backbone,
we rely on a side-chain packing algorithm (e.g., PyRosetta
PackRotamerMover) to place geometrically plausible side-
chain orientations. This key limitation of diffusion models
is discussed further in Appendix C.

7. Discussion

On the Use of Rosetta InterfaceAnalyzer AbFlowNet
does not strictly require the use of the energy estimators
such PyRosetta InterfaceAnalyzer (Chaudhury
et al., 2010) and could in principle work with only the reli-
able binding-energy measurements obtained from in vitro
experiments. This is particularly relevant because prior
works have raised concerns about the accuracy of energy
estimators (Vreven et al., 2012; Chaves et al., 2023; Conti
et al., 2022).

In contrast to RL-based approaches such as AbDPO (Zhou
et al., 2024), AlignAb (Wen et al., 2024) and AbNovo
(Ren et al., 2025), which require energy estimates for hun-
dreds of thousands of potentially implausible de novo CDRs,
AbFlowNet needs energies only for existing reference CDRs.
However, of the 9410 antigen—antibody complexes in the

SAbDab database, only 736 have experimental affinity data
available. As such, we used InterfaceAnalyzer to
estimate the energies for our training set. We opted for
InterfaceAnalyzer to maintain parity with existing
baselines (Luo et al., 2022; Zhou et al., 2024; Wen et al.,
2024).

Experimental affinities are typically measured using label-
free biophysical techniques such as isothermal titration
calorimetry (Boudker & Oh, 2015), surface plasmon reso-
nance (Hearty et al., 2012; Murali et al., 2022) or bio-layer
interferometry (Abdiche et al., 2008), each with its own
advantages and trade-offs. GPU-accelerated programs such
as OpenMM Yank (Rizzi et al., 2020) are more accurate
but require hours to process a single complex. AbFlowNet
makes it feasible to augment experimental data with GPU-
accelerated simulations because these simulations need to
be computed only once for authentic CDRs, rather than
iteratively for synthetic CDRs.

Efficiency Analysis Computing the Trajectory Balance
(TB) objective requires complete trajectories, i.e., sampling
from the initial Gaussian state to the final denoised CDR
conditioned on the antigen-antibody complex. Following
(Luo et al., 2022; Zhou et al., 2024; Zhu et al., 2024), we
use 100 denoising steps. The wall-clock time for 100 de-
noising steps with a batch size of 16 is ~ 20 seconds which
dominates the run-time of training AbFlowNet. Further-
more, we do backward propagation for only one random
time step since storing the activations for all 100 steps is
computationally infeasible. This deviates from the original
TB (Bengio et al., 2021) formulation and hence is only as
approximation. Following (Zhang et al., 2024b), we discuss
our attempt at using an alternative GFlowNet optimization
objective, Detailed Balance, in Appendix D.

8. Conclusion

We presented AbFlowNet, a novel framework integrating
Diffusion Models and GFlowNets for antibody CDR design.
AbFlowNet directly incorporates binding energy signals
throughout training, jointly optimizing sequence/structure
generation and binding affinity. This approach avoids the
trade-offs seen in RL-based methods such as strong reliance
on in silico binding energy estimation and usage of test set
data. Experimentally, AbFlowNet outperforms its base dif-
fusion model (DiffAb) in all metrics and is competitive with
expensive RL approaches while only using precomputed
rewards.
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Technical Appendices and Supplementary Material

A. Experimental Setup Details
A.1. Hardware Specifications and Runtime

We conduct all experiments using a Linux machine with Intel(R) Xeon(R) Silver 4314 CPU with 512GB memory and one
NVIDIA RTX A6000 48GB GPU. Training the first 195, 000 steps without the GFlowNet TB objective took ~ 27 hours
and training the last 5, 000 steps took ~ 18 hours. Sampling 100 times for each CDR regions for every complex in the
RADD test dataset took ~ 12 hours.

A.2. Balancing Between Diffusion and Trajectory Balance Objectives

Although the method for computing the forward and backward flow of rewards is computationally expensive, the final
trajectory balance loss is simply added to the diffusion reconstruction losses, as shown in Eqn. 18. The Trajectory Balance
(TB) loss is typically ranges from 10 to 10, while the three diffusion losses have magnitudes between 0 and 1 after 195000
training steps. This necessitates a TB loss weight w to balance between the flow matching and reconstruction objectives. We
train and test AbFlowNet with w ranging from 5e — 5 to le — 7 and find that learning rates between le — 5 and 1le — 6 are
consistently better than the baseline set by DiffAb. Detailed results are shown in Figure 4.

DiffAb (Baseline)
604 w=5e-5
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(b) Root Mean Square Deviation (RMSD) Comparison. Lower is better.

Figure 4. Hyperparameter search for TB loss weight w in Eqn. 18 on the RAbD (Adolf-Bryfogle et al., 2018b) dataset. The RMSD of
DiffAb on L3 CDR region is significantly worse than AbFlowNet. We repeated the retrained DiffAb using a different seed to confirm this
discrepancy (RMSD 4.06 A).
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A.3. Post-Training with Trajectory Balance

So far, we have focused on matching the number of gradient updates between the DiffAb baseline and AbFlowNet to isolate
the effect of optimizing binding energy via trajectory balance.

However, training with sparse feedback is often framed as a separate stage after unsupervised learning (Zhou et al., 2024;
Zhang et al., 2024b). We test this setup by first training the diffusion model on only the reconstruction objectives for 200K
steps and a further 10K steps with the weighted TB loss enabled (w = 5e — 6). We find that training beyond 200K steps with
reconstruction objectives enables generally tends to overfit the dataset while training with only the TB loss objective harms
metrics such as AAR and RMSD, similar to the findings of Zhou et al. (2024). Detailed results are shown in Figure 5.
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Figure 5. Training Diffusion+GFlowNet models with different training steps on the RAbD dataset (Adolf-Bryfogle et al., 2018b).
Separating the reconstruction and flow matching steps do not meaningfully improve performance over AbFlowNet.

B. DiffAb Test Set Performance

The authors of DiffAb (Luo et al., 2022) proposed a test set consisting of 19 complexes with antigens from several well-
known pathogens including SARS-CoV-2, MERS, influenza, and so on. Since these complexes are part of the SAbDab
dataset (Dunbar et al., 2014) used for training, we filter our training complexes against the test set using a CDR-H3 sequence
identity threshold of 50%. We retrain both DiffAb and AbFlowNet with this new filtered training set.
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Table 3. Evaluation of the generated antibody CDRs (sequence-structure co-design) on the DiffAb test dataset (19 sequences).

CDR Method AART RMSD| IMPt
H1 DiffAb 68.29% 1.090A  53.96%
AbFlowNet 69.41%  0.944A  63.50%
H2  DiffAb 35.94%  0.804A  55.60%
AbFlowNet 36.39%  0.862A  54.38%
H3 DiffAb 26.53% 3.183A 12.75%
AbFlowNet 26.66% 3321A  8.75%
L1 DiffAb 54.40%  0.960A  62.48%
AbFlowNet 55.97% 1.019A 64.84%
L2 DiffAb 42.55%  0.735A  80.61%
AbFlowNet 45.52% 0.757A  84.47%
L3 DiffAb 46.15% 1.127A  37.07%

AbFlowNet 46.19% 1.180A  37.26%

Table 4. Summary of Top-1 CDR E,4¢q; and CDR-Ag AG (kcal/mol) of CDR-H3’s designed by DiffAb and AbFlowNet on the DiffAb
Test Dataset. ( | ) denotes a smaller number is better.

Methods # Samples CDR +E¢sta1 CDR-Ag +AG Test Set
Etotal (1) (%) AG(]) (%) Used

Reference | | 1.63 -4.80

DiffAb 100 26.33 11.50

AbFlowNet (Ours) 4.23 89.5 1.47 149.7 No

C. Approaches to Determining Side-Chain Orientation with Neural Networks

Most generative methods—including DiffAb, AbDPO, AbFlowNet, AlignAb (Wen et al., 2024), AbX (Zhu et al., 2024),
AbNovo (Ren et al., 2025), etc.—generate only the backbone structure. The orientation of the amino-acid chains isn’t
generated through a diffusion process, since it must follow structural constraints such as avoiding overlaps. Instead, we rely
on a side-chain packing algorithm such as PyRosetta PackRotamerMover to find the ideal orientation of side-chains.
The GNN based dyMEAN (Kong et al., 2023) jointly generates the backbone and side-chain orientations jointly but Table
1 shows that this approach under-performs using PyRosetta. There has been notable research into generating only
side-chains conditioned on the backbone with diffusion neural networks (Zhang et al., 2023; 2024¢) and given the limitations,
it is a critical direction of future research.
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D. Detailed Balance Objective

Detailed Balance (DB) (Bengio et al., 2021) is an alternative training objective to the standard flow matching constraint and
Trajectory Balance which doesn’t require enumerating states or sampling complete trajectories. Rather, DB requires the
forward flow from state s to s’, F'(s) Pr(s’|s) to match the backward flow F'(s") Pp(s|s’). Concretely the DB objective is

F(s)Pr(s'|s) = F(s')Pp(si-1|st) (19)

However, the flow of a nonterminal state s is generally not tractable, and hence it is parameterized with a neural network
Fy(-). The forward and backward transition probabilities of the entire CDR S* are p(S'~!|S?) = Hé‘:ln p(sh |s§._1) and

q(StSt1) = Héi’l" q(s§:|s§-*1) respectively. Therefore, the final DB objective is:

Fy(S')p(S"[S"*:6) \*
tha = (100 2588 599 0

Pilot Attempt Using DB Objective In the GFlowNet framework, there are three equivalent optimization objectives:
Flow Matching (FM), Detailed Balance (DB) and Trajectory Balance (TB) - each with their own tradeoffs. Flow Matching
requires enumerating states and enforcing parity between incoming and outgoing flow. FM is not applicable since the
number of states in diffusion models is infinite. We attempt using DB which only requires computing the forward and
backward flow between two states and enforcing parity.

Similar to optimizing the TB objective outlined in Section 4.2, we uniformly sample a timestep ¢ to compute L{,., L5, and
Lt .. Since we require adjacent state pairs to compute DB, we do a single step of denoising to obtain S*~! from S*. To
enforce the DB objective 19, we must compute F'(S?) and F'(S'~1). However, intermediate states S*~! and S* are noisy
and therefore are not appropriate to be evaluated by a reward function, which would give noisy results. Following Zhang

et al. (2024b), we define the linearization.

Fy(S*) = F4(SY)R(S°) = F4(S*)R(Full Denoiseg(S*)) 1)

where F¢, () is a scalar function that scales the reward of the estimated fully denoised state. Being a diffusion model, we can
fully denoise any noisy state albeit with a sacrifice in quality.

Key Bottlenecks At this stage, we run into the key issue that precludes the use of DB in CDR design. We need to
compute the energy of the designed CDR using a tool such as InterfaceAnalyzer in the Rosetta (Chaudhury et al.,
2010) software package. InterfaceAnalyzer requires the designed antigen-antibody structure to be complete with
side-chains. However, diffusion models generally generate only the backbone and rely on a search-based side-chain packing
algorithms such as PackRotamerMover. Both PackRotamerMover and InterfaceAnalyzer are CPU-based
utilities and it takes 10.81 seconds to process a single CDR .pdb file. Determining the energy for the two states for each item
in the mini-batch (16 in our experiments) requires ~ 93 seconds even when parallelized over a 32+ core machine, including
multiple data migration costs between the GPU, CPU and disk. This is in contrast to the millisecond-scale time required for
the forward and backward passes.

Therefore, the training runtime is dominated by the time it takes to compute the binding energy reward and training becomes
infeasible.

Neural Surrogate for Rosetta’s InterfaceAnalyzer To the best of our knowledge, a neural network alternative to
PackRotamerMover and InterfaceAnalyzer does not exist. We tried to train a transformer-based neural network
to simulate the function of InterfaceAnalyzer directly from the output of the diffusion model. However, this
neural network had very low agreement with the InterfaceAnalyzer tool (Pearson’s coefficient 0.21), which itself
is unreliable (Vreven et al., 2012). This is expected since side-chains play a central role in determining binding affinity
(Polonelli et al., 2008). Another drawback of the DB objective is the need to compute binding energy of generated CDRs
which are not guaranteed to be geometrically plausible.
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In light of our findings, we finally committed to Trajectory Balance as the only feasible objective for training AbFlowNet
despite the need to sample full trajectories.

E. Limitation

1) The Trajectory Balance objective requires fully generating a CDR, which in our setup requires 100 forward passes with
the neural network for each gradient update. 2) As the in vitro affinity data for all training complexes is not available and for
fair comparison with existing methods, we used Pyrosetta InterfaceAnalyzer which is an unreliable estimator
of binding energy. 3) Due to compute constraints, we sampled 100 CDRs per complex in Table 6.1. Sampling at higher rates
would potentially increase Top-1 metrics.
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