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ABSTRACT

Federated Learning (FL) models often experience client drift caused by hetero-
geneous data, where the distribution of data differs across clients. To address
this issue, advanced research primarily focuses on manipulating the existing gra-
dients to achieve more consistent client models. In this paper, we present an
alternative perspective on client drift and aim to mitigate it by generating improved
local models. First, we analyze the generalization contribution of local training
and conclude that this generalization contribution is bounded by the conditional
Wasserstein distance between the data distribution of different clients. Then, we
propose FedImpro, to construct similar conditional distributions for local train-
ing. Specifically, FedImpro decouples the model into high-level and low-level
components, and trains the high-level portion on reconstructed feature distributions.
This approach enhances the generalization contribution and reduces the dissimi-
larity of gradients in FL. Experimental results show that FedImpro can help FL
defend against data heterogeneity and enhance the generalization performance of
the model.

1 INTRODUCTION

The convergence rate and the generalization performance of FL suffers from heterogeneous data
distributions across clients (Non-IID data) (Kairouz et al., 2019). The FL community theoretically
and empirically found that the “client drift” caused by the heterogeneous data is the main reason of
such a performance drop (Guo et al.; Wang et al., 2020a). The client drift means the far distance
between local models on clients after being trained on private datasets.

Recent convergence analysis (Reddi et al., 2021; Woodworth et al., 2020) of FedAvg shows that the
degree of client drift is linearly upper bounded by gradient dissimilarity. Therefore, most existing
works (Karimireddy et al., 2020; Wang et al., 2020a) focus on gradient correction techniques to
accelerate the convergence rate of local training. However, these techniques rely on manipulating
gradients and updates to obtain more similar gradients (Woodworth et al., 2020; Wang et al., 2020a;
Sun et al., 2023a). However, the empirical results of these methods show that there still exists a
performance gap between FL and centralized training.

In this paper, we provide a novel view to correct gradients and updates. Specifically, we formulate the
objective of local training in FL systems as a generalization contribution problem. The generalization
contribution means how much local training on one client can improve the generalization performance
on other clients’ distributions for server models. We evaluate the generalization performance of a
local model on other clients’ data distributions. Our theoretical analysis shows that the generalization
contribution of local training is bounded by the conditional Wasserstein distance between clients’
distributions. This implies that even if the marginal distributions on different clients are the same, it is
insufficient to achieve a guaranteed generalization performance of local training. Therefore, the key
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Figure 1: Training process of our framework. On any m-th Client, the low-level model uses the raw
data xm as input, and outputs feature hm. The high-level model uses hm and samples ĥ from a shared
distribution Hr as input for forward and backward propagation. Noises will be added to the locally
estimated Hr+1

m before aggregation on the Server to update the global Hr+1. Model parameters
follow the FedAvg aggregation or other FL aggregation algorithms.

to promoting generalization contribution is to leverage the same or similar conditional distributions
for local training.

However, collecting data to construct identical distributions shared across clients is forbidden due
to privacy concerns. To avoid privacy leakage, we propose decoupling a deep neural network into
a low-level model and a high-level one, i.e., a feature extractor network and a classifier network.
Consequently, we can construct a shared identical distribution in the feature space. Namely, on each
client, we coarsely1 estimate the feature distribution obtained by the low-level network and send
the noised estimated distribution to the server model. After aggregating the received distributions,
the server broadcasts the aggregated distribution and the server model to clients simultaneously.
Theoretically, we show that introducing such a simple decoupling strategy promotes the generalization
contribution and alleviates gradient dissimilarity. Our extensive experimental results demonstrate
the effectiveness of FedImpro, where we consider the global test accuracy of four datasets under
various FL settings following previous works (He et al., 2020b; Li et al., 2020b; Wang et al., 2020a).

Our main contributions include: (1) We theoretically show that the critical, yet far overlooked
generalization contribution of local training is bounded by the conditional Wasserstein distance
between clients’ distributions (Section 4.1). (2) We are the first to theoretically propose that sharing
similar features between clients can improve the generalization contribution from local training, and
significantly reduce the gradient dissimilarity, revealing a new perspective of rectifying client drift
(Section 4.2). (3) We propose FedImpro to efficiently estimate feature distributions with privacy
protection, and train the high-level model on more similar features. Although the distribution estima-
tion is approximate, the generalization contribution of the high-level model is improved and gradient
dissimilarity is reduced (Section 4.3). (4) We conduct extensive experiments to validate gradient
dissimilarity reduction and benefits on generalization performance of FedImpro (Section 5).

2 RELATED WORKS

We review FL algorithms aiming to address the Non-IID problem and introduce other works related to
measuring client contribution and decoupled training. Due to limited space, we leave a more detailed
discussion of the literature review in Appendix D.

2.1 ADDRESSING NON-IID PROBLEM IN FL

Model Regularization focuses on calibrating the local models to restrict them not to be excessively
far away from the server model. A number of works like FedProx (Li et al., 2020b), FedDyn (Acar
et al., 2021), SCAFFOLD (Karimireddy et al., 2020). VHL (Tang et al., 2022b) utilizes shared noise
data to calibrate feature distributions. FedETF (Li et al., 2023b) proposed a synthetic and fixed ETF
classified to resolve the classifier delemma. SphereFed (Dong et al., 2022) constrains the learned
representations to be a unit hypersphere.

1Considering the computation and communication costs, avoiding privacy leakage, the distribution estimation
is approximate. And the parameters will be sent out with noise.
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Reducing Gradient Variance tries to correct the directions of local updates at clients via other
gradient information. This kind of method aims to accelerate and stabilize the convergence, like
FedNova (Wang et al., 2020a), FedOPT (Reddi et al., 2021) and FedSpeed (Sun et al., 2023b). Our
theorem 4.2 provides a new angle to reduce gradient variance.

Sharing data methods proposes sharing the logits or data between clients (Yang et al., 2023).
Cronus (Chang et al., 2019) shares the logits to defend the poisoning attack. CCVR (Luo et al.,
2021) transmit the logits statistics of data samples to calibrate the last layer of Federated models.
CCVR (Luo et al., 2021) also share the parameters of local feature distribution. FedDF (Lin et al.,
2020) finetunes on the aggregated model via the knowledge distillation on shared publica data. The
supriority of FedImpro may result from the difference between these works. Specifically, FedImpro
focuses on the training process and reducing gradient dissimilarity of the high-level layers. In contrast,
CCVR is a post-hoc method and calibrates merely the classifiers. Furthermore, the FedDF fails to
distill knowledge when using the random noise datasets as shown in the results.

2.2 MEASURING CONTRIBUTION FROM CLIENTS

Clients’ willingness to participate in FL training depends on the rewards offered. Hence, it is crucial
to evaluate their contributions to the model’s performance (Yu et al., 2020; Ng et al., 2020; Liu et al.,
2022; Sim et al., 2020). Some studies (Yuan et al., 2022) propose experimental methods to measure
performance gaps from unseen client distributions. Data shapley (Ghorbani & Zou, 2019; Sim et al.,
2020; Liu et al., 2022) is introduced to assess the generalization performance improvement resulting
from client participation. These approaches evaluate the generalization performance with or without
certain clients engaging in the entire FL process. However, we hope to understand the contribution of
clients at each communication round. Consequently, our theoretical conclusions guide a modification
on feature distributions, improving the generalization performance of the trained model.

2.3 SPLIT TRAINING

Some works propose Split FL (SFL) to utilize split training to accelerate federated learning (Oh et al.,
2022; Thapa et al., 2020). In SFL, the model is split into client-side and server-side parts. At each
communication round, the client only downloads the client-side model from the server, and conducts
forward propagation, and sends the hidden features to the server to compute the loss and conduct
backward propagation. These methods aim to accelerate the training speed of FL on the client side
and cannot support local updates. In addition, sending all raw features could introduce a high risk of
data leakage. Thus, we omit the comparisons to these methods.

2.4 PRIVACY CONCERNS

There are many other works (Luo et al., 2021; Li & Wang, 2019; He et al., 2020a; Liang et al.,
2020; Thapa et al., 2020; Oh et al., 2022) that propose to share the hidden features to the server or
other clients. Different from them, our decoupling strategy shares the parameters of the estimated
feature distributions instead of the raw features, avoiding privacy leakage. We show that FedImpro
successfully protect the original data privacy in Appendix F.7.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Suppose we have a set of clients M = {1, 2, · · · ,M} with M being the total number of participating
clients. FL aims to make these clients with their own data distribution Dm cooperatively learn
a machine learning model parameterized as θ ∈ Rd. Suppose there are C classes in all datasets
∪m∈MDm indexed by [C]. A sample in Dm is denoted by (x, y) ∈ X × [C], where x is a model
input in the space X and y is its corresponding label. The model is denoted by ρ(θ;x) : X → RC .
Formally, the global optimization problem of FL can be formulated as (McMahan et al., 2017):

min
θ∈Rd

F (θ) :=

M∑
m=1

pmFm(θ) =

M∑
m=1

pmE(x,y)∼Dm
f(θ;x, y), (1)
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where Fm(θ) = E(x,y)∼Dm
f(θ;x, y) is the local objective function of client m with f(θ;x, y) =

CE(ρ(θ;x), y), CE denotes the cross-entropy loss, pm > 0 and
∑M

m=1 pm = 1. Usually, pm is set
as nm

N , where nm denotes the number of samples on client m and N =
∑M

m=1 nm.

The clients usually have a low communication bandwidth, causing extremely long training time. To
address this issue, the classical FL algorithm FedAvg (McMahan et al., 2017) proposes to utilize local
updates. Specifically, at each round r, the server sends the global model θr−1 to a subset of clients
Sr ⊆ M which are randomly chosen. Then, all selected clients conduct some iterations of updates to
obtain new client models {θrm}, which are sent back to the server. Finally, the server averages local
models according to the dataset size of clients to obtain a new global model θr.

3.2 GENERALIZATION QUANTIFICATION

Besides defining the metric for the training procedure, we also introduce a metric for the testing phase.
Specifically, we define criteria for measuring the generalization performance for a given deep model.
Built upon the margin theory (Koltchinskii & Panchenko, 2002; Elsayed et al., 2018), for a given
model ρ(θ; ·) parameterized with θ, we use the worst-case margin 2 to measure the generalizability
on the data distribution D:
Definition 3.1. (Worst-case margin.) Given a distribution D, the worst-case margin of model ρ(θ; ·)
is defined as Wd(ρ(θ),D) = E(x,y)∼D infargmaxiρ(θ;x′)i ̸=y d(x

′, x) with d being a specific distance,
where the argmaxiρ(θ;x

′)i ̸= y means the ρ(θ;x′) mis-classifies the x′.

This definition measures the expected largest distance between the data x with label y and the data x′

that is mis-classified by the model ρ. Thus, smaller margin means higher possibility to mis-classify
the data x. Thus, we can leverage the defined worst-case margin to quantify the generalization
performance for a given model ρ and a data distribution D under a specific distance. Moreover, the
defined margin is always not less than zero. It is clear that if the margin is equal to zero, the model
mis-classifies almost all samples of the given distribution.

4 DECOUPLED TRAINING AGAINST DATA HETEROGENEITY

This section formulates the generalization contribution in FL systems and decoupling gradient
dissimilarity.

4.1 GENERALIZATION CONTRIBUTION

Although Eq. 1 quantifies the performance of model ρ with parameter θ, it focuses more on the
training distribution. In FL, we cooperatively train machine learning models because of a belief that
introducing more clients seems to contribute to the performance of the server models. Given client
m, we quantify the “belief”, i.e., the generalization contribution, in FL systems as follows:

E∆:L(Dm)Wd(ρ(θ +∆),D\Dm), (2)

where ∆ is a pseudo gradient 3 obtained by applying a learning algorithm L(·) to a distribution Dm,
Wd is the quantification of generalization, and D\Dm means the data distribution of all clients except
for client m. Eq. 2 depicts the contribution of client m to generalization ability. Intuitively, we prefer
the client where the generalization contribution can be lower bounded.
Definition 4.1. The Conditional Wasserstein distance Cd(D,D′) between the distribution D and D′:

Cd(D,D′) =
1

2
E(·,y)∼D inf

J∈J (D|y,D′|y)
E(x,x′)∼Jd(x, x

′) +
1

2
E(·,y)∼D′ inf

J∈J (D|y,D′|y)
E(x,x′)∼Jd(x, x

′).

Built upon Definition 3.1, 4.1, and Eq. 2, we are ready to state the following theorem (proof in
Appendix C.1).
Theorem 4.1. With the pseudo gradient ∆ obtained by L(Dm), the generalization contribution is
lower bounded:

E∆:L(Dm)Wd(ρ(θ +∆),D\Dm) ≥E∆:L(Dm)Wd(ρ(θ +∆), D̃m)−
∣∣E∆:L(Dm)Wd(ρ(θ +∆),Dm)

−Wd(ρ(θ +∆), D̃m)
∣∣− 2Cd(Dm,D\Dm),

where D̃m represents the dataset sampled from Dm.
2The similar definition is used in the literature (Franceschi et al., 2018).
3The pseudo gradient at round r is calculated as: ∆r = θr−1

T − θr−1
0 with the maximum local iterations T .
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Remark 4.1. Theorem 4.1 implies that three terms are related to the generalization contribution. The
first and second terms are intuitive, showing that the generalization contribution of a distribution Dm

is expected to be large and similar to that of a training dataset D̃m. The last term is also intuitive,
which implies that promoting the generalization performance requires constructing similar conditional
distributions. Both the Definition 4.1 and Theorem 4.1 use distributions conditioned on the label y,
so we write the feature distribution H|y as H for brevity in rest of the paper.

Built upon the theoretical analysis, it is straightforward to make all client models trained on similar
distributions to obtain higher generalization performance. However, collecting data to construct such
a distribution is forbidden in FL due to privacy concerns. To address this challenge, we propose
decoupling a deep neural network into a feature extractor network φθlow parameterized by θlow ∈ Rdl

and a classifier network parameterized by θhigh ∈ Rdh , and making the classifier network trained on
the similar conditional distributions H|y with less discrepancy, as shown in Figure 1. Here, dl and dh
represent the dimensions of parameters θlow and θhigh, respectively.

Specifically, client m can estimate its own hidden feature distribution as Hm using the local hidden
features h = φθlow(x)|(x,y)∼Dm

and send Hm to the server for the global distribution approximation.
Then, the server aggregates the received distributions to obtain the global feature distribution H and
broadcasts it, being similar to the model average in the FedAvg. Finally, classifier networks of all
clients thus performs local training on both the local hidden features h(x,y)∼Dm

and the shared H
during the local training. To protect privacy and reduce computation and communication costs, we
propose an approximate but efficient feature estimation methods in Section 4.3. To verify the privacy
protection effect, following (Luo et al., 2021), we reconstruct the raw images from features by model
inversion attack (Zhao et al., 2021; Zhou et al., 2023) in Figure 11, 12 and 13 in Appendix F.7,
showing FedImpro successfully protect the original data privacy.

In what follows, we show that such a decoupling strategy can reduce the gradient dissimilarity,
besides the promoted generalization performance. To help understand the theory, We also provide an
overview of interpreting and connecting our theory to the FedImpro in Appendix C.4.

4.2 DECOUPLED GRADIENT DISSIMILARITY

The gradient dissimilarity in FL resulted from heterogeneous data, i.e., the data distribution on client
m, Dm, is different from that on client k, Dk (Karimireddy et al., 2020). The commonly used
quantitative measure of gradient dissimilarity is defined as inter-client gradient variance (CGV).
Definition 4.2. Inter-client Gradient Variance (CGV): (Kairouz et al., 2019; Karimireddy et al., 2020;
Woodworth et al., 2020; Koloskova et al., 2020) CGV(F, θ) = E(x,y)∼Dm

||∇fm(θ;x, y)−∇F (θ)||2.
CGV is usually assumed to be upper bounded (Kairouz et al., 2019; Woodworth et al., 2020; Lian
et al., 2017), i.e., CGV(F, θ) = E(x,y)∼Dm

||∇fm(θ;x, y)−∇F (θ)||2 ≤ σ2 with a constant σ.

Upper bounded gradient dissimilarity benefits the theoretical convergence rate (Woodworth et al.,
2020). Specifically, lower gradient dissimilarity directly causes higher convergence rate (Karimireddy
et al., 2020; Li et al., 2020b; Woodworth et al., 2020). This means that the decoupling strategy can
also benefit the convergence rate if the gradient dissimilarity can be reduced. Now, we are ready
to demonstrate how to reduce the gradient dissimilarity CGV with our decoupling strategy. With
representing ∇fm(θ;x, y) as

{
∇θlowfm(θ;x, y),∇θhigh

fm(θ;x, y)
}

, we propose that the CGV can
be divided into two terms of the different parts of θ (see Appendix C.2 for details):

CGV(F, θ) =E(x,y)∼Dm ||∇fm(θ;x, y)−∇F (θ)||2 (3)

=E(x,y)∼Dm

[
||∇θlowfm(θ;x, y)−∇θlowF (θ)||2 + ||∇θhighfm(θ;x, y)−∇θhighF (θ)||2

]
.

According to the chain rule of the gradients of a deep model, we can derive that the high-level part of
gradients that are calculated with the raw data and labels (x, y) ∼ Dm is equal to gradients with the
hidden features and labels (h = φθlow(x), y) (proof in Appendix C.2):

∇θhigh
fm(θ;x, y) = ∇θhigh

fm(θ;h, y),

∇θhigh
F (θ) =

M∑
m=1

pmE(x,y)∼Dm
∇θhigh

f(θ;h, y),
(4)

in which fm(θ;h, y) is computed by forwarding the h = φθlow(x) through the high-level model
without the low-level part. In FedImpro, with shared H, client m will sample ĥ ∼ H and
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hm = φθlow(x)|(x,y)∼Dm
to train their classifier network, then the objective function becomes as 4:

min
θ∈Rd

F̂ (θ) :=

M∑
m=1

p̂mE(x,y)∼Dm

ĥ∼H
f̂(θ;x, ĥ, y) ≜

M∑
m=1

p̂mE(x,y)∼Dm

ĥ∼H

[
f(θ;φθlow (x), y) + f(θ; ĥ, y)

]
. (5)

Here, p̂m = nm+n̂m

N+N̂
with nm and n̂m being the sampling size of (x, y) ∼ Dm and ĥ ∼ H

respectively, and N̂ =
∑M

m=1 n̂m. Now, we are ready to state the following theorem of reducing
gradient dissimilarity by sampling features from the same distribution (proof in Appendix C.3).
Theorem 4.2. Under the gradient variance measure CGV (Definition 4.2), with n̂m satisfying

n̂m

nm+n̂m
= N̂

N+N̂
, the objective function F̂ (θ) causes a tighter bounded gradient dissimilarity,

i.e. CGV(F̂ , θ) = E(x,y)∼Dm
||∇θlowfm(θ;x, y) − ∇θlowF (θ)||2 + N2

(N+N̂)2
||∇θhigh

fm(θ;x, y) −
∇θhigh

F (θ)||2 ≤ CGV(F, θ).

Remark 4.2. Theorem 4.2 shows that the high-level gradient dissimilarity can be reduced as N2

(N+N̂)2

times by sampling the same features between clients. Hence, estimating and sharing feature distribu-
tions is the key to promoting the generalization contribution and the reduction of gradient dissimilarity.
Note that choosing N̂ = ∞ can eliminate high-level dissimilarity. However, two reasons make it
impractical to sample infinite features ĥ. First, the distribution is estimated using limited samples,
leading to biased estimations. Second, infinite sampling will dramatically increase the calculating
cost. We set N̂ = N in our experiments.

4.3 TRAINING PROCEDURE

Algorithm 1 Framework of FedImpro.
server input: initial θ0, maximum communication
round R
client m’s input: local iterations T

Initialization: server distributes the initial model θ0

to all clients, and the initial globalH0 .

Server_Executes:
for each round r = 0, 1, · · · , R do

server samples a set of clients Sr ⊆ {1, ...,M}.
server communicates θr and Hr to all clients

m ∈ S.
for each client m ∈ Sr in parallel do do
θr+1
m,E−1, Hr+1

m ← ClientUpdate(m, θr,Hr).
end for
θr+1 ←

∑M
m=1 pmθr+1

m,E−1.

UpdateHr+1 using
{
Hr+1

m |m ∈ Sr
}

.
end for

ClientUpdate(m, θ,H):
for each local iteration t with t = 0, · · · , T − 1 do

Sample raw data (x, y) ∼ Dm and ĥ ∼ H|y.

θm,t+1 ← θm,t − ηm,t∇θ f̂(θ;x, ĥ, y) (Eq. 5)

UpdateHm using ĥm = φθlow (x).
end for
Return θ and Hm to server.

As shown in Algorithm 1, FedImpro merely
requires two extra steps compared with the
vanilla FedAvg method and can be easily
plugged into other FL algorithms: a) estimating
and broadcasting a global distribution H; b) per-
forming local training with both the local data
(x, y) and the hidden features (ĥ ∼ H|y, y).

Moreover, sampling ĥ ∼ H|y has two additional
advantages as follows. First, directly sharing the
raw hidden features may incur privacy concerns.
The raw data may be reconstructed by feature
inversion methods (Zhao et al., 2021). One can
use different distribution approximation meth-
ods to estimate {hm|m ∈ M} to avoid expos-
ing the raw data. Second, the hidden features
usually have much higher dimensions than the
raw data (Lin et al., 2021). Hence, communicat-
ing and saving them between clients and servers
may not be practical. We can use different dis-
tribution approximation methods to obtain H.
Transmitting the parameters of H can consume
less communication resource than hidden fea-
tures {hm|m ∈ M}.

Following previous work (Kendall & Gal, 2017),
we exploit the Gaussian distribution to approx-
imate the feature distributions. Although it is
an inexact estimation of real features, Gaussian
distribution is computation-friendly. And the
mean and variance of features used to estimate
it widely exist in BatchNorm layers (Ioffe &
Szegedy, 2015), which are also communicated
between server and clients.

4We reuse f here for brevity, the input of f can be the input x or the hidden feature h = φθlow (x).
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Table 1: Best test accuracy (%) of all experimental results. “Cent.” means centralized training.
“Acc.” means the test accuracy. Each experiment is repeated 3 times with different random seed. The
standard deviation of each experiment is shown in its mean value.

Dataset Cent. FL Setting FL Test Accuracy
Acc. a E M FedAvg FedProx SCAFFOLD FedNova FedDyn FedImpro

CIFAR-10 92.53

0.1 1 10 83.65±2.03 83.22±1.52 82.33±1.13 84.97±0.87 84.73±0.81 88.45±0.43
0.05 1 10 75.36±1.92 77.49±1.24 33.6±3.87 73.49±1.42 77.21±1.25 81.75±1.03
0.1 5 10 85.69±0.57 85.33±0.39 84.4±0.41 86.92±0.28 86.59±0.39 88.10±0.20
0.1 1 100 73.42±1.19 68.59±1.03 59.22±3.11 74.94±0.98 75.29±0.95 77.56±1.02

Average 79.53 78.66 64.89 80.08 80.96 83.97

FMNIST 93.7

0.1 1 10 88.67±0.34 88.92±0.25 87.81±0.36 87.97±0.41 89.01±0.25 90.83±0.19
0.05 1 10 82.73±0.98 83.66±0.82 76.16±1.29 81.89±0.91 83.20±1.19 86.42±0.71
0.1 5 10 87.6±0.52 88.41±0.38 88.44±0.29 87.66±0.62 88.50±0.52 89.87±0.21
0.1 1 100 90.12±0.19 90.39±0.12 88.24±0.31 90.40±0.18 90.57±0.21 90.98±0.15

Average 87.28 87.85 85.16 86.98 87.82 89.53

SVHN 95.27

0.1 1 10 88.20±1.21 87.04±0.89 83.87±2.15 88.48±1.31 90.82±1.09 92.37±0.82
0.05 1 10 80.67±1.92 82.39±1.35 82.29±1.81 84.01±1.48 84.12±1.28 90.25±0.69
0.1 5 10 86.32±1.19 86.05±0.72 83.14±1.51 88.10±0.91 89.92±0.50 91.58±0.72
0.1 1 100 92.42±0.21 92.29±0.18 92.06±0.20 92.44±0.31 92.82±0.13 93.42±0.15

Average 86.90 86.94 85.34 88.26 89.42 91.91

CIFAR-100 74.25

0.1 1 10 69.38±1.02 69.78±0.91 65.74±1.52 69.52±0.75 69.59±0.52 70.28±0.33
0.05 1 10 63.80±1.29 64.75±1.25 61.49±2.16 64.57±1.27 64.90±0.69 66.60±0.91
0.1 5 10 68.39±1.02 68.71±0.88 68.67±1.20 67.99±1.04 68.52±0.41 68.79±0.52
0.1 1 100 53.22±1.20 54.10±1.32 23.77±3.21 55.40±0.81 54.82±0.81 56.07±0.75

Average 63.70 64.34 54.92 64.37 64.46 65.44

On each client m, a Gaussian distribution N (µm, σm) parameterized with µm and σm is used to
approximate the feature distribution. On the server-side, N (µg, σg) estimate the global feature
distributions. As shown in Figure 1 and Algorithm 1, during the local training, clients update µm

and σm using the real feature hm following a moving average strategy which is widely used in the
literature (Ioffe & Szegedy, 2015; Wang et al., 2021):

µ(t+1)
m = βmµ(t)

m + (1− βm)× mean(hm),

σ(t+1)
m = βmσ(t)

m + (1− βm)× variance(hm),
(6)

where t is the iteration of the local training, βm is the momentum coefficient. To enhance privacy
protection, on the server side, µg and σg are updated with local parameters plus noise ϵri :

µ(r+1)
g = βgµ

(r)
g + (1− βg)×

1

|Sr|
∑
i∈Sr

(µr
i + ϵrr),

σ(r+1)
g = βgσ

(r)
g + (1− βg)×

1

|Sr|
∑
i∈Sr

(σr
i + ϵri ),

(7)

where ϵri ∼ N (0, σϵ). Appendix F.2 and Table F.2 show the performance of FedImpro with different
noise degrees σϵ. And Appendix F.7 show that the model inversion attacks fail to invert raw data
based on shared µm, σm, µg and σg, illustrating that FedImpro can successfully protect the original
data privacy.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Federated Datasets and Models. We verify FedImpro with four datasets commonly used in the FL
community, i.e., CIFAR-10 (Krizhevsky & Hinton, 2009), FMNIST (Xiao et al., 2017), SVHN (Netzer
et al., 2011), and CIFAR-100 (Krizhevsky & Hinton, 2009). We use the Latent Dirichlet Sampling
(LDA) partition method to simulate the Non-IID data distribution, which is the most used partition
method in FL (He et al., 2020b; Li et al., 2021c; Luo et al., 2021). We train Resnet-18 on CIFAR-10,
FMNIST and SVHN, and Resnet-50 on CIFAR-100. We conduct experiments with two different
Non-IID degrees, a = 0.1 and a = 0.05. We simulate cross-silo FL with M = 10 and cross-device
FL with M = 100. To simulate the partial participation in each round, the number of sample clients
is 5 for M = 10 and 10 for M = 100. Some additional experiment results are shown in Appendix F
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Baselines and Metrics. We choose the classical FL algorithm, FedAvg (McMahan et al., 2017), and
recent effective FL algorithms proposed to address the client drift problem, including FedProx (Li
et al., 2020b), SCAFFOLD (Karimireddy et al., 2020), and FedNova (Wang et al., 2020a), as our
baselines. The detailed hyper-parameters of all experiments are reported in Appendix E. We use two
metrics, the best accuracy and the number of communication rounds to achieve a target accuracy,
which is set to the best accuracy of FedAvg. We also measure the weight divergence (Karimireddy
et al., 2020), 1

|Sr|
∑

i∈Sr ∥θ̄ − θi∥, as it reflects the effect on gradient dissimilarity reduction5.

5.2 EXPERIMENTAL RESULTS

Basic FL setting. As shown in Table 1, using the classical FL training setting, i.e. a = 0.1, E = 5
and M = 10, for CIFAR-10, FMNIST and SVHN, FedImpro achieves much higher generalization
performance than other methods. We also find that, for CIFAR-100, the performance of FedImpro
is similar to FedProx. We conjecture that CIFAR-100 dataset has more classes than other datasets,
leading to the results. Thus, a powerful feature estimation approach instead of a simple Gaussian
assumption can be a promising direction to enhance the performance.

Impacts of Non-IID Degree. As shown in Table 1, for all datasets with high Non-IID degree
(a = 0.05), FedImpro obtains more performance gains than the case of lower Non-IID degree
(a = 0.1). For example, we obtain 92.37% test accuracy on SVHN with a = 0.1, higher than the
FedNova by 3.89%. Furthermore, when Non-IID degree increases to a = 0.05, we obtain 90.25%
test accuracy, higher than FedNova by 6.14%. And for CIFAR-100, FedImpro shows benefits when
a = 0.05, demonstrating that FedImpro can defend against more severe data heterogeneity.

Different Number of Clients. We also show the results of 100-client FL setting in Table 1. FedImpro
works well with all datasets, demonstrating excellent scalability with more clients.

Different Local Epochs. More local training epochs E could reduce the communication rounds,
saving communication cost in practical scenarios. In Table 1, the results of E = 5 on CIFAR-10,
FMNIST, and SVHN verify that FedImpro works well when increasing local training time.
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Figure 2: CIFAR10 with a = 0.1, E = 1, M = 10.

Weight Divergence. We show the weight di-
vergence of different methods in Figure 2 (b),
where FedNova is excluded due to its significant
weight divergence. The divergence is calculated
by 1

|Sr|
∑

i∈Sr ∥θ̄−θi∥, which shows the dissim-
ilarity of local client models after local training.
At the initial training stage, the weight diver-
gence is similar for different methods. During
this stage, the low-level model is still unstable
and the feature estimation is not accurate. Af-
ter about 500 communication rounds, FedImpro
shows lower weight divergence than others, indicating that it converges faster than others.

Table 3: Splitting at different convolution layers in
ResNet-18.

Layer 5-th 9-th 13-th 17-th

Test Acc. (%) 87.64 88.45 87.86 84.08

Convergence Speed. Figure 2 (a) shows
that FedImpro can accelerate the convergence
of FL.6 And we compare the communication
rounds that different algorithms need to attain
the target accuracy in Table 2. Results show Fed-
Impro significantly improves the convergence
speed.

5.3 ABLATION STUDY

To verify the impacts of the depth of gradient decoupling, we conduct experiments by splitting
at different layers, including the 5-th, 9-th, 13-th and 17-th layers. Table 3 demonstrates that
FedImpro can obtain benefits at low or middle layers. Decoupling at the 17-th layer will decrease
the performance, which is consistent with our conclusion in Sec. 4.2. Specifically, decoupling at a

5To ensure the reproducibility of experimental results, we open source our code at https://github.
com/wizard1203/FedImpro.

6Due to high instability of training with severe heterogeneity, the actual test accuracy are semitransparent
lines and the smoothed accuracy are opaque lines for better visualization. More results in Appendix E.3.
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Table 2: Communication Round to attain the target accuracy. “NaN.” means not achieving the target.

Dataset FL Setting Target Communication Round to attain the target accuracy
a E M Acc. FedAvg FedProx SCAFFOLD FedNova FedDyn FedImpro

CIFAR-10

0.1 1 10 82.0 142 128 863 142 291 128
0.05 1 10 73.0 247 121 NaN 407 195 112
0.1 5 10 84.0 128 128 360 80 109 78
0.1 1 100 73.0 957 NaN NaN 992 820 706

FMNIST

0.1 1 10 87.0 83 76 275 83 62 32
0.05 1 10 81.0 94 94 NaN 395 82 52
0.1 5 10 87.0 147 31 163 88 29 17
0.1 1 100 90.0 375 470 NaN 317 592 441

SVHN

0.1 1 10 87.0 292 247 NaN 251 162 50
0.05 1 10 80.0 578 68 358 242 120 50
0.1 5 10 86.0 251 350 NaN NaN 92 11
0.1 1 100 92.0 471 356 669 356 429 346

CIFAR-100

0.1 1 10 69.0 712 857 NaN 733 682 614
0.05 1 10 61.0 386 386 755 366 416 313
0.1 5 10 68.0 335 307 182 282 329 300
0.1 1 100 53.0 992 939 NaN 910 951 854

very high layer may not be enough to resist gradient dissimilarity, leading to weak data heterogeneity
mitigation. Interestingly, according to Theorem 4.2, decoupling at the 5-th layer should diminish
more gradient dissimilarity than the 9-th and 13-th layers; but it does not show performance gains.
We conjecture that it is due to the difficulty of distribution estimation, since biased estimation leads
to poor generalization contribution. As other works (Lin et al., 2021) indicate, features at the lower
level usually are richer larger than at the higher level. Thus, estimating the lower-level features is
much more difficult than the higher-level.

5.4 DISCUSSION
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Figure 3: Layer divergence of FedAvg.

In this section, we provide some more experi-
mental supports for FedImpro. All experiment
results of this section are conducted on CIFAR-
10 with ResNet-18, a = 0.1, E = 1 and
M = 10. And further experiment result are
shown in Appendix F due to the limited space.

FedImpro only guarantees the reduction of high-
level gradient dissimilarity without considering
the low-level part. We experimentally find that
low-level weight divergence shrinks faster than
high-level. Here, we show the layer-wise weight divergence in Figure 3. We choose and show the
divergence of 10 layers in Figure 3 (a), and the different stages of ResNet-18 in Figure 3 (b). As
we hope to demonstrate the divergence trend, we normalize each line with its maximum value. The
results show that the low-level divergence shrinks faster than the high-level divergence. This means
that reducing the high-level gradient dissimilarity is more important than the low-level.

6 CONCLUSION

In this paper, we correct client drift from a novel perspective of generalization contribution, which
is bounded by the conditional Wasserstein distance between clients’ distributions. The theoretical
conclusion inspires us to propose decoupling neural networks and constructing similar feature
distributions, which greatly reduces the gradient dissimilarity by training with a shared feature
distribution without privacy breach. We theoretically verify the gradient dissimilarity reduction and
empirically validate the benefits of FedImpro on generalization performance. Our work opens a
new path of enhancing FL performance from a generalization perspective. Future works may exploit
better feature estimators like generative models (Goodfellow et al., 2014; Karras et al., 2019) to
sample higher-quality features, while reducing the communication and computation costs.
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Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated Learning: Strategies for Improving Communication Efficiency. arXiv
e-prints, art. arXiv:1610.05492, October 2016.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient fed-
erated learning via guided participant selection. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pp. 19–35. USENIX Association, July 2021.
ISBN 978-1-939133-22-9. URL https://www.usenix.org/conference/osdi21/
presentation/lai.

Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha Madhyastha, and
Mosharaf Chowdhury. Fedscale: Benchmarking model and system performance of federated
learning at scale. In International Conference on Machine Learning, pp. 11814–11827. PMLR,
2022.

Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced wasserstein
discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10285–10295, 2019.

Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li. Lotteryfl:
Empower edge intelligence with personalized and communication-efficient federated learning. In
2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 68–79, 2021a. doi: 10.1145/3453142.
3492909.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

13

https://proceedings.mlr.press/v119/koloskova20a.html
https://www.usenix.org/conference/osdi21/presentation/lai
https://www.usenix.org/conference/osdi21/presentation/lai


Published as a conference paper at ICLR 2024

Mengxue Li, Yi-Ming Zhai, You-Wei Luo, Peng-Fei Ge, and Chuan-Xian Ren. Enhanced transport
distance for unsupervised domain adaptation. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 13933–13941, 2020a. doi: 10.1109/CVPR42600.2020.01395.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study, 2021b.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722, 2021c.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. A
survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021d.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and Sys-
tems, volume 2, pp. 429–450, 2020b. URL https://proceedings.mlsys.org/paper/
2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2020c. URL
https://openreview.net/forum?id=HJxNAnVtDS.

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo Han. Deepinception:
Hypnotize large language model to be jailbreaker. arXiv preprint arXiv:2311.03191, 2023a.

Zexi Li, Xinyi Shang, Rui He, Tao Lin, and Chao Wu. No fear of classifier biases: Neural collapse
inspired federated learning with synthetic and fixed classifier. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 5319–5329, October 2023b.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 5330–5340, 2017.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and song han. Memory-efficient patch-based inference
for tiny deep learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=C1mPUP7uKNp.

Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. In NeurIPS, 2020.

Zelei Liu, Yuanyuan Chen, Han Yu, Yang Liu, and Lizhen Cui. Gtg-shapley: Efficient and accurate
participant contribution evaluation in federated learning. ACM Trans. Intell. Syst. Technol., 13(4),
may 2022. ISSN 2157-6904.

Zemin Liu, Yuan Li, Nan Chen, Qian Wang, Bryan Hooi, and Bingsheng He. A survey of imbalanced
learning on graphs: Problems, techniques, and future directions. arXiv preprint arXiv:2308.13821,
2023.

Yunhui Long, Boxin Wang, Zhuolin Yang, Bhavya Kailkhura, Aston Zhang, Carl Gunter, and
Bo Li. G-pate: Scalable differentially private data generator via private aggregation of teacher
discriminators. Advances in Neural Information Processing Systems, 34, 2021.

Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated
learning of representations. Advances in neural information processing systems, 32, 2019.

Bingqiao Luo, Zhen Zhang, Qian Wang, Anli Ke, Shengliang Lu, and Bingsheng He. Ai-powered
fraud detection in decentralized finance: A project life cycle perspective. arXiv preprint
arXiv:2308.15992, 2023.

14

https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=C1mPUP7uKNp
https://openreview.net/forum?id=C1mPUP7uKNp


Published as a conference paper at ICLR 2024

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-IID data. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=AFiH_CNnVhS.

Enrique S Marquez, Jonathon S Hare, and Mahesan Niranjan. Deep cascade learning. IEEE
transactions on neural networks and learning systems, 29(11):5475–5485, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

Omar Montasser, Steve Hanneke, and Nathan Srebro. Vc classes are adversarially robustly learnable,
but only improperly. In Conference on Learning Theory, pp. 2512–2530. PMLR, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf.

Kang Loon Ng, Zichen Chen, Zelei Liu, Han Yu, Yang Liu, and Qiang Yang. A multi-player game
for studying federated learning incentive schemes. In IJCAI International Joint Conference on
Artificial Intelligence, pp. 5279, 2020.

Ngoc-Hieu Nguyen, Tuan-Anh Nguyen, Tuan Nguyen, Vu Tien Hoang, Dung D Le, and Kok-Seng
Wong. Towards efficient communication federated recommendation system via low-rank training.
arXiv preprint arXiv:2401.03748, 2024.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
International conference on machine learning, pp. 4839–4850. PMLR, 2019.

Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and
Seong-Lyun Kim. Locfedmix-sl: Localize, federate, and mix for improved scalability, convergence,
and latency in split learning. In Proceedings of the ACM Web Conference 2022, pp. 3347–3357,
2022.

Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and
Nicholas Donald Lane. ZeroFL: Efficient on-device training for federated learning with local
sparsity. In International Conference on Learning Representations, 2022.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
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SUPPLEMENTARY MATERIAL

A BROADER IMPACT

Measuring Client Contribution During Local Training. As discussed in the section 2, current
works mainly focus on measuring generalization contribution from clients from participating during
the whole training process. We consider measuring this contribution during each communication
round, which opens a new angle toward the convergence analysis of FL. Future works may fill the
generalization gap between FL and centralized training with all datasets.

Relationship between Privacy and Performance. We analyze the relationship between the sharing
features and the raw data in section 4.2 and Appendix. However, we do not deeply investigate how
sharing features or parameters of estimated feature distribution threatens the privacy of private raw
data. Sharing features at a lower level may reduce gradient dissimilarity and high generalization
performance of FL, yet leading to higher risks of data privacy. Future works may consider figuring
out the trade-off between data privacy and the generalization performance with sharing features.

Connections of our work to knowledge distillation and domain generalization. The approximation
of features generated based on the client data and low-level models can be seen as a kind of knowledge
distillation of other clients. More in-depth analyses of this problem would be an exciting direction,
which will be added to our future works. The domain generalization is also an exciting connection to
federated learning. It is interesting to connect the measurements of client contribution to the domain
generalization.

B MORE DISCUSSIONS

Extra computational overhead. The experiment hardware and software are described in Section E.1.
FedImpro requires little more computing time of FedAvg in simulation. Almost all current experi-
ments are usually simulated in FL community (He et al., 2020b; Lai et al., 2022; Li et al., 2021d). We
provide a quantitative comparison between FedAvg and FedImpro based on this test setup: Training
ResNet-18 on Dirichlet partitioned CIFAR-10 dataset with α = 0.1, M = 10, sampling 5 clients
each round, with total communication rounds as 1000 and local epoch as 1.

The simulation time of the FedAvg is around 8h 52m 12s, while FedImpro consumes around 10h
32m 32s. According to the Table 2 in the main text, FedImpro achieves the 82% acc in similar cpu
time with FedAvg. When E = 5, the simulation time of FedAvg increases to 20h 10m 25s. The
convergence speed of FedImpro with E = 1 is better than FedAvg with E = 5. Note that in this
simulation, the communication time is ignored, because the real-world communication does not
happen.

Extra communication overhead. Communiation round is a more important real-world metric
compared to cpu time in simulation. In real-world federated learning, the bandwidth with the Internet
(around 1 ∼ 10 MB/s) is very low comparing to the cluster environemnt (around 10 ∼ 1000 GB/s).
Taking ResNet18 with 48 MB as example, each communication with 10 clients would consume
48 ∼ 480s, 1000 rounds requires 48000 ∼ 480000s (15 ∼ 150 hours). And some other factors like
the communication latency and unstability will further increase the communication time. Thus, the
large costs mainly exist in communication overhead instead of the computing time (McMahan et al.,
2017; Kairouz et al., 2019). As shown in Table 2 in original text, FedImpro achieve mush faster
convergence than other algorithms.

The communication time in real-world can be characterized by the alpha-beta model (Thakur et al.,
2005; Shi et al., 2019): Tcomm = α + βM , where α is the latency per message (or say each
communication), β the inverse of the communication speed, and M the message size. In FedImpro,
the estimated parameters are communicated along with the model parameters. Thus (a) the number of
communications is not increased, and the communication time from α will not increase; (b) The M
increased as Mmodel +Mestimator, where Mmodel is the model size and Mestimator is the size of
estimated parameters. Taking ResNet-20 as an example, the size of estimated parameters is equal to
double (mean and variance) feature size (not increased with batch size) as 4KB (ResNet-20), which
is greatly less than the model size around 48 MB. Therefore, the additional communication cost is
almost zero.
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Does the low-level model benefits from the ĥ? The low-level model will not receive gradients
calculated from the ĥ. Thus, the low-level model is not explicitly updated by the ĥ. However,
from another aspect, training the high-level model benefits from the closer-distance features and the
reduced gradient heterogeneity. In FedImpro, the backward-propagated gradients on original features
h have lower bias than FedAvg. Therefore, low-level model can implicitly benefit from ĥ.

It is non-trivial to conduct the ablation study on training low-level model with ĥ. The implicit benefits,
i.e. better backward gradients from the high-level models, require the high-level models are also
better (“better” means that they are good for model generalization and defending data heterogeneity).
Thus, the benefits on high-level and low-level model are coupled. Thus, how to build a direct bridge
to benefit training low-level model from ĥ is still under exploring.

When label distribution is the same on different clients, can we still benefit from FedImpro? In
this case, the client drift may still happen due to the feature distribution is different (Li et al., 2021b;
Kairouz et al., 2019). In this case, we may utilize the Wasserstein distance not conditioned on label
in unsupervised domain adaptation (Lee et al., 2019; Li et al., 2020a) to analyse this problem. We
will consider this case as the future work.

FedAvging on the low-level model or keeping the low-level model locally for each clients?
FedImpro focuses on how to better learning a global model instead of personalized or heterogeneous
models. Thus, we conduct FedAvg on the low-level model. However, The core idea of FedImpro,
sharing estimated features would be very helpful in personalized split-FL (keep the low-level model
locally), with these reasons: (a) our Theorem 4.1 and 4.2 can also be applied into personalized FL
with sharing estimated features; (b) The large communication overhead in personalized split-FL is
large due to the communication in each forward and backward propagation (low-level and high-level
models are typically deployed in clients and server, respectively (Liang et al., 2020; Collins et al.,
2021; Thapa et al., 2020; Chen & Chao, 2021)). Now, sharing estimated features would help reduce
this communication a lot by decoupling the forward and backward propagations.

C PROOF

C.1 BOUNDED GENERALIZATION CONTRIBUTION

Given client m, we quantify the generalization contribution, in FL systems as follows:

E∆:L(Dm)Wd(ρ(θ +∆),D\Dm)), (8)

where ∆ is a pseudo gradient obtained by applying a learning algorithm L(Dm) to a distribution Dm,
Wd is the quantification of generalization, and D\Dm) means the distribution of all clients except for
client m.
Theorem C.1. With the pseudo gradient ∆ obtained by L(Dm), the generalization contribution is
lower bounded:
E∆:L(Dm)Wd(ρ(θ +∆),D\Dm)) ≥ E∆:L(Dm)Wd(ρ(θ +∆), D̃m)− |E∆:L(Dm)Wd(ρ(θ +∆),Dm))

−Wd(ρ(θ +∆), D̃m))| − 2Cd(Dm,D\Dm),

where D̃m represents the dataset sampled from Dm.

Proof. To derive the lower bound, we decompose the conditional quantification of generalization,
i.e., Wd(ρ(θ +∆),D\Dm):

Wd(ρ(θ +∆),D\Dm) = Wd(ρ(θ +∆),D\Dm)−Wd(ρ(θ +∆),Dm) +Wd(ρ(θ +∆),Dm)

−Wd(ρ(θ +∆), D̃m) +Wd(ρ(θ +∆), D̃m),
(9)

where we denote ρ as ρ(θ +∆) for brevity and D̃m stands for the dataset sampled from Dm. Built
upon the decomposition, we have:

E∆:L(Dm)Wd(ρ(θ +∆),D\Dm)) ≥ E∆:L(Dm)Wd(ρ(θ +∆), D̃m)

− |E∆:L(Dm)Wd(ρ(θ +∆),Dm))−Wd(ρ(θ +∆), D̃m))|
− |E∆:L(Dm)Wd(ρ(θ +∆),D\Dm))−Wd(ρ(θ +∆),Dm))|.

(10)
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The first term in Eq. 10 represents the empirical generalization performance. The second term in
Eq. 10 means that the performance gap between the model trained on sampled dataset and that trained
on the distribution, rigorous analysis can be found in (Montasser et al., 2019). Note that, the first
two terms are independent on the distribution D\Dm), so the focus of generalization contribution is
mainly on the last term, i.e., |E∆:L(Dm)Wd(ρ(θ +∆),D\Dm))−Wd(ρ(θ +∆),Dm))|.

The proof is relatively straightforward, as long as we derive the upper bound of Wd(ρ(θ +∆),Dm)
and Wd(ρ(θ +∆),D\Dm). For Wd(ρ(θ +∆),Dm), we have:

Wd(ρ(θ +∆),Dm)

=E(·|y)∼Dm
Ex∼Dm|y inf

argmaxiρ(θ;x′)i ̸=y
d(x, x′)

=E(·|y)∼Dm
E(x,x′′)∼Jy

inf
argmaxiρ(θ;x′)i ̸=y

d(x, x′)

≤E(·|y)∼Dm
E(x,x′′)∼Jy

inf
argmaxiρ(θ;x′)i ̸=y

d(x′, x′′) + d(x, x′′)

=E(·|y)∼Dm
E(x,x′′)∼Jy

inf
argmaxiρ(θ;x′)i ̸=y

d(x′, x′′) + E(·|y)∼Dm
E(x,x′′)∼Jy

d(x, x′′)

=E(·|y)∼Dm
Ex′′∼D\Dm|y inf

argmaxiρ(θ;x′)i ̸=y
d(x′, x′′) + E(·|y)∼Dm

E(x,x′′)∼Jy
d(x, x′′),

where Jy stands for the optimal transport between the conditional distribution Dm|y and D\Dm|y.
Similarly, we have:

Wd(ρ(θ +∆),D\Dm) ≤E(·|y)∼D\Dm
Ex′′∼Dm|y inf

argmaxiρ(θ;x′)i ̸=y
d(x′, x′′)

+ E(·|y)∼D\Dm
E(x,x′′)∼Jy

d(x, x′′).

Combining these two inequality, we have:

|Wd(ρ(θ +∆),Dm)−Wd(ρ(θ +∆),D\Dm)| ≤2Cd(Dm,D\Dm))

+ max {δ(Dm,D\Dm), γ(Dm,D\Dm)} ,
(11)

where
δ(Dm,D\Dm) =E(·|y)∼DmEx′′∼D\Dm|y inf

argmaxiρ(θ;x′)i ̸=y
d(x′, x′′)

− E(·|y)∼D\DmEx′′∼D\Dm|y inf
argmaxiρ(θ;x′)i ̸=y

d(x′, x′′),

and
γ(Dm,D\Dm) =E(·|y)∼D\DmEx′′∼Dm|y inf

argmaxiρ(θ;x′)i ̸=y
d(x′, x′′)

− E(·|y)∼DmEx′′∼Dm|y inf
argmaxiρ(θ;x′)i ̸=y

d(x′, x′′).

The upper bound is straightforward. For example, if the label distributions are the same, i.e.
y ∼ D\Dm is equal to y ∼ Dm, we have:

|Wd(ρ(θ +∆),Dm)−Wd(ρ(θ +∆),D\Dm)| ≤ 2Cd(Dm,D\Dm)).

According to Eq. 11, the last term in Eq. 10 is bounded:

|E∆:L(Dm)Wd(ρ(θ +∆),Dm))−Wd(ρ(θ +∆), D̃m))|
≤E∆:L(Dm)|Wd(ρ(θ +∆),Dm))−Wd(ρ(θ +∆), D̃m))|,

(12)

which is further upper bounded by conditional Wasserstein distance when the label distributions are
not the same:

E∆:L(Dm)|Wd(ρ(θ +∆),Dm))−Wd(ρ(θ +∆), D̃m))|
≤ 2Cd(Dm,D\Dm)) + max {δ(Dm,D\Dm), γ(Dm,D\Dm)} .

(13)

Thus, the label distribution will have additional impact on the bound. If the label distributions are the
same, then we have

|E∆:L(Dm)Wd(ρ(θ +∆),Dm))−Wd(ρ(θ +∆), D̃m))| ≤ 2Cd(Dm,D\Dm)), (14)

which completes the proof.
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C.2 DERIVATION OF DECOUPLING GRADIENT VARIANCE

The derivation of Equation 3. Because ∇fm =
{
∇θlowfm,∇θhigh

fm
}
∈ Rd, ∇θlowfm ∈ Rdl and

∇θhigh
fm ∈ Rdh , we have

E(x,y)∼Dm
||∇fm(θ;x, y)−∇F (θ)||2 (15)

=

d∑
i=1

(∇fm(θ;x, y)(i) −∇F (θ)(i))
2

=

dl∑
i=1

(∇fm(θ;x, y)(i) −∇F (θ)(i))
2 +

dh∑
i=dl+1

(∇fm(θ;x, y)(i) −∇F (θ)(i))
2

=E(x,y)∼Dm

[
||∇θlowfm(θ;x, y)−∇θlowF (θ)||2 + ||∇θhigh

fm(θ;x, y)−∇θhigh
F (θ)||2

]
The derivation of Equation 4. Assuming a multi-layers neural network consists L linear layers,
each of which is followed by an activation function. And the loss function is CE(·). The forward
function can be formulated as:

f(θ, x) = CE(τn(θn(τn−1(θn−1τn−2(...τ1(θ1x))))) (16)

Then the gradient on l-th weight should be:

gl =
∂f

∂θl
=

∂f

∂τn(zn)

∂τn(zn)

∂zn

∂zn
∂τn−1(zn−1)

∂τn−1(zn−1)

∂zn−1

∂zn−1

∂τn−2(zn−2)
...
∂τl+1(zl+1)

∂zl+1

∂zl
∂θl

(17)

=
∂f

∂τn(zn)
τ ′n(zn)θnτ

′
n(zn−1)θn−1...τ

′
l+1(zl+1)τl(zl) (18)

=
∂f

∂τn(zn)

(
n∏

i=l+2

τ ′i(zi)θi

)
τ ′l+1(zl+1)τl(zl), (19)

in which θl, τl, zl, is the weight, activation function, output of the l-th layer, respectively. Thus, we
can see that the gradient of l-th layer is independent of the data, hidden features, and weights before
l-th layer if we directly input a zl to l-th layer.

C.3 PROOF OF THEOREM 4.2

We restate the optimization goals of using the private raw data (x, y) of clients and the shared hidden
features ĥ ∼ H|y as following:

min
θ∈Rd

F̂ (θ) :=

M∑
m=1

p̂mE(x,y)∼Dm

ĥ∼H
f̂(θ;x, ĥ, y) =

M∑
m=1

p̂mE(x,y)∼Dm

ĥ∼H

[
f(θ;x, y) + f(θ; ĥ, y)

]
,

(20)
Theorem C.2. Under the gradient variance measure CGV (Definition 4.2), with n̂m satisfying

n̂m

nm+n̂m
= N̂

N+N̂
, the objective function F̂ (θ) causes a tighter bounded gradient dissimilarity, i.e.,

the CGV(F̂ , θ) = E(x,y)∼Dm
||∇θlowfm(θ;x, y) − ∇θlowF (θ)||2 + N2

(N+N̂)2
||∇θhigh

fm(θ;x, y) −
∇θhigh

F (θ)||2 ≤ CGV(F, θ).

Proof.

CGV(F̂ , θ) =E(x,y)∼Dm

ĥ∼H
||∇f̂m(θ;x, ĥ, y)−∇F̂ (θ)||2

=E(x,y)∼Dm
[||∇θlowfm(θ;x, y)−∇θlowF (θ)||2]

+ E(x,y)∼Dm

ĥ∼H
[||∇θhigh

fm(θ;x, y) +∇θhigh
fm(θ; ĥ, y)−∇θhigh

F̄ (θ)||2. (21)

(22)
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On m-th client, the number of samples of (x, y) is nm and the ĥm is n̂m. Then the high-level gradient
variance becomes:

E(x,y)∼Dm

ĥ∼H
[|| nm

nm + n̂m
∇θhigh

fm(θ;x, y) +
n̂m

nm + n̂m
∇θhigh

fm(θ; ĥ, y)−∇θhigh
F̄ (θ)||2

=E(x,y)∼Dm

ĥ∼H
[|| nm

nm + n̂m
∇θhigh

fm(θ;x, y) +
n̂m

nm + n̂m
∇θhigh

fm(θ; ĥ, y)

−
M∑

m=1

nm + n̂m

N + N̂
(

nm

nm + n̂m
∇θhigh

fm(θ;x, y) +
n̂m

nm + n̂m
∇θhigh

fm(θ; ĥ, y))||2

=E(x,y)∼Dm
|| nm

nm + n̂m
∇θhigh

fm(θ;x, y)−
M∑

m=1

nm

N + N̂
∇θhigh

fm(θ;x, y)||2

=
N2

(N + N̂)2
E(x,y)∼Dm

||∇θhigh
fm(θ;x, y)−

M∑
m=1

nm

N
∇θhigh

fm(θ;x, y)||2. (23)

Combining Equation 23 and 21, we obtain

CGV(F̂ , θ) =E(x,y)||∇θlowfm(θ;x, y)−∇θlowF (θ)||2

+
N2

(N + N̂)2
||∇θhigh

fm(θ;x, y)−∇θhigh
F (θ)||2,

which completes the proof.

For the convergence analysis, there have been many convergence analyses of FedAvg from a gra-
dient dissimilarity viewpoint (Woodworth et al., 2020; Lian et al., 2017; Karimireddy et al., 2020).
Specifically, the convergence rate is upper bounded by many factors, among which the gradient
dissimilarity plays a crucial role in the bound. In this work, we propose a novel approach inspired by
the generalization view to reduce the gradient dissimilarity, we thus provide a tighter bound regarding
the convergence rate. This is consistent with our experiments, see Table 2.

C.4 INTERPRETING AND CONNECTING THEORY WITH ALGORITHMS

We summarize our theory and how it motivates our algorithm as following.

• Our work involves two theorems, i.e., Theorem 4.1 and Theorem 4.2, where Theorem 4.1
motivates the proposed method and Theorem 4.2 indicates another advantage of the proposed
method.

• Theorem 4.1 is built upon two definitions, i.e., Definition 3.1 and Definition 4.1. Here,
Definition 3.1 measures the model’s generalizability on a data distribution from the margin
theory, and Definition 4.1 is the conditional Wasserstein distance for two distributions.

• Theorem 4.1 shows that promoting the generalization performance requires constructing
similar conditional distributions. This motivates our method, i.e., aiming at making all
client models trained on similar conditional distributions to obtain higher generalization
performance.

• In our work, inspired by Theorem 4.1, we regard latent features as the data discussed in
Theorem 4.1. Accordingly, we can construct similar conditional distributions for the latent
features and train models using these similar conditional distributions.

• Theorem 4.2 is built upon Definition 4.2, where gradient dissimilarity in FL is quantitatively
measured by Definition 4.2.

• Theorem 4.2 shows that our method can reduce gradient dissimilarity to benefit model
convergence.

• For advanced architectures, e.g., a well-trained GFlowNet (Bengio et al., 2023), reducing
the distance in the feature space can induce the distance in the data space. However, the
property could be hard to maintain for other deep networks, e.g., ResNet.
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D MORE RELATED WORK

D.1 ADDRESSING NON-IID PROBLEM IN FL

The convergence and generalization performance of Federated Learning (FL) (McMahan et al., 2017)
suffers from the heterogeneous data distribution across all clients (Zhao et al., 2018; Li et al., 2020c;
Kairouz et al., 2019). There exists a severe divergence between local objective functions of clients,
making local models of FL diverge (Li et al., 2020b; Karimireddy et al., 2020), which is called client
drift.

Although researchers have designed many new optimization methods to address this problem, it is
still an open problem. The performance of federated learning under severe Non-IID data distribution
is far behind the centralized training. The previous methods that address Non-IID data problems can
be classified into the following directions.

Model Regularization focuses on calibrating the local models to restrict them not to be excessively
far away from the server model. A number of works (Li et al., 2020b; Acar et al., 2021; Karimireddy
et al., 2020) add a regularizer of local-global model difference. FedProx (Li et al., 2020b) adds a
penalty of the L2 distance between local models to the server model. SCAFFOLD (Karimireddy et al.,
2020) utilizes the history information to correct the local updates of clients. FedDyn (Acar et al.,
2021) proposes to dynamically update the risk objective to ensure the device optima is asymptotically
consistent. FedIR (Hsu et al., 2020) applies important weight to the client’s local objectives to obtain
an unbiased estimator of loss. MOON (Li et al., 2021c) adds the local-global contrastive loss to learn
a similar representation between clients. CCVR (Luo et al., 2021) transmits the statistics of logits
and label information of data samples to calibrate the classifier. FedETF (Li et al., 2023b) proposed
a synthetic and fixed ETF classified to resolve the classifier delemma, which is orthogonal to our
method. SphereFed (Dong et al., 2022) proposed constraining learned representations of data points
to be a unit hypersphere shared by clients. Specifically, in SphereFed, the classifier is fiexed with
weights spanning the unit hypersphere, and calibrated by a mean squared loss. Besides, SphereFed
discovers that the non-overlapped feature distributions for the same class lead to weaker consistency
of the local learning targets from another perspective. FedImpro alleviate this problem by estimating
and sharing similar features.

Reducing Gradient Variance tries to correct the local updates directions of clients via other gradient
information. This kind (Wang et al., 2020a; Hsu et al., 2019; Reddi et al., 2021) of methods aims
to accelerate and stabilize the convergence. FedNova (Wang et al., 2020a) normalizes the local
updates to eliminate the inconsistency between the local and global optimization objective functions.
Adjusting data sampling order in local clients is verified to accelerate convergence (Tang et al., 2021).
FedAvgM (Hsu et al., 2019) exploits the history updates of the server model to rectify clients’ updates.
FEDOPT (Reddi et al., 2021) proposes a unified framework of FL. It considers the clients’ updates as
the gradients in centralized training to generalize the optimization methods in centralized training into
FL. FedAdaGrad and FedAdam are FL versions of AdaGrad and Adam. FedSpeed (Sun et al., 2023b)
utilized a prox-correction term on local updates to reduce the biases introduced by the prox-term,
as a necessary regularizer to maintain the strong local consistency. FedSpeed further merges the
vanilla stochastic gradient with a perturbation computed from an extra gradient ascent step in the
neighborhood, which can be seen as reducing gradient heterogeneity from another perspective.

Sharing Features. Personalized Federated Learning hopes to make clients optimize different
personal models to learn knowledge from other clients and adapt their own datasets (Tan et al.,
2022). The knowledge transfer of personalization is mainly implemented by introducing personalized
parameters (Liang et al., 2020; Thapa et al., 2020; Li et al., 2021a), or knowledge distillation (He
et al., 2020a; Lin et al., 2020; Li & Wang, 2019; Bistritz et al., 2020) on shared local features or
extra datasets. Due to the preference for optimizing local objective functions, however, personalized
federated models do not have a comparable generic performance (evaluated on global test dataset) to
normal FL (Chen & Chao, 2021). Our main goal is to learn a better generic model. Thus, we omit
comparisons to personalized FL algorithms.

Except Personalized Federated Learning, some other works propose to share features to improve
federated learning. Cronus (Chang et al., 2019) proposes sharing the logits to defend the poisoning
attack. CCVR (Luo et al., 2021) transmit the logits statistics of data samples to calibrate the last layer
of Federated models. CCVR (Luo et al., 2021) also share the parameters of local feature distribution.
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However, we do not need to share the number of different labels with the server, which protects the
privacy of label distribution of clients. Moreover, our method acts as a framework for exploiting
the sharing features to reduce gradient dissimilarity. The feature estimator does not need to be the
Gaussian distribution of local features. One may utilize other estimators or even features of some
extra datasets rather than the private ones.

Sharing Data. The original cause of client drift is data heterogeneity. Some researchers find that
sharing a part of private data can significantly improve the convergence speed and generalization
performance (Zhao et al., 2018), yet it sacrifices the privacy of clients’ data.

Thus, to both reduce data heterogeneity and protect data privacy, a series of works (Hardt & Rothblum,
2010; Hardt et al., 2012; Chatalic et al., 2021; Johnson et al., 2018; Cai et al., 2021; Li et al., 2023a;
Yang et al., 2023) add noise on data to implement sharing data with privacy guarantee to some degree.
Some other works focus on sharing a part of synthetic data(Jeong et al., 2018; Long et al., 2021;
Goetz & Tewari, 2020; Hao et al., 2021) or data statistics (Shin et al., 2020; Yoon et al., 2021) to help
reduce data heterogeneity rather than raw data.

FedDF (Lin et al., 2020) utilizes other data and conducts knowledge distillation based on these data
to transfer knowledge of models between server and clients. The core idea of FedDF is to conduct
finetuning on the aggregated model via the knowledge distillation with the new shared data.

Communication compressed FL Communication compression methods aim to reduce the commu-
nication size in each round. Typical methods include sparsifying most of unimportant weights (Dorf-
man et al., 2023; Bibikar et al., 2022; Qiu et al., 2022; Tang et al., 2022a; 2020; 2023b), quantizing
model updates with fewer bits than the conventional 32 bits (Reisizadeh et al., 2020; Gupta et al.,
2023), and low-rank decomposition to communicate smaller matrices (Nguyen et al., 2024; Konečný
et al., 2016). Despite reducing communication costs, these methods are not as cost-effective as one-
shot FL and our methods, due to the necessary of enormous communication rounds for convergence.

D.2 MEASURING CONTRIBUTION FROM CLIENTS

Generalization Contribution. Clients are only willing to participate a FL training when given
enough rewards. Thus, it is important to measure their contributions to the model performance (Yu
et al., 2020; Ng et al., 2020; Liu et al., 2022; Sim et al., 2020).

There have been some works (Yuan et al., 2022; Yu et al., 2020; Ng et al., 2020; Liu et al., 2022;
Sim et al., 2020) proposed to measure the generalization contribution from clients in FL. Some
works (Yuan et al., 2022) propose to experimentally measure the performance gaps from the unseen
client distributions. Data shapley (Ghorbani & Zou, 2019; Yu et al., 2020; Luo et al., 2023; Liu et al.,
2023) is proposed to measure the generalization performance gain of client participation. (Liu et al.,
2022) improves the calculation efficiency of Data Shapley. And there is some other work that proposes
to measure the contribution by learning-based methods (Zhan et al., 2020). Our proposed questions
are different from these works. Precisely, these works measure the generalization performance gap
with or without some clients that never join the collaborative training of clients. However, we hope to
understand the contribution of clients at each communication round. Based on this understanding, we
can further improve the FL training and obtain a better generalization performance.

It has been empirically verified that a large number of selected clients introduces new challenges
to optimization and generalization of FL (Charles et al., 2021), although some theoretical works
show the benefits from it (Yang et al., 2020). This encourages us to understand what happens
during the local training and aggregation. Causality is also a potential way to explore the client
contribution (Zhang et al., 2021).

Client Selection. Several works (Cho et al., 2020; Goetz et al., 2019; Ribero & Vikalo, 2020; Lai
et al., 2021) propose new algorithms to strategically select clients rather than randomly. However,
these methods only consider the hardware resources or local generalization ability. How local training
affects the global generalization ability has not been explored.

D.3 SPLIT TRAINING

To efficiently train neural networks, split training instead of end-to-end training is proposed to break
the forward, backward, or model updating dependency between layers of neural networks.
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Table 4: Demystifying different FL algorithms related to the sharing data and features.

Shared Thing Low-level Model Objective

(Chatalic et al., 2021; Cai et al., 2021) Raw Data With Noise Shared Others
(Long et al., 2021; Hao et al., 2021) Params. of Data Generator Shared Global Model Performance
(Yoon et al., 2021; Shin et al., 2020) STAT. of raw Data Shared Global Model Performance

(Luo et al., 2021) STAT. of Logis, Label Distribution Shared Global Model Performance
(Chang et al., 2019) Hidden Features Shared Defend Poisoning Attack

(Li & Wang, 2019; Bistritz et al., 2020) logits Private Personalized FL
(He et al., 2020a; Liang et al., 2020) Hidden Features Private Personalized FL
(Thapa et al., 2020; Oh et al., 2022) Hidden Features Shared Accelerate Training

FedImpro Params. of Estimated Feat. Distribution Shared Global Model Performance

Note: “STAT.” means statistic information, like mean or standard deviation, “Feat.” means hidden features,
“Params.” means parameters.

To break the backward dependency on subsequent layers, hidden features could be forwarded to
another loss function to obtain the Local Error Signals (Marquez et al., 2018; Nøkland & Eidnes,
2019; Löwe et al., 2019; Wang et al., 2020b; Zhuang et al., 2021). How to design a suitable local
error still remains as an open problem. Some works propose to utilize extra modules to synthesize
gradients (Jaderberg et al., 2017), so that the backward and updates of different layers can be
decoupled. Features Replay (Huo et al., 2018) is to reload the history features of the preceding
layers into the next layers. By reusing the history features, the calculation on different layers could
be asynchronously conducted.

Some works propose Split FL (SFL) to utilize split training to accelerate federated learning (Oh et al.,
2022; Thapa et al., 2020). In SFL, the model is split into client-side and server-side parts. At each
communication round, the client only downloads the client-side model from the server, conducts
forward propagation, and sends the hidden features to the server for computing loss and backward
propagation. This method aims to accelerate FL’s training speed on the client side and cannot support
local updates. In addition, sending all raw features could introduce a high data privacy risk. Thus, we
omit the comparisons to these methods.

We demystify different FL algorithms related to the shared features in Table 4.

E DETAILS OF EXPERIMENT CONFIGURATION

E.1 HARDWARE AND SOFTWARE CONFIGURATION

Hardware and Library. We conduct experiments using GPU GTX-2080 Ti, CPU Intel(R) Xeon(R)
Gold 5115 CPU @ 2.40GHz. The operating system is Ubuntu 16.04.6 LTS. The Pytorch version is
1.8.1. The Cuda version is 10.2.

Framework. The experiment framework is built upon a popular FL framework FedML (He et al.,
2020b; Tang et al., 2023a). And we conduct the standalone simulation to simulate FL. Specifically, the
computation of client training is conducted sequentially, using only one GPU, which is a mainstream
experimental design of FL (He et al., 2020b; Sun et al., 2023b; Reddi et al., 2021; Luo et al., 2021;
Liang et al., 2020; Li et al., 2021b; Caldas et al., 2018), due to it is friendly to simulate large
number of clients. Local models are offloaded to CPU when it is not being simulated. Thus, the
real-world computation time would be much less than the reported computation time. Besides, the
communication does not happen, which would be the main bottleneck in real-world FL.

E.2 HYPER-PARAMETERS

The learning rate configuration has been listed in Table 5. We report the best results and their learning
rates (grid search in {0.0001, 0.001, 0.01, 0.1, 0.3}).

And for all experiments, we use SGD as optimizer for all experiments, with batch size of 128 and
weight decay of 0.0001. Note that we set momentum as 0 for baselines, as we find the momentum
of 0.9 may harm the convergence and performance of FedAvg in severe Non-IID situations. We
also report the best test accuracy of baselines that are trained with momentum of 0.9 in Table 6.
The client-side momentum in FL training does not always commit better convergence because the
momentum introduces larger local updates, increasing the client drift, which is also observed in a
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recent benchmark (He et al., 2021). And the server-side momentum (Hsu et al., 2019) may improve
the performance. The compared algorithms including FedAvg, FedProx, SCAFFOLD, FedNova do
not use the server-side momentum. For the fair comparisons we did not use the server-side momentum
for all algorithms.

For K = 10 and K = 100, the maximum communication round is 1000, For K = 10 and E = 5,
the maximum communication round is 400 (due to the E = 5 increase the calculation cost). The
number of clients selected for calculation is 5 per round for K = 10, and 10 for K = 100.

Table 5: Learning rate of all experiments.

Dataset FL Setting FedAvg FedProx SCAFFOLD FedNova FedImpro
a E K

CIFAR-10

0.1 1 10 0.1 0.1 0.1 0.1 0.1
0.05 1 10 0.1 0.1 0.01 0.1 0.1
0.1 5 10 0.1 0.1 0.1 0.1 0.1
0.1 1 100 0.1 0.1 0.01 0.1 0.1

FMNIST

0.1 1 10 0.1 0.1 0.1 0.1 0.1
0.05 1 10 0.1 0.1 0.001 0.1 0.1
0.1 5 10 0.1 0.1 0.1 0.1 0.1
0.1 1 100 0.1 0.1 0.01 0.1 0.1

SVHN

0.1 1 10 0.1 0.1 0.01 0.1 0.1
0.05 1 10 0.1 0.1 0.01 0.1 0.1
0.1 5 10 0.1 0.01 0.01 0.01 0.1
0.1 1 100 0.1 0.1 0.001 0.1 0.1

CIFAR-100

0.1 1 10 0.1 0.1 0.1 0.1 0.1
0.05 1 10 0.1 0.1 0.1 0.1 0.1
0.1 5 10 0.1 0.1 0.1 0.1 0.1
0.1 1 100 0.1 0.1 0.1 0.1 0.1

E.3 MORE CONVERGENCE FIGURES

Except the Figure 2 in the main paper, we provide more convergence results as Figures 4, 5, 6 and
7. These results show that our method can accelerate FL training and obtain higher generalization
performance.
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(c) a = 0.1, K = 100,
E = 1
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(d) a = 0.05, K = 10,
E = 1

Figure 4: Convergence comparison of CIFAR-10.
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(a) a = 0.1, K = 10,
E = 1
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(b) a = 0.1, K = 10,
E = 5
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(c) a = 0.1, K = 100,
E = 1
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Figure 5: Convergence comparison of FMNIST.
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Table 6: Baselines with Momentum-SGD.

Dataset FL Setting FedAvg FedProx SCAFFOLD FedNova
a E K

CIFAR-10

0.1 1 10 79.98 83.56 83.58 81.35
0.05 1 10 69.02 78.66 38.55 64.78
0.1 5 10 84.79 82,18 86.20 86.09
0.1 1 100 49.61 49.97 52.24 46.53

FMNIST

0.1 1 10 86.81 87.12 86.21 86.99
0.05 1 10 78.57 81.96 76.08 79.06
0.1 5 10 87.45 86.07 87.10 87.53
0.1 1 100 90.11 90.71 85.99 87.09

SVHN

0.1 1 10 88.56 86.51 80.61 89.12
0.05 1 10 82.67 78.57 74.23 82.22
0.1 5 10 87.92 78.43 81.07 88.17
0.1 1 100 89.44 89.51 89.55 82.08

CIFAR-100

0.1 1 10 67.95 65.29 67.14 68.26
0.05 1 10 62.07 61.52 59.04 60.35
0.1 5 10 69.81 62.62 70.68 70.05
0.1 1 100 48.33 48.14 51.63 48.12
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(a) a = 0.1, K = 10,
E = 1
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(b) a = 0.1, K = 10,
E = 5
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(c) a = 0.1, K = 100,
E = 1
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(d) a = 0.05, K = 10,
E = 1

Figure 6: Convergence comparison of SVHN.

0 200 400 600 800 1000
Round

30

40

50

60

70

To
p-

1 
Te

st
 A

cc
ur

ac
y 

[%
]

FedAvg
FedProx
Scaffold
FedNova
Ours

(a) a = 0.1, K = 10,
E = 1
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(b) a = 0.1, K = 10,
E = 5
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(c) a = 0.1, K = 100,
E = 1
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Figure 7: Convergence comparison of CIFAR100.

F ADDITIONAL EXPERIMENTS
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Figure 8: Additional experiments on CIFAR-10 with a = 0.1, K = 10, E = 1.
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(a) ResNet-18 with FMNIST
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(b) ResNet-18 with SVHN
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(c) ResNet-50 with CIFAR-100

Figure 9: Layer divergence of FedAvg.

Table 7: Test Accuracy of our method with different degrees of noise.

µϵ 0.0 0.001 0.005 0.01 0.05 0.1 0.5

Test Accuracy (%) 88.45 88.43 88.23 88.26 88.07 88.11 88.3

Table 8: Test Accuracy of different algorithms on FEMNIST.

FedAvg FedProx FedNova FedImpro

Test Accuracy (%) 80.83 79.70 68.96 82.77
Comm. Round to attain the Target Acc. 82 NaN NaN 45

F.1 TRAINING WITH LONGER TIME

To demonstrate the difficulty of optimization of FedAvg in heterogeneous-data environment, we show
the results of training 10000 rounds, as shown in Figure 8 (a). During this 10000 rounds, the highest
test accuracy of FedAvg with fixed learning rate is 88.5%, and it of the FedAvg with decayed learnign
rate is 82.65%. Note that we set the learning rate decay exponentially decay at each communication
round, wich rate 0.997. Even after 2000 rounds, the learning rate becomes as the around 0.0026
times as the original learning rate. The results show that the longer training time cannot fill the
generalization performance gap between FedAvg and centralized training, encouraging us to develop
new optimization schemes to improve it.
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Figure 10: Convergence comparison of FEMNIST with 3400 clients.

F.2 SHARING ESTIMATING PARAMETERS WITH NOISES OF DIFFERENT DEGREES

To enhance the security of the sharing feature distribution, we add the noise ϵ ∼ N (0, σϵ) on the σm

and µm. The privacy degree could be enhanced by the larger µϵ. We show the results of our method
with different σϵ in Figure 8 (b) and Table 7. The results show that under the high perturbation of the
estimated parameters, our method attains both high privacy and generalization gains.

F.3 MORE EXPERIMENTS OF THE REAL-WORLD DATASETS

To verify the effect of our methods on the real-world FL datasets, we conduct experiments with
Federated EMNIST(FEMNIST) (Caldas et al., 2018; He et al., 2020b), which has 3400 users, 671585
training samples and 77483 testing samples. We sample 20 clients per round, and conduct local
training with 10 epochs. We search the learning rate for algorithms in {0.01, 0.05, 0.1} and find
the 0.05 is the best for all algorithm. Figure 10 and Table 8 show that our method converges faster
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and attains better generalization performance than other methods. Note that the SCAFFOLD is not
included the experiments, as it has a very high requirement (storing the control variates) of simulating
3400 clients with few machines.

More Results of the Layer-wise Divergence. We conduct more experiments of the layer divergence
of FedAvg with different datasets including FMNIST, SVHN and CIFAR-100, training with ResNet-
18 and ResNet-50. As Figure 3 and 9 shows, the divergence of the low-level model divergence shrinks
faster than the high-level. Thus, reducing the high-level gradient dissimilarity is more crucial than
the low-level.

F.4 MORE RESULTS OF DIFFERENT MODEL ARCHITECTURE

To verify the effect of our method on different model architectures, we conduct additional experiments
of training VGG-9 on CIFAR-10, instead of the ResNet architectures. The experimental results are
shown in Table 9. The target accuracy is 82%. We can see that our method can outperform baseline
methods with different architectures.

Table 9: Test Accuracy of different algorithms with VGG-9 on CIFAR-10.
FedAvg FedProx SCAFFOLD FedNova FedImpro

Test Accuracy (%) 82.58 82.92 82.43 82.91 84.52

Comm. Round to attain the Target Acc. 836 844 512 664 426

F.5 MORE BASELINES

We further compare our method with FedDyn (Acar et al., 2021), CCVR (Luo et al., 2021), Fed-
Speed (Sun et al., 2023b) and FedDF (Lin et al., 2020). The results are given in Table 10 as below. As
original experiments in these works do not utilize the same FL setting, we report their test accuracy
of CIFAR-10/100 dataset and the according settings in original papers. To make the comparison
fair, we choose the same or the harder settings of their methods and report their original results. The
larger dirichlet parameter α means more severe data heterogeneity. The higher communication round
means training with longer time. We can see that our method can outperform these methods with the
same setting or even the more difficult settings for us.

Table 10: Comparisons with more baselines.
Method Dataset Dirichlet α Client Number Communication Round Test ACC.
FedDyn

CIFAR-10

0.3 100 1400 77.33
FedSpeed 0.3 100 1400 82.68
FedImpro 0.3 100 1400 85.14
FedImpro 0.1 100 1400 82.76

CCVR CIFAR-10 0.1 10 100 62.68
FedDF (no extra data) 0.1 10 100 38.6

FedImpro 0.1 10 100 68.29

SphereFed CIFAR-100 0.1 10 100 69.19
FedImpro 0.1 10 100 70.28

F.6 MORE ABLATION STUDY ON NUMBER OF SELECTED CLIENTS

The feature distribution depends on the client selected in each round. Thus, to analyze the number
of clients on the feature distribution estimation, we conduct ablation study with training CIFAR-10
datasets with varying the number of selected clients. Table 11 shows the effect of varying the number
of selected clients per round. More clients can improve both FedAvg and FedImpro. The FedImpro
can work well with more selected clients.

F.7 RECONSTRUCTED RAW DATA BY MODEL INVERSION ATTACKS

We utilize the model inversion method (Zhao et al., 2021; Zhou et al., 2023) used in (Luo et al., 2021)
to verify the privacy protection of our methods. The original private images are shown in Figure 11,
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a E M Mc FedAvg FedImpro

0.1 1 10 5 83.65±2.03 88.45±0.43
0.1 1 10 10 86.65±1.26 90.25±0.93

0.05 1 10 5 75.36±1.92 81.75±1.03
0.05 1 10 10 78.36±1.58 85.75±1.21
0.1 5 10 5 85.69±0.57 88.10±0.20
0.1 5 10 10 87.92±0.31 90.92±0.25
0.1 1 100 10 73.42±1.19 77.56±1.02
0.1 1 100 20 77.82±0.94 85.39±1.15

Table 11: Ablation study with training on CIFAR-10 on different number of selected clients.

reconstructed images using the features of each image are shown in Figure 12, reconstructed images
using the mean of features of all images are shown in Figure 13. Based on the results, we observe
that feature inversion attacks struggle to reconstruct private data using the shared feature distribution
parameters σm and µm. Thus, our method is robust against model inversion attacks.

Figure 11: Original private images that are fed into the model.

Figure 12: Reconstructed images using the raw features. Note that each image is reconstructed by the
feature of each private image, i.e. sharing the raw features. It shows that the feature inversion method
can successfully reconstruct the original image based on the raw features.

(a) No Noise (b) µϵ = 0.001 (c) µϵ = 0.01 (d) µϵ = 0.1 (e) µϵ = 0.5

Figure 13: Reconstructed images using the mean of features (our methods) of all images with noises
of different degrees. µϵ is the variance of the Gaussian noise. Now, feature inversion method cannot
reconstruct the original images..
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