
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LIFTED UNIFORM QUANTIZATION FOR
EXTREME LOW-BIT LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pushing large language models to extreme low bit-widths (e.g., 2-bit) is a critical
frontier for efficient deployment, yet it presents a daunting challenge to preserving
model accuracy. Current methods are trapped in a fundamental trade-off: Vector
Quantization (VQ) maintains accuracy by learning expressive codebooks but is
crippled by its computationally expensive, non-parallelizable lookup operations.
Conversely, Uniform Quantization (UQ) is exceptionally efficient but suffers a
precipitous drop in quality at such low bit-widths. To break this impasse, we
propose Lifted Uniform Quantization (LiftUQ), a new paradigm that encodes
weights in an expanded latent space using ultra-low-bit uniform quantization (1-
bit in our practice), and then applies a trainable dimensionality reduction linear
transformation to project them into the original space, forming non-uniform code-
points without any look-up codebook. This lifted–projected representation recov-
ers and even surpasses the expressive power of vector quantization while retaining
the decoding efficiency of scalar uniform quantization. To make LiftUQ applica-
ble to arbitrary layers, we further learn a whitening transform to produce approxi-
mately independent Gaussian-like channels, then apply the same lifted–projected
encoding. LiftUQ marks a significant breakthrough in extreme low-bit quantiza-
tion. Our experiments validate that it is the first framework to bridge the long-
standing accuracy gap between uniform and vector quantization, consistently
matching or surpassing VQ performance on Llama and Qwen models—for in-
stance, suffering less than a 2.7/1.1-point accuracy degradation on Llama-3-70B
at 2/3-bit. Critically, this high accuracy is achieved with exceptional efficiency,
boosting throughput up to 6.7× over FP16 by combining the inherent speed of
uniform decoding with a lightweight linear projection. This establishes LiftUQ a
new, superior paradigm for practical quantization.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Bai & et al., 2023; Dubey & et al., 2024;
Touvron & et al., 2023; DeepSeek-AI, 2024) have become a cornerstone of modern AI, delivering
state-of-the-art performance in complex reasoning and generation tasks. However, this progress is
enabled by massive parameter counts, which impose substantial deployment challenges: models
can require massive storage and suffer significant latency bottlenecks in owing to frequent off-chip
memory accesses.

Weight-only quantization has emerged as an effective strategy to address these challenges. For ex-
ample, reducing weights to 4-bit precision reduces model size by approximately a factor of four and
proportionally reduce memory access overhead. Furthermore, advanced quantization optimization
techniques effectively mitigate the accuracy degradation typically induced by low-precision repre-
sentation. In particular, state-of-the-art uniform quantization (UQ) (Frantar et al., 2022; Ashkboos
et al., 2024; Chen et al., 2024) achieves negligible accuracy loss at 4-bit precision by employing
fine-grained quantization groups (Tseng et al., 2024a; Egiazarian et al., 2024; Liu et al., 2024a) and
channel-wise transformations (e.g., scaling, orthogonal rotations). These operations incur minimal
computational overhead, making UQ highly efficient in practice. However, UQ exhibits substantial
performance degradation at ultra-low precisions (e.g., 2-bit or below).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) UQ Codewords (b) VQ Codewords (c) LiftUQ Codewords

(d) Dequantize processing of VQ codes (e) Dequantize processing of LiftUQ codes

Figure 1: Architectural Comparison of UQ, VQ, and LiftUQ. Subplots (a-c) visualize the 2D
codeword distributions for the three methods. Uniform Quantization (a) forms a rigid, grid-like
lattice. Vector Quantization (b) learns unstructured centroids that adapt to the data distribution. In
contrast, LiftUQ (c) generates a structured yet non-uniform codebook, inheriting properties from
both. Subplots (d-e) illustrate the critical difference in their dequantization pipelines. While VQ (d)
relies on a memory-intensive and hardware-unfriendly lookup table (LUT), LiftUQ (e) employs a
computationally efficient linear transformation (a simple matrix-vector product). This fundamental
architectural advantage allows LiftUQ to achieve the expressive power of non-uniform quantization
without the significant inference overhead of VQ.

Departing entirely from scalar methods, vector quantization (VQ) offers a more accurate alternative
under such constraints. By encoding a weight vector w ∈ Rd into one of 2d·b codewords in a
learned codebook (where b is the per entry bitwidth), VQ captures inter-channel correlations and
achieves denser coverage of the representation space. Larger vector dimensions further strengthen
this effect, enabling VQ to substantially outperform UQ in ultra-low-bit regimes. Nevertheless, these
gains come at the cost of expensive decoding: the required codebook size d · 2d·b is exponentially
in d · b, creating a prohibitive cache consumption. Codebook lookups also induce irregular and
inherently sequential memory accesses. Consequently, VQ decoding is far less efficient than the
fully parallel matrix or vector operations leveraged by UQ. Recent research reports the decoding
throughput of VQ models to be highly unstable, under some circumstances even slower than the
full precision model (Liu et al., 2024a). Achieving practical performance with VQ thus relies on
extensive, platform-specific operator optimizations, adding a significant engineering burden.

To resolve this fundamental accuracy-efficiency trade-off, we propose Lifted Uniform Quantization
(LiftUQ), a new paradigm that combines the advantages of both UQ and VQ. The key insight behind
LiftUQ is that a non-uniform quantization codewords distribution, as achieved in VQ, can be esti-
mated with the linear projection of a set of simple UQ codewords defined in a higher-dimensional
space (Figure 1). This effect resembles observing a dense three-dimensional lattice of points from a
two-dimensional perspective, where the projected density appears higher at the center—mirroring a
Gaussian-like distribution (see Figure 2).

Concretely, LiftUQ represents weight vectors as learned linear projections from a simple, uniform
1-bit lattice in a higher-dimensional “lifted” space. To make this approach broadly applicable, we
introduce a learnable lightweight whitening transform that reshapes weights to be more amenable
to this projection, which can be fused into a single, efficient linear mapping at inference. The
efficient lookup-table-free decoding architecture and the non-uniform codewords generation mech-
anism form the basis of our contributions.

Our main contributions are threefold:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• A Novel Quantization Framework. We introduce LiftUQ, which generates highly expres-
sive, structured non-uniform codebooks from an efficient uniform foundation, effectively
unifying the strengths of UQ and VQ.

• A Hardware-Friendly Decoding Architecture. We replace the memory-intensive lookup-
table (LUT) bottleneck of VQ with a simple, computationally efficient linear transforma-
tion, making it significantly more suitable for GPU acceleration.

• State-of-the-Art Performance. Through extensive experiments, we demonstrate that Lif-
tUQ establishes a new state of the art, achieving the accuracy of leading VQ methods with
computational efficiency approaching that of UQ.

2 RELATED WORK

Weight-only quantization has emerged as one of the most effective strategies for deploying large
language models (LLMs) under strict memory and latency constraints.

Uniform scalar quantization (UQ) is the most widely used approach, where a floating-point weight
vector w is represented as wq · s, with wq storing low-bit integer calues and s is a floating scaling
factor. Due to the non-uniform value distribution of LLM weights, recent UQ methods introduce
lightweight preprocessing to make weights more amenable to quantization. For example, some
works group channels according to activation energy and apply group-wise quantization, prioritizing
the preservation of important channels (e.g., AWQ (Lin et al., 2024), BiLLM (Huang et al., 2024)).
When the specially treated weights are interpreted as a low-rank branch, these methods can be
adapted for quantization-error compensation using low-rank adaptation techniques (LoRA), as in
QLoRA (Dettmers et al., 2023) and FBQuant (Liu et al., 2025). Other works apply importance-aware
scaling to reduce quantization errors on sensitive weights (e.g., AWQ, SmoothQuant (Xiao et al.,
2022), OmniQuant (Shao et al., 2023), OSTQuant (Hu et al., 2025)). An alternative line of research
focuses on reshaping weight distributions to be more amenable to quantization prior to UQ. Matrix-
based transforms can make weight distributions more uniform and mitigate the impact of outliers
(e.g., QuIP#, QuIP (Chee et al., 2023), Quarot, SpinQuant (Liu et al., 2024b), AffineQuant(Ma et al.,
2024), FlatQuant(Sun et al., 2024)).

Non-uniform scalar quantization methods have improved performance by creating specialized,
non-uniform levels for individual weights. These approaches range from using data-type formats
(e.g., FP4 (Liu et al., 2023)), to leveraging data distribution quantiles (e.g., NF4 (Dettmers et al.,
2023)), or constructing levels via additive combinations of learned basis values (e.g., BCQ(Xu et al.,
2018; Park et al., 2025)). However, by operating on scalars, they inherently miss the opportunity to
model inter-dimensional correlations.

Vector quantization (VQ) compresses high-dimensional weight vectors by mapping each to its
nearest representative vector (codeword) from a finite, learned codebook K. Decoding is given by
w = K[wq] · s, where wq stores codeword indices. Compared to UQ, VQ exploits inter-element
correlations and better fits non-uniform distributions, offering superior accuracy in ultra-low-bit
regimes. However, VQ decoding is less hardware-friendly: the codebook size scales as d · 2d·b,
where d is the vector dimension and b bitwidth per entry, which imposes a large cache footprint,
and the required codebook lookups introduce irregular, sequential memory accesses. To address
these issues, recent works have focused on efficient codebook designs, such as additive codebooks
that decompose a vector into the sum of smaller codebooks (Egiazarian et al., 2024), lattice-based
quantization with compact representations (Tseng et al., 2024a). In addition, techniques proven
effective in UQ—such as linear transforms for distribution shaping or importance-based quantization
grouping (Liu et al., 2024a)—have also been integrated into VQ frameworks for advanced accuracy.

3 LIFTED UNIFORM QUANTIZATION FOR LLMS

3.1 MOTIVATION

While highly efficient, uniform quantization (UQ) is fundamentally mismatched with the non-
uniform distribution of LLM weights. Even after applying whitening transforms — which reshape
weight distributions to be approximately independent and identically distributed (i.i.d.) Gaussian

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) R2 → R1 (b) R3 → R2 (c) R4 → R2 (d) R6 → R3

Figure 2: Visualization of Codewords Generation in Lifted Uniform Quantization. Our method
generates a structured, non-uniform codebook by projecting a simple, uniform lattice from a high-
dimensional ”lifted” space onto a lower-dimensional target subspace. Specifically, the vertices of
a ds · b -dimensional hypercube (e.g., {+1,−1}ds·b) are projected via a learned transformation
M . This process effectively combines the structural simplicity of uniform quantization with the
high representational power of vector quantization. The subplots illustrate the resulting learned
codewords for different projection dimensionalities.

— a uniform grid remains a sub-optimal choice. While optimal non-uniform quantizers like Vec-
tor Quantization (VQ) or data-aware codebooks (e.g., NF4) exist, they rely on expensive lookup
tables (LUTs), creating an intractable accuracy-efficiency trade-off. This forces a choice between a
fast-but-inaccurate model (UQ) and an accurate-but-slow one (VQ).

Our key insight is that an expressive, non-uniform codebook can be procedurally generated without a
LUT. We achieve this by first representing quantization indices on a simple, uniform grid in a higher-
dimensional “ lifted ” space, and then using a learned linear projection to map these points into the
target weight space. As visualized in Figure 2, this projection transforms a simple hyper-cubic
lattice into a structured, non-uniform codebook tailored to the Gaussian distribution. This “lift-then-
project” approach, which forms the core of our LiftUQ framework, achieves the expressive power
of VQ while leveraging only efficient, hardware-friendly linear operations.

Therefore, our LiftedUQ method is composed of three core phases. In Section 3.2, we learn a
projection matrix M that optimally maps a uniform grid in a high-dimensional space to a non-
uniform grid tailored for an i.i.d. Gaussian distribution. In Section 3.3, we learn a lightweight
layer-wise whitening transformation D to convert weight distribution to i.i.d. Gaussian. Finally,
in Section 3.4, we quantize the whitened weights with the codewords generated by M so we can
perform an efficient UQ decoding: o = diag(s)Wq(MD∗aT ).

3.2 PHASE 1: TRANSFORMATION FROM LIFTED UNIFORM GRID TO SUBSPACE LATTICE

The first phase of LiftedUQ learns a transformation matrix M ∈ Rds×(ds·b) that maps a lifted
uniform grid in a high-dimensional space to a ds-dimensional vector. We refer to ds as the subspace
dimension, as it defines the dimensionality of the vector space in which the reconstructed weights
reside. The optimization problem to solve M is defined as:

M∗ = argmin
M

Ew∼W

[
min

y∈{−1,+1}ds·b

∥∥w −My
∥∥] , (1)

where W denotes the target weight distribution (approximated by a Gaussian during training), and
y indexes points from the lifted uniform grid. This implies that the nearest-neighbor rounding op-
eration min

∥∥w − My
∥∥ cannot be decoupled into independent scalar roundings, and thus exact

decoding requires enumeration of all candidate y. Because the nearest-neighbor operator is non-
differentiable, we employ a differentiable softmin approximation during training to enable back-
propagation. We obtain M via gradient-based optimization. In each iteration, we generate 1000
random Gaussian samples and minimize their reconstruction error against the nearest grid points.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We find that a larger subspace dimension ds systematically improves the encoding quality for a
Gaussian source, as it allows for a richer set of reconstruction vectors. However, this comes at the
cost of significantly increased training time, as shown in Table 1.

Table 1: Trade-off analysis for M matrix dimensions in 2-bit quantization (b=2). Training time is
for learning a single M matrix. The Shannon limit represents the theoretical minimum MSE for a
Gaussian source.

Method Int2 LiftedUQ Shannon
(ds × dr) 4x8 8x16 10x20 12x24 Limit

MSE (Gaussian, ↓) 0.119 0.0998 0.0904 0.0875 0.0867 0.0625
Training Time (↓) - 1 min 10 min 30 min 1.5 h -
Lifting Time / 1M Params (↓) - ≪1s 1s 18s 5.5 min -

The exponential growth in search space makes training a layer-specific M computationally infea-
sible. For example, using an exhaustive search over all y ∈ {+1,−1}ds·b, training a single 10x20
matrix takes 30 minutes. Applying this to each linear layer of a 7B model would extend the quan-
tization time to an impractical 100+ hours. Even with heuristic methods to prune the search space
(see Appendix Y for details), the exponential nature of the problem persists. To circumvent this, we
instead train a single, globally optimal transformation M on a standard ds-dimensional Gaussian
distribution and reuse it across all layers after applying the whitening process (Section 3.3).

For our main experiments, we use moderate dimensions, setting M ∈ R20×10for 2-bit quantization
and M ∈ R18×6 for 3-bit. Since the projection matrix M can be pre-fused with the whitening
transformation, its complexity (determined by the subspace dimension ds) introduces no additional
computational cost during inference.

A key advantage of LiftedUQ is its natural support for fractional bitwidths. Since representational
capacity is encoded along the lifted channel dimension dr = ds · b rather than by a fixed scalar
bitwidth, intermediate configurations such as M ∈ R22×10(2.2-bit) or M ∈ R25×10 (2.5-bit) are
possible. This flexibility allows for fine-grained control over the performance-memory trade-off at
deployment. For instance, it enables deploying a 70B model with 2.5-bit quantization on a single
24GB GPU—a feat infeasible with conventional uniform quantization schemes.

3.3 PHASE 2: LEARNED WHITENING TRANSFORMATION FOR EACH LAYER

In the second phase, LiftedUQ learns a lightweight whitening transformation D for each linear layer.
While prior works have employed linear transformations to improve quantization robustness—such
as scaling, rotations, or affine mappings — our whitening transform D is explicitly designed to
reshape layer weights into an approximately i.i.d. Gaussian distributions, making them directly
compatible with the LiftedUQ lattice obtained in Section 3.2.

To achieve both efficiency and representational power, we parameterize D in a decomposed form:

D = diag(s1)(P1 ⊗ P2)diag(s2) (2)
where activation multiplication by D−1 scales as O(n

√
n), significantly lower than the O(n2) cost

of dense matrix multiplication in WaT . n is the input dimension.

In this structure, s1 and s2 are diagonal matrices, performing lightweight per-channel rescaling; P1

and P2 are
√
n×

√
n matrices whose Kronecker product provides channel intermixing and whitening

ability. This design offers both computational efficiency and functional expressivity.

Specifically: (1) First Scaling s1 redistributes quantization error according to channelwise activa-
tion magnitudes. Inspired by AWQ, channels with larger activations are down-scaled to reduce their
relative quantization error. To avoid invalidating the assumption of approximately constant quanti-
zation noise energy, we initialize s1 using the relative activation variances and apply truncation to
mitigate extreme outliers. (2) Interleaved whitening P1 ⊗ P2 mixes channels to locally approxi-
mate i.i.d. Gaussian structure. We initialize P1 and P2 as orthogonal (via Hadamard matrices or
truncated–orthogonalized variants when dimension mismatch occurs), so that channel energy is pre-
served, and outliers are diffused across dimensions as in QuIP. During training, no orthogonality

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

constraint is enforced, allowing richer adaptation capacity. (3) Final Shaping s2 further refines per-
channel variance normalization, ensuring stronger isotropy with respect to the LiftedUQ lattice. In
addition, by introducing an additional degree of freedom in rescaling, s2 expands the optimization
space, which will be exploited in Section 3.4 during the joint arithmetic fusion with the mapping
matrix M .

Crucially, D is invertible by construction, ensuring that whitening and de-whitening form a re-
versible process. This reduces overfitting risk since intrinsic weight information is preserved. The
optimization objective thus becomes:

argmin
s1,P1,P2,s2

L
(
WaT −Quantste (WD)D−1aT

)
, (3)

where quantization noise is minimized under the reversible transformation. In practice, this opti-
mization is performed block-wise using standard optimizers (e.g., Adam).

This decomposed whitening transform achieves two objectives simultaneously: (i) efficient alloca-
tion of quantization error across activation-sensitive channels, and (ii) reshaping channel distribu-
tions to well-approximated i.i.d. Gaussians, thereby enabling the effective application of Phase 1
LiftedUQ grids at negligible computational and storage overhead.

3.4 PHASE 3: LATTICE QUANTIZATION AND INTRA-BLOCK CORRECTION

In the final phase, LiftedUQ integrates the learned transformations and refines model performance
through block-wise fine-tuning. Having obtained a projection matrix M from Phase 1 and a whiten-
ing transform D from Phase 2, we first quantize the whitened weights. The quantization and recon-
struction process can be formally expressed as:

(i) Whitening and Standardization: The layer weights W are first whitened and standardized to
ensure compatibility with the trained LiftedUQ lattice:

W ′
OC×IC

= diag(std(WD)−1

OC×1

) (WD
OC×IC

). (4)

(ii) Lattice Quantization: For the purpose of quantization, we view the elements of W ′ as a sequence
of C blocks, where each block is a ds-dimensional vector and C = ⌈OC·IC

ds
⌉. The standardized

weights W are quantized by finding the nearest neighbor in the LiftedUQ lattice, yielding a low-bit
representation Wq ∈ {−1,+1}C×(ds·b):

Wq = argmin
Ŵq∈{−1,+1}C×(ds·b)

∥∥∥∥ W ′
C×ds

− ŴqM
T

∥∥∥∥2
F

, C = ⌈OC ∗ IC
ds

⌉. (5)

Here, W ′
C×ds

denotes the matrix W ′ after being reshaped into a C × ds layout to align with M .

(iii) Reconstruction: The layer output can be directly computed by reconstructing the weights and
multiplying with the input activations a:

o = diag(s) · Wq
OC×IC·b

D∗aT (6)

where s = std(WD) and D∗ = MTD−1. For this to be computationally advantageous, we
structure D such that M can be merged with sub-components P−1

2 . By enforcing a constraint in
Phase 2 that s2 remains constant within each block processed by M .

This formulation is equivalent to a 1-bit uniform quantization scheme, where a low-bit matrix Wq is
down-projected via D∗ before matrix multiplication with activation a. The order of operations can
be dynamically chosen to optimize latency; for instance, computing (D∗aT ) first is highly efficient
during decoding as a has mini batchsize.

Finally, to recover performance lost during quantization, we perform block-wise fine-tuning on both
the low-bit representation Wq and the lightweight transformation matrix D. Using the Adam opti-
mizer, we minimize the reconstruction loss over a small calibration dataset for each block:

min
Wq,D∗

Ea∼Dcalib

∥∥F(Wfpa
T )−F(WqD

∗aT )
∥∥2
F
, (7)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where Dcalib is the calibration data and F is the transformer block. This local adaptation step is
critical for achieving near-lossless quantization performance. Further training details are provided
in Appendix A.

3.5 FAST AND FLEXIBLE DECODING

A key advantage of LiftedUQ is its highly efficient and flexible decoding architecture. The combined
whitening and projection transform, denoted as a single matrix D, can be dynamically applied based
on the inference workload, ensuring minimal overhead. There are two primary modes of operation:

1. Apply to Activations First (Wq(DA)): This approach is ideal for memory-bound sce-
narios such as autoregressive decoding with small batch sizes, as it avoids materializing the
full-precision dequantized weights.

2. Apply to Weights First ((WqD)A): This mode is better suited for compute-bound sce-
narios like large-batch prefilling, where the one-time cost of dequantizing the weights is
amortized over a large number of input tokens.

Table 7 provides a formal breakdown of the asymptotic computational and storage costs per layer,
confirming the efficiency of both modes. Considering a typical 8192×8192 layer with 2-bit quanti-
zation in a Wq(DA) setting, the additional FLOPs constitute a mere 3.3% overhead relative to the
main GEMM operation, while the parameter storage adds only a 0.6% overhead.

4 EXPERIMENTS

We present a comprehensive evaluation of Lifted Uniform Quantization (LiftUQ) to demonstrate its
advantages in compression quality, inference efficiency, and flexibility. In Section 4.1, we show that
LiftUQ outperforms state-of-the-art uniform (UQ) and vector quantization (VQ) methods, particu-
larly in the most challenging 2- to 3-bit weight-only regime. We highlight LiftUQ’s native support
for fractional bit-widths in Section 4.2, which enables a Pareto-optimal trade-off between model size
and performance. Section 4.3, we validate the inference efficiency of LiftUQ, demonstrating supe-
rior decoding throughput compared to VQ-based approaches. Finally, we discuss the limmitation of
our method in Section 4.5.

4.1 MAIN RESULTS ON COMPRESSION QUALITY

Experimental Setup. We evaluate LiftUQ on the Llama-2 and Llama-3 families, spanning five dif-
ferent model sizes, to demonstrate its broad applicability. Our evaluation focuses on the ultra-low
2-bit and 3-bit weight-only quantization regimes. We report perplexity (PPL) on the WikiText-
2(Merity et al., 2016) and C4(Raffel et al., 2020) validation sets with a context length of 2048.
Additionally, we assess zero-shot accuracy on five common-sense reasoning benchmarks: ARC-c,
ARC-e(Clark et al., 2018), HellaSwag(Zellers et al., 2019), PIQA(Bisk et al., 2020), and Wino-
Grande(Sakaguchi et al., 2021).

Post-quantization Fine-tuning. Post-quantization fine-tuning has emerged as a highly effective
technique for maximizing the performance of low-bit models. Its efficacy is demonstrated by its
adoption across top-performing methods, including, EfficientQAT (EQAT), QuIP#, AQLM, and
VPTQ. This paradigm strikes an optimal balance between the simplicity of Post-Training Quantiza-
tion (PTQ) and the high performance of Quantization-Aware Training (QAT), as it only requires fine-
tuning quantization-related parameters (e.g., scales, transformations) on a small calibration dataset
(1-16M tokens). To unlock the full potential of our method, we adopt this protocol for LiftUQ. Con-
sequently, all results presented for LiftUQ and the baselines reflect the performance after applying
this fine-tuning step, unless specified otherwise. Further details are provided in the Appendix B.
And the sensitivity of our method to the calibration data is discussed in Appendix C.

Main Results. Table 2 presents the PPL results on WikiText-2 and C4, while Table 3 summarizes
the zero-shot accuracy for 2-bit quantization across all models (3-bit results are in the appendix). In
these results, LiftUQ demonstrates a substantial performance gap over leading uniform quantization
(UQ) methods. Even when operating at a coarser per-channel granularity, LiftUQ significantly out-
performs group-wise (g64) methods like OmniQ and EQAT. For instance, on the Llama3-70B model,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LiftUQ improves the average PPL by 0.74 and average accuracy by 4.71% over EQATg64. Criti-
cally, this superior performance is achieved with an 11% smaller model footprint with per-channel
quantization, highlighting the efficiency of our lifted encoding scheme. When compared against
state-of-the-art vector quantization (VQ) methods, which are renowned for their high compression
quality, LiftUQ consistently achieves a slight yet noticeable advantage. While QuIP#, AQLM, and
VPTQ exhibit competitive and comparable performance after fine-tuning, LiftUQ surpasses them
across nearly all models and evaluation metrics, establishing a new state of the art in ultra-low-bit
weight quantization. Furthermore, LiftUQ outperforms the prior work PTQ1.61 (Zhao et al., 2025)
in the 1.58-bit setting in Table 8. We also provide an wider experimental evaluation in Appendix I.

Table 2: Llama-2 and Llama-3 perplexity (↓) on Wikitext2 and C4, context length 2048.

2-7 2-13 2-70 3-8 3-70
Method Type Bits W2 C4 W2 C4 W2 C4 W2 C4 W2 C4

FP16 - - 5.47 6.97 4.88 6.47 3.32 5.52 6.14 8.88 2.85 6.73

GPTQ UQ 2.00 NaN NaN Inf Inf 25.30 48.82 Inf - 11.90 -
GPTQ-g128 UQ 2.13 50.75 36.76 43.84 23.07 NaN NaN - - - -

Quarot UQ 2.00 22.07 - 10.41 - 5.60 - - - - -
OmniQ-g64 UQ 2.25 9.62 12.72 7.56 10.05 6.11 7.68 - - - -
EQAT-g64 UQ 2.25 6.86 8.50 5.96 7.59 4.52 6.38 9.41 12.77 6.07 9.23

LiftUQ-noFT UQ 2.02 6.97 8.53 5.90 5.74 4.24 6.19 9.60 13.12 5.85 8.82
LiftUQ UQ 2.02 6.58 8.21 5.66 7.35 4.13 6.09 8.61 11.97 5.31 8.51

AQLM-noFT VQ 1.97-2.07 7.24 8.96 6.06 7.80 4.49 6.36 - - - -
AQLM VQ 1.97-2.07 6.61 8.28 5.72 7.44 4.19 6.13 - - - -
QuIP# VQ 2.00 6.66 8.35 5.74 7.45 4.16 6.12 - - - -
VPTQ VQ 2.02-2.08 6.57 8.27 5.69 7.41 4.17 6.13 9.29 - 5.60 8.82

GPTQ UQ 3.00 8.37 9.81 6.44 8.02 4.82 6.57 - - - -
GPTQ-g128 UQ 3.13 6.29 7.89 5.42 7.00 3.85 5.85 9.58 11.66 5.25 8.64

Quarot UQ 3.00 6.09 - 5.37 - 3.72 - - - - -
EQAT-g128 UQ 3.13 5.81 7.34 5.12 6.73 3.61 5.71 7.09 10.06 4.19 7.43

UniQ NUQ - - - - - - - 6.95 - 4.24 -
LiftUQ UQ 3.02 5.75 7.31 5.09 6.71 3.35 5.67 6.94 9.96 3.83 7.34
QuIP# VQ 3.00 5.79 7.32 5.10 6.72 3.56 5.67 - - - -

VPTQ# VQ 3.01-3.03 5.82 7.33 5.12 6.70 3.55 5.67 6.97 10.11 3.81 -

Table 3: Llama-2 and Llama-3 accuracy(↑) on 2-bit quantization.

Model Method type bits ArcC ArcE HellaSwag PiQA WinoGrande Avg.Acc

2-7

FP16 - - 43.52 76.26 57.16 78.07 69.22 64.85
AutoRound-g128 UQ 2.13 32.25 65.99 40.28 72.96 61.01 54.50

EQAT-g64 UQ 2.25 36.86 70.96 51.58 75.30 65.98 60.14
QuIP# VQ 2.00 37.88 71.84 50.84 74.16 65.67 60.61
VPTQ VQ 2.02 36.95 69.53 50.33 74.32 65.04 59.23
LiftUQ UQ 2.02 37.46 70.41 53.23 75.57 66.85 60.70

2-13

FP16 - - 48.29 79.42 60.07 79.05 72.22 67.81
AutoRound-g128 UQ 2.13 38.57 71.17 53.35 76.17 64.33 60.72

EQAT-g64 UQ 2.25 41.89 74.83 55.27 77.04 68.36 63.48
QuIP# VQ 2.00 42.92 75.72 56.53 77.97 69.06 64.44
VPTQ VQ 2.02 44.03 76.94 56.76 78.13 68.27 64.82
LiftUQ UQ 2.02 43.69 76.30 57.09 77.91 70.01 65.00

2-70

FP16 - - 54.44 82.70 64.77 82.15 77.98 72.41
AutoRound-g128 UQ 2.13 46.59 78.37 59.65 79.00 74.90 67.70

EQAT-g64 UQ 2.26 50.77 80.13 61.78 80.14 74.59 69.48
QuIP# VQ 2.00 52.65 81.90 62.86 81.39 75.77 70.91
VPTQ VQ 2.02 47.70 77.10 62.98 77.10 80.3 74.98
LiftUQ UQ 2.02 50.94 80.51 61.83 80.52 77.43 70.25

3-8

FP16 - - 50.43 80.09 60.17 79.60 72.61 68.58
EQAT-g64 UQ 2.25 37.03 71.17 51.86 76.03 67.72 60.76

VPTQ VQ 2.07 36.91 71.03 52.12 75.12 65.92 60.22
LiftUQ UQ 2.02 40.87 74.33 53.87 76.55 68.03 62.73

3-70

FP16 - - 60.41 86.99 66.36 82.37 80.51 75.33
EQAT-g64 UQ 2.25 49.06 77.40 61.60 77.37 74.03 67.89

VPTQ VQ 2.02 52.65 81.86 61.71 80.36 77.90 70.90
LiftUQ UQ 2.02 56.14 84.30 62.31 81.72 78.53 72.60

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2 FRACTIONAL BIT-WIDTHS AND THE PARETO FRONTIER

A key advantage of LiftUQ is its native ability to support fractional bit-widths. This stems from its
design of encoding information in the dimensionality of the lifted space rather than rigidly in the
bit-width of the quantized elements. For instance, by setting the dimensionality expansion factor to
16
7 / 197 alongside 1-bit base quantizers, we can construct an effective 2.3/2.7-bit representation.

Figure 3: Fractional Bit-widths Create a New Pareto Frontier. We define the ideal 4-bit model as a
4-bit quantized model that exhibits no accuracy degradation compared to FP16.

This capability allows us to address a fundamental limitation in model deployment: LLMs are typ-
ically released in discrete, power-of-two sizes (e.g., 3B, 7B, 14B), making it difficult to find the
optimal model for a specific memory budget. Following prior work (Egiazarian et al., 2024), we
define a model as Pareto-optimal if it achieves the highest performance for a given storage footprint.

Our results demonstrate that LiftUQ enables larger models to dominate the Pareto frontier across
a wide range of memory budgets. As shown in Table 2, the 2-bit LiftUQ version of Llama-2-
13B surpasses the performance of the full-precision Llama-2-7B. Assuming a 4-bit quantization of
Llama-2-7B is required to approximate its FP16 performance (a common baseline), our finding im-
plies that the Pareto-optimal models in the 3.5 GB to 13 GB storage range are exclusively occupied
by differently quantized versions of Llama-2-13B, as illustrated in Figure 3. We further validate
this principle on the Qwen-2.5 series. This suggests that for achieving optimal performance under a
specific memory constraint, quantizing a larger model with LiftUQ’s fractional bit-widths is a more
effective and significantly more economical strategy than training smaller, discrete FP16 models
from scratch.

4.3 EFFICIENCY

Despite achieving comparable or superior compression quality, LiftUQ presents significant effi-
ciency advantages over VQ-based methods in both training and inference. The training process for
LiftUQ is markedly resource-efficient. Quantizing a 70B model requires approximately 100 hours
on a single A100-80GB GPU. This computational budget is less than one-third of that reported
for leading VQ methods like AQLM, substantially lowering the barrier for applying ultra-low-bit
quantization.

For inference, LiftUQ’s lookup-table-free architecture delivers considerable speed benefits. Lif-
tUQ’s decoding complexity is merely O(d1.5), which is less than the complexity of matrix-vector
multiplication(GEMV). In our Triton-based implementation followed with BitBLAS (Wang et al.,
2024) mixed-precision GEMV kernel, this approach yields up to a 6.69x throughput increase Table 5
compared to fp16 on GTX 4090D GPU. We note that this speedup is achieved without CUDA-level
optimization, suggesting that further performance gains are attainable.

Vector Quantization (VQ) relies on decoding with at least O(d2) complexity and a codebook that
grows exponentially in size, severely limiting its scalability due to cache capacity constraints. Con-
sequently, VQ’s decoding overhead is asymptotically on par with the GEMV operation itself, cre-
ating a significant bottleneck that fundamentally lowers its maximum achievable speedup from the
theoretical limit to a much smaller constant. This architectural difference results in a vast perfor-
mance gap, as shown in Tables 4 and 5. Even with a minimal 28×8 bytes codebook, VQ’s decoding
time escalates rapidly with increasing matrix size. Conversely, LiftUQ’s latency remains consis-
tently low, with measured performance reaching 6.69x—nearing the 8x theoretical memory-bound
speedup for 2-bit decoding. Critically, a VQ model with such a minimal codebook yields accuracy
far inferior to LiftUQ.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: VQ decoding speed-up with a minimal
28 × 8 bytes codebook, bsz=1.

ic×oc 4096×4096 4096×14336 8192×8192 8192×28672

Fp16 35.6us 120.9us 138.6us 484.4us
Look-up 10.3us 40.2us 36.8us 123.6us
Full time 19.1us 57.9us 56.7us 193.7us
Speed-up 1.86x 2.09x 2.44x 2.50x

Table 5: LiftUQ reaching 6.69x speed-up on 70B
FFN layer at decoding stage.

ic×oc 4096×4096 4096×14336 8192×8192 8192×28672

Fp16 35.6us 120.9us 138.6us 484.4us
Transform 5.3us 5.3us 8.4us 8.4us
Full time 14.1us 23.0us 28.2us 71.8us
Speed-up 2.47x 5.26x 4.91x 6.69x

4.4 ABLATION STUDY

To validate the effectiveness of our proposed whitening transform and the LiftedUQ framework, we
conduct a series of ablation studies on the Llama-2-7B model. We first analyze the impact of the
initialization strategy for the whitening transform components (P1, P2, s1, s2). Our findings indicate
that a structured initialization is not merely beneficial but critical for training stability. Multiple
attempts using random or identity matrices for the transformations P1 and P2 consistently resulted in
numerical instability and training divergence. In contrast, stable convergence was reliably achieved
only when initializing P1 and P2 with Hadamard matices.

We then quantitatively analyze the contribution of each component. The results, summarized in
Table 9, demonstrate that each element provides a significant and cumulative contribution to the
final performance. Furthermore, to showcase the scalability of our approach, we experimented with
a larger projection matrix ( M ∈ R16×32 for 2-bit). This configuration further reduced the perplexity
to 6.50, confirming that LiftedUQ’s performance can be systematically improved by increasing the
subspace dimension.

4.5 WHERE IS THE LIMITATION OF LIFTUQ?

Figure 4: As the ds increases, the
MSE steadily decreases, eventually ap-
proaching an asymptotic limit.

The primary limitation of LiftedUQ is the performance gap
to the theoretical Shannon limit. Our analysis shows that
LiftedUQ’s achievable MSE for 2-bit quantization asymp-
totes to approximately 0.08 (Figure 4), whereas the Shan-
non limit is 0.0625. This translates to an information-
theoretic gap of 0.019 to 0.07 bits, representing the poten-
tial headroom for a theoretically perfect—though perhaps
undiscovered—2-bit quantizer.

However, this limitation is uniquely offset by LiftedUQ’s
native support for fractional bitwidths, which sidesteps the
rigidity of integer-bit schemes. This flexibility is critical
for achieving Pareto optimality, enabling, for instance, the
deployment of a 70B model on a single 24GB GPU via
2.4-bit quantization—a feat infeasible for standard integer
methods. Such a configuration would likely outperform even a hypothetical, Shannon-limit 2-bit
quantizer. Thus, LiftedUQ is exceptionally effective at maximizing model performance within real-
world hardware constraints, even if it does not reach the absolute theoretical limit for a fixed integer
bitwidth. Accordingly, we discuss and compare our method against the sota vector quantizer, QTIP,
in Appendix G.

5 CONCLUTION

In this work, we introduced Lifted Uniform Quantization, a novel framework that resolves the funda-
mental accuracy-efficiency trade-off in extreme low-bit LLM compression. LiftUQ bridges the gap
between Uniform Quantization and Vector Quantization by representing weights as a learned linear
projection from a lifted, uniform lattice, thereby achieving VQ-level accuracy without its expensive
lookup-table overhead. Our extensive experiments validate that LiftUQ establishes a new state of
the art, consistently matching top VQ methods while delivering up to 6.7× higher throughput than
FP16 execution. By replacing the bottlenecks of VQ with a hardware-friendly linear architecture,
LiftUQ provides a robust and scalable foundation for the future of extreme model compression.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included comprehensive details of our method-
ology, experimental setup, and all hyperparameters in the main paper and its appendices. We will
release our source code and quantized model checkpoints to facilitate verification and future work.
An anonymized version of the code and checkpoints will be made available during the rebuttal pe-
riod, and a public release will follow upon acceptance of the paper.

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan Al-
istarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in ro-
tated llms. ArXiv, abs/2404.00456, 2024. URL https://api.semanticscholar.org/
CorpusID:268819214.

Jinze Bai and et al. Qwen technical report. ArXiv, abs/2309.16609, 2023. URL https://api.
semanticscholar.org/CorpusID:263134555.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36:4396–4429, 2023.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

DeepSeek-AI. Deepseek-v3 technical report. ArXiv, abs/2412.19437, 2024. URL https://api.
semanticscholar.org/CorpusID:275118643.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Abhimanyu Dubey and et al. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL
https://api.semanticscholar.org/CorpusID:271571434.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. ArXiv, abs/2210.17323, 2022. URL
https://api.semanticscholar.org/CorpusID:253237200.

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe
Jiang, and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal
and scaling transformations for better distribution fitting. ArXiv, abs/2501.13987, 2025. URL
https://api.semanticscholar.org/CorpusID:275907083.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

11

https://api.semanticscholar.org/CorpusID:268819214
https://api.semanticscholar.org/CorpusID:268819214
https://api.semanticscholar.org/CorpusID:263134555
https://api.semanticscholar.org/CorpusID:263134555
https://api.semanticscholar.org/CorpusID:275118643
https://api.semanticscholar.org/CorpusID:275118643
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:253237200
https://api.semanticscholar.org/CorpusID:275907083


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong, and Kwang-Ting Cheng. Llm-fp4: 4-bit
floating-point quantized transformers. arXiv preprint arXiv:2310.16836, 2023.

Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and Mao
Yang. Vptq: Extreme low-bit vector post-training quantization for large language models. arXiv
preprint arXiv:2409.17066, 2024a.

Yijiang Liu, Hengyu Fang, Liulu He, Rongyu Zhang, Yichuan Bai, Yuan Du, and Li Du. Fbquant:
Feedback quantization for large language models. ArXiv, abs/2501.16385, 2025. URL https:
//api.semanticscholar.org/CorpusID:275932200.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Kr-
ishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm
quantization with learned rotations. ArXiv, abs/2405.16406, 2024b. URL https://api.
semanticscholar.org/CorpusID:270062819.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei
Chao, and Rongrong Ji. Affinequant: Affine transformation quantization for large language
models. ArXiv, abs/2403.12544, 2024. URL https://api.semanticscholar.org/
CorpusID:268531127.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Seungcheol Park, Jeongin Bae, Beomseok Kwon, Minjun Kim, Byeongwook Kim, Se Jung Kwon,
U Kang, and Dongsoo Lee. Unifying uniform and binary-coding quantization for accurate com-
pression of large language models. arXiv preprint arXiv:2506.03781, 2025.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqiang Li, Kaipeng
Zhang, Peng Gao, Yu Jiao Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated
quantization for large language models. ArXiv, abs/2308.13137, 2023. URL https://api.
semanticscholar.org/CorpusID:261214575.

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. arXiv preprint
arXiv:2410.09426, 2024.

Hugo Touvron and et al. Llama 2: Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288, 2023. URL https://api.semanticscholar.org/CorpusID:
259950998.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024a.

Albert Tseng, Qingyao Sun, David Hou, and Christopher M De Sa. Qtip: Quantization with trellises
and incoherence processing. Advances in Neural Information Processing Systems, 37:59597–
59620, 2024b.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng, Ziming
Miao, Fan Yang, Ting Cao, et al. Ladder: Enabling efficient {Low-Precision} deep learning com-
puting through hardware-aware tensor transformation. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pp. 307–323, 2024.

12

https://api.semanticscholar.org/CorpusID:275932200
https://api.semanticscholar.org/CorpusID:275932200
https://api.semanticscholar.org/CorpusID:270062819
https://api.semanticscholar.org/CorpusID:270062819
https://api.semanticscholar.org/CorpusID:268531127
https://api.semanticscholar.org/CorpusID:268531127
https://api.semanticscholar.org/CorpusID:261214575
https://api.semanticscholar.org/CorpusID:261214575
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. ArXiv, abs/2211.10438, 2022.
URL https://api.semanticscholar.org/CorpusID:253708271.

Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hong-
bin Zha. Alternating multi-bit quantization for recurrent neural networks. arXiv preprint
arXiv:1802.00150, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jiaqi Zhao, Miao Zhang, Ming Wang, Yuzhang Shang, Kaihao Zhang, Weili Guan, Yaowei Wang,
and Min Zhang. Ptq1. 61: Push the real limit of extremely low-bit post-training quantization
methods for large language models. arXiv preprint arXiv:2502.13179, 2025.

13

https://api.semanticscholar.org/CorpusID:253708271


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS FOR INTRA-BLOCK CORRECTION

This appendix details the training procedure for the block-wise correction phase described in Sec-
tion 3.4. The goal of this phase is to correct for quantization errors by jointly optimizing the low-bit
weights Wq and the transformation matrix D∗.

Two primary strategies exist for post-quantization correction. The first, based on the Hessian matrix,
involves adaptively rounding weight vectors (Frantar et al., 2022; Tseng et al., 2024a). However, this
class of methods is impractical for our framework due to the prohibitive computational cost of the
nearest-neighbor search required to determine the set of valid rounding candidates for each vector
in our lattice.

Consequently, we adopt a more practical and effective approach: direct fine-tuning using gradient
descent (Egiazarian et al., 2024; Chen et al., 2024). This method, proven viable in prior work, allows
us to optimize both D∗ and Wq simultaneously. Since Wq consists of discrete values, we employ
the Straight-Through Estimator (STE) to approximate gradients during backpropagation.

For the correction process, we constructed a calibration dataset by randomly selecting 4,096 samples
from the RedPajama dataset, with each sample having a sequence length of 2048 tokens. From this
set, 128 samples were held out as a validation set. We used the Adam optimizer to minimize the
Mean Squared Error (MSE) loss between the outputs of the quantized layer and the original full-
precision layer. The learning rate for the transformation parameters D∗ was set to 1× 10−3 across
all models. For the Wq , we used a learning rate of 2 × 10−5 for models between 3B and 14B
parameters, and a reduced rate of 1 × 10−5 for the 70B model. The entire training process was
conducted for 2 epochs.

B TRAINING DETAILS FOR END TO END FINE-TUNE

To further enhance model performance and globally align the quantization parameters, we perform
an optional end-to-end fine-tuning step. The effectiveness of this approach for adjusting quantization
parameters has been validated by several prior works (Tseng et al., 2024a; Egiazarian et al., 2024;
Chen et al., 2024; Liu et al., 2024a).

This fine-tuning process optimizes the continuous parameters of our framework—specifically, the
scaling parameters and the components of the transformation matrix D—across all layers simulta-
neously. Unlike the layer-wise correction phase, this step minimizes the standard language modeling
loss (i.e., Cross-Entropy) over the entire model.

For training, we used a dataset of 4,096 samples from RedPajama, each with a sequence length of
4096. We employed the Adam optimizer and trained for a single epoch. A differential learning
rate scheme was applied: the learning rate for the quantization scaling parameters was set to 1 ×
10−5, while the transformation parameters used a higher rate of 3 × 10−4. A significant advantage
of this approach is its remarkable memory efficiency. Since the fine-tuning is performed on the
already quantized model, the weights remain in their low-bit format throughout the process. This
dramatically reduces the memory footprint, enabling us to fine-tune the entire 70B model on a single
80GB A100 GPU—a task that is infeasible for its full-precision counterpart.

C SENSITIVITY TO CALIBRATION DATA

To investigate the sensitivity of our fine-tuning process to the choice of calibration data, we con-
ducted a comprehensive ablation study. We varied the calibration dataset’s size, domain, and se-
quence length, and evaluated the impact on Llama-2-7B. For these experiments, we used a 10x20
M -matrix and only performed the intra-block correction (without end-to-end fine-tuning) to isolate
the specific effect of the calibration data. The results are presented in Table 6.

Our findings from this study provide two key insights:

Robustness to Data Size and Sequence Length. The results indicate that while performance
improves as the calibration data size increases from 1M to 8M tokens, there are clear diminishing
returns beyond approximately 4M tokens. Similarly, reducing the sequence length from 2048 to

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on the calibration data for 2-bit Llama-2-7B. The default configuration used
in our main experiments is highlighted in bold.

Calibration Set Config. (Samples × SeqLen) WikiText-2 PPL (↓) C4 PPL (↓) Avg. 0-shot Acc. (↑)

RedPajama (Small) 512 × 2048 ( 1M tokens) 7.08 8.66 60.03
RedPajama (Medium) 1024 × 2048 ( 2M tokens) 7.00 8.59 60.55
RedPajama (Large) 2048 × 2048 ( 4M tokens) 6.96 8.53 60.68
RedPajama (Default) 4096 × 2048 ( 8M tokens) 6.97 8.53 60.70
RedPajama (Short Seq) 4096 × 512 ( 2M tokens) 6.98 8.53 60.67

WikiText-2 (In-Domain) 2048 × 2048 ( 4M tokens) 6.72 8.65 60.24

512 while keeping the total token count constant has a minimal impact on the final performance.
Our choice of 8M tokens (4096 samples × 2048 sequence length) for the main experiments was
made to ensure a fair comparison with other methods, such as AQLM and EfficientQAT.

Impact of Domain Shift. As expected, calibrating on a domain-matched dataset (WikiText-2)
yields the best perplexity on that specific in-domain benchmark (6.72 PPL), as shown in Table 6.
This specialization, however, comes at the cost of slightly degraded performance on out-of-domain
benchmarks like the C4 dataset and zero-shot tasks. Using a large, general-purpose corpus like
RedPajama provides a more balanced and robust performance across all evaluation metrics.

D DECODING OVERHEAD

Table 7: Asymptotic complexity and storage analysis per layer of size N ×M at 2bit quantization.

Method Main GEMM FLOPs Additional FLOPs Weight Storage Additional Storage

FP16 2NM - 16NM -

LiftUQ (decoding) 2NM O(dsN + d2
sN) bNM O(d2

sN)
(DA first, batch=1)
LiftUQ (prefill) 2kNM O((dsN + d2

sN)k) bNM O(d2
sN)

(WqD first, batch=k)

Note: k is batch size, b is bitwidth, ds is subspace dimension.

E COMPARISON ON 1.58-BIT BASELINE.

Table 8: Comparison on 1.58-bit Baseline.

2-7 2-13 3-8
Method Type Bits W2↓ C4↓ Avg.Acc↑ W2↓ C4↓ Avg.Acc↑ W2↓ C4↓ Avg.Acc↑

FP16 - - 5.47 6.97 64.85 4.88 6.47 67.81 6.14 8.88 68.58
PTQ1.61 UQ 1.61 12.70 17.73 44.14 9.74 13.64 49.21 22.90 33.82 43.99
LiftUQ UQ 1.62 7.71 9.55 56.19 6.47 8.27 60.54 11.43 15.13 56.66

F ABLATION STUDY ON THE COMPONENTS OF OUR WHITENING TRANSFORM
AND LIFTEDUQ FRAMEWORK

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Ablation study on the components of our whitening transform and LiftedUQ framework,
evaluated on Llama-2-7B. Each column represents the addition of a new component to the configu-
ration of the preceding column.

Configuration P1+P2 + a1 + a2 + 10× 20 M +E2E FT 16× 32 M + E2E FT

WikiText-2 PPL (↓) 8.76 8.28 7.77 6.96 6.58 6.50

G COMPARISON WITH QTIP

To contextualize the performance and architectural choices of LiftedUQ, we provide a detailed
comparison with QTIP Tseng et al. (2024b), a state-of-the-art method in vector quantization (VQ).
While both methods aim for extreme low-bit quantization, they operate under fundamentally differ-
ent paradigms. QTIP advances the state-of-the-art within traditional VQ by employing Trellis Coded
Quantization (TCQ) to optimize for rate-distortion performance. In contrast, LiftedUQ forges a new
path by unifying the strengths of Uniform Quantization (UQ) and VQ. It employs a lift-then-project
technique to deliver VQ-level accuracy and fractional bitwidth flexibility, all while preserving the
simple and hardware-friendly decoding architecture of UQ.

Our comparison focuses on two critical aspects: (1) rate-distortion performance and flexibility, and
(2) hardware efficiency and practical throughput.

G.1 RATE-DISTORTION PERFORMANCE AND FLEXIBILITY

While QTIP’s use of TCQ allows it to approach the Shannon limit more closely for a fixed integer
bitwidth, a deeper analysis reveals LiftedUQ’s unique advantages in flexibility and practical perfor-
mance.

Rate-Distortion Analysis. Table 10 presents a rate-distortion analysis for various methods on a
Gaussian source (σ2 = 1). For strict 2-bit quantization, QTIP’s MSE (0.0733) is indeed closer to the
Shannon limit (0.0625) than our baseline LiftedUQ configurations. We observe a strong correlation
between this theoretical MSE and the empirical model performance (Perplexity on Llama-2-7B),
validating the relevance of this analysis.

Table 10: Rate-distortion analysis for quantizing a Gaussian source (σ2 = 1) at approximately 2 bits.
”Equivalent Bits” are derived from MSE via the rate-distortion function R(D) = 0.5 log2(1/D).

Method Config. MSE (↓) Equiv. Bits (↑) PPL, Llama2-7B (↓)
Integer Quant. 2-bit 0.119 1.535 -
QuIP# Tseng et al. (2024a) E8 Lattice 0.089 1.745 6.66

LiftedUQ (Ours) 10x20 (2.0-bit) 0.0873 1.759 6.59
LiftedUQ (Ours) 16x32 (2.0-bit) 0.0835 1.791 6.51
QTIP Tseng et al. (2024b) TCQ (L=16) 0.0733 1.885 6.28
LiftedUQ (Ours) 15x32 (2.13-bit) 0.0696 1.922 6.23
LiftedUQ (Ours) 10x25 (2.5-bit) 0.0453 2.230 5.99
Shannon Limit 2-bit 0.0625 2.000 -

Flexibility and Pareto-Optimality. The key advantage of LiftedUQ is its native support for frac-
tional bitwidths, a capability not present in QTIP. As demonstrated in Table 10, by slightly adjusting
the lifted dimension (e.g., to a 15x32 config., effective 2.13 bits), LiftedUQ achieves an MSE of
0.0696, which not only matches but surpasses 2-bit QTIP. This flexibility is crucial for real-world
deployment. For example, when deploying a 70B model on a 24GB GPU, QTIP is constrained to a
2-bit representation. LiftedUQ, however, can be configured to use 2.5 bits to fully utilize the avail-
able memory, operating at a much more favorable point on the rate-distortion curve (MSE 0.0453)
and delivering a Pareto-optimal solution that would significantly outperform 2-bit QTIP.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G.2 HARDWARE EFFICIENCY AND PRACTICAL THROUGHPUT

A key differentiator of LiftedUQ is its inference efficiency, which stems from a fundamentally more
hardware-friendly architecture.

Architectural Comparison. As detailed in Table 11, LiftedUQ’s decoding is activation-centric,
relying on a simple, highly parallelizable matrix-vector product (GEMV-like). In contrast, QTIP’s
decoding is weight-centric and far more complex, involving computationally intensive transforms
and non-linear decoding steps that are ill-suited for modern GPU architectures.

Table 11: Asymptotic decoding complexity comparison for a D ×D weight matrix.

Method Core Operation Complexity (on weights) Hardware-Friendly?
LiftedUQ Linear transforms (GEMV-like) (Applied to activations) Yes
QTIP Hadamard + Non-linear codes O(D2 logD +D2) No

Empirical Throughput. This architectural difference translates directly into a massive perfor-
mance advantage. We configured LiftedUQ to a 2.13-bit setup for a fair accuracy comparison with
2-bit QTIP. As shown in Table 12, the results are striking: even on a less powerful consumer-grade
GPU, LiftedUQ achieves 12% higher throughput. This is particularly significant as QTIP relies
on heavily optimized custom CUDA kernels, whereas our LiftedUQ implementation uses a simple
PyTorch and BitBLAS backend. This highlights not only LiftedUQ’s superior performance but also
its ease of deployment and platform-agnostic efficiency.

Table 12: End-to-end throughput (tokens/sec) on Llama-2-70B (batch size = 1).

Method (Bitwidth) Device Throughput (tok/s)
QTIP ( 2.0-bit) RTX 6000 Ada 23.5
LiftedUQ ( 2.13-bit) RTX 4090D 26.4
Note: QTIP data is from their official repository. Our result is on an RTX 4090D ( 20% less compute).

In summary, while we acknowledge QTIP’s excellent theoretical compression, we argue that Lifte-
dUQ offers a more practical and compelling solution for real-world LLM deployment. It achieves
competitive or superior accuracy through its flexible fractional bitwidths, while delivering signifi-
cantly higher inference throughput due to its hardware-native, UQ-based architecture. This unique
combination of accuracy, efficiency, and flexibility positions LiftedUQ as a powerful and practical
paradigm for extreme low-bit quantization.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

H FULL QUANTIZATION RESULT.

Table 13: Llama-2 and Llama-3 accuracy(↑) on 3-bit quantization.

Model Method type bits ArcC ArcE HellaSwag PiQA WinoGrande Avg.Acc

2-7

FP16 - - 43.52 76.26 57.16 78.07 69.22 64.85
QuIP# VQ 3.00 41.89 74.62 55.85 77.04 68.19 63.52
VPTQ VQ 3.02 39.3 69.1 54.9 77.3 68.0 61.70
LiftUQ UQ 3.02 41.02 75.07 56.57 77.89 67.97 63.71

2-13

FP16 - - 48.29 79.42 60.07 79.05 72.22 67.81
QuIP# VQ 3.00 44.62 77.90 58.26 78.07 72.45 66.26
VPTQ VQ 3.03 46.50 78.83 58.50 78.18 69.85 66.37
LiftUQ UQ 3.02 46.25 77.99 59.16 78.84 71.11 66.67

2-70
FP16 - - 54.44 82.70 64.77 82.15 77.98 72.41
QuIP# VQ 3.00 55.89 82.11 64.22 82.21 76.24 72.13
LiftUQ UQ 3.02 54.61 82.58 63.98 81.50 77.11 71.96

3-8
FP16 - - 50.43 80.09 60.17 79.60 72.61 68.58
VPTQ VQ 3.03 44.80 78.45 57.85 78.78 71.74 66.32
LiftUQ UQ 3.02 46.59 78.83 58.42 78.73 73.95 67.30

3-70

FP16 - - 60.41 86.99 66.36 82.37 80.51 75.33
AWQ-g128 UQ 3.13 58.36 84.51 64.26 82.26 78.85 73.65
EPTQ-g128 UQ 3.13 55.12 83.12 65.53 80.52 77.82 72.42

LiftUQ UQ 3.02 58.87 85.86 65.32 82.43 78.77 74.25

Table 14: Llama-2 and Llama-3 accuracy(↑) on 3-bit quantization.

Model Method type bits ArcC ArcE HellaSwag PiQA WinoGrande Avg.Acc

2-7
FP16 - - 43.52 76.26 57.16 78.07 69.22 64.85

PTQ1.61 UQ 1.61 26.45 56.86 35.75 63.22 52.25 44.14
LiftUQ UQ 1.62 32.94 65.82 48.55 72.69 60.93 56.19

2-13
FP16 - - 48.29 79.42 60.07 79.05 72.22 67.81

PTQ1.61 VQ 3.03 26.45 56.86 60.32 66.54 55.88 49.21
LiftUQ UQ 3.02 36.09 69.74 53.59 76.01 67.25 60.54

3-8
FP16 - - 50.43 80.09 60.17 79.60 72.61 68.58
VPTQ VQ 1.61 23.04 46.17 34.71 63.22 52.80 43.99
LiftUQ UQ 1.62 34.13 64.98 47.81 73.39 62.98 56.66

Table 15: LiftUQ Results on Qwen2.5 Models

Model Bits W2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Avg.Acc↑

3B

2.02 11.01 14.84 37.29 72.22 47.57 73.99 65.11 59.24
2.30 10.06 13.84 40.87 74.79 49.69 75.30 65.59 61.25
2.74 9.03 12.87 41.21 74.92 51.57 76.39 67.17 62.25
3.02 8.71 12.51 42.58 74.71 52.34 76.71 68.51 62.97

14B
2.02 7.11 10.67 51.45 81.90 58.39 79.05 74.43 69.05
2.30 6.68 10.23 52.30 81.82 59.77 80.36 76.48 70.15
2.74 6.13 9.76 53.84 81.86 60.90 79.98 77.35 70.79

I EXPANDED EXPERIMENTAL EVALUATION

To further validate the robustness and general applicability of LiftUQ, we expanded our experimental
evaluation to cover more complex, multi-domain benchmarks and a wider range of modern LLM
architectures. Our also compared LiftUQ with non-uniform scalar quantization method.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 16: Fractional bit-width quantization for Llama-2 Models.

Model Bits W2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Avg.Acc↑

7B
2.30 6.21 7.87 38.31 71.42 54.36 76.22 67.48 61.56
2.74 5.87 7.44 40.61 74.12 55.38 77.80 69.22 63.43

13B
2.30 5.42 7.09 43.52 77.15 57.70 77.69 70.40 65.29
2.74 5.17 6.81 44.11 77.15 59.33 77.75 71.35 65.94

I.1 EVALUATION ON MASSIVE MULTITASK LANGUAGE UNDERSTANDING (MMLU)

To assess performance on complex reasoning tasks beyond perplexity and common-sense bench-
marks, we evaluated LiftedUQ on the MMLU (Massive Multitask Language Understanding)
benchmark. The 5-shot accuracy results for 2-bit quantization, presented in Table 17, demonstrate
that our method maintains strong performance across diverse domains.

Table 17: MMLU 5-shot accuracy for 2-bit LiftedUQ quantization. We highlight the key comparison
where a quantized larger model surpasses a smaller full-precision model.

Model Method MMLU Avg. (↑) Humanities Other Social Sci. STEM

Llama-2-7B FP16 45.87 43.34 52.75 51.71 37.17
LiftedUQ (2-bit) 33.12 31.03 39.43 34.71 28.48

Llama-2-13B FP16 55.23 53.56 61.47 63.15 43.83
LiftedUQ (2-bit) 46.08 45.62 54.62 56.00 40.98

Llama-3-8B FP16 65.30 59.64 72.61 76.24 55.85
LiftedUQ (2-bit) 50.49 47.27 56.13 57.36 43.04

A crucial finding from this evaluation is that the **2-bit quantized Llama-2-13B achieves an MMLU
score of 46.08, significantly outperforming the full-precision (FP16) Llama-2-7B at 45.87**. This
empirically validates a core principle: quantizing a larger, more capable model with LiftedUQ is
a more effective strategy for achieving high performance than using a smaller model at full preci-
sion. This highlights the practical power of our method in maximizing performance within a given
resource budget.

I.2 GENERALIZATION TO DIVERSE ARCHITECTURES AND TRAINING PARADIGMS

To demonstrate that LiftedUQ is not limited to a specific model family, we conducted new 2-bit
quantization experiments on models with diverse architectures and training objectives, including
Mixture-of-Experts (MoE) and Instruction-Tuned LLMs. The results, summarized in Table 18,
confirm the broad applicability and robustness of our framework.

Table 18: New 2-bit quantization results on diverse models, demonstrating the generalizability of
LiftedUQ.

Model Method Wiki-2 (↓) C4 (↓) ARC-c (↑) ARC-e (↑) HellaSwag (↑) PIQA (↑) Wino. (↑)

Mixtral 8x7B (MoE) FP16 3.45 6.85 55.80 83.38 64.65 82.37 75.45
LiftedUQ (2.02-bit) 4.61 8.16 49.76 78.24 62.21 78.82 72.96

Qwen2.5-3B-Instruct FP16 7.54 7.91 45.73 77.06 56.31 77.75 69.77
LiftedUQ (2.02-bit) 9.86 9.84 37.88 72.10 47.49 74.70 64.09

Qwen2.5-14B-Instruct FP16 4.97 6.37 60.67 85.69 65.54 81.50 75.77
LiftedUQ (2.02-bit) 6.48 7.30 53.24 82.62 58.36 79.60 73.32

Across these varied models, LiftedUQ consistently retains strong performance at approximately 2-
bit precision. For instance, on the powerful Mixtral-8x7B model, our method maintains high scores
on reasoning benchmarks like HellaSwag and PIQA with only a minor drop, while dramatically
reducing the memory footprint. These results strongly support the claim that LiftedUQ is a versa-
tile and general-purpose quantization framework, not confined to a specific architecture or training
paradigm.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I.3 COMPARISON WITH BINARY-CODING QUANTIZATION (BCQ)

In this section, we clarify the crucial distinction between our LiftedUQ framework and methods
based on Binary-Coding Quantization (BCQ), such as UniQuan Park et al. (2025). Although both
approaches are forms of non-uniform quantization, they operate in fundamentally different dimen-
sional spaces.

Conceptual Distinction: Dimensionality of Quantization. The primary difference lies in the
dimensionality of the quantization process. BCQ is a form of Scalar Non-Uniform Quantization.
It represents each individual scalar weight as a linear combination of a few learned basis vectors.
In essence, BCQ can be conceptually viewed as a special, 1-dimensional ”coupling” case of our
framework, creating a flexible codebook for single scalar values. While LiftedUQ is a form of Vec-
torial Non-Uniform Quantization. Our lift-then-project mechanism quantizes a group of weights
together in a high-dimensional space. This allows it to capture inter-dimensional correlations, sim-
ilar to traditional Vector Quantization (VQ), but without requiring an explicit lookup table. BCQ’s
scalar-focused design does not achieve this high-dimensional coupling.

This fundamental design difference translates into a substantial empirical performance gap. As
shown in Table 19, we compare LiftedUQ against UniQuan, a state-of-the-art BCQ-based method,
on the task of 3-bit quantization for Llama-3-8B. LiftedUQ significantly outperforms UniQuan,
demonstrating the practical benefits of its high-dimensional quantization approach.

Table 19: 3-bit quantization performance on Llama-3-8B, evaluated on WikiText-2 perplexity. Lift-
edUQ shows a clear advantage over the BCQ-based method.

Method FP16 UniQuan (BCQ-based) LiftedUQ (Ours)
PPL (↓) 6.14 8.75 6.94

In summary, while BCQ offers a flexible way to quantize individual weights, LiftedUQ’s ability to
model and exploit correlations across groups of weights provides a distinct advantage, leading to
superior performance in practice.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper was partially created with the assistance of a Large Language Model (LLM), which was
used for tasks such as sentence polishing, brainstorming, and content organization. All content has
been finally reviewed and confirmed by the author.

21


	Introduction
	Related Work
	Lifted Uniform quantization for LLMs
	Motivation
	Phase 1: Transformation from Lifted Uniform Grid to Subspace Lattice
	Phase 2: Learned Whitening Transformation for each layer
	Phase 3: Lattice Quantization and intra-Block correction
	Fast and Flexible Decoding

	Experiments
	Main Results on Compression quality
	Fractional Bit-widths and the Pareto Frontier
	Efficiency
	Ablation study
	Where is the Limitation of LiftUQ?

	Conclution
	Training Details for Intra-Block correction
	Training Details for end to end fine-tune
	Sensitivity to Calibration Data
	Decoding Overhead
	Comparison on 1.58-bit Baseline.
	Ablation study on the components of our whitening transform and LiftedUQ framework
	Comparison with QTIP
	Rate-Distortion Performance and Flexibility
	Hardware Efficiency and Practical Throughput

	Full Quantization Result.
	Expanded Experimental Evaluation
	Evaluation on Massive Multitask Language Understanding (MMLU)
	Generalization to Diverse Architectures and Training Paradigms
	Comparison with Binary-Coding Quantization (BCQ)

	The Use of Large Language Models (LLMs)

