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ABSTRACT

Large Language Models (LLMs) have transformed natural language processing,
yet their substantial model sizes often demand significant computational resources.
To conserve computing resources and increase inference speed, it is crucial to prune
redundant parameters, especially for general users who often need expert models
tailored to specific downstream scenarios. However, current pruning methods pri-
marily focus on maintaining models’ general capabilities, either requiring extensive
post-training or performing poorly due to coarse-grained pruning. In this work,
we design a Custom Pruning method (Cus—Prun) to prune a large general model
into a smaller expert model for specific scenarios. Cus—Prun positions an expert
model along the “language”, “domain” and “task” dimensions. By identifying and
pruning irrelevant neurons, it creates expert models without any post-training. Our
experiments demonstrate that Cus—Prun consistently outperforms other meth-
ods, achieving minimal loss in both expert and general capabilities across various
models from different model families and sizes.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al.| 2023} Reid et al., [2024; |Dubey et al., [2024; [Team!
et al., [2024) have revolutionized the field of natural language processing, emerging as powerful tools
with widespread applications across various languages (Cui et al.l 2023} |Yang et al.,[2024a), domains
(L1 et al., [2023a; |Roziere et al., 20235 L1 et al., 2023b), and tasks (Azerbayev et al.| [2024; |Alves et al.,
2024])). However, the impressive performance of LLMs often comes at the cost of immense model sizes,
mostly containing billions of parameters and thus demand significant computing resources (Goldstein
et al., 2023} Musser, [2023)). To address this issue, researchers have recently proposed various pruning
methods for LLMs. These methods aim to reduce model parameters while maintaining the model’s
overall performance through techniques such as removal of unimportant structures (Men et al., [2024;
Song et al., [2024; Zhang et al.| 2024; Ma et al.| |2023)), matrix approximation (Zhao et al., [2024a;
Sharma et al.}2024; |Ashkboos et al.,2024), and extensive post-training after pruning (Wang et al.,
2024; Xia et al., [2024).

These existing pruning methods have primarily focused on preserving the general capabilities of
the model, often evaluated using compound benchmarks such as MMLU (Hendrycks et al., 2021)
consisting of a broad spectrum of tasks. While aiming for overall versatility, they may not align
well with real-world user needs, which are usually more specific and targeted. For instance, a user
might require a question-answering model tailored specifically for the education domain in German.
Such specialized request aligns closely with the fundamental motivation behind pruning: to create a
smaller model by eliminating unnecessary parameters. In this context, “unnecessary” becomes much
clearer—parameters that are irrelevant to the specific use case can be considered redundant. Pruning
could therefore be leveraged to remove parameters irrelevant to the target language, domain, or task,
thereby producing a more specialized expert model for the desired application. However, current
pruning techniques primarily focus on general capabilities, especially for traditional NLP tasks in
English, and often employ coarse-grained pruning approaches, and sometimes require extensive
post-training after pruning (Xia et al.} 2024} Zhao et al.| 2024a; |Men et al., 2024} Zhang et al., [2024).
Therefore, a more fine-grained and expert model targeting approach is needed to effectively tailor
models to particular user needs while maintaining the general performance.
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Figure 1: Given a request for an expert model across three dimensions (language, domain, task),
Cus—Prun (i) identifies irrelevant neurons for each dimension with the corresponding corpus, and
(ii) prunes overlapped irrelevant neurons across dimensions to obtain the expert model.

In this work, we introduce a novel Custom Pruning (Cus—Prun) method, designed to prune a
large general model into a small specialized expert model tailored for specific scenarios. We
first define the expert model by positioning the target user’s needs along three key dimensions:
language (e.g., English, Chinese, Germain), domain (e.g., E-commerce, education), and task (e.g.,
QA, summarization). Then motivated by existing studies that certain neurons are responsible for
certain functions (Zhao et al.| 2024b} |Tang et al.,[2024} |[Liang et al., 2024), Cus-P run identifies
and preserves critical neurons that are more relevant to particular languages, domains, or tasks,
while pruning less relevant ones, ultimately leading to a smaller expert models. Specifically, as
illustrated in Figure[I] Cus—Prun involves two main steps: First, it identifies irrelevant neurons for
each dimension by assessing the impact of their removal on the generated output when processing
corresponding corpus. A neuron is deemed irrelevant if zeroing its parameters affects the output by
a specified margin. Such corpus for each dimension could be easily constructed from the relevant
plain text documents. Next, we construct the expert model by pruning common irrelevant neurons
across all dimensions. Therefore, it allows for the creation of expert models that excel in specific
scenarios, such as the German QA model in the education domain, without the need for extensive
post-training or fine-tuning. Furthermore, Cus—Prun’s flexibility allows it to focus on one, two,
or all three dimensions (language, domain, task) as needed, making it adaptable to a wide range of
real-world applications where specialized LLMs are required.

We conduct comprehensive experiments to evaluate the performance of Cus—Prun across various
scenarios. Experimental results demonstrate that it consistently outperforms other pruning methods in
all settings. For three-dimensional specific expert models, Cus—P run prunes 25.0% of parameters
while incurring only a 14% drop in expert capability (averaging across multilingual, multidomain,
and multitask datasets) and 12% on general capability (averaging performance on three representative
compound NLP benchmarks) for Llama2-13B. In contrast, others suffer a 38% reduction in expert
capabilities and a 29% decline in general capabilities. This trend is consistent across multiple models
from different model families and sizes, such as Mistral-Nemo, LLlama3-8B, and Llama3-70B. For
more focused applications, such as two- or one-dimensional specific expert models (e.g., language-
domain specific or language-specific models), Cus—Prun also surpasses other pruning methods,
demonstrating its versatility and effectiveness across various specialized settings.

2 CUSTOM PRUNING (CUS—PRUN)

An expert model could be generally positioned from three dimensions: “language” (L € L), “domain”
(D € ), and “task” (I" € T), which can be represented as LLMg,, := (L,D,T) € L x D x T.
Specifically, the language dimension encompasses various languages such as English, Spanish, and
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Thai. The domain dimension covers different fields like finance, legal, and medical. The task
dimension includes various applications such as question-answering, data-to-text, and summarization.

As expert models focus solely on specific capabilities, some unused capabilities such as support for
irrelevant languages or domains will inevitably become redundant. To optimize computing resources
and increase inference speed, we could prune redundant parameters that do not align with our current
objectives. In this section, we propose a custom pruning method named Cus-Prun to derive expert
models with flexible customization granularity.

2.1 FOUNDATIONAL CUSTOM PRUNING

Drawing inspiration from recent neuron interpretation studies (Tang et al.| 2024} Liang et al.} 2024;
Zhao et al [2024b) that many parameters in the model are irrelevant to processing a specific “lan-
guage”, we hypothesize that this phenomenon can be extended to other dimensions such as “domain”
and “task”, meaning that certain parameters remain unused when handling a specific dimension.
In contrast to other studies that examine redundant layers (Song et al.| [2024; Men et al., |2024) or
modules (Zhang et al.|2024), Cus—Prun involves a more fine-grained investigation focusing on
redundant neurons, which are defined as individual rows or columns within the parameter matrix of a
language model. Concretely, when handling each dimension, we identify a specific set of irrelevant
neurons in the original LLM, denoted as N, Np, and N7 for L, D, and T, respectively. An expert
LLM can be obtained by removing neurons that are irrelevant to all three dimensions. Specifically, to
identify irrelevant neurons corresponding to the selected dimension, we construct a corpus within that
dimension while ablating others. For example, to determine irrelevant neurons for a specific language
Lgxp, we create a corpus set Cr, . = {(Lgxp, D, T)|D € D,T € T}, comprising documents in
language Lgyp across various domains D and tasks 7'. We then identify neurons that are irrelevant
across all documents in C Ly ie.,

J\TLEXp = {Neur0n|Irrelevant to c,forall c € CLEXP}v 1)

where a neuron is considered irrelevant if its removal, by setting its parameters to zero, affects the
generated output below a specified threshold.

Specifically, we denote the [-th neuron in layer 7 as Ni(l)

, and the intermediate representation after
layer 7 when handling document ¢ € Cp as h;(c). The degree of relevance of neuron NZ.(Z) in
processing c is calculated by ||h\ ~ (€)= hi(c)||2, where hy v ,(c) represents the intermediate
representation after deactivating neuron N, i(l). Therefore, the irrelevant neurons of the model when
handling document c is the set

N, = {Ni(l)||\h\Ni(,,)’i(c) — hi(c)|l2 <€, forall N\ in LLMY, )
where € is a pre-defined threshold.
Therefore, Equation|[T]is equivalent to

Niy, = {NP|IND € N, forall ¢ € Oy, and N in LLM]. 3)

Similarly, we establish corresponding corpus sets for other dimensions, Cpy,, = {(L, Dgxp, T)|L €
L,T € T} and Cr,, = {(L, D, Tgxp)|L € L, D € D}, to extract irrelevant neurons, N, Dy, and
NTEXP- Finally, the expert model is constructed by

KEMEXP = LLM \ {./\N/LEXP n NDExp N NTEXP}' (@)

2.2 ADAPTIVE CUSTOM PRUNING

Besides three-dimensional expert models, requirements involving constraints in one or two dimensions
are also common in real-world applications (Roziere et al., 2023 |Alves et al., 2024). For instance, a
language-specific model or a domain-specific model is one-dimensional, whereas a language-domain-
specific model (such as a Chinese Medical LLM) constrains two dimensions. Therefore, in this
section, we extend Cus—Prun to prune expert models in different granularities.
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Algorithm 1 Adaptive Custom Pruning

Input: Request for expert model L L Mgy, with selected dimensions: Lgyp, Dexp, TExp (any subset).
1: // Construct specific corpora for each selected dimension.

2. C={}

3: if Lgyp is specified then

4 C=CU{(Lgxp, D, T)| DD, T T}

5: end if

6: if Dgy, is specified then

7. C=CU{(L,Dg,T) | LeL,TeT}

8: end if

9: if Tgyp is specified then

10 C=CU{(L,D,Tgy) | L €L,D e D}

11: end if

12: // Identify irrelevant neurons for each selected dimension.

13: for all neuron in LLM do

14:  if Ve € C,neuron is not relevant to ¢ then

15: Add neuron to the set of irrelevant neurons A
16:  end if
17: end for

18: // Prune irrelevant neurons to obtain expert model.
19: LLMEyy = LLMA\N
Output: LLMEy,

Two-Dimensional Specific Expert Model Without losing generality, we use the language-domain
expert model as a concrete example, which requires an expert model constrained in two dimensions:
language (Lgxp) and domain (Dgy,). We derive the sets of irrelevant neurons /\/LEXp and WV Desp
according to Equation [3] We obtain the expert model by pruning the original dense model as follows:

LLMp == LLMN\ {N,, N Ny, }- ®

One-Dimensional Specific Expert Model We use the language-specific expert model as an exam-
ple, which focuses exclusively on optimizing performance for a certain language (Lgp), irrespective
of domain or task. Similarly, we obtain the language-specific corpus Cr,,, then identify irrelevant

neurons N L, according to Equation (3} and extract the expert model by

LL My = LLMN\ {N7,, }- (6)

The overall algorithm is further detailed in Algorithm[I] To enhance efficiency, we implement the
parallel neuron-detection method (Zhao et al., 2024b), which accelerates the sequential calculations
from line14 to line16 in Algorithm I}

3 PRELIMINARY EVALUATION

In this section, we conduct preliminary experiments to obtain an expert model that is specific in all
three dimensions. This approach can be considered as the most fine-grained operation for developing
coarse-grained expert models that are specific in one or two dimensions.

Experiment Design To verify the effectiveness of Cus—Prun in obtaining expert models for
specific use cases, we select three datasets corresponding to different user needs: Korean-Legal-
Summarization (Hwang et al., 2022)), English-Medical-Multiple Choice Questions (Garcia-Ferrero
et al.,[2024)), and Chinese-E-commerce-Sentiment Analysis (Zhang et al.,2015)), each named according
to the pattern language-domain-task. Then for each scenario, we need to curate the corresponding
corpus for each dimension. This curation can be done through manual collection or by automatically
retrieving relevant documents online. In our preliminary study, without loss of generality, we employ
a strong proprietary mode to generate a corpus containing 50 documents for each dimension. The

'"https://platform.openai.com/docs/models/gpt—40
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Figure 2: Concrete examples of applying Cus—Prun to prune 25% of Llama3-8B-Base’s parameters
into three-dimensional expert models. Numbers above each box indicate performance on the whole
test set, with Korean-Legal-Summary evaluated by Rouge-L, and the other two by accuracy.

generated documents could then be used to detect and determine the relevance of neurons for each
dimension of each scenario.

Experiment Setup We utilize Llama3-8B-Base (Dubey et al.,[2024) as the original dense model and
set the pruning ratio at 25%. Performance is evaluated using Rouge-L (Lin} |2004) for Korean-Legal-
Summary and accuracy score for another two tasks. For comparison, we employ SliceGPT (Ashkboos
et al.,[2024)) as the baseline which replaces each weight matrix with a smaller dense matrix.

Main Results  Figure[2] presents the results and one concrete example for the original dense model,
pruned model with SlideGPT, and pruned model with our proposed Cus—-P run method for three
distinct use cases. We can observe that Cus—Prun largely preserves the performance of the dense
model, retraining 92%, 83%, and 94% of the original dense model performance on these three cases
respectively. In contrast, the baseline method SliceGPT which does not consider specific use cases
largely underperforms compared to Cus—P run. Overall, the results demonstrate that our proposed
Cus-Prun method could effectively obtain expert models tailored to specific use cases across
different languages, domains, and tasks that maintain high performance despite substantial pruning.

4 FOUNDATIONAL CUSTOM PRUNING ASSESSMENT

As demonstrated by preliminary evaluation in Section[3] Cus—Prun enables the creation of expert
language models tailored to specific languages, domains, and tasks. However, when attempting a
more comprehensive evaluation, we find that benchmark datasets may not always be available and it is
difficult to conduct systematic evaluation. To simplify our evaluation without losing generality, we use
two distinct corpora: one focusing independently on a single dimension and another encompassing
the remaining two dimensions. This approach allows us to evaluate Cus—-Prun’s performance in
multilingual, multidomain, and multitask settings.

Formally, in the multilingual setting, instead of constructing C'r,, , Cp,,, and C7,,, independently, we
can construct two corpora, C'r. and C(p 7)., where Cr, helps to identify irrelevant neurons in a

specific language W, Ley) @and C(p 1), helps to identify irrelevant neurons in a specific domain-task

combination (N DryNTiy,)- Formally speaking, Cus—Prun in Equationis transferred to

‘c‘C’MEXP =LLM \ {NLExp N (NDExp N '/(/'TExp)} =LLM \ {NLEXp N NDExpﬁTExp}' @)

Note that this simplification is also applicable to C Dexps C( L.T)ex and C’TEXP, C( L,D)exp-
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Table 1: Main Results of Cus—Prun on multilingual setting with a pruning ratio of 25%, where
“general capability” is tested in English and averaged across several expert models, while “specific
capability” is averaged across languages. Results are expressed in Rouge-L in XLSum and in accuracy
(%) for other datasets. All models are base models.

General Capability Expert Capability
Model Method |\ o GSM8K MMLU Ave.|MGSM M3Exam XQuAD XLSum Ave.
Dense 70.7 58.3 63.1 64.1| 412 49.1 634 329 46.7
LLMPrun. 26.3 2.5 242 17.7 1.1 24.0 13.6 232 155
Llama3-8B

SliceGPT 41.5 0.0 242 219 00 14.9 16.6 85 10.0
ShortGPT 383 0.0 286 223| 0.0 26.9 0.0 2.7 74
Cus—-Prun| 60.3 31.9 521 48.1| 30.1 41.5 52.6 31.5 389

Dense 82.6 68.5 504 672 51.7 43.8 49.2 254 425
LLMPrun. 22.5 2.7 307 18.6| 2.1 27.8 19.0 232 18.0
SliceGPT 49.4 1.9 321 27.8| 0.8 25.1 17.4 7.8 12.8
ShortGPT 37.8 0.0 339 239 29 27.0 18.0 50 132
Cus-Prun| 67.0 39.6 434 50.0| 343 39.2 40.7 23.1 343

Dense 50.3 314 534 451 | 175 30.4 44.1 249 292
LLMPrun. 224 2.1 236 160 1.1 22.8 3.8 177 113
SliceGPT 45.9 24 487 323| 28 253 23.4 9.9 15.5
ShortGPT 39.5 3.8 372 268 24 23.0 24.7 113 153
Cus-Prun| 48.0 20.5 50.8 39.8| 12.7 26.2 34.2 241 243

Dense 84.1 82.7 78.8 819 69.5 71.1 69.1 366 61.6
LLMPrun. 69.1 26.0 532 494\ 168 43.7 43.0 29.0 33.1
SliceGPT 65.7 0.0 542 40.0| 3.7 44.8 33.0 212 257
ShortGPT 594 5.6 75.5 46.8| 119 43.1 38.8 24.0 295
Cus-Prun| 70.8 55.5 67.6 64.6| 43.1 57.7 59.8 343 48.7

Mistral-12B

Llama2-13B

Llama3-70B

4.1 EXPERIMENT SETUP

Benchmarks Although Cus-Prun focuses on expert LLMs, which are evaluated on the specifi-
cally chosen dataset, we still assess its general capabilities to ensure minimal loss of overall perfor-
mance. Specifically, we employ ARC-Challenge (Clark et al., [2018]) (5-shots), GSM8K (Cobbe et al.|
2021)) (5-shots with CoT prompting (Wei et al.,[2022)), and MMLU (Hendrycks et al.,[2021)) (5-shots)
to represent models general capability. It’s important to note that we utilize a generation task and
implement CoT prompting method, approaches that has not been previously evaluated by existing
pruning techniques (Song et al.l 2024} [Sharma et al.| [2024; Yang et al.,[2024b}; Zhang et al., 2024).

Baselines We employ several pruning methods as the baseline that do not require post-training after
pruning the model. (i) Dense represents the original model without pruning; (ii) LLM-Pruner (Ma
et al.| 2023) adopts structural pruning that selectively removes non-critical coupled structures based
on gradient informationﬂ (iii) SliceGPT (Ashkboos et al.| [2024) replaces each weight matrix with a
smaller dense matrix, reducing the embedding dimension of the network; (iv) ShortGPT (Men et al.,
2024]) directly deletes the redundant layers in LLMs based on their BI scores. Note that the pruning
ratio is set to 25% for all methods and all models.

Backbone Models We choose 4 models that cover models from different series and different sizes,
including Llama3-8B-Base (Dubey et al.,2024)), Mistral-N emo-Base-2407Ekshort as Mistral-12B),
Llama2-13B-Base (Touvron et al.| 2023), Llama3-70B-Base (Dubey et al., 2024).

4.2 MULTILINGUAL SETTING

Benchmarks We employ several conventional multilingual datasets for multilingual setting, which
covers reasoning (MGSM (Shi et al., |2023)), 5-shots), knowledge extraction (M3Exam (Zhang
et al} [2023), 3-shots), understanding (XQuAD (Artetxe et al., [2020), 5-shots), and generation

2To ensure a fair comparison, we evaluate its performance before post-training, following Men et al [ (2024).
*https://huggingface.co/mistralai/Mistral-Nemo-Base—-2407
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Table 2: Main Results of Cus—Prun on multidomain setting with a pruning ratio of 25%, where
“general capability” is tested in English and averaged across several expert models. Results are
expressed in accuracy (%) for all datasets. All models are base models.

General Capabilit Expert Capabilit
Model Method |\ o Gsmsk K/IMLUy Avg. | MedMCQ Fi[1)1TQA ”II")SA Al}\I/ISA Avg.
Dense 707 583 631 64.1| 518 239  67.1 959 598
Llamaa.gp |LLMPrun. | 263 25 242 177] 0.0 00 618 760 345
SliceGPT | 415 00 242 219| 226 00 412 537 294
ShortGPT | 383 00 286 223| 32 00 386 357 194
Cus-Prun| 637 391 578 53.5| 429 206 618 87.6 532
Dense 826 685 504 672] 546 266 694 924 608
Mistral.12 | LEMPrun. | 22527 307 186| 0.0 00 510 209 18.0
SliceGPT | 494 19 321 27.8| 249 92 342 543 307
ShortGPT | 378 0.0 339 239 314 72 392 525 326
Cus-Prun| 673 478 457 53.6| 479 251 673 837 56.0
Dense 503 314 534 451| 252 00 427 841 380
Llaman.13g | LLMPrun. | 224 2.0 236 160| 00 00 97 00 24
SliceGPT | 459 24 487 323| 187 00 284 673 286
ShortGPT | 39.5 38 372 268| 169 00 346 698 303
Cus-Prun| 48.6 212 505 40.1| 25.6 00 385 683 33.1
Dense 84.1 827 788 819| 721 553 836 962 768
LLMPrun. | 69.1 260 532 494| 273 10 510 503 324
Llama3-70B

SliceGPT 65.7 0.0 542 400 57.6 276 681 594 532
ShortGPT 59.4 5.6 75.5 468 58.4 322 675 649 558
Cus-Prun| 68.0 51.2 664 619 68.2 439 814 878 703

(XLSum (Hasan et al.,|2021), zero-shots). Furthermore, we cover three languages spanning a range
from high-resource to low-resource including German (De), Chinese (Zh) and Thai (Th).

Experiment Details For multilingual setting, we can obtain two corpora: Cf.

{(Lexp, D, T)|D € D, T € T} and C(p 1y, = {(L, (D, T)exp)|L € L}. The first corpus con-
tains samples in a specific language across various domains and tasks, while the second corpus
contains samples from a specific domain-task combination in other languages, i.e., the target dataset
in other languages. Specifically, for Cr,,, we employ Wikipediaﬂ to construct language-specific
corpus covering various domains and tasks. For C(p 7)., we employ the corresponding datasets

in English, including GSMS8K (Cobbe et al.,|2021) for MGSM, the English split of M3Exarrﬂ for
M3Exam, SQuAD (Rajpurkar, 2016) for XQuAD, and XSum (Narayan et al., 2018)) for XLSum.
More detailed experiment settings are explained in Appendix[A.1.1]

Main Results Table|l|shows the performance of Cus—Prun on multilingual datasets, which is
the average performance across languages and detailed results in each language is shown in Table 5}
Table [6] and Table [7]in Appendix [A.2] We find that Cus—Prun consistently outperforms other
pruning methods in obtaining expert models for multilingual settings while maintaining its general
capability. Specifically, for expert capabilities, Cus—Prun achieves a score of 38.9 on Llama3-8B,
while other pruning methods achieve at most 15.5. The scores are 34.3 for Mistral-12B, 24.3 for
Llama2-13B, and 48.7 for Llama3-70B, all significantly higher than those of other pruning methods,
which achieve at most 18.0, 15.5 and 29.5 for three models respectively. For general capabilities,
Cus—Prun also performs better than other baselines. The cases are the same for other models.

Moreover, the performance improvement of Cus-Prun is more pronounced in tasks requiring
generation rather than direct classification. Specifically, Cus—Prun achieves a score of 30.1 on
MGSM for Llama3-8B, with scores of 39.2, 26.2, and 57.7 for Mistral-12B, Llama2-13B, and
Llama3-70B, respectively. In contrast, other pruning methods almost entirely lose the ability to
generate reasoning thoughts, achieving accuracy close to 0 for models other than Llama3-70B.

*nttps://huggingface.co/datasets/wikimedia/wikipedia
>M3Exam is language-specific and does not utilize a translated parallel corpus.
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Table 3: Main Results of Cus—P run on multitask setting with a pruning ratio of 25%, where “general
capability” is tested in English and averaged across expert models. Results are expressed in Rouge-L
for MedSum and AMSum and in accuracy (%) for others. All models are base models.

General Capability Expert Capability
Model Method | 3o GSMS8K MMLU Ave.|MedSum AMSum AMContFact Ave.
Dense 707 583 631 641| 766 162 782 570
Llamas.gp |LLMPrun. | 263 25 242 177| 62 218 80.0 547
SliceGPT | 415 00 242 219| 73 2.9 sL3 205
ShortGPT | 383 0.0 286 223| 4.1 48 438 17.6
Cus-Prun| 632 401 543 525| 684 128 755 522
Dense 8.6 685 504 672 887 3.0 786 564
Misral.1op |LLMPrun. | 225 27 307 186 593 0.5 2.8 20.9
SliceGPT | 494 19 321 278| 274 1.3 363 217
ShortGPT | 378 00 339 239| 262 0.2 27 230
Cus-Prun| 68.1 427 422 51.0| 835 34 728 509
Dense 503 314 534 451 700 7.4 443 406
Llamaz.13p |LLMPrun. | 224 21 236 160/ 216 48 0.0 8.8
SliceGPT | 459 24 487 323| 245 49 329 208
ShortGPT | 39.5 3.8 372 268| 238 5.2 9.1 227
Cus-Prun| 482 206 487 392| 64.5 6.7 429 380
Dense 84.1 827 788 819| 842 173 81.8  6l.1
Llama370g | LLMPrun. | 69.1 260 532 4941 102 137 20.6 14.8
SliceGPT | 657 00 542 400| 580 142 683 468
ShortGPT | 594 56 755 468| 596 139 658 464
Cus-Prun| 663 529 659 617| 804 157 775 579

4.3 MULTILDOMAIN SETTING

Benchmarks For the multidomain setting, we employ several domain-specific datasets, including
medical domain multiply choices questions (MedMCQ (Pal et al., 2022)), 3-shots), finance domain
table question-answering (FinTQA (Chen et al., 2021), 8-shots), social media domain sentiment
analysis (TSA (Kharde & Sonawane, [2016), 3-shots), and e-commerce domain sentiment analysis
(AMSA (Zhang et al., 2015), 3-shots). Moreover, in multidomain setting, our focus is exclusively on
the English language. Detailed experiment settings are explained in[A.T.2]

Main Results Table 2] shows the performance of Cus—Prun on multidomain setting. We find that
Cus—Prun consistently outperforms other pruning methods in both expert and general capabilities.
For expert capabilities, Cus—Prun achieves a score of 53.2 on Llama3-8B, while other pruning
methods achieve at most 34.5. The scores are 56.0 for Mistral-12B, 33.1 for Llama2-13B, and 70.3
for Llama3-70B, all significantly higher than those of other pruning methods, which achieve at most
32.6, 30.3 and 55.8 for three models respectively.

4.4 MULTITASK SETTING

Benchmarks For the multitask setting, we employ several task-specific datasets, including the
medical summarization task (MeQSum (Abacha & Demner-Fushman, 2019), 3-shots), summarization
task in e-commerce (Amazon Summary (Wang et al., [2022; [Briiel-Gabrielsson et al.| [2024), 3-shots),
counterfactual task in e-commerce (Amazon Counterfactual (O’Neill et al.,|2021)), 3-shots). Similarly,
in multitask setting scenarios, our focus is exclusively on the English language. Detailed experiment
settings are explained in[A.T.3]

Main Results Table 3| shows the performance of Cus—Prun on multitask setting. We find that
except for LLM-Pruner under Llama3-8B, Cus—Prun outperforms other pruning methods in both
expert and general capabilities. For expert capabilities, Cus—-Prun achieves a score of 50.9 on
Mistral-12B, while other pruning methods achieve at most 23.0. The scores are 38.0 for Llama2-13B,
and 57.9 for Llama3-70B, all significantly higher than those of other pruning methods, which achieve
at most 22.7 and 46.8 for the two models respectively.
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Figure 4: Performance of Cus—Prun in obtaining language-specific models.

5 ADAPTIVE CUSTOM PRUNING ASSESSMENT

In this section, we evaluate the generality of Cus—-Prun in dynamic scenarios, including specific
expert models in two and one dimensions, as described in Section @

5.1 Two DIMENSIONS SPECIFIC EXPERT MODEL

Experiment Settings We use a Chinese-Medical LLM as a concrete example of a two-dimensional
expert model, capable of performing various medical tasks in Chinese. We adopt Mistral-12b as the
backbone model and utilize corpus from Wikipedia for Chinese content and general medical corpus
for medical knowledge. The performance of the Chinese-Medical expert model is primarily evaluated
on two datasets: CMExam (Li1u et al., 2023) (5-shots), a Chinese medical multiple-choice question
dataset, and HuatuoQA (Li et al.| [2023a), a Chinese medical question-answering dataset. We assess
the performance on CMExam using accuracy metrics, while the performance on HuatuoQA is more
challenging to evaluate quantitatively. For the latter, we sample a sub-testset of size 100 and use
GPT-4 as the evaluator, which assigns a score from 0 to 5, representing its quality from low to high.

Main Results Table ] presents the performance of the Chinese-Medical LLM on CMExam and its
general capabilities. Our results indicate that the expert model pruned using Cus—P run outperforms
models obtained through other pruning methods. Specifically, Cus—Prun achieves a score of 48.7
on CMExam, while its general capability score is 52.4. These results compare favorably to the dense
model, which scores 50.6 on CMExam and 59.3 on general capabilities. On the contrary, other
pruning methods nearly lose the general and specific capabilities. Furthermore, Figure [3] shows
a concrete example of Chinese-Medical LLM performance on medical question-answering. We
find that Cus—Prun can produce smaller expert models that maintain their expert capabilities, as
demonstrated by its performance score of 2.9 compared to 3.2 for the dense model.

5.2 ONE DIMENSION SPECIFIC EXPERT MODEL

Experiment Settings For evaluating the pruning method under a one-dimensional expert model
setting, we focus on language-specific pruning, showing how to transform a dense model into
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language-specific variants. We consider three linguistically diverse languages: German, Chinese, and
Thai, and conduct experiments based on the Llama3-8b model. To identify language-specific (while
domain- and task-agnostic) neurons, we employ a diverse range of corpora, including Wikipedia,
MGSM, and M3Exam, ensuring coverage of various domains and tasks. The effectiveness of our prun-
ing technique is then evaluated using three held-out multilingual datasets including XQuAD (Artetxe
et al.,[2020), XNLI (Conneau et al.,|2018)), and XSum (Narayan et al.,|[2018]).

Main Results Figure |4|illustrates the performance of language-specific models using Cus—Prun.
By pruning 25% of the neurons from the original model, Cus—Prun not only retains general
performance but also preserves language-specific capabilities. For instance, the German-specific
model scores 54.7 in general capabilities, 48.3 on XQuAD, and 56.8 on XNLI, compared to the dense
model’s scores of 64.1, 52.9, and 62.0, respectively. This trend is consistent for Chinese and Thai
models as well. In contrast, ShortGPT struggles to maintain the model’s capabilities, particularly in
XQuAD and XSUm, which require generative abilities rather than simple classification.

6 RELATED WORK

LLM Compression Given the high costs associated with training, inferencing, and tuning LLMs,
many studies explore methods to compress the model to conserve computing resources, including
model compression (Zhu et al., [2023)), quantization (Xu et al.,|2023}; |[Dettmers et al.| 2024; Lin et al.,
2024} |Li et al.| |2024), and pruning (Wang et al.l 2019). In the context of pruning, sparsity serves as a
structural pruning (Li et al., [2022; 2023c; Kurz et al., 2024; Zhao et al., 2024a; Huang et al., |[2024),
which doesn’t save computing resources but leverages GPU calculation properties for acceleration. In
addition, some works develop unstructuraled pruning methods aimed at reducing model parameters
while maintaining general performance. They either employ extensive post-training (Ma et al., [2023}
Xia et al.| [2024f Muralidharan et al., [2024)), nor adopt coarse-grained pruning method at structure
such as approximating all parameters (Zhao et al., 2024a), removing entire layers (Men et al., 2024),
or eliminating network structures (Zhang et al., [2024). However, they fail to capture the model’s
expert capability thus fail to be applied to more specific downstream scenarios.

Customizing Model The rapid evolution of LLMs has led to a growing need for customization to
meet specific requirements across various fields. Language-specific models are being developed to
address unique linguistic needs (Cui et al.| 2023} Yang et al.,|2024b)), while domain-specific models
cater to specialized areas like healthcare and software development (L1 et al., [2023a}; |Roziere et al.,
2023} |L1 et al.| |2023b)). Task-specific models further enhance performance for particular applications
(Azerbayev et al} 2024;|Alves et al., [2024). However, correctly customizing these models requires
extensive fine-tuning with a tailored training corpus. This challenge highlights the need for efficient
methods to acquire and refine expert models, ensuring LLMs can be adapted effectively to meet
diverse industry demands.

7 CONCLUSION

LLMs offer impressive capabilities but come with substantial computational costs. Efficient pruning
of redundant parameters is crucial for conserving resources and improving speed, especially for
users requiring specialized models for specific tasks. While current pruning methods often demand
extensive post-training or lack precision, our proposed method, Cus—Prun, creates smaller expert
models without post-training. By mapping models along "language," "domain," and "task" dimensions
and pruning irrelevant neurons, Cus-Prun achieves efficient expert model creation in a finer-
grained manner. Experimental results demonstrate that Cus—P run consistently outperforms existing
techniques on three-dimensional specific models. Furthermore, Cus—P run can be tailored to more
realistic scenarios by targeting just one or two dimensions, such as language-domain or language-
specific models, experimentally outperforming other pruning methods in these contexts as well.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Asma Ben Abacha and Dina Demner-Fushman. On the summarization of consumer health questions.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
2228-2234, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Duarte M Alves, José Pombal, Nuno M Guerreiro, Pedro H Martins, Jodo Alves, Amin Farajian, Ben
Peters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal, et al. Tower: An open multilingual large
language model for translation-related tasks. arXiv preprint arXiv:2402.17733, 2024.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the cross-lingual transferability of monolin-
gual representations. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 4623-4637, 2020.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024.

Mohammed Attia, Younes Samih, Ali Elkahky, and Laura Kallmeyer. Multilingual multi-class
sentiment classification using convolutional neural networks. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), 2018.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024.

Rickard Briiel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald,
Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of lora adapters
with little overhead, 2024. URL https://arxiv.org/abs/2407.00066.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Yang Wang, and William W Cohen. Open
question answering over tables and text. In International Conference on Learning Representations,
2020.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
Moussa, Matt Beane, Ting-Hao Huang, Bryan R Routledge, et al. Finqa: A dataset of numerical
reasoning over financial data. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 3697-3711, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2475-2485,
2018.

Yiming Cui, Ziqing Yang, and Xin Yao. Efficient and effective text encoding for chinese llama and
alpaca. arXiv preprint arXiv:2304.08177, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11


https://arxiv.org/abs/2407.00066

Under review as a conference paper at ICLR 2025

Iker Garcia-Ferrero, Rodrigo Agerri, Aitziber Atutxa, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli,
Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, German Rigau, et al. Medical
mt5: An open-source multilingual text-to-text llm for the medical domain. In LREC-COLING
2024-2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation, 2024.

Josh A Goldstein, Girish Sastry, Micah Musser, Renee DiResta, Matthew Gentzel, and Katerina
Sedova. Generative language models and automated influence operations: Emerging threats and
potential mitigations. arXiv preprint arXiv:2301.04246, 2023.

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Islam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin
Kang, M Sohel Rahman, and Rifat Shahriyar. Xl-sum: Large-scale multilingual abstractive

summarization for 44 languages. In Findings of the Association for Computational Linguistics:
ACL-1JCNLP 2021, pp. 4693-4703, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Weiyu Huang, Guohao Jian, Yuezhou Hu, Jun Zhu, and Jianfei Chen. Pruning large language models
with semi-structural adaptive sparse training. arXiv preprint arXiv:2407.20584, 2024.

Wonseok Hwang, Dongjun Lee, Kyoungyeon Cho, Hanuhl Lee, and Minjoon Seo. A multi-task
benchmark for korean legal language understanding and judgement prediction. Advances in Neural
Information Processing Systems, 35:32537-32551, 2022.

Phillip Keung, Yichao Lu, Gyorgy Szarvas, and Noah A. Smith. The multilingual amazon reviews
corpus. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, 2020.

Vishal A Kharde and SS Sonawane. Sentiment analysis of twitter data: A survey of techniques.
International Journal of Computer Applications, 975:8887, 2016.

Simon Kurz, Zhixue Zhao, Jian-Jia Chen, and Lucie Flek. Language-specific calibration for pruning
multilingual language models. arXiv preprint arXiv:2408.14398, 2024.

Jianquan Li, Xidong Wang, Xiangbo Wu, Zhiyi Zhang, Xiaolong Xu, Jie Fu, Prayag Tiwari, Xiang
Wan, and Benyou Wang. Huatuo-26m, a large-scale chinese medical qa dataset, 2023a.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint
arXiv:2402.18158, 2024.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the fourth ACM international conference on Al in finance, pp. 374-382, 2023b.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse approxi-
mation. In International Conference on Machine Learning, pp. 20336-20350. PMLR, 2023c.

Yuchao Li, Fuli Luo, Chuanqgi Tan, Mengdi Wang, Songfang Huang, Shen Li, and Junjie
Bai. Parameter-efficient sparsity for large language models fine-tuning. arXiv preprint
arXiv:2205.11005, 2022.

Yunlong Liang, Fandong Meng, Songming Zhang, Yufeng Chen, Jinan Xu, Jie Zhou, et al. Multilin-
gual knowledge editing with language-agnostic factual neurons. arXiv preprint arXiv:2406.16416,
2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

12



Under review as a conference paper at ICLR 2025

Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang,
Chenyu You, Zhenhua Guo, Lei Zhu, et al. Benchmarking large language models on cmexam-a
comprehensive chinese medical exam dataset. arXiv preprint arXiv:2306.03030, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.

Micah Musser. A cost analysis of generative language models and influence operations. arXiv
preprint arXiv:2308.03740, 2023.

Shashi Narayan, Shay Cohen, and Maria Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. In 2018 Conference on
Empirical Methods in Natural Language Processing, 2018.

James O’Neill, Polina Rozenshtein, Ryuichi Kiryo, Motoko Kubota, and Danushka Bollegala. I
wish i would have loved this one, but i didn’t—a multilingual dataset for counterfactual detection in
product review. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 7092-7108, 2021.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Gerardo Flores,
George H Chen, Tom Pollard, Joyce C Ho, and Tristan Naumann (eds.), Proceedings of the
Conference on Health, Inference, and Learning, volume 174 of Proceedings of Machine Learning
Research, pp. 248-260. PMLR, 07-08 Apr 2022.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning in
language models with layer-selective rank reduction. In The Tielfth International Conference on
Learning Representations, 2024.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are mul-
tilingual chain-of-thought reasoners. In The Eleventh International Conference on Learning
Representations, 2023.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, et al. Sleb: Streamlining 1lms
through redundancy verification and elimination of transformer blocks. In Forty-first International
Conference on Machine Learning, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4149-4158, 2019.

13



Under review as a conference paper at ICLR 2025

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu
Wei, and Ji-Rong Wen. Language-specific neurons: The key to multilingual capabilities in large
language models. arXiv preprint arXiv:2402.16438, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Pingjie Wang, Ziqing Fan, Shengchao Hu, Zhe Chen, Yanfeng Wang, and Yu Wang. Reconstruct the
pruned model without any retraining. arXiv preprint arXiv:2407.13331, 2024.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana
Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Parmar,
Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang
Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro,
Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, and
Daniel Khashabi. Super-naturalinstructions: Generalization via declarative instructions on 1600+
nlp tasks, 2022. URL https://arxiv.org/abs/2204.07705)

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Tivelfth International Conference on Learning
Representations, 2024.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024b.

Wenxuan Zhang, Mahani Aljunied, Chang Gao, Yew Ken Chia, and Lidong Bing. M3exam: A
multilingual, multimodal, multilevel benchmark for examining large language models. Advances
in Neural Information Processing Systems, 36:5484-5505, 2023.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024.

Pengxiang Zhao, Hanyu Hu, Ping Li, Yi Zheng, Zhefeng Wang, and Xiaoming Yuan. A convex-

optimization-based layer-wise post-training pruner for large language models. arXiv preprint
arXiv:2408.03728, 2024a.

14


https://arxiv.org/abs/2204.07705

Under review as a conference paper at ICLR 2025

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, and Lidong Bing. How do large
language models handle multilingualism? arXiv preprint arXiv:2402.18815, 2024b.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

A APPENDIX

A.1 EXPERIMENTS DETAILED SETTINGS

A.1.1 MULTILINGUAL SETTINGS

Experiment Details Hyperparameters, including the sizes of C'r,, and C(p 1),,,, are determined
using the validation set of the XLSum dataset and then applied to testsets in other multilingual
datasets. Furthermore, accuracy is the metric used for ARC-c, GSM8K, MMLU, MGSM, M3Exam,
and XQuAD, while Rouge-L (Lin, 2004) is used for XLSum.

A.1.2 MULTIDOMAIN SETTINGS

Settings  For multidomain setting, we can obtain two corpora: Cp, = {(L, Dgyp, T)|L € L, T €
T} and Cp 1y, = {(D, (L, T)exp)|D € D}. The first corpus contains samples in a specific
domain across various languages and tasks, while the second corpus contains samples from a spe-
cific language-task combination across different domains, i.e., the target dataset in other domains.
Specifically, for Cp,,, we employ specific domain corpus, including English split of medical cor-
pus (Garcia-Ferrero et al., [2024) for medical domain, general finance corpus for finance domailﬂ
general Twitter corpus (Kharde & Sonawanel 2016), and English split of Amazon corpus (Keung
et al} 2020). For C(y, 7., we employ the corresponding datasets in general domains, including
CommonsenseQA (Talmor et al.}[2019) for MedMCQ, open table question-answering OTT-QA (Chen
et al.,[2020) for FinTQA, general sentiment analysis (Attia et al., 2018) for TSA and AMSA.

Experiment Details Hyperparameters, including the sizes of Cp,,, and C(y, 7). are determined
using the validation set of the Amazon sentiment analysis dataset and then applied to testsets in other
multidomain datasets. Furthermore, accuracy is the metric used for all datasets.

A.1.3 MULTITASK SETTINGS

Settings  For multitask setting, we can obtain two corpora: Cr,,, = {(L, D, Tgy)|L € L, D € D}
and C(, py,, = {(T,(L,S)exp)|T € T}. The first corpus contains samples in a specific task
across various languages and domains, while the second corpus contains samples from a specific
language-domain combination across different tasks, i.e., the target dataset in other tasks. Specifically,
for Cr,,, we employ specific task corpus, including XSum corpus (Abacha & Demner-Fushman)
2019) for summarization task, general conterfact corpug’(for counterfactual task. For C( L,D)yp> WE
employ the corresponding datasets in other tasks, including MedQCQ (Pal et al., 2022) for MedSum,
AMSA (Zhang et al.l 2015) for AMSum and AMContFact.

Experiment Details Hyperparameters, including the sizes of C'ry,, and C(1, p),,,. are determined
using the validation set of the Amazon counterfactual dataset and then applied to testsets in other
multitask setting datasets. Furthermore, accuracy is the metric used for ARC-c, GSM8K, MMLU,
and AMContFact, while Rouge-L (Lin, 2004) is used for MedSum and AMSum.

A.2 DETAILED RESULTS FOR MULTILINGUAL

®https://huggingface.co/datasets/gbharti/finance-alpaca
"nttps://huggingface.co/datasets/azhx/counterfact-easy
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General Capability Expert Capability
Model  |Method | \pc . GSMS8K MMLU Avg.|MGSM M3Exam XQuAD XLSum Ave.
Dense 70.7 58.3 63.1 64.1| 4438 - 52.9 - 48.8
Llama3-8B LI__.MPrun. 26.3 2.5 242 177 0.0 - 11.0 - 5.5
SliceGPT 41.5 0.0 242 219 0.0 - 9.8 - 4.9
ShortGPT 38.3 0.0 286 223 00 - 0.0 - 0.0
Cus-Prun| 614 38.9 545 51.6| 328 - 49.6 - 41.2
Dense 82.6 68.5 504 593 | 56.8 - 41.2 - 49.0
Mistral-12B LLMPrun. 22.5 2.7 30.7 18.6 2.4 - 134 - 7.9
SliceGPT 49.4 1.9 321 27.8| 0.8 - 15.5 - 8.2
ShortGPT 37.8 0.0 339 239 3.6 - 20.3 - 12.0
Cus—-Prun| 64.6 39.7 432 49.2| 31.6 - 35.9 - 33.8
Dense 50.3 314 534 45.1| 244 - 40.3 - 32.3
Llama2-13B LLMPrun. 22.4 2.1 23.6 16.0| 20 - 5.7 - 3.9
SliceGPT 45.9 2.4 48.7 323 3.6 - 18.1 - 10.9
ShortGPT 39.5 3.8 372 268| 2.8 - 27.2 - 15.0
Cus-Prun| 47.6 19.8 499 39.1| 184 - 31.7 - 25.0
Dense 84.1 82.7 78.8 819 74.8 - 58.2 - 66.5
Llama3-70B LLMPrun. 69.1 26.0 532 494 18.0 - 27.3 - 22.7
SliceGPT 65.7 0.0 542 40.0| 0.0 - 17.3 - 8.7
ShortGPT 59.4 5.6 755 468 | 9.6 - 31.5 - 20.6
Cus-Prun| 66.8 59.3 69.1 65.1| 482 - 53.9 - 511
Table 5: Germany.
General Capabilit Specific Capabilit
Model Method |\ .c Gsmsk K/[MLUy Avg. | MGSM M3gxam XQL?AD X{Sum Avg.
Dense 70.7 58.3 63.1 64.1| 43.6 55.1 78.7 49.1 56.6
Llama3-8B LLMPrun. 26.3 2.5 242 177 24 23.6 21.3 32.8  20.0
SliceGPT 41.5 0.0 242 219 00 17.4 23.5 8.3 12.3
ShortGPT 38.3 0.0 286 223 0.0 28.3 0.0 3.1 7.9
Cus-Prun| 60.5 25.7 494 452 36.0 44.7 65.6 46.3  48.2
Dense 82.6 68.5 504 593 532 47.8 62.2 33.0 49.1
Mistral-12B LI__.MPrun. 22.5 2.7 30.7 18.6| 2.8 30.7 31.8 32,6 245
SliceGPT 494 1.9 32,1 27.8 1.6 26.4 28.3 10.8 16.8
ShortGPT 37.8 0.0 339 239 44 28.2 29.1 7.2 17.2
Cus-Prun| 68.3 43.2 39.5 50.3| 384 40.7 50.6 30.3  40.0
Dense 50.3 31.4 534 45.1| 21.6 36.5 59.8 353 383
Llama2-13B LLMPrun. 224 2.1 23.6 16.0 1.2 23.3 3.8 251 134
SliceGPT 45.9 2.4 48.7 323 4.8 24.5 28.4 112 172
ShortGPT 39.5 3.8 372 26.8 4.4 22.9 24.6 13.7 164
Cus—-Prun| 48.6 20.7 519 404 | 148 28.2 473 344  31.2
Dense 84.1 82.7 78.8 81.9| 684 76.1 81.3 553 703
Llama3-70B LLMPrun. 69.1 26.0 532 494 | 168 47.5 56.1 41.3 404
SliceGPT 65.7 0.0 542 40.0 6.4 48.3 42.2 293 31.6
ShortGPT 59.4 5.6 755 468 124 45.5 44.6 36.1 347
Cus—-Prun| 72.3 48.5 652 62.0| 40.8 61.7 66.9 51.6 553

Table 6: Chinese.
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General Capabilit Specific Capabilit
Model Method | .o Gsmsk %\’/IMLUy Avg. | MGSM M3£xam XQI?AD XiSum Avg.
Dense 707 583  63.1 64.1| 352 430 587 167 384
Llamaa.gp |LLMPrun. | 263 25 242 17.7] 08 24.4 84 135 118
SliceGPT | 41.5 00 242 219 00 12.3 166 87 94
ShortGPT | 383 00 286 223| 00 254 0.0 23 69
Cus-Prun| 589 312 524 475| 216 383 426 168 298
Dense 8.6 685 504 593| 452 399 441 178 368
Mistral.1op |LEMPrun. | 22527 307 186| 12 24.8 119 137 129
SliceGPT | 494 19 321 278| 00 238 8.4 47 123
ShortGPT | 39.5 38 372 268| 08 25.7 47 28 85
Cus-Prun| 682 358 476 50.5| 328 377 356 159 305
Dense 503 314 534 451| 64 243 283 145 184
Llaman.13g | LLMPrun. | 224 2.0 236 160| 00 223 1.8 102 86
SliceGPT | 459 24 487 323| 00 262 237 86 146
ShortGPT | 39.5 38 372 268| 00  23.1 23 89 136
Cus-Prun| 478 209  50.7 39.8| 48 242 236 138 166
Dense 84.1 827 788 819| 652  66.1 678 178 542
Llama3.70g | LLMPrun. | 9.1 260 532 494| 156 399 298 166 255
SliceGPT | 657 0.0 542 400| 48 413 396 132 247
ShortGPT | 594 5.6 755 468| 137 407 404 119 267
Cus-Prun| 733 587 684 668| 404 536 585 169 424

Table 7: Thai.
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