
Feature Alignment and Uniformity for Test Time Adaptation

Shuai Wang1 Daoan Zhang2 Zipei Yan3 Jianguo Zhang2 Rui Li1
1Tsinghua University 2Southern University of Science and Technology

3Hongkong Polytechnic University
s-wang20@mails.tsinghua.edu.cn, dawn change@126.com, zipei.yan@connect.polyu.hk

zhangjg@sustech.edu.cn, leerui@tsinghua.edu.cn

Abstract

Test time adaptation (TTA) aims to adapt deep neural
networks when receiving out of distribution test domain
samples. In this setting, the model can only access online
unlabeled test samples and pre-trained models on the train-
ing domains. We first address TTA as a feature revision
problem due to the domain gap between source domains
and target domains. After that, we follow the two measure-
ments alignment and uniformity to discuss the test time fea-
ture revision. For test time feature uniformity, we propose
a test time self-distillation strategy to guarantee the consis-
tency of uniformity between representations of the current
batch and all the previous batches. For test time feature
alignment, we propose a memorized spatial local cluster-
ing strategy to align the representations among the neigh-
borhood samples for the upcoming batch. To deal with the
common noisy label problem, we propound the entropy and
consistency filters to select and drop the possible noisy la-
bels. To prove the scalability and efficacy of our method, we
conduct experiments on four domain generalization bench-
marks and four medical image segmentation tasks with var-
ious backbones. Experiment results show that our method
not only improves baseline stably but also outperforms ex-
isting state-of-the-art test time adaptation methods. Code is
available at https://github.com/SakurajimaMaiii/TSD.

1. Introduction
Deep learning has achieved great success in computer

vision tasks when training and test data are sampled from
the same distribution [17, 28, 39]. However, in real-world
applications, performance degradation usually occurs when
training (source) data and test (target) data are collected
from different distributions, i.e. domain shift. In practice,
test samples may encounter different types of variations
or corruptions. Deep learning models will be sensitive to
these variations or corruptions, which can cause perfor-
mance degradation.

To tackle this challenging but practical problem, various
works have been proposed to adapt the model at test time [5,
8,22,38,45,57,66,67,76]. Test time training (TTT) [38,57]
adapts model using self-supervised tasks, such as rotation
classification [15] during both training and test phases. This
paradigm relies on additional model modifications in both
training and test phases, which is not feasible and scalable
in the real world.

Similar to TTT, test time adaptation [66] (TTA) also
adapts the model i.e., updates the parameters in the test
phase. But TTA does not require any specific modifications
in training and requires only the pre-trained source model
and unlabeled target data during the test phase, which is
more practical and generalizable. In TTA, the model could
be adapted with only online unlabeled data. Hence, the
model trained on source data is incompatible with the target
data due to the possible domain gap between source data
and target data.

To deal with the above-mentioned problem, we address
TTA as a representation revision problem in this paper.
In the test phase of TTA, the accessed model has already
learned the feature representations specialized to source do-
mains and may generate inaccurate representations for the
target domain due to the large domain gap. It is necessary
to rectify the feature representations for the target domain.
To achieve better representations for the target domain, we
utilize the commonly used measurements for representation
quality that can be summarized to feature alignment and
uniformity [68, 73]. Alignment refers that the similar im-
ages should have the similar representations, while unifor-
mity means that images of different classes should be dis-
tributed as uniform as possible in the latent space. Hence,
we propose to address the TTA problem from the above-
mentioned properties.

Most of the previous works about TTA can be in-
ducted from the proposed representation revision perspec-
tive. Some methods adapt the source model by conduct-
ing a feature alignment process, such as feature matching
[27, 38] and predictions adjustment [5]. One of the repre-

1

https://github.com/SakurajimaMaiii/TSD

sentative methods is LAME [5], which encourages neigh-
borhood samples in the feature space to have similar pre-
dictions using Laplacian adjusted maximum-likelihood es-
timation. Moreover, other methods aim to make target
feature more uniform in feature space, including entropy
minimization [45, 66, 76], prototype adjustment [22], infor-
mation maximization [36] and batch normalization statis-
tics alignment [35, 44, 53]. One representative method is
T3A [22], which adjusts prototypes (class-wise centroids)
to have a more uniform representation by building a sup-
port set. However, none of the method address the TTA
problem from the representation alignment and uniformity
simultaneously. In this paper, we identify this limitation and
propose a novel method that rectifies feature representation
from both two properties. We formulate the two properties
in TTA as test time feature uniformity and test time feature
alignment.

Test Time Feature Uniformity. Following the feature
uniformity perspective, we hope that representations of test
images from different classes should be distributed as uni-
form as possible. However, only limited test samples can be
accessed in an online manner in the TTA setting.

To better deal with all of the samples in the target do-
main, we propose to introduce historical temporal informa-
tion for every arriving test sample. A memory bank is built
to store feature representations and logits for all arriving
samples to maintain the useful information from the previ-
ous data. We then calculate the pseudo-prototypes for every
class by using the logits and features in the memory bank.
After that, to guarantee the uniformity for the current batch
of samples, the prediction distribution of prototype-based
classification and model prediction (outputs of linear clas-
sifier) should be similar, i.e., the feature distribution of the
current images of one class should be consistent with the
feature distribution of all the previous images of the same
class. This can reduce the bias of misclassified outlier sam-
ples to form a more uniform latent space.

Motivated by this, we minimize the distance between
the outputs of linear and prototype-based classifiers. This
pattern is similar to self-distillation [25, 75] that transfers
knowledge between different layers of the same network
architecture. However, unlike typical self-distillation, our
method does not require any ground truth supervision. We
refer to this method as Test Time Self-Distillation (TSD).

Test Time Feature Alignment. Feature alignment en-
courages the images from the same class to have similar fea-
ture representations in the latent space. As for TTA, pseudo
labels generated by the source model may be noisy due to
the domain gap. Thus, instead of aligning all the positive
pairs, we propose a K-nearest feature alignment to encour-
age features from the same class to be closed or features
from different classes to be far away from each other. This
can reduce the negative impact imposed by the noisy la-

bels and maintain the alignment of images with the same
semantics. Specifically, we retrieve K-nearest features in
the memory bank for the upcoming images and add consis-
tency regularization between the representations and logits
of the images. We refer to this as Memorized Spatial Local
Clustering (MSLC). The ablation of hyperparameter K is
shown in Table 5 and Fig. 3.

Entropy Filter and Consistency Filter. During the
adaption, we use stored pseudo features and logits to com-
pute the pseudo-prototypes. However, the noisy label prob-
lem cannot be completely alleviated despite the proposed
efforts. To further reduce the impact, we adopt both entropy
and consistency filters to filter noisy labels to boost perfor-
mance. As for the entropy filter, we filter noisy features with
high entropy when we compute prototypes because unreli-
able samples usually produce high entropy.

In addition, the predictions of prototype-based and lin-
ear classifiers of the network for reliable samples should be
consistent ideally. We use this property to filter unreliable
samples and back-propagate the gradient using only reliable
samples. We refer to this filter as the consistency filter. The
ablation study on the two proposed filters is presented in
Table 5.

Finally, we demonstrate the effectiveness of our pro-
posed approach on commonly used domain generalization
benchmarks, including PACS [32], VLCS [60], OfficeHome
[64] and DomainNet [49]. Furthermore, to prove the effi-
cacy of our method, we conduct more experiments on four
cross-domain medical image segmentation benchmarks, in-
cluding prostate segmentation [1, 37], cardiac structure
segmentation [4, 78, 79] and optic cup/disc segmentation
[13, 47, 55]. Our method achieves the state-of-the-art per-
formance on the above benchmarks.

We summarize our contributions as follows:

• We propose a new perspective for test time adapta-
tion from the view of feature alignment and unifor-
mity. The proposed test time feature uniformity en-
courages the representations of the current batch of
samples along with the uniformity of all the previous
samples. The test time feature alignment manipulates
the representation of the test sample according to its
neighbors in the latent space to align the representa-
tions based on the pseudo label.

• Specifically, to meet the online setting and noisy la-
bel problem in TTA, we propose two complementary
strategies: unsupervised self-distillation for test time
feature uniformity and memorized spatial local cluster-
ing for test time feature alignment. We also propound
the entropy filter and consistency filter to further miti-
gate the effect of the noisy labels.

• The experiments demonstrate that our proposed
method outperforms existing test time adaptation ap-

2

proaches on both the domain generalization bench-
marks and medical image segmentation benchmarks.

2. Related Work
2.1. Domain Generalization

Domain generalization (DG) aims to learn knowledge
from multi-source domains and generalize to the unseen tar-
get domain. A primary strategy of DG is domain-invariant
feature learning which aims to reduce domain gaps, in-
cluding aligning distributions among multiple domains with
contrastive learning [24, 43, 70, 72], learning useful repre-
sentations with self supervise learning [6], matching statis-
tics of feature distributions across domains [56,61], domain
adversarial learning [14,33] and causality inference [40,41].
Meta-learning based methods [2, 12, 31] simulate domain
shift by dividing meta-train and meta-test domains from the
original source domains. Data augmentation-based meth-
ods effectively solve the DG problem by diversifying train-
ing data [19, 34, 46, 65, 71, 74, 77].

Unlike the DG paradigm that focuses on training a gener-
alizable model during the training phase with labeled source
data, test time adaptation aims to adapt a pre-trained model
in the test phase by using the online unlabeled target data.

2.2. Test Time Adaptation

Our work is mostly related to test time adaptation [5, 8,
22, 45, 66] or test time training [38, 57]. Test Time Train-
ing (TTT) [38, 57] adapts the model during the test phase
via the self-supervise task, such as rotation classification
[15]. However, TTT needs to optimize the source model
by jointly training supervised loss and self-supervised loss,
which may not be feasible in the real world. Different from
this, test time adaptation [66] aims to adapt the model dur-
ing the test phase without changing the training process.
Tent [66] minimizes entropy to update the trainable pa-
rameters in Batch Normalization [21] layer. SHOT [36]
combines information maximization and pseudo labeling.
There are some works [45,67] combing test time adaptation
and continual learning to maintain the performance on the
source domain. LAME [5] adapts the output of the model
rather than parameters with a laplacian adjusted maximum-
likelihood estimation. There are also some works using
test time Batch Normalization statistics [35, 44, 53], self-
training [8] and feature alignment [27,38]. The above meth-
ods could be viewed as either feature uniformity or feature
alignment as discussed in the Sec. 1, while our method ben-
efits from both properties.

3. Method
Fig. 1 illustrates the overall pipeline of our method. We

describe the details of the problem settings and our method
in this section.

3.1. Preliminaries

In test time adaptation (TTA), we can only achieve tar-
get domain unlabeled images in an online manner and pre-
trained model on the source domain. The source model is
trained with standard empirical risk minimization on source
domains, e.g. cross entropy loss for the image classification
task. Given the model trained on Ds, we aim to adapt the
model using unlabeled target data {xi} ∈ Dt, i ∈ {1...N},
where xi denotes the ith image of target domain Dt and N
denotes the number of target images, Ds denotes the source
domain. During testing, we initialize the model g = f ◦ h
with source model parameters trained on source domain Ds,
where f denotes backbone and h denotes linear classifica-
tion head. The output of model g for image xi is denoted as
pi = g(xi) ∈ RC where C is the number of class.

3.2. Test Time Self-Distillation

During adaption, given a batch of unlabeled test samples,
we can generate image embeddings zi = f(xi), logits pi =
h(zi) and pseudo labels ŷi = argmax pi via the pre-trained
model.

We then maintain a memory bank B = {(zi, pi)} to store
image embeddings zi and logits pi. Following T3A [22],
the memory bank is initialized with the weights of the lin-
ear classifier. When the target sample xi comes, for every
image, we add the image embedding zi and logits pi into
the memory bank. To build up the relations between the
current samples and all of the previous samples, the pseudo-
prototypes shall be generated for each class. The prototype
of class k could be formulated as

ck =

∑
i zi1[ŷi = k]∑
i 1[ŷi = k]

, (1)

where 1(·) is an indicator function, outputting value 1 if
the argument is true or 0 otherwise. However, some pseudo
labels may be assigned to the wrong class, leading to incor-
rect prototype computation. We use Shannon entropy [54]
filter to filter noisy labels. For prediction pi, its entropy
could be computed as H (pi) = −

∑
σ(pi) log σ(pi) where

σ denotes the softmax operation. We aim to filter unreliable
features or predictions with high entropy because lower en-
tropy usually means higher accuracy [66]. Specifically, for
every class, image embeddings with the top-M highest en-
tropy in the memory bank would be ignored. After that, we
use filtered embeddings to calculate prototypes as Eq. 1 and
define prototype-based classification output as the softmax
over the feature similarity to prototypes for class k:

yki =
exp (sim(zi, ck))∑C

k′=1 exp (sim(zi, ck′))
, (2)

where sim(zi, ck) denotes cosine similarity between zi and
ck.

3

Backbone Classifier

K-nearest

Features & Logits

Class Prototypes

Current Sampled Features

Similarity

MSLC

Memory Bank

Features Logits

TSD

Cross

Entropy

Entropy

Filter

Consistency

Filter

Figure 1. Overview of our proposed method. Blue lines denote forward and backward and black lines denote only forward (i.e. without
gradient backpropagation). Different colours of features, logits and prototypes mean different classes. MSLC: Memorized Spatial Local
Clustering. TSD: Test Time Self-Distillation.

The prototype-based classification results yi and outputs
pi of the network g should share a similar distribution for
the same input. Thus, the loss to maintain uniformity is
proposed as

Li(pi, yi) = −σ(pi) log yi. (3)

Note that pi is a soft pseudo label rather than a hard pseudo
label. The reason for using a soft label is that a soft label
usually provides more information [20]. By using the pro-
posed test time self-distillation, the network could map the
uniformity for the current samples to improve the quality of
representations.

Although we use an entropy filter to drop noisy labels
when computing prototypes, there are still some mistake
predictions inevitable. We propose that, for a reliable sam-
ple, the outputs of the linear fully connected layer and
prototype-based classifier should be similar. Hence, we
adopt the consistency filter to identify the mistake predic-
tions. Specially, if the linear classifier and prototype-based
classifier produce the same predictions, i.e. the same result
after executing argmax to the logits, we assume that this
sample is reliable. This strategy could be implemented us-
ing a filter mask for image xi as follows

Mi = 1[argmax pi = argmax yi]. (4)

By conducting a consistency filter, we further filter unre-
liable samples and the unsupervised self-distillation loss
could be formulated as follows

Ltsd =

∑
i Li ∗Mi∑

i Mi
. (5)

3.3. Memorized Spatial Local Clustering

As mentioned before, features belonging to the same
class should be aligned in the latent space. However, this

situation may differ in TTA due to the domain gap between
the target and source domains. We encourage K-nearest
neighborhood features instead of all the features to be close
to reducing the noisy label impact. A simple strategy is
to add consistency regularization within a batch of samples.
However, historical temporal information is ignored and the
alignment is less effective. Moreover, there is a trivial so-
lution that the model can easily map all images to a certain
class if we use only one batch sample for alignment [3].

To handle these problems, we concatenate spatial local
clustering with the memory bank. We begin from retrieving
K-nearest features in the memory bank for image x. Based
on our assumption, the logits of image x should be aligned
with the logits of its nearest neighbors in the latent space. To
achieve this, we align the two varieties of logits according
to the distance between the image embeddings of image x
and its neighbors. The formulation is presented as follows

Lmslc =
1

K

K∑
j=1

sim(z, zj)(σ(p)− σ(pj))
2, (6)

where sim(z, zj) denotes cosine similarity between z and
zj . {zj}Kj=1 denotes the K-nearest image embeddings of
z in the memory bank B and pj denotes the corresponding
logits. If zj and z are close in feature space, i.e. sim(z, zj) is
large, this objective function will push pj and p to get close.
We detach the gradient of sim(z, zj), i.e. sim(z, zj) would
be viewed as constant, to avoid the trivial solution that the
model will output a constant result regardless of different
samples.

3.4. Training Objective Function

Combing Eq. 5 and Eq. 6, we formulate the final objec-
tive function as

L = Ltsd + λLmslc, (7)

4

where λ is the trade-off parameter to balance different loss
functions. In our implementation, we use cosine similarity
as the similarity metric. Specifically, we define sim(x, y) =
x⊤y/∥x∥∥y∥.

During testing phase, the adaptation is performed in an
online manner. Specifically, when receiving image xT at
time point T , the model state is initialized with the parame-
ters update from the last image xT−1. The model produces
the prediction pT = g(xT) after receiving new samples xT

and updates the model using Eq. 7 with only one step gra-
dient descent. It is noticed that the adaption could continue
as long as there exists test data.

4. Experiments

4.1. Experimental Setup

Datasets. PACS [32] contains 9,991 examples and 7
classes that are collected from 4 domains: art, cartoons,
photos, and sketches. OfficeHome [64] is consisted of 4 do-
mains: art, clipart, product, and real, which includes 15,588
images and 65 classes. VLCS [60] comprises four domains:
Caltech101, LabelMe, SUN09 and VOC2007 and includes
10,729 images and 5 classes. DomainNet [49], a large-
scale dataset has six domains d ∈{clipart, infograph, paint-
ing, quickdraw, real, sketch} with 586,575 images and 345
classes.

Models. In the main experiments, we evaluated different
methods on ResNet-18/50 [17] equipped with Batch Nor-
malization [21], which is widely used in domain adaptation
and generalization literature. Furthermore, we tested our
algorithm on different backbones, including Vision Trans-
former (ViT-B/16) [11], ResNeXt-50 (32×4d) [69], Effi-
cientNet (B4) [58] and MLP-Mixer (Mixer-L16) [59].

Implementation. For source training, we choose one
domain as the target domain and the other domains as
the source domains. We split all images from the source
domains to 80%/20% for training and validation. We
use the Adam optimizer [26] with 5e−5 as the learning
rate. All models are initialized with ImageNet-1K [51]
pre-trained weights except for ViT-B/16 and MLP-Mixer
when we use ImageNet-21K pre-trained weights. We use
torchvision implementations of all models except for
ViT-B/16 and MLP-Mixer; instead, we use the implementa-
tions in the timm library.

For test time adaptation, we use the Adam optimizer [26]
and set the batch size as 128. We empirically set the trade-
off parameter λ = 0.1 (cf . Eq. 7). Unlike [45, 66], all
the trainable layers are updated and no special selection is
required in our method. We use PyTorch [48] for all im-
plementations. We report the accuracy of the whole target
domain for evaluation. For all experiments, we report the
average of three repetitions with different weight initializa-
tion, random seed and data split. Please refer to our supple-

Table 1. Comparison of our method and existing test time adapta-
tion methods with ResNet18 backbone. We highlight the best and
the second results.

Method PACS OfficeHome VLCS DomainNet Avg.

ERM [63] 82.07 63.12 72.75 38.95 64.22
BN [53] 82.82 62.30 64.31 37.80 61.81
Tent [66] 84.92 63.75 67.36 38.95 63.75
PL [30] 84.64 60.22 68.93 35.23 62.26
SHOT-IM [36] 82.55 63.42 64.90 39.50 62.59
T3A [22] 83.50 64.25 73.03 39.61 65.10
ETA [45] 82.70 62.46 64.35 39.43 62.24
LAME [5] 84.58 62.20 72.88 37.49 64.29
Ours 87.32 64.83 73.61 40.19 66.49

Table 2. Comparison of our method and existing test time adapta-
tion methods with ResNet50 backbone. We highlight the best and
the second results.

Method PACS OfficeHome VLCS DomainNet Avg.

ERM [63] 84.59 67.37 74.01 45.20 67.74
BN [53] 85.03 66.10 64.78 43.38 64.82
Tent [66] 87.48 67.96 69.20 44.71 67.34
PL [30] 85.23 67.13 68.52 41.18 65.52
SHOT-IM [36] 85.50 67.39 65.23 46.30 66.11
T3A [22] 86.04 68.29 73.98 46.16 68.62
ETA [45] 85.04 66.21 64.79 46.13 65.54
LAME [5] 86.62 66.19 73.94 43.20 67.49
Ours 89.41 68.67 74.52 47.73 70.08

mentary material for more details, including detailed results
and error bars.

Hyperparameter search and model selection. We use
training domain validation [16] for source model training.
We select the model with the highest accuracy on the valida-
tion set. For hyperparameter search, we search learning rate
lr in {1e−3, 1e−4, 1e−5, 1e−6}, the hyperparameter for fea-
ture filter M ∈ {1, 5, 20, 50, 100,NA} where NA denotes
no entropy filter. We emphasize that all hyperparameters
in the TTA setting should be selected before accessing test
samples. We do hyperparameter search on training domain
validation set.

Baselines. We compared our method with Empiri-
cal Risk Minimization (ERM) [63], Tent [66], T3A [22],
SHOT-IM [36], ETA [45], Test Time Batch Normalization
(BN) [53], Laplacian Adjusted Maximumlikelihood Esti-
mation (LAME) [5] and PseudoLabeling (PL) [30]. We use
the implementation from the released code of T3A library1,
except for LAME and ETA, we use the source code of au-
thors.

4.2. Comparative Study

Comparison with TTA methods. Table 1 and Ta-
ble 2 present the results on ResNet-18/50 of four different
datasets. From Table 1 and 2, we can see that our method

1https://github.com/matsuolab/T3A

5

https://github.com/matsuolab/T3A

Table 3. Compare with domain generalization methods on PACS
dataset with ResNet50. †: numbers are from the original literature.
‡ denotes our implementation results. We highlight the best and
the second results in each column.

Method A C P S Avg.

ERM [63] 82.5 80.8 94.1 81.0 84.6
DNA† [10] 89.8 83.4 97.7 82.6 88.4
PCL† [70] 90.2 83.9 98.1 82.6 88.7
SWAD‡ [7] 89.3 83.2 96.9 83.4 88.2
Ours 87.7 88.8 96.2 85.0 89.4
SWAD + Ours 92.2 89.2 97.1 85.6 91.0

generally achieves the state-of-the-art performance. Specif-
ically, the proposed method improves the ERM [63] base-
line with 4.8%, 1.3%, 0.5%, 2.53% for each dataset, respec-
tively. Other test time adaptation methods do not improve
the baseline as stably as ours.

We also visualized the change in accuracy of different
methods throughout the adaption process which is shown in
Fig. 2. The “Batch Numbers” in Fig. 2 indicates how many
batches of images that the model has been updated with. We
can see that our method could adapt the data much faster
and achieve higher accuracy on the target domain.

Comparison with DG/SFDA methods. The above ex-
periments mainly focus on test time adaptation that aims
to adapt the model during test phase. It is natural to ask:
how about our method compared with domain generaliza-
tion or source free domain adaptation methods? To answer
this question, we first compared our method with some re-
cent domain generalization or source free domain adapta-
tion methods, such as SWAD [7], PCL [70], DNA [10], and
F-mix [29]2 on PACS and DomainNet dataset. From Table
3, we can see that our method outperforms the state-of-the-
art methods in domain generalization. Furthermore, com-
bining SWAD [7], we achieve the impressive 91% accuracy
with ResNet50 backbone.

We also report the result of the challenging Domain-
Net dataset. The results are listed in Table 4. It can be
seen that our method outperforms the state-of-the-art meth-
ods of domain generalization, such as SWAD [7] and DNA
[10]. Also, our method could significantly improve SWAD
[7], which outperforms the current state-of-the-art SFDA
method [29]. Note that online test time adaptation is more
flexible in the real world because SFDA adapts the test data
in an offline manner which requires more training loops and
resources than TTA.

To summarize, our model can outperform all the domain
generalization and test time adaptation methods on various
datasets.

2“F-mix” denotes feature-mixup in [29].

2 4 6 8 10 12 14
Batch Numbers

81
82
83
84
85
86
87
88
89

Ac
cu

ra
cy

 (%
)

Tent
ERM
PL
SHOT-IM
T3A
BN
LAME
ETA
Ours

Figure 2. Accuracy visualizations of different methods during
the adaptation process on the PACS dataset (target domain: art).
The “Batch Numbers” indicates how many batches of images the
model has been updated with.

Table 4. Compare with domain generalization methods and
source free domain adaptation methods on DomainNet dataset
with ResNet50. †: numbers are from the original literature. ‡ de-
notes our implement results. We highlight the best and the second
results in each column.

Method clip info paint quick real sketch Avg.

Domain generalization methods
ERM [63] 64.8 22.1 51.8 13.8 64.7 54.0 45.2
PCL† [70] 67.9 24.3 55.3 15.7 66.6 56.4 47.7
DNA† [10] 66.1 23.0 54.6 16.7 65.8 56.8 47.2
SWAD‡ [7] 66.1 22.4 53.6 16.3 65.5 56.2 46.7

Source free domain adaptation methods
F-mix† [29] 75.4 24.6 57.8 23.6 65.8 58.5 51.0

Ours 66.1 24.1 52.8 18.2 68.5 56.7 47.7
SWAD + Ours 69.2 28.4 58.2 26.2 68.1 59.6 51.6

4.3. Ablation Study

In this section, we mainly conduct various ablation stud-
ies on the PACS dataset with ResNet50 backbone.

Effectiveness of key components. Table 5 shows the
contribution of each term mentioned in our method. Com-
pared with the ERM baseline, self-distillation improves the
baseline 3.2%. This shows that our method could efficiently
capture historical temporal features to maintain uniformity.
The entropy filter and consistency filter improve the per-
formance with 0.6% and 0.5%, respectively, which sug-
gests that they mitigate the problem of noise pseudo la-
bels. Finally, our proposed memorized spatial local clus-
tering brings a 0.5% gain which suggests that the module
also helps with the revision of representations.

Sensitivity to hyperparameter. Our method has three
hyperparameters: top-M features for entropy filtering to
compute prototypes, the number of nearest neighbors K
in memorized spatial local clustering and the trade-off pa-

6

Table 5. Ablation Study. SD means self-training using self-
distillation (cf . Eq 3) without any filter. EF and CF mean entropy
filter and consistency filter. MSLC means memorized spatial local
clustering loss (cf . Eq. 6).

SD EF CF MSLC Acc(% ↑)

0 84.59
1 ✓ 87.80 (+3.21)
2 ✓ ✓ 88.40 (+3.81)
3 ✓ ✓ ✓ 88.92 (+4.33)
4 ✓ ✓ ✓ ✓ 89.41 (+4.82)

1 3 5 10 15 20
K

86

87

88

89

90

Ac
cu

ra
cy

(%
)

1 5 20 50 100 NA
M

0.0 0.1 0.2 0.3 0.4 0.5

Figure 3. Sensitivity analysis about the number of nearest neigh-
bors K in memorized spatial local clustering, entropy filter hyper-
parameter M and trade-off parameter λ (cf . Eq. 7).

rameter λ in Eq. 7. Fig. 3 presents the ablation study on
hyperparameters. First, for the number of nearest neigh-
bors K, when K ∈ {1, 3, 5} achieves good performance.
However, though it stills improves the ERM baseline, K ∈
{10, 15, 20} leads to performance degradation. We conjec-
ture that using too many neighbors may increase the prob-
ability of introducing misclassified features. Second, for
the entropy filter hyperparameter M , we found that the pro-
posed method is robust to the choice of M . The perfor-
mance improves stably with the M increasing from 1 to
100. If we mute the entropy filter, our method still achieves
a competitive performance. Third, for trade-off parameter
λ, λ ∈ [0.1, 0.5] achieves good performance and λ = 0.1
achieves the best performance.

4.4. Analysis

Scalability on different models. We validated our
method on various backbones to verify that our method does
not rely on any specific network structure design. Table 6
shows that the proposed method generally improves base-
line performance regardless of different backbones. For ex-
ample, for ViT-B/16, the proposed method improves ERM
[63] 3.1%, 2.7%, 1.2% for different datasets, respectively.
This show that our method is “ plug and play ” for different
deep neural networks which is important for applications in
the real world.

Qualitative analysis by tSNE. We provide tSNE [62]
visualizations of the ERM baseline and our method, as
shown in Fig. 4. The learned features of the ERM base-

Table 6. Results with different backbones. Bold type indicates
performance improvement compared with baseline. All baseline
models are trained in a standard ERM manner.

Backbones PACS OfficeHome VLCS

ResNet18 [17] 82.07 63.12 72.75
+Ours 87.32 64.83 73.61
ResNet50 [17] 84.59 67.37 74.01
+Ours 89.41 68.67 74.52
ResNeXt-50 [69] 86.67 72.66 78.50
+Ours 91.33 74.18 79.38
ViT-B/16 [11] 87.13 79.06 78.70
+Ours 90.20 81.80 79.90
EfficientNet-B4 [58] 85.11 74.65 77.14
+Ours 85.41 72.24 79.42
Mixer-L16 [59] 84.59 71.36 76.53
+Ours 88.47 74.82 79.75

(a) ERM (b) Our method

Figure 4. tSNE [62] visualization of learned feature embeddings.
(a) ERM baseline without adaptation. (b) After adaptation with
our method. Different colours denote different classes.

line on the target domain are not well separated due to the
large domain gap, as shown in Fig. 4a. After adaptation to
the target domain, our method could generate more uniform
and alignment features, as shown in Fig. 4b.

Efficiency analysis. Our method adapts a pre-trained
model and needs to maintain a memory bank, which may
lead to extra computational costs. The usage of GPU mem-
ory is mainly influenced by the batch size at test time. We
present computational complexity analysis in Fig. 5. The
default batch size of our method is 128 and the reported
accuracy is 89.4% with an almost 14 GB GPU memory
cost. While our method still achieves good performance
(89.1% accuracy) when we set the batch size to 64, the GPU
memory cost decreases to 7.85 GB and the running time is
the fastest for all. When we apply our method to the real
world applications, there is a trade-off between accuracy,
GPU memory, and running time and we need to balance the
choices due to different requirements.

Another strategy for reducing computational complexity

7

8 16 32 64 128 256
Batch size

87.0

87.5

88.0

88.5

89.0

89.5

Ac
cu

ra
cy

 (%
)

(a) Accuracy

8 16 32 64 128 256
Batch size

5

10

15

20

25

GP
U

m
em

or
y

(G
B)

(b) GPU memory

8 16 32 64 128 256
Batch size

25

30

35

40

45

50

Ru
nn

in
g

tim
e

(s
)

(c) Running time

Figure 5. Computational complexity with different batch sizes at
test time adaptation. From left to right: accuracy, GPU memory
and running time on four domains of PACS [32] dataset.

is that we only update affine (i.e., scale and shift) parame-
ters when we adapt the model, like [66]. We conducted the
experiments of updating affine parameters in batch normal-
ization layers, and the result is 89% accuracy on the PACS
dataset. Compared with 89.4% which is achieved by up-
dating all parameters, the accuracy only decreases by 0.4%
and the GPU memory cost drops by 2 GB. This shows that,
with our method, only adapting affine parameters in batch
normalization layers can achieve competitive performance
with a salience GPU memory decrease.

4.5. Scalability to Medical Image Segmentation

Furthermore, we evaluated our algorithm on several
medical image segmentation datasets. We conduct the ex-
periments on three tasks: 1) prostate segmentation. We
choose Promise12 [37] dataset, including 50 cases as source
data and the MSD05 dataset (32 cases) from Medical Seg-
mentation Decathlon [1] as test data. 2) cardiac structure
segmentation. We choose ACDC [4] dataset (200 cases)
as source data and LGE images (45 cases) from Multi-
sequence Cardiac MR Segmentation Challenge [78, 79] as
test data. The task is to segment the left ventricular blood
pool, right ventricular blood pool, and myocardium. 3) op-
tic disc and cup segmentation. We choose the training set
of REFUGE challenge (400 images) [47] as the source do-
main, and RIM-ONE-r3 (159 images) [13] and Drishti-GS
(101 images) [55] as two different target domains. We aim
to segment the optic disc and optic cup. For RIM-ONE-
r3 and Drishti-GS, we split them into 99/60 and 51/50 for
training and test. For other datasets, we randomly split them
to 80% for training and 20% for the test.

Implementation. We adopt DeepLabv3+ [9] with Mo-
bileNetV2 [52] backbone as segmentation models. In train-
ing and test phases, we use Adam [26] optimizer with fixed
learning rate as 1e−4 without specific choice. We enlarge
K (cf . Eq. 6) from 3 to 64 in the segmentation task. We use
Dice Score [42] as the evaluation metric and we reported
the average results of all the target structures in Table 7.

Results. We utilize ERM [63] and Tent [66] as the com-
parison methods. Table 7 shows that our method generally
improves the baseline on different tasks. Specifically, we
improve ERM baseline 3.9%, 4.44%, 3.57%, and 12.72%

Table 7. Results on medical image segmentation. We highlight the
best result for each column.

Source MSD05 ACDC REFUGE

Target Promise12 LGE DrishtiGS RIM-ONE-r3

ERM [63] 83.00 82.34 81.05 68.17
Tent [66] 85.64 81.11 83.96 77.87
Ours 86.90 86.78 84.62 80.89

for the four tasks. Experiments prove that our method can
also work well in image segmentation tasks.

5. Limitations
Our work has some limitations. First, even though we

have already validated our method on several classification
and segmentation tasks, we have not extended our method
to low-level tasks, such as image dehazing, denoising, and
super-resolution tasks. As for low-level tasks, there is no
conception of semantic prototype or entropy which can lead
to the failure of our method. The second limitation is hy-
perparameter search. In this paper, we do hyperparameter
search on the training domain validation set. However, the
best choice on the training domains does not mean the best
performance on the test domain [50]. We may need to try
more strategies to conduct experiments in the TTA setting
like test domain validation.

6. Conclusion
In this work, we focus on the test time adaptation and

propose a new perspective that test time adaptation could
be viewed as a feature revision problem. Furthermore, fea-
ture revision includes two parts: test time feature uniformity
and test time feature alignment. As for the feature unifor-
mity perspective, we propose Test Time Self-Distillation to
make the target feature as uniform as possible in the adap-
tion. To align features from the same class, we propose
Memorized Spatial Local Clustering to encourage that the
distance between feature representations in the latent space
should align with the pseudo logits. A mass of experiments
proves that our method not only generally improves the
ERM baseline but also outperforms existing TTA or SFDA
methods on four domain generalization benchmarks. Fur-
thermore, our method could be adopted to different back-
bones. To broaden our model for real world applications,
we then validate our method on four cross-domain medical
image segmentation tasks. Experiment results show that our
method is effect, flexible and scalable.

Acknowledgment
This work was supported by the National Natural Sci-

ence Foundation of China, 81971604 and the Grant from the
Tsinghua Precision Medicine Foundation, 10001020104.

8

References
[1] Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan

Farahani, et al. The medical segmentation decathlon. Nature
Communications, 13(1), July 2022. 2, 8

[2] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chel-
lappa. Metareg: Towards domain generalization using meta-
regularization. In NeurIPS, 2018. 3

[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation. Neural
Computation, 15(6):1373–1396, June 2003. 4

[4] Olivier Bernard, Alain Lalande, Clement Zotti, et al.
Deep learning techniques for automatic MRI cardiac multi-
structures segmentation and diagnosis: Is the problem
solved? IEEE Transactions on Medical Imaging,
37(11):2514–2525, Nov. 2018. 2, 8

[5] Malik Boudiaf, Romain Müller, Ismail Ben Ayed, and Luca
Bertinetto. Parameter-free online test-time adaptation. In
CVPR, 2022. 1, 2, 3, 5, 12, 13

[6] Fabio Maria Carlucci, Antonio D’Innocente, Silvia Bucci,
Barbara Caputo, and Tatiana Tommasi. Domain generaliza-
tion by solving jigsaw puzzles. In CVPR, 2019. 3

[7] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol
Cho, Seunghyun Park, Yunsung Lee, and Sungrae Park.
SWAD: domain generalization by seeking flat minima. In
NeurIPS, 2021. 6, 12

[8] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna
Ebrahimi. Contrastive test-time adaptation. In CVPR, 2022.
1, 3, 12

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 8

[10] Xu Chu, Yujie Jin, Wenwu Zhu, Yasha Wang, Xin Wang,
Shanghang Zhang, and Hong Mei. DNA: domain general-
ization with diversified neural averaging. In ICML, 2022. 6

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 5, 7

[12] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
and Ben Glocker. Domain generalization via model-agnostic
learning of semantic features. In NeurIPS, 2019. 3

[13] F. Fumero, S. Alayon, J. L. Sanchez, J. Sigut, and M.
Gonzalez-Hernandez. RIM-ONE: An open retinal image
database for optic nerve evaluation. In 2011 24th Inter-
national Symposium on Computer-Based Medical Systems
(CBMS). IEEE, June 2011. 2, 8

[14] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
March, and Victor Lempitsky. Domain-adversarial training
of neural networks. Journal of Machine Learning Research,
17(59):1–35, 2016. 3

[15] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018. 1, 3

[16] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In ICLR, 2021. 5

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1, 5, 7, 12

[18] Dan Hendrycks and Thomas G. Dietterich. Benchmarking
neural network robustness to common corruptions and per-
turbations. In ICLR, 2019. 12

[19] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret
Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Aug-
mix: A simple data processing method to improve robustness
and uncertainty. In ICLR, 2020. 3

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 4

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 3, 5

[22] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier ad-
justment module for model-agnostic domain generalization.
In NeurIPS, 2021. 1, 2, 3, 5, 12, 13

[23] Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-
time adaptation via self-training with nearest neighbor infor-
mation. In ICLR, 2023. 12

[24] Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim,
and Jaekoo Lee. Selfreg: Self-supervised contrastive regu-
larization for domain generalization. In ICCV, 2021. 3

[25] Kyungyul Kim, Byeongmoon Ji, Doyoung Yoon, and
Sangheum Hwang. Self-knowledge distillation with progres-
sive refinement of targets. In ICCV, 2021. 2

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 5, 8

[27] Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Ro-
bustifying vision transformer without retraining from scratch
by test-time class-conditional feature alignment. In IJCAI,
2022. 1, 3

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012. 1

[29] Jogendra Nath Kundu, Akshay R. Kulkarni, Suvaansh
Bhambri, Deepesh Mehta, Shreyas Anand Kulkarni, Varun
Jampani, and Venkatesh Babu Radhakrishnan. Balancing
discriminability and transferability for source-free domain
adaptation. In ICML, 2022. 6

[30] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, 2013. 5, 12, 13

[31] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M.
Hospedales. Learning to generalize: Meta-learning for do-
main generalization. In AAAI, 2018. 3

[32] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In ICCV, 2017. 2, 5, 8, 13

9

[33] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot.
Domain generalization with adversarial feature learning. In
CVPR, 2018. 3

[34] Xiaotong Li, Yongxing Dai, Yixiao Ge, Jun Liu, Ying
Shan, and Lingyu Duan. Uncertainty modeling for out-of-
distribution generalization. In ICLR, 2022. 3

[35] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and
Jiaying Liu. Adaptive batch normalization for practical do-
main adaptation. Pattern Recognition, 80:109–117, Aug.
2018. 2, 3

[36] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In ICML, 2020. 2, 3, 5, 12,
13

[37] Geert Litjens, Robert Toth, Wendy van de Ven, Caroline
Hoeks, Sjoerd Kerkstra, Bram van Ginneken, Graham Vin-
cent, Gwenael Guillard, Neil Birbeck, Jindang Zhang, et al.
Evaluation of prostate segmentation algorithms for mri: the
promise12 challenge. Medical image analysis, 18(2):359–
373, 2014. 2, 8

[38] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. TTT++:
when does self-supervised test-time training fail or thrive? In
NeurIPS, 2021. 1, 3

[39] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 1

[40] Fangrui Lv, Jian Liang, Shuang Li, Bin Zang, Chi Harold
Liu, Ziteng Wang, and Di Liu. Causality inspired represen-
tation learning for domain generalization. In CVPR, 2022.
3

[41] Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain
generalization using causal matching. In ICML, 2021. 3

[42] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 3DV, 2016. 8

[43] Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gi-
anfranco Doretto. Unified deep supervised domain adapta-
tion and generalization. In ICCV, 2017. 3

[44] Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. arXiv preprint arXiv:2006.10963,
2020. 2, 3

[45] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-
time model adaptation without forgetting. In ICML, 2022. 1,
2, 3, 5, 12, 13

[46] Oren Nuriel, Sagie Benaim, and Lior Wolf. Permuted adain:
Reducing the bias towards global statistics in image classifi-
cation. In CVPR, 2021. 3

[47] José Ignacio Orlando, Huazhu Fu, João Barbosa Breda, et al.
REFUGE challenge: A unified framework for evaluating au-
tomated methods for glaucoma assessment from fundus pho-
tographs. Medical Image Analysis, 59:101570, Jan. 2020. 2,
8

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In NeurIPS, 2019. 5

[49] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In ICCV, 2019. 2, 5, 13

[50] Alexandre Rame, Corentin Dancette, and Matthieu Cord.
Fishr: Invariant gradient variances for out-of-distribution
generalization. In ICML, 2022. 8

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet large scale visual recogni-
tion challenge. International Journal of Computer Vision,
115(3):211–252, Apr. 2015. 5

[52] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 8

[53] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. In NeurIPS, 2020. 2, 3, 5, 12, 13

[54] Claude E. Shannon. A mathematical theory of communica-
tion. Bell System Technical Journal, 27(3):379–423, 1948.
3

[55] Jayanthi Sivaswamy, S Krishnadas, Arunava Chakravarty, G
Joshi, A Syed Tabish, et al. A comprehensive retinal im-
age dataset for the assessment of glaucoma from the optic
nerve head analysis. JSM Biomedical Imaging Data Papers,
2(1):1004, 2015. 2, 8

[56] Baochen Sun and Kate Saenko. Deep CORAL: correlation
alignment for deep domain adaptation. In ECCV, 2016. 3

[57] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
ICML, 2020. 1, 3

[58] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In ICML,
2019. 5, 7

[59] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario
Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp ar-
chitecture for vision. In NeurIPS, 2021. 5, 7

[60] Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In CVPR, 2011. 2, 5, 13

[61] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and
Trevor Darrell. Deep domain confusion: Maximizing for
domain invariance. arXiv preprint arXiv:1412.3474, 2014. 3

[62] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research,
9(86):2579–2605, 2008. 7

10

[63] Vladimir Vapnik. Statistical learning theory. Wiley, 1998.
5, 6, 7, 8, 12, 13

[64] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In CVPR, 2017. 2, 5, 13

[65] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolating
hidden states. In ICML, 2019. 3

[66] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In ICLR, 2021. 1, 2, 3, 5, 8, 12, 13

[67] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Con-
tinual test-time domain adaptation. In CVPR, 2022. 1, 3

[68] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In ICML, 2020. 1

[69] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. In CVPR, 2017. 5, 7

[70] Xufeng Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi
Sun, Ran Chen, Ruiyu Li, and Bei Yu. PCL: proxy-based
contrastive learning for domain generalization. In CVPR,
2022. 3, 6

[71] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon
Oh, Youngjoon Yoo, and Junsuk Choe. Cutmix: Regulariza-
tion strategy to train strong classifiers with localizable fea-
tures. In ICCV, 2019. 3

[72] Daoan Zhang, Mingkai Chen, Chenming Li, Lingyun
Huang, and Jianguo Zhang. Aggregation of disentanglement:
Reconsidering domain variations in domain generalization.
arXiv preprint arXiv:2302.02350, 2023. 3

[73] Daoan Zhang, Chenming Li, Haoquan Li, Wenjian Huang,
Lingyun Huang, and Jianguo Zhang. Rethinking alignment
and uniformity in unsupervised image semantic segmenta-
tion. arXiv preprint arXiv:2211.14513, 2022. 1

[74] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 3

[75] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-
glong Bao, and Kaisheng Ma. Be your own teacher: Im-
prove the performance of convolutional neural networks via
self distillation. In ICCV, 2019. 2

[76] Marvin Mengxin Zhang, Sergey Levine, and Chelsea Finn.
MEMO: Test time robustness via adaptation and augmenta-
tion. In Advances in Neural Information Processing Systems,
2022. 1, 2

[77] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-
main generalization with mixstyle. In ICLR, 2021. 3

[78] Xiahai Zhuang. Multivariate mixture model for cardiac seg-
mentation from multi-sequence MRI. In MICCAI. 2016. 2,
8

[79] Xiahai Zhuang. Multivariate mixture model for myocar-
dial segmentation combining multi-source images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
41(12):2933–2946, Dec. 2019. 2, 8

11

This supplementary material provides more details about
our implementation (Sec. A), additional experiments on
three corruption datasets (Sec. B), some discussion (Sec. C),
running time analysis (Sec. D) and detailed results (Sec. E).

A. Other Implement Details
We run our experiments mainly on a single RTX-A6000

or RTX-2080Ti GPU, depending on the need for GPU mem-
ory. For source training, we set the batch size as 32 for each
source domain and the learning rate as 5e−5. We set dropout
probability and weight decay to zero. We train source model
5k iterations except for DomainNet. We tripled it from 5k to
15k following [7]. All images are resized to 224×224 and
data augmentation is used in source domain training, which
includes randomly cropping, flipping horizontally, jittering
colour, and changing the intensity.

For implementations of different test time adaptation
methods, we use publicly released code of T3A [22]3, ex-
cept for LAME 4 [5] and ETA5 [45] we use source code of
authors. For PL [30], we set confidence as 0.9. We resize
all images to 224×224 and no data augmentation is used
during the test time adaptation process.

For different backbones, we use torchvision imple-
mentation 6 except for ViT-B/16 and MLP-mixer, we use
implementation from timm library7. For all experiments,
we use three random seeds {0,1,2} and report the average
results in the main text.

B. Experiments on Corruption Benchmark
We conduct experiments on three corruption

datasets [18], including CIFAR-10/100-C and ImageNet-C.
The results are listed in Table 9. From the Table 9, it is
noticed that our method still achieves the state-of-the-art
performance on three corruption datasets.

C. Discussion
Performance on VLCS. All compared methods shown
poor performance on VLCS dataset. We notice that the label
distribution is severely different among domains in VLCS
compared to other datasets (e.g. PACS and OfficeHome),
which is probably why fewer methods show performance
gain in VLCS compared to other datasets. We calculated
the label distribution of VLCS dataset, as shown in Table
8. Since the label distribution is not considered for existing
methods, the adaptation may fail.
Related Work. There are some papers considering near-
est neighbor information in the test time adaptation setting.

3https://github.com/matsuolab/T3A
4https://github.com/fiveai/LAME
5https://github.com/mr-eggplant/EATA
6https://github.com/pytorch/vision
7https://github.com/rwightman/pytorch-image-models

Table 8. Label distribution on VLCS dataset.

0 1 2 3 4

Caltech101 237 123 118 67 870
LabelMe 80 1209 88 42 1237
SUN09 20 932 1036 30 1264
VOC2007 330 699 428 420 1499

Table 9. Accuracy on CIFAR-10/100-C and ImageNet-C. We use
ResNet26 for CIFAR-10/100-C, and ResNet50 for ImageNet-C.

CIFAR-10-C CIFAR-100-C ImageNet-C

ERM [63] 70.7 41.4 18.0
BN [53] 77.4 48.0 33.5
Tent [66] 80.7 51.7 42.7
PL [30] 80.2 49.8 38.4
SHOT-IM [36] 80.7 52.1 43.1
T3A [22] 77.4 44.6 36.5
ETA [45] 80.6 52.4 48.1
LAME [5] 79.4 50.6 47.6
Ours 81.7 52.6 48.0

TAST [23], a concurrent work published in ICLR 2023,
considers nearest neighbor information to refine pseudo-
labels. AdaContrast [8] uses a soft voting strategy among
the nearest neighbors in the feature space to refine pseudo-
labels. Both of them use nearest neighbor information to
refine pseudo-labels. Different from them, our Memorized
Spatial Local Clustering aims to cluster features with the
same pseudo-label.

D. Running Time Analysis
We provide the running time of different methods for ref-

erence. Running time is tested using RTX-A6000 GPU and
AMD-EPYC-7542 32 Core Processor. The results are listed
in Table 10 using ResNet50 [17] backbone.

E. Full Results
We provide full results of different methods on ResNet-

18/50, including results for each domain and error bars
across three random seeds. See Table 11-18.

12

https://github.com/matsuolab/T3A
https://github.com/fiveai/LAME
https://github.com/mr-eggplant/EATA
https://github.com/pytorch/vision
https://github.com/rwightman/pytorch-image-models

Table 10. Running time analysis of different methods on four datasets. The units used in the table are seconds. “GD” denotes whether the
method requires gradient-based optimization.

GD PACS [32] VLCS [60] OfficeHome [64] DomainNet [49]

ERM [63] % 17 17 56 736
BN [53] % 18 18 56 745
Tent [66] ! 32 33 67 1094
PL [30] ! 33 34 69 1339
SHOT-IM [36] ! 37 39 72 1339
T3A [22] % 19 19 57 829
ETA [45] ! 21 22 66 1094
LAME [5] % 18 19 56 750
Ours ! 35 37 71 1644

Table 11. Full results on PACS with ResNet18.

A C P S Avg

ERM 80.56±0.45 77.36±0.85 93.01±0.17 77.35±2.90 82.07±0.49
BN 81.60±0.16 82.00±0.51 92.85±0.24 74.86±1.10 82.82±0.34
Tent 83.43±0.53 83.02±0.74 93.88±0.38 79.35±1.15 84.92±0.32
PL 84.93±1.32 83.27±1.78 92.62±1.37 77.72±3.66 84.64±1.13
SHOT-IM 84.61±1.06 82.36±1.88 93.60±0.38 69.64±3.40 82.55±1.07
T3A 83.00±0.76 79.56±0.44 94.48±0.34 76.95±2.94 83.50±0.67
ETA 81.33±0.30 81.89±0.55 92.82±0.53 74.77±0.91 82.70±0.31
LAME 83.05±0.53 83.06±0.51 94.30±0.29 77.91±0.80 84.58±0.23
Ours 86.50±0.75 86.38±0.82 94.57±0.32 81.84±0.94 87.32±0.39

Table 12. Full results on OfficeHome with ResNet18.

A C P R Avg

ERM 55.49±0.61 51.41±0.46 71.92±0.47 73.67±0.18 63.12±0.26
BN 54.36±1.00 51.14±0.25 71.20±0.44 72.52±0.37 62.30±0.25
Tent 55.85±0.91 53.38±0.29 72.50±0.65 73.26±0.37 63.75±0.23
PL 54.64±0.96 48.36±1.58 68.83±1.08 69.05±0.58 60.22±0.37
SHOT-IM 55.45±1.08 52.32±0.99 73.23±0.76 72.67±0.37 63.42±0.52
T3A 56.18±0.48 52.90±0.67 73.44±0.48 74.48±0.19 64.25±0.22
ETA 54.88±0.33 51.05±0.21 71.18±0.44 72.72±0.30 62.46±0.14
LAME 54.84±0.86 50.90±0.26 70.85±0.30 72.19±0.30 62.20±0.21
Ours 57.87±0.81 53.40±0.27 74.20±0.38 73.86±0.22 64.83±0.46

13

Table 13. Full results on VLCS with ResNet18.

C L S V Avg

ERM 92.44±0.78 62.72±0.69 69.26±2.01 66.58±1.43 72.75±0.29
BN 76.23±1.99 57.84±0.80 58.04±0.73 65.12±0.35 64.31±0.47
Tent 82.65±1.34 60.02±1.04 60.49±0.84 66.28±0.46 67.36±0.43
PL 86.64±3.45 61.66±1.47 61.78±2.66 65.64±1.53 68.93±1.07
SHOT-IM 76.65±2.94 57.34±1.26 59.13±0.85 66.46±0.55 64.90±0.70
T3A 96.76±1.22 63.80±0.39 64.98±0.45 66.55±0.38 73.03±0.35
ETA 76.1±1.90 57.89±0.87 58.12±0.73 65.31±0.23 64.35±0.40
LAME 94.7±0.21 62.69±0.25 67.58±0.12 66.55±0.45 72.88±0.13
Ours 97.2±1.15 64.50±0.28 65.42±0.34 67.32±0.38 73.61± 0.42

Table 14. Full results on DomainNet with ResNet18.

clipart infograph painting quickdraw real sketch Avg

ERM 55.86±0.15 16.85±0.06 44.80±0.20 12.49±0.38 56.74±0.04 46.96±0.12 38.95±0.08
BN 55.90±0.09 12.07±0.15 43.58±0.06 11.63±0.15 56.47±0.09 47.16±0.15 37.80±0.06
Tent 56.67±0.14 13.58±0.19 45.02±0.13 11.52±0.33 57.25±0.05 48.59±0.16 38.77±0.10
PL 55.99±0.12 14.44±0.27 44.29±0.52 4.34±0.46 45.22±1.31 47.09±0.13 35.23±0.32
SHOT-IM 56.73±0.18 14.02±0.22 44.61±0.06 16.13±0.24 57.51±0.13 48.20±0.17 39.53±0.09
T3A 55.82±0.18 16.71±0.20 43.43±0.18 17.86±0.26 57.58±0.06 46.28±0.08 39.61±0.04
ETA 56.46±0.11 14.67±0.12 45.20±0.10 14.13±0.18 57.70±0.05 48.44±0.14 39.43±0.04
LAME 55.42±0.09 12.09±0.16 43.35±0.08 11.52±0.16 55.69±0.09 46.86±0.17 37.49±0.07
Ours 56.79±0.12 18.42±0.14 46.71±0.12 13.45±0.22 57.65±0.12 48.12±0.24 40.19±0.08

Table 15. Full results on PACS with ResNet50.

A C P S Avg

ERM 82.50±1.83 80.80±0.33 94.05±0.30 80.99±1.29 84.59±0.40
BN 83.27±0.47 84.91±0.43 94.03±0.31 77.92±1.23 85.03±0.20
Tent 85.28±1.07 86.75±0.92 94.94±0.83 82.96±1.20 87.48±0.52
PL 83.96±1.63 84.15±2.91 93.82±1.74 78.99±2.64 85.23±1.70
SHOT-IM 84.31±0.63 85.74±0.56 94.04±0.67 77.91±0.94 85.50±0.31
T3A 84.07±0.68 82.37±0.92 95.02±0.27 82.72±1.06 86.04±0.24
ETA 83.27±0.47 84.91±0.43 94.03±0.31 77.92±1.24 85.04±0.20
LAME 84.97±0.77 85.50±0.55 95.04±0.23 80.97±1.09 86.62±0.22
Ours 87.68±0.84 88.78±0.63 96.17±0.37 85.01±1.52 89.41±0.51

Table 16. Full results on OfficeHome with ResNet50.

A C P R Avg

ERM 60.71±0.88 55.74±0.79 76.18±0.65 76.83±0.41 67.37±0.06
BN 58.23±0.76 55.62±0.68 75.08±0.60 75.47±0.35 66.10±0.20
Tent 60.55±0.93 58.73±0.85 76.48±0.53 76.07±0.59 67.96±0.24
PL 59.14±0.93 57.29±0.62 76.24±0.69 75.85±0.28 67.13±0.17
SHOT-IM 59.20±0.76 57.54±0.58 76.53±0.44 76.27±0.37 67.39±0.16
T3A 61.23±1.00 56.69±1.11 77.95±0.43 77.31±0.22 68.29±0.21
ETA 58.38±0.80 55.78±0.69 75.17±0.56 75.53±0.34 66.21±0.19
LAME 58.67±0.70 55.58±0.53 75.09±0.65 75.40±0.31 66.19±0.20
Ours 62.32±0.52 57.45±0.71 77.48±0.45 77.45±0.38 68.67±0.14

14

Table 17. Full results on VLCS with ResNet50.

C L S V Avg

ERM 94.91±0.32 65.20±2.35 66.52±1.65 69.41±3.38 74.01±1.32
BN 75.26±1.15 56.85±0.53 60.87±0.68 66.16±0.59 64.78±0.34
Tent 84.75±2.25 60.70±1.26 64.94±1.40 66.42±0.89 69.20±0.83
PL 86.75±4.25 61.19±2.22 63.36±3.33 62.77±2.84 68.52±1.79
SHOT-IM 76.54±1.27 55.90±1.20 61.26±0.71 67.24±0.86 65.23±0.32
T3A 97.06±0.30 63.96±0.89 67.14±0.52 67.75±0.31 73.98±0.32
ETA 75.27±1.13 56.85±0.52 60.89±0.67 66.16±0.58 64.79±0.34
LAME 96.25±0.55 61.39±0.40 70.25±0.67 67.89±0.38 73.94±0.14
Ours 97.40±0.41 64.89±0.64 68.05±0.45 68.12±0.43 74.52±0.27

Table 18. Full results on DomainNet with ResNet50.

clipart infograph painting quickdraw real sketch Avg

ERM 64.76±0.06 22.11±0.11 51.77±0.18 13.84±0.14 64.66±0.21 54.04±0.27 45.20±0.09
BN 64.46±0.09 15.62±0.05 50.64±0.08 11.84±0.05 63.86±0.11 53.86±0.19 43.38±0.03
Tent 65.78±0.08 18.18±0.02 52.96±0.01 10.77±0.11 64.85±0.09 55.71±0.09 44.71±0.03
PL 64.96±0.05 19.00±0.03 50.30±0.27 4.21±0.68 54.40±0.55 54.20±0.15 41.18±0.13
SHOT-IM 65.62±0.05 18.73±0.21 52.41±0.08 19.01±0.24 66.47±0.12 55.54±0.08 46.30±0.07
T3A 64.77±0.05 22.10±0.09 50.89±0.15 19.41±0.18 65.85±0.06 53.96±0.17 46.16±0.03
ETA 65.11±0.09 19.37±0.19 52.69±0.11 18.24±0.33 65.92±0.10 55.48±0.16 46.13±0.08
LAME 64.18±0.12 15.64±0.07 50.54±0.04 11.77±0.05 63.46±0.08 53.65±0.18 43.20±0.03
Ours 66.12±0.08 24.12±0.12 52.82±0.10 18.17±0.08 68.45±0.12 56.72±0.12 47.73±0.05

15

