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Abstract
Chronic diseases often progress differently
across patients. Rather than randomly varying,
there are typically a small number of subtypes
for how a disease progresses across patients. To
capture this structured heterogeneity, the Sub-
type and Stage Inference Event-Based Model
(SuStaIn) estimates the number of subtypes,
the order of disease progression for each sub-
type, and assigns each patient to a subtype
from primarily cross-sectional data. It has been
widely applied to uncover the subtypes of many
diseases and inform our understanding of them.
But how robust is its performance? In this pa-
per, we develop a principled Bayesian subtype
variant of the event-based model (bebms) and
compare its performance to SuStaIn in a vari-
ety of synthetic data experiments with varied
levels of model misspecification. BebmS sub-
stantially outperforms SuStaIn across ordering,
staging, and subtype assignment tasks. Fur-
ther, we apply bebms and SuStaIn to a real-
world Alzheimer’s data set. We find BebmS
has results that are more consistent with the
scientific consensus of Alzheimer’s disease pro-
gression than SuStaIn.
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package, the codes necessary for replicating the
experiments using High-Throughput Computing
(HTC) on top of a cluster environment are available
at https://github.com/hongtaoh/bebms. ADNI
data can be requested at https://adni.loni.usc.
edu/.

Institutional Review Board (IRB) The IRB at
University of Wisconsin-Madison has reviewed and
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1. Introduction

Understanding how chronic diseases progress is cru-
cial for early diagnosis, prognosis, and therapeu-
tic development (Jack et al., 2010). These diseases
rarely unfold along a single pathway. In the case
of Alzheimer’s disease, patients often follow distinct
trajectories characterized by different progression se-
quences (Estarellas et al., 2024; Vogel et al., 2021;
ten Kate et al., 2018; Poulakis et al., 2022; Jellinger,
2021). Identifying subtypes is critical for uncovering
disease mechanisms, and personalizing medicine via
improved diagnoses and tailored interventions.

Progression modeling frameworks, such as the
Event-Based Model (EBM; Fonteijn et al., 2012),
are powerful tools for reconstructing disease progres-
sion from cross-sectional data. However, most EBM
variants assume a canonical trajectory, limiting their
ability to capture heterogeneity. One exception is
the Subtype and Stage Inference Event-Based Model
(SuStaIn; Young et al., 2018; Aksman et al., 2021). It
addressed this limitation by extending EBM to mul-
tiple subtypes, and it has since become the de facto
standard, applied to a wide range of neurodegener-
ative diseases in high-profile publications (Estarel-
las et al., 2024; Young et al., 2018; Vogel et al.,
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2021). Despite this impact, SuStaIn has not been rig-
orously evaluated for robustness, particularly under
model misspecification (e.g., non-Gaussian biomarker
distributions, continuous disease stages, and uneven
subtype and stage distributions). We investigated
its performance on realistic synthetic datasets with
known ground truth and its performance was brittle.

In this paper, we introduce the Bayesian Event-
Based Model for Subtyping (bebms). Our approach
retains the interpretability of EBMs while embedding
them in a Bayesian framework, enabling more accu-
rate inference of biomarker orderings, disease staging,
and subtype assignment. Across realistic synthetic
datasets, and clinical data from ADNI, we show that
bebms improves biomarker ordering (27%), disease
staging (89%), and subtype assignment (56%) over
SuStaIn, while reducing runtime.

2. Past Work

The EBM (Fonteijn et al., 2012) formulates disease
progression as a sequence of biomarker events, where
each biomarker switches from a healthy to a patho-
logical distribution at an unknown position in the se-
quence. Once the latent disease stage exceeds this
position, the biomarker is considered affected. This
framework enabled estimation of progression patterns
in several neurodegenerative diseases from primar-
ily cross-sectional data (Young et al., 2018; Fonteijn
et al., 2012; Oxtoby et al., 2021; Wijeratne et al.,
2023; Firth et al., 2020).

Over time, a number of extensions to EBM have
been proposed. The Discriminative EBM (DEBM;
Venkatraghavan et al., 2019) relaxed the assumption
of one ordering by allowing subject-specific variabil-
ity as random Mallows-distributed noise around the
canonical ordering. The Temporal EBM (TEBM;
Wijeratne et al., 2023) reformulated progression in
continuous rather than discrete time. The Parsi-
monious EBM (P-EBM; Cs et al., 2025) captures
cases where multiple biomarkers become pathologi-
cal simultaneously. The KDE EBM (Firth et al.,
2020) introduced nonparametric likelihoods, enabling
the model to estimate data likelihood under non-
Gaussian biomarker distributions. The Stage Aware
EBM (SA-EBM; Hao et al., 2025) introduced stage
distributions and improved inference, resulting in
substantial performance improvements over the origi-
nal EBM, KDE EBM, and DEBM. Despite these ad-
vances, all of these models assume a single central

ordering, and therefore cannot capture disease het-
erogeneity across patients.

SuStaIn (Young et al., 2018) addressed this limita-
tion by extending EBM to incorporate multiple pro-
gression patterns, enabling subtype inference. SuS-
taIn has been widely adopted across Alzheimer’s dis-
ease (Vogel et al., 2021; Salvadó et al., 2024; Estarel-
las et al., 2024), multiple sclerosis (Eshaghi et al.,
2021), and Lewy body disease (Mastenbroek et al.,
2024), and is supported by an open-source implemen-
tation (Aksman et al., 2021). As SuStaIn is com-
putationally demanding, scalable variants for high-
dimensional data (s-SuStaIn; Tandon et al., 2024)
and incomplete data (Estarellas et al., 2024) have
been developed.

While SuStaIn and its extensions represent a ma-
jor step forward in capturing disease heterogeneity,
they also have important limitations. First, they
typically assume a uniform prior over disease stages,
even though later stages are underrepresented in real-
world cohorts such as ADNI (Donohue et al., 2014).
Second, they rely on static estimates of biomarker
distribution parameters, which remain fixed during
inference of subtype orderings and may bias results
when the true ordering and stage distribution are un-
known. Despite its widespread adoption, the robust-
ness of SuStaIn has rarely been systematically evalu-
ated on synthetic datasets with known ground truth.
As a result, the model’s robustness under misspecifi-
cation remains unclear.

Building on prior work, we introduce the Bayesian
Event-Based Model for Subtyping (bebms). By em-
bedding EBMs in a Bayesian framework, bebms pro-
vides more accurate estimation of disease subtypes,
biomarker orderings, and patient stages, while also
reducing runtime, as demonstrated in both synthetic
and ADNI experiments.

3. Method

3.1. Model Specification

bebms models disease progression as a sequence of
biomarker events. Each of the N biomarkers can
exist in either a “pre-event” (healthy) or “post-
event” (pathological) state. A participant j’s dis-
ease state is defined by their stage kj . We define
kj = −1 for a healthy participant (no events), and
kj ∈ [0, 1, ..., N − 1] for a progressing participant,
where kj corresponds to the highest rank of the event
that has occurred.
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Figure 1: bebms as a graphical model.

We model T disease subtypes, each defined by a
unique sequence of biomarker events. Let S be a
T × N matrix where St,n is the 0-based rank of
biomarker n in the progression sequence for subtype
t. We also write S(t, i) for the biomarker at position
i in subtype t, so S(t, i) = n if and only if St,n = i.
A biomarker n is considered post-event for a partic-
ipant in subtype t and stage kj if kj ≥ St,n. Let cj
denote participant j’s subtype. πt and πkj |t reflect
the probabilities of subtype t (cj ∼ πt) and of a par-
ticipant being in disease stage kj given they belong
to subtype t (kj |cj ∼ πt|cj , respectively. Figure 1
presents the approach as a graphical model.

Biomarker measurements in both states are mod-
eled with Gaussian distributions. We assume a
shared parameterization for biomarkers across
subtypes:

xj,n ∼

{
N (ϕn,µ, ϕ

2
n,σ), if pre-event,

N (θn,µ, θ
2
n,σ), if post-event.

(1)

with ϕ and θ denoting healthy and afflicted distribu-
tion parameters, respectively. X is the whole dataset,
and Xj is the biomarker measurements of a spe-
cific participant. We use xj,n to denote the value
of biomarker n in participant j.

The model is a mixture over subtypes and stages.
For a healthy participant (zj = 0, i.e., kj = −1), the
data likelihood is

p(Xj | S, zj = 0) =

N−1∏
n=0

p(xj,n | ϕn) (2)

For a diseased participant (zj = 1), the likelihood
is marginalized over all subtypes t and all possible
disease stages kj for participant j, weighted by their
respective priors πt and πkj |t:

p(Xj | S, zj = 1) =

T∑
t=1

πt

N−1∑
kj=0

πkj |t p(Xj | St, zj , kj)

(3)
where p(Xj | St, zj = 1, kj) denotes the likelihood of
participant j given they are in subtype t at stage kj :

p(Xj | St, zj=1, kj) =

kj∏
i=0

p(xj,S(t,i) | θS(t,i))︸ ︷︷ ︸
post-event

×
N−1∏

i=kj+1

p(xj,S(t,i) | ϕS(t,i))︸ ︷︷ ︸
pre-event

.

(4)

The total data likelihood across all J participants
is the product of their individual likelihoods:

P (X | S) =
J∏

j=1

P (Xj | S, zj) (5)

We place Dirichlet priors on the subtype prior
π ∈ RT ∼ Dir(α) and the stage prior π·|t ∈ RT×N ∼
Dir(α·|t), with weakly informative priors (Gelman
et al., 2017) of 1.0 for α and α·|t.

3.2. Inference Procedure

The biomarker parameters (θ,ϕ) are initialized by
K-Means using controls for pre-event and progressing
participants for post-event. After clustering, the clus-
ter containing the majority of controls is labeled pre-
event (ϕ) and the other post-event (θ). K-Means es-
timates are immediately refined with weighted conju-
gate updates. We assume a Normal-Inverse Gamma
(NIG) conjugate prior on the unknown mean and
variance, (µ, σ2) ∼ NIG(m0, n0, s

2
0, ν0). The poste-

rior is also a NIG distribution with updated parame-
ters.

We set n0 = 1, ν0 = 1, in the spirit of weakly in-
formative priors (Gelman et al., 2017). m0 and s20
are the raw mean and variance of each cluster, re-
spectively. The updates use a soft assignment of
each measurement to the pre- and post-event clus-
ters. Each cluster has a weight vector (w ∈ RJ),
indicating the posterior probability of each subject
belonging to the cluster. For initialization, we assign
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1 to all entries of w. See Appendix B for how we up-
date distribution parameters using conjugate priors.
A key innovation of bebms is the iterative esti-

mation of distribution parameters (θ,ϕ), and stage
(π·|t) and subtype (π) priors through a Metropolis-
Hastings Markov chain Monte Carlo (MCMC) sam-
pler (See Algorithm 1 in Appendix C).
Specifically, we compute the intermediate stage

(P̃stage ∈ RJ×T×N ) and subtype (P̃subtype ∈ RJ×T )
posteriors as follows:

Pstage(k | j, t) =
πk|t · p(Xj | St, k,θ,ϕ)∑N−1

k′=0 πk′|t · p(Xj | St, k′,θ,ϕ)

Psubtype(t | j) =
πt

∑N−1
k=0 Pstage(k | j, t)∑T

t′=1 πt′
∑N−1

k=0 πk|t′Pstage(k | j, t′)

In updating distribution parameters, the weights
(w) are the marginalized probabilities of being in
pre/post-event states across all subtypes and stages:

wj,n,θ =

T∑
t=1

N−1∑
k=0

1{k≥St,n}Pstage(k | j, t)Psubtype(t | j),

wj,n,ϕ = 1− wj,n,θ

For healthy participants, assignments are fixed:
wj,n,ϕ = 1, wj,n,θ = 0 for all biomarkers. If a proposal
is accepted, we update subtype and stage priors with
posterior counts:

π ∼ Dir

α+

J∑
j=1

Psubtype(t | j)



π·|t ∼ Dir

α·|t +

J∑
j=1

Pstage(k | j, t)Psubtype(t | j)


3.3. Model Selection

The above inference procedure assumes we know the
number of subtypes T . In real-world scenarios, how-
ever, this information is missing. Following SuS-
taIn (Aksman et al., 2021; Young et al., 2018), we
applied K-fold cross-validation to find the optimal
T . For each candidate T , we trained the model
on the training folds and obtained the out-of-sample

log-likelihood on the held-out fold. We then aggre-
gated log-likelihoods across folds to compute a cross-
validation information criterion (CVIC), and selected
the T with the lowest CVIC score. When multiple
T have similar CVIC scores (difference less than 6),
we chose the smallest T within the group. Specifi-
cally, we performed stratified K-fold cross-validation
to maintain the proportion of progressing/healthy in
each fold. CVIC score is computed as:

CVIC = 2 ·
T∑

i=1

ith fold log likelihood (6)

We chose the threshold of 6 for consistency with SuS-
taIn’s procedure (Aksman et al., 2021).

4. Model Evaluation

We use SuStaIn as the baseline for evaluation be-
cause it is the only publicly available implementation
to reconstruct subtypes of disease progression using
cross-sectional data. Missing data SuStaIn (Estarel-
las et al., 2024) referred to SuStaIn as the code source
and s-SuStaIn (Tandon et al., 2024) does not have
publicly available code. For the single-subtype case,
bebms is essentially the same as the Conjugate Prior
variant of SA-EBM (Hao et al., 2025), which has
improved performance compared to DEBM (Venka-
traghavan et al., 2019), KDE-EBM (Firth et al.,
2020) and UCL GMM (Firth et al., 2020). Thus, SuS-
taIn is the only benchmark algorithm in this study.

Our evaluation relies on both synthetic and real-
world datasets. The real-world data comes from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI,
Mueller et al., 2005). The ADNI was launched in
2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomog-
raphy (PET), other biological markers, and clinical
and neuropsychological assessment can be combined
to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD).

Our analysis was based on the adnimerge table
(updated on September 7, 2023) from the Alzheimer’s
Disease Cooperative Study data system. We restrict
the study cohort to baseline visits from participants
with a diagnosis of CN, Early and Late MCI, or AD.
The biomarker selection consists of 12 measures com-
monly used in the field (Cs et al., 2025; Young et al.,
2014; Archetti et al., 2019). These biomarkers cover a
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wide range of categories: cognitive assessment, Cere-
brospinal fluid (CSF) markers and MRI-derived mea-
surements of the brain regions. See Table 1 and 2 (in
Appendix D and E, respectively) for details about
these biomarkers.

For the brain regions MRI measurements, following
best practices, we applied intracranial volume (ICV)
normalization because people’s brain sizes vary. We
excluded participants with missing values from any
of these 12 biomarkers, and de-duplicated the final
dataset. The final version of ADNI fitting these cri-
teria had 726 participants, distributed from three
ADNI protocols: ADNI (275, 37.9%), ADNIGO (76,
10.5%) and ADNI2 (375, 51.7%). There were 413
(56.9%) men and 313 (43.1%) women, diagnosed as
AD (153, 21.1%), late MCI (236, 32.5%), Control
(155, 21.3%) and early MCI (182, 25.1%).

We obtained the biomarker distribution parame-
ters for synthetic datasets based on ADNI. To provide
SuStaIn with the best opportunity to perform well,
we applied their method (Gaussian Mixture Model)
on the processed ADNI dataset to obtain θ and ϕ.

We employed two models to generate synthetic
datasets: the EBM and the Sigmoid model (defined
later). First, we uniformly pick a number from 1 to 5
(inclusive) for the number of subtypes. We chose [1,5]
because [2,5] is the most likely range for AD accord-
ing to the literature (Young et al., 2018; Estarellas
et al., 2024; ten Kate et al., 2018; Jellinger, 2021),
and 1 to account for no subtypes. We then randomly
pick a dispersion parameter between 0.01 and 0.5, and
use the Top-K Mallow’s Model implemented by Bou-
jaada et al. (2022) to get the event sequence for each
subtype based on a random permutation of all the
12 biomarkers. We chose [0.01, 0.5] because it al-
lows the generated subtypes’ sequences to have varied
agreement covering the whole range of [0,1] as mea-
sured by Kendall’s W (See Appendix H). We made
sure no two subtypes share the same event sequence,
and there were at least ten progressing participants
in each subtype.

Healthy participants do not belong to any sub-
type. We used a Dirichlet-Multinomial (DM) dis-
tribution to assign subtypes to progressing partici-
pants. The prior for the DM distribution is selected
uniformly at random from 0.1, 2, 5, and 20. This al-
lows both sparse and uniform distributions for partic-
ipants’ subtype assignments. DM distribution is also
employed to generate disease stages for progressing
participants, but the prior setting depends on exper-
imental configurations (See below and Appendix F).

Given the event sequence (St) of subtype t, a
biomarker n, and a participant j with diagnosis
zj ∈ {0, 1} and disease stage kj , the generative
model of EBM defines the biomarker measurement
of xj,n | St, kj ,θn,ϕn, zj as:

xj,n ∼


p(xn,j | θn), zj = 1, St,n ≤ kj ,

p(xn,j | ϕn), zj = 1, St,n > kj ,

p(xn,j | ϕn), zj = 0.

(7)

The Sigmoid model, adapted from Young et al.
(2015) and Venkatraghavan et al. (2019), is moti-
vated by the biomarker cascade hypothesis of Jack
et al. (2010), which postulates that AD biomarkers
follow sigmoid-shaped trajectories: slow to change in
early stages, accelerating during symptomatic onset,
and plateauing later. As in EBM, measurements of
healthy individuals are drawn from normal distribu-
tions. Formally:

xj,n ∼ N (µn,ϕ, σ
2
n,ϕ)

The measurements of progressing participants
monotonically deviate from the healthy state:

xn,j ∼ N (µn,ϕ, σ
2
n,ϕ) +

(−1)InRn

1 + e−ρn(kj−ξn)

where In ∼ Bernoulli (0.5) randomly flips the di-
rection of the deviation, Rn = µn,θ − µn,ϕ con-
trols the range of the measurements, and ρn =

max

(
1, |Rn|√

σ2
n,θ+σ2

n,ϕ

)
sets the slope.

SuStaIn (Aksman et al., 2021) has two variants:
GMM (gaussian mixture model) and KDE. GMM
assumes that biomarker measurements follow Gaus-
sian distributions whereas KDE does not. Both
bebms and SuStaIn rely on three key assumptions:
(1) biomarker measurements follow Gaussian distri-
butions (except for SuStaIn KDE); (2) disease stages
are ordinal; and (3) biomarker events occur in an or-
dinal sequence with approximately even spacing. To
evaluate robustness, we systematically relaxed each
assumption. Non-Gaussianity was tested both by
generating EBM datasets with non-normal biomarker
distributions (Table 2 in Appendix E has more de-
tails) and by using the Sigmoid model. Continuous
disease stages were introduced to test violations of the
second assumption. We examined violations of the
third assumption by introducing uneven event spac-
ing across biomarkers. Experimental results show
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that the last test revealed a shared limitation of the
underlying modeling paradigm. See Appendix I for
more details. Details about experimental specifica-
tions are available in Appendix F. In Appendix G,
we have plotted the theoretical and empirical distri-
butions of all twelve biomarkers (Fig. 4).

4.1. Experiment Setup

For each subtype t, when the bebms infers the event
sequences St, i.e., doing the ordering task, it as-
sumes knowledge of the diagnosis labels, i.e., whether
healthy or progressing. In the subtyping task and
the staging task, when inferring the most likely sub-
type and disease stage for each participant, bebms
is blind to the diagnosis labels. It also discards the
stage and subtype priors inferred by the model and
relies only on the estimated biomarker distribution
parameters θ, ϕ.

SuStaIn’s methodology differs, as it leverages di-
agnosis labels only to estimate the biomarker distri-
bution parameters, excluding them from subsequent
inference tasks. While this design aims for robust-
ness against diagnostic uncertainty, it introduces a
potential issue: if the labels are unreliable, their use
in any estimation step risks biasing the model’s core
parameters. To enable a direct comparison, we de-
veloped bebms (blind). This variant strictly mir-
rors SuStaIn’s philosophy, utilizing diagnosis labels
only for the initialization of biomarker distribution
parameters and not in any of the three tasks men-
tioned above.

We used four different total participant sizes: J =
300, 500, 1000, 1500 and three different healthy ratios:
R = 0.25, 0.5, 0.75. For each J − R pair, we gener-
ated 10 datasets. With eleven experiments, we have
1,320 datasets in total. bebms and bebms (blind)
use 10,000 MCMC iterations with 500 burn-in and
no thinning. Per SuStaIn (Aksman et al., 2021)
recommendation, we applied 25 parallel start points
for their E-M algorithm and 100,000 MCMC iter-
ations. All other settings are the default of SuS-
taIn. We applied both the GMM and the KDE ver-
sion of SuStaIn. For the estimation of T , in cross-
validation, we tested T = 1 to T = 5 (inclusive).
We used the maximum-likelihood ordering (the E-M
solution) from SuStaIn as the estimated subtype pro-
gression pattern, and the ml subtype and ml stage

outputs from run sustain algorithm as the subject-
level subtype and stage assignments, respectively.
Posterior MCMC samples (samples sequence) were

used only to quantify uncertainty in the ordering re-
sults.

4.2. Evaluation Metrics

For the ordering task, we computed a cost matrix
of normalized Kendall’s τ distances and applied the
Hungarian algorithm (Kuhn, 1955; Munkres, 1957)
to optimally match estimated and true sequences,
reporting the mean distance across matched pairs.
Subtype assignment accuracy was measured with the
Adjusted Rand Index (Hubert and Arabie, 1985) be-
tween the true and inferred subtype labels. Note that
the performance on the subtyping task is only rele-
vant when the ground truth has more than 1 sub-
type. As staging error is confounded with subtype
accuracy, we evaluated the staging accuracy by only
reporting the mean estimated stage for control par-
ticipants with the ground truth of 0. We reported the
Mean Absolute Error (MAE) as the accuracy for the
estimation of the number of subtypes. To compare
the computational efficiency, we also report the run-
time for each dataset. Due to the computational cost
of cross-validation, we only report the full runtime of
model selection for Experiment 1.

5. Results

5.1. Synthetic Datasets

We conducted all experiments on the CHTC clus-
ter at the University of Wisconsin-Madison (Cen-
ter for High Throughput Computing, 2006). Across
the 1,320 synthetic datasets, 2 timed out. SuStaIn
(KDE) failed to process an additional 152 due to
an “IndexError”, highlighting its fragility in practice.
As shown in Figs. 2, 6, 7 and 8, bebms consistently
outperforms SuStaIn across ordering, subtyping, and
staging tasks, and is faster. Unless otherwise men-
tioned, the results refer to Exp. 1-9.

Ordering: bebms and its blind variant achieved
Kendall’s τ distances of 0.24 ± 0.01 and 0.29 ± 0.01,
respectively—substantially lower (better) than SuS-
taIn KDE (0.33 ± 0.01) and SuStaIn GMM (0.39 ±
0.01). For reference, random guessing yielded 0.45±
0.00. Variability is 95% CI. SuStaIn GMM per-
formed particularly poorly when biomarker measure-
ments deviated from Gaussian assumptions and also
showed a marked decline with increasing proportions
of healthy participants, even under normally dis-
tributed data. By contrast, bebms—although also
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Figure 2: Normalized Kendall’s τ across all nine synthetic experiments. Each panel corresponds to an
experiment; within each panel, participant sizes (J) are shown across columns, and within each
column three healthy ratios (R = 0.25, 0.5, 0.75) are displayed from left to right. bebms reduced
ordering error by 27.3% relative to SuStaIn, with bebms (Blind) performing nearly identically.
SuStaIn results were consistently lower, with margins narrowing under model misspecification
(Experiments 8–9). Performance was largely insensitive to participant size and healthy ratio.
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Figure 3: bebms ADNI ordering. All subtypes begin in the entorhinal region, with Subtype 1 showing early
cognitive decline, Subtype 2 early CSF changes, and Subtype 3 early neurodegeneration.
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assuming Gaussian distributions—was robust to non-
Gaussian misspecification, and outperformed SuS-
taIn KDE in most cases. Both bebms and SuStaIn
struggled in Experiment 9, where the ordinal assump-
tion of disease stages was violated and data were gen-
erated from the sigmoid framework. Regarding par-
ticipant size, performance saturated around 300 par-
ticipants. bebms was also robust to varying healthy
ratios: holding the total number of participants fixed,
increasing the proportion of controls had only a mod-
est effect on ordering accuracy.

Subtyping. As shown in Fig. 6 (Appendix I), sub-
typing proved to be a challenging task overall. bebms
achieved an Adjusted Rand Index (ARI) 0.25± 0.02,
followed by bebms (blind) (0.24 ± 0.02). SuStaIn
GMM and KDE obtained 0.16±0.02 and 0.13±0.02,
respectively. Random assignment yielded 0.00. Sub-
type accuracy appeared insensitive to sample size,
though increasing the healthy ratio impaired perfor-
mance.

Staging. In staging tasks (Appendix I, Fig. 7),
bebms assigned average stages of 0.16 ± 0.03 to
control participants, while bebms (blind) achieved
0.62 ± 0.09. By comparison, SuStaIn KDE and
GMM performed substantially worse, assigning av-
erage stages of 1.45 ± 0.30 and 3.03 ± 0.24, respec-
tively. Importantly, SuStaIn’s staging accuracy de-
graded most severely when datasets contained fewer
controls (i.e., smaller healthy ratios).

Runtime. bebms achieved better performance
and was faster (Appendix I, Fig. 8), with an average
runtime across all datasets of 2.37±0.26 minutes, fol-
lowed by bebms (blind) (4.04±0.43 minutes). SuS-
taIn KDE (6.57 ± 0.58 minutes) and SuStaIn GMM
(6.88± 0.61 minutes) took about twice as long.

Subtype number estimation. In estimating the
optimal number of subtypes (Appendix I, Fig. 9),
bebms (1.08 ± 0.14) performed marginally better
than SuStaIn GMM (1.16±0.20), followed by bebms
(blind) (1.27±0.16) and SuStaIn KDE (1.92±0.23)
which had the same performance as random guessing
(1.92 ± 0.33). SuStaIn tends to overfit by identify-
ing more subtypes than the ground truth, whereas
both variants of bebms exhibit symmetric relative-
error distributions centered at zero (See Fig. 11 in
Appendix I). Although bebms and SuStaIn GMM
achieved comparable accuracy, bebms was faster
(Appendix I, Fig. 10), requiring 40.11 ± 15.28 min-
utes on average compared to 63.68 ± 15.11 minutes
for SuStaIn GMM.

Stress-test experiments (Exp. 10-11). bebms
outperformed SuStaIn across all tasks in the two
stress-test experiments. Interestingly, the best-
performing variants of each method achieved higher
subtyping (Fig. 13) and staging (Fig. 14) accuracy
than in the standard experiments (Exp. 1–9). How-
ever, for ordering (Fig. 12), the performance of both
methods degraded to the level of random guessing.

5.2. ADNI

Cross-validation and setup. We performed 5-
fold cross-validation on the ADNI dataset to select
the number of subtypes, testing values from 1 to 6
(the upper bound allowing us to assess potential over-
fitting). All other settings matched those used in the
synthetic experiments. SuStaIn-GMM selected six
subtypes, whereas bebms selected three (see expla-
nations, Table 3 and Figures 15–16 in Appendix J).
SuStaIn-KDE failed due to a singular matrix error.
For both algorithms, we then ran ten replications
with different random seeds and retained the solu-
tion with the highest data likelihood. For bebms,
each run consisted of 20,000 MCMC iterations (200
burn-in, no thinning). Fig. 3 shows the inferred pro-
gression patterns for the three bebms subtypes based
on the final 18,000 iterations. The trace plot indicates
stable convergence (Fig. 17, Appendix J).

In the results below, we present the inferred or-
dering, subtype assignments, and disease staging on
ADNI. Biomarkers are grouped as CSF amyloid (A:
Aβ1−42), CSF tau (T: TAU, PTAU), cognition (C:
ABETA, MMSE, ADAS13), and neurodegeneration
(N: all remaining biomarkers; see Fig. 3).

Ordering. bebms identified three subtypes:

1. N → C → N → T → N → A (25, 3.4%)

2. N → T → A → C → N (493, 67.9%)

3. N → C → A → T (208, 28.7%)

SuStaIn GMM identified six subtypes (See Fig. 20
in Appendix J):

1. A → T → C → N → C → N (342, 47.1%)

2. A → N → C → N → C → T (124, 17.1%)

3. C → N → A → N → T (148, 20.4%)

4. N → C → A → T (54, 7.4%)

5. A → C → T → N (46, 6.3%)
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6. T → N → C → N → C → N → A → N (12,
1.7%)

Table 4 and 5 in Appendix J have more detailed
data of the distributions of subtypes over participants
of different diagnoses.

Staging. bebms scored 1.10 average stage, com-
pared to 2.48 for SuStaIn GMM for healthy patients.
Fig. 18 and 19 in Appendix J have more details.

6. Discussion

The ability of SuStaIn (Young et al., 2018) to esti-
mate subtypes of diseases from cross-sectional data
has been a breakthrough for data-driven medical re-
search. However, the robustness of its performance is
unclear. In this paper, we presented a Bayesian vari-
ant of the EBM with subtypes (the bebms). Across
a range of synthetic data experiments, we found
that the bebms performed better in all tasks: or-
dering, subtyping, staging, and estimating the num-
ber of subtypes, while being computationally more
efficient. bebms can handle data with missing en-
tries and shows great potential in scaling to high-
dimensional data (See Appendix K). The blind vari-
ant of bebms has a slightly lower performance while
also being computationally more demanding; domain
expertise is needed to decide which version of our
model to use, depending on the uncertainties in the
diagnosis labels.
bebms’s improved performance has important im-

plications for clinical and research practice. Our
model’s advantages can directly enhance clinical trial
enrichment and patient stratification in precision
medicine. Also, bebms remains robust across varia-
tion in the proportion of healthy participants, and the
performance of all methods saturates at around 300.
In many real-world settings—especially for new or
rare diseases—recruiting large patient cohorts is diffi-
cult. Our results suggest that (1) cohorts larger than
300 may not be necessary, and (2) when using bebms,
increasing the proportion of healthy controls—which
is typically far easier to recruit—has only a modest
effect on performance.
The results on the real-world ADNI dataset show

that bebms yields subtype patterns that align more
closely with the current scientific consensus on
Alzheimer’s disease progression than those identified
by SuStaIn. Neuropathological evidence indicates
three major AD subtypes (Murray et al., 2011). The
most common subtype, Typical AD (TAD, ∼75%),

generally follows the ATNC sequence—amyloid (A)
abnormality preceding tau (T), then neurodegenera-
tion (N), and cognitive decline (C) (Jack Jr et al.,
2024), although only about one-third of patients
strictly follow this ordering (Mendes et al., 2025).
In contrast, Limbic-predominant AD (LPAD, ∼14%)
is characterized by early and severe involvement of
the hippocampus and medial temporal cortex, with
relatively limited neocortical involvement. Finally,
Hippocampal-sparing AD (HSAD, ∼11%) exhibits
pronounced neocortical pathology—particularly in
parietal and frontal association areas—while the hip-
pocampus remains comparatively preserved.

Regarding the subtype patterns, bebms Sub-
type 2 (CSF-first, 67.9%) corresponds to Typical AD
(TAD), as CSF biomarkers become abnormal ear-
liest; this aligns with SuStaIn Subtype 1 (47.1%)
and possibly Subtype 6 (1.7%). bebms Subtype 3
(entorhinal/hippocampal-first, 28.7%) corresponds
to Limbic-predominant AD (LPAD), characterized
by early medial temporal involvement; SuStaIn Sub-
types 4 (7.4%) and potentially Subtype 2 (17.1%) re-
flect a similar pattern. Finally, bebms Subtype 1
(neocortical/cognitive-first with delayed hippocam-
pal involvement, 3.4%) corresponds to Hippocampal-
sparing AD (HSAD), which matches SuStaIn Sub-
types 3 (20.4%) and 5 (6.3%).

Overall, bebms yields subtype proportions and
progression patterns that more closely match the
canonical findings reported in (Murray et al., 2011),
and also produces cleaner clustering of jointly pro-
gressing biomarkers. However, bebms is not flawless:
all subtypes show early entorhinal involvement, which
may reflect mild overfitting or a strong entorhinal sig-
nal in ADNI. We caution against overinterpretation
and believe our results should be treated as converg-
ing evidence to be assessed by domain experts, and
not as definitive.

Our study has several limitations. First, both
bebms and SuStaIn struggle when event times of
when a disease progresses were assumed to be con-
tinuous rather than ordinal. If the event times of
a disease are not relatively evenly spaced, then nei-
ther model is a good choice. Future work should
explore continuous-time disease progression, e.g.,
TEBM (Wijeratne et al., 2023), with subtypes using
longitudinal data. Second, the advantages of bebms
are testing on only one real-world dataset. More work
should be done to validate bebms on other datasets.
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Giovanni Volpe, Colin L Masters, David Ames,
Yoshiki Niimi, Takeshi Iwatsubo, et al. Multi-
cohort and longitudinal bayesian clustering study
of stage and subtype in alzheimer’s disease. Nature
communications, 13(1):4566, 2022.
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Appendix A. ADNI Information

A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Appendix B. Conjugate Prior Update for Distribution Parameters

The updating rule:

W =

J∑
j=1

wj , x̄ =
1

W

J∑
j=1

wjxj

S =

J∑
j=1

wj(xj − x̄)2

m′ =
n0m0 +Wx̄

n0 +W
,n′ = n0 +W

ν′ = ν0 +W, s′ =
1

ν′

[
S + ν0s

2
0 +

n0W

n′ (x̄−m0)
2

]
From these, the posterior mean of the mean is taken as:

µ̂ = m′,

and the posterior expectation of the variance is:

σ̂2 =
ν′ · s′2/2
ν′/2

= (s′)2 (8)

with posterior standard deviation σ̂ =
√
σ̂2. This initialization ensures that θ,ϕ are informed by both

clustering structure and prior uncertainty.
Note that we knew the statistically correct calculation of σ̂2 should be:

σ̂2 =


ν′(s′)2

ν′ − 2
, ν′ > 2,

(s′)2, ν′ ≤ 2.

(9)

but we decided to use σ̂2 = (s′)2 because it led to better empirical results.
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Appendix C. BEBMS Inference Algorithm

Algorithm 1: bebms Metropolis–Hastings Sampler

Input: Data X ∈ RJ×N , Number of subtypes T

Output: Samples {S(i),θ(i),ϕ(i),π
(i)
t ,π

(i)
k|t, P

(i)
stage, P

(i)
subtype, ℓ

(i)}Mi=1

Init: S(0),θ(0),ϕ(0),αt,αk|t,π
(0)
t ,π

(0)
k|t ;

Compute initial posteriors P
(0)
stage, P

(0)
subtype;

Compute total log-likelihood ℓ(0);
for i = 1 to M do

// Step 1: Propose new orderings

Propose S′ from q(S′ | S(i−1));

Compute intermediate posteriors P̃stage, P̃subtype using S′ and (θ(i−1),ϕ(i−1));

Update (θ′,ϕ′) using S′, P̃stage, P̃subtype;
// Step 2: Compute likelihood

Recompute P ′
stage, P

′
subtype and ℓ′;

// Step 3: Acceptance probability

α← min
(
1, eℓ

′−ℓ(i−1)
)
;

U ∼ Uniform(0, 1);
// Step 4: Accept/Reject

if U < α then
S(i) ← S′;

θ(i) ← θ′, ϕ(i) ← ϕ′;

P
(i)
stage ← P ′

stage, P
(i)
subtype ← P ′

subtype;

ℓ(i) ← ℓ′;

π
(i)
t ∼ Dir(αt + counts);

π
(i)
k|t ∼ Dir(αk|t + counts);

end

end

At each MCMC iteration, we propose a new event sequence S′ by randomly selecting two subtypes. For
each of these two subtypes, we then randomly select two biomarkers and swap their positions within the
subtype’s ordering. If there is only one subtype, we randomly select two biomarkers from it and swap their
positions. This defines the proposal distribution q(S′ | S(i−1)).
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Appendix D. ADNI Select Biomarker Glossary

Table 1: Glossary of ADNI Biomarkers with Source, Units, and Interpretation
Abbrev. Full Name Source Modality Unit / Scale Higher Values Indicate

MMSE Mini-Mental State
Examination

Cognitive test Score (0–30) Less pathology (better global cognition)

ADAS13 Alzheimer’s Disease
Assessment Scale – Cognitive
Subscale (13-item)

Cognitive test Score (0–85) More pathology (worse cognition)

RAVLT-immediate Rey Auditory Verbal Learning
Test – Immediate Recall

Cognitive test Score (0–75) Less pathology (better memory encoding)

ABETA Amyloid Beta (Aβ1−42) CSF pg/mL Less pathology (less amyloid deposition)
TAU Total Tau CSF pg/mL More pathology (axonal degeneration /

neuronal injury)
PTAU Phosphorylated Tau

(p-Tau181)
CSF pg/mL More pathology (neurofibrillary tangle

burden)
Ventricles Ventricular Volume

(ICV-normalized)
Structural MRI Fraction of ICV More pathology (greater brain atrophy)

WholeBrain Whole Brain Volume
(ICV-normalized)

Structural MRI Fraction of ICV Less pathology (greater structural
integrity)

Hippocampus Hippocampal Volume
(ICV-normalized)

Structural MRI Fraction of ICV Less pathology (greater structural
integrity)

Entorhinal Entorhinal Cortex Volume
(ICV-normalized)

Structural MRI Fraction of ICV Less pathology (greater structural
integrity)

Fusiform Fusiform Gyrus Volume
(ICV-normalized)

Structural MRI Fraction of ICV Less pathology (greater structural
integrity)

MidTemp Middle Temporal Gyrus
Volume (ICV-normalized)

Structural MRI Fraction of ICV Less pathology (greater structural
integrity)
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Appendix E. Biomarker Parameters and Non-Normal Distribution Parameter
Details

Table 2: Biomarker Parameterization and Irregular Sampling Distributions
Biomarker θmean θstd ϕmean ϕstd Irregular Distribution (Per Implementation)

MMSE 25.31 2.38 29.17 0.81 Triangular(µ−2σ, µ−1.5σ, µ); N (µ+σ, (0.3σ)2); Exp(0.7σ)+
(µ − 0.5σ) (equal mixture).

ADAS13 21.79 9.51 9.32 3.91 Same mixture structure as MMSE (triangular + Gaussian +
exponential).

RAVLT immediate 27.50 7.93 45.39 9.36 Same mixture structure as MMSE (triangular + Gaussian +
exponential).

ABETA 661.23 195.29 1331.37 214.57 Pareto(1.5)·σ+(µ− 2σ); U(µ− 1.5σ, µ+1.5σ); Logistic(µ, σ)
(equal mixture).

TAU 385.84 138.95 208.11 58.84 Same mixture structure as ABETA.
PTAU 37.21 15.09 17.88 5.13 Same mixture structure as ABETA.

VentricleNorm 0.0359 0.0128 0.0198 0.0069 Beta(0.5,0.5)·4σ + (µ − 2σ); Exp(0.4σ) with ± sign;
N (µ, (0.5σ)2) + 0, 2σ spike.

HippocampusNorm 0.00390 0.00065 0.00511 0.00059 Same mixture structure as VentricleNorm.

WholeBrainNorm 0.6311 0.0346 0.6949 0.0389 Gamma(2, 0.5σ) + (µ − σ); Weibull(1.0) · σ + (µ − σ);
N (µ, (0.5σ)2) ± σ.

EntorhinalNorm 0.00217 0.00050 0.00253 0.00038 Same mixture structure as WholeBrainNorm.

FusiformNorm 0.01116 0.00167 0.01186 0.00140 Standard Cauchy(µ, σ) + N (0, (0.2σ)2), clipped to [µ−4σ, µ+
4σ].

MidTempNorm 0.01241 0.00179 0.01344 0.00140 10% N (µ, 0.2σ) spike + 90% Logistic(µ + σ, 2σ).

Implementation Notes:

• µ & σ use θ parameters for affected (pathological) and ϕ for nonaffected (intact).

• For non-normal components, After sampling, all values are perturbed by additional noise
N (0, (0.2σ)2) and clipped to [µ− 5σ, µ+ 5σ].
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Appendix F. Experiment Specifications

1. Ordinal S & Ordinal kj with bell-shape Dirichlet priors & xj,n sampled from normal distributions
according to the EBM model.

2. Same as Experiment 1, but non-normal distributions for xj,n.

3. Same as Experiment 1, but with uniform distributions for ordinal kj .

4. Same as Experiment 2, but with uniform distributions for ordinal kj .

5. Ordinal S & Continuous kj with uniform distributions & xj,n sampled from normal distributions ac-
cording to the EBM model.

6. Same as Experiment 5, but with non-normal distributions for xj,n.

7. Same as Experiment 6, but with a scaled Beta distribution (λ = N,α = 5, β = 2) for kj .

8. Ordinal S & Continuous kj with uniform distributions & xj,n generated using the Sigmoid model.

9. Same as Experiment 8, but with a scaled Beta distribution (λ = N,α = 5, β = 2) for kj .

10. Continuous event times (Beta(2, 2)×N) & scaled Beta distribution (λ = N,α = 5, β = 2) for kj & xj,n

sampled from normal distributions according to the EBM model.

11. Same as Experiment 10, but xj,n was generated using the Sigmoid model.
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Appendix G. Theoretical and Empirical Biomarker Distributions
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Figure 4: (1) Theoretical normal distributions; (2) Theoretical non-normal distributions; (3) Empirical dis-
tributions in one synthetic dataset of Exp. 9; (4) Empirical distributions in one synthetic dataset
of Exp. 1.
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Appendix H. Kendall’s W

We used Kendall’s W to measure the similarity among disease progression of different subtypes. W ranges
from 0 to 1, with 0 indicating no similarity at all and 1 indicating exactly the same. We aim for the full
range of [0, 1] in synthetic experiments because we want to make sure the performances of all algorithms are
not dependent on the similarity among subtypes.
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Figure 5: Distribution of Kendall’s W across all 1,318 synthetic datasets (Exp. 1-11).
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Appendix I. Synthetic Experiment Results
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Figure 6: Subtyping results, measured with Adjusted Rand Index (ARI). Larger values reflect better per-
formance. Subtyping is hard for both bebms and SuStaIn.
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Figure 7: Staging results. bebms assigned lower disease stages to control participants than SuStaIn. 0 is
the ground truth.

22



bebms

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 1: S & Ordinal kj (DM) & X (Normal)

R
un

tim
e 

(M
in

ut
es

)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 2: S & Ordinal kj (DM) & X (Non-Normal)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 3: S & Ordinal kj (Uniform) & X (Normal)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 4: S & Ordinal kj (Uniform) & X (Non-Normal)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 5: S & Continuous kj (Uniform) & X (Normal)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 6: S & Continuous kj (Uniform) & X (Non-Normal)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 7: S & Continuous kj (Skewed) & X (Non-Normal)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 8: S & Continuous kj (Uniform) & X (Sigmoid)

15

10

5

0

J=300 J=500 J=1000 J=1500

Exp 9: S & Continuous kj (Skewed) & X (Sigmoid)

Algorithms (Avg. runtime ± 95% CI)

BebmS (2.37 ± 0.26) BebmS (Blind) (4.04 ± 0.43) SuStaIn (KDE) (6.57 ± 0.58) SuStaIn (GMM) (6.88 ± 0.61)

Figure 8: Runtime analysis. bebms is much faster than SuStaIn.
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Figure 9: Mean Absolute Error (MAE) for the estimation of ground-truth number of subtypes. Smaller
values reflect better performance. bebms’s performance is similar to that of SuStaIn GMM.
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Figure 10: Runtime analysis for the estimation of ground-truth number of subtypes. bebms achieved similar
accuracy to SuStaIn GMM but with a faster speed.
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Figure 11: Relative error distributions for estimating the optimal subtype count. The bebms variants pro-
duce symmetric, zero-centered errors, while SuStaIn consistently overestimates (overfits) the num-
ber of subtypes.
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Figure 12: Ordering results for stress-test experiments (Kendall’s tau distance).
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Figure 13: Subtype assignment results for stress-test experiments. .
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Figure 14: Staging on stress-test experiments.
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Appendix J. ADNI Results

The results vary because of randomness. We tested bebms and SuStaIn GMM several times. bebms favored
3 or 4 as the optimal number of subtypes, and SuStaIn favored 5 or 6. We picked 6 for SuStaIn because that
was our last attempt. For bebms, when the number of subtypes was 4, one of the resulting subtypes only
had 6 participants, a clear indication of overfitting. Therefore, we chose 3.
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Figure 15: Cross-validation on ADNI using
bebms
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Figure 16: Cross-validation on ADNI using SuS-
taIn (GMM)

Table 3: Comparison of CVIC across number of subtypes for bebms and SuStaIn (GMM).

Number of Subtypes BEBMS CVIC SuStaIn (GMM) CVIC
1 −400.11 11084.15
2 −733.31 10446.74
3 −885.00 10307.71
4 −827.21 10230.84
5 −737.59 10205.47
6 −755.60 10172.81

Note. CVIC = Cross-Validation Information Criterion. Lower values indicate better model fit.

Table 4: Diagnostic composition (proportions) across subtypes (SuStaIn GMM)

Subtype Total AD CN EMCI LMCI
1 342 0.31 0.16 0.21 0.32
2 124 0.03 0.30 0.32 0.35
3 148 0.27 0.14 0.25 0.34
4 54 0.00 0.35 0.28 0.37
5 46 0.02 0.39 0.28 0.30
6 12 0.17 0.42 0.33 0.08
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Figure 17: The trace plot of running bebms on ADNI. The starting point is iteration 40. Qualitatively, this
suggests good convergence.

Table 5: Diagnostic composition (proportions) across subtypes (bebms)

Subtype Total AD CN EMCI LMCI
1 25 0.28 0.04 0.28 0.40
2 493 0.17 0.26 0.30 0.28
3 208 0.30 0.13 0.13 0.43
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Figure 18: bebms ADNI staging and subtyping
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Figure 19: SuStaIn ADNI staging and subtyping
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Appendix K. Incomplete & High Dimensional Data

K.1. Handling of Incomplete Data

bebms is designed to accommodate datasets with missing values. To achieve this, missing entries (represented
as NaN) are systematically excluded during two key processes: (1) the initialization and iterative updating
of biomarker distribution parameters, and (2) the calculation of the data likelihood.
On the other hand, although missing data SuStaIn (Estarellas et al., 2024) has been proposed, the currently

available implementation of SuStaIn, whose source code was reported by Estarellas et al. (2024) in the data
availability section, is not able to process data with missing entries.

K.2. Performance on High-dimensional Data

To assess the scalability and performance of bebms on high-dimensional data, we conducted a synthetic
experiment. First, distribution parameters (θ, ϕ) for 100 biomarkers were synthetically generated using AI.
More specifically, we used the following prompt on ChatGPT5:

[Paste data from the JSON file into the prompt:

https://raw.githubusercontent.com/hongtaoh/bebms/refs/heads/main/4highdim_params_ucl_gmm.json]

This is for Alzheimer’s disease.

Based on this, could you give me 100 synthetic biomarkers’ parameters?

The resulting JSON can be found at https://raw.githubusercontent.com/hongtaoh/bebms/refs/

heads/main/high_dimensional/high_dimensional.json.
Based on these parameters, five distinct datasets were created following the configurations of Experiment

1 (see Appendix F). The experiment was configured with J = 300 participants and R = 0.25, and the model
was run for 3,000 MCMC iterations. All other experimental settings were identical to those described in the
synthetic experiments of Section 4.
The five high-dimensional datasets are available at https://github.com/hongtaoh/bebms/tree/main/

high_dimensional/data.
The results, summarized in Table 6, indicate that bebms required an average processing time of ap-

proximately 10 minutes for each dataset. Considering the dimensionality of the data (100 biomarkers, 300
participants, and on average 3.4 subtypes), the model demonstrated robust performance on the ordering,
subtyping, and staging tasks.
This computational speed is comparable to, though slower than, that of s-SuStaIn (Tandon et al., 2024),

which reportedly processes a dataset of 200 participants and 100 biomarkers (with 3-4 subtypes) in approx-
imately 2 minutes. In contrast, SuStaIn GMM (without parallel start points) failed to complete processing
on the 5th dataset within a 3-hour time limit. This limitation of SuStaIn aligns with the findings previously
reported in the Figure 2 of Tandon et al. (2024).

Table 6: Comparison of runtime, ordering accuracy, subtype assignment accuracy, and healthy mean stage.
Dataset # subtypes Runtime (s) Kendall’s τ Subtype Acc. Mean Stage (Healthy)
1 1 226.58 0.293 1.000 0.173
2 5 822.69 0.419 0.012 0.014
3 4 719.95 0.378 0.678 2.164
4 1 229.38 0.349 1.000 1.440
5 5 837.29 0.482 0.016 1.068
Average 3.2 567.18 0.384 0.541 0.972

32

https://raw.githubusercontent.com/hongtaoh/bebms/refs/heads/main/high_dimensional/high_dimensional.json
https://raw.githubusercontent.com/hongtaoh/bebms/refs/heads/main/high_dimensional/high_dimensional.json
https://github.com/hongtaoh/bebms/tree/main/high_dimensional/data
https://github.com/hongtaoh/bebms/tree/main/high_dimensional/data

	Introduction
	Past Work
	Method
	Model Specification
	Inference Procedure
	Model Selection

	Model Evaluation
	Experiment Setup
	Evaluation Metrics

	Results
	Synthetic Datasets
	ADNI

	Discussion
	ADNI Information
	Conjugate Prior Update for Distribution Parameters
	BEBMS Inference Algorithm
	ADNI Select Biomarker Glossary
	Biomarker Parameters and Non-Normal Distribution Parameter Details
	Experiment Specifications
	Theoretical and Empirical Biomarker Distributions
	Kendall's W
	Synthetic Experiment Results
	ADNI Results
	Incomplete & High Dimensional Data
	Handling of Incomplete Data
	Performance on High-dimensional Data


