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Abstract

Recently, Miller et al. [32] and Baek et al. [3] empirically demonstrated strong
linear correlations between in-distribution (ID) versus out-of-distribution (OOD)
accuracy and agreement. These trends, coined accuracy-on-the-line (ACL) and
agreement-on-the-line (AGL), enables OOD model selection and performance
estimation without labeled data. However, these phenomena also break for certain
shifts, such as CIFAR10-C Gaussian Noise, posing a critical bottleneck. In this
paper, we make a key finding that recent test-time adaptation (TTA) methods not
only improve OOD performance, but drastically strengthens the ACL and AGL
trends in models, even in shifts where models showed very weak correlations
before. To analyze this, we revisit the theoretical conditions established by Miller
et al. [32], which demonstrate that ACL appears if the distributions only shift
in mean and covariance scale in Gaussian data. We find that these theoretical
conditions hold when deep networks are adapted to OOD, e.g., CIFAR10-C —
models embed the initial data distribution, with complex shifts, into those only
with a singular “scaling” variable in the feature space. Building on these stronger
linear trends, we demonstrate that combining TTA and AGL-based methods can
predict the OOD performance with high precision for a broader set of distribution
shifts. Furthermore, we can leverage ACL and AGL to perform hyperparameter
search and select the best adaptation strategy without any OOD labeled data.

1 Introduction

Neural networks often fail to generalize to out-of-distribution (OOD) data that differs from the in-
distribution (ID) data seen at train-time [1, 11, 41]. Thus, characterizing the behaviors of these models
under distribution shift becomes crucial for reliable deployment. However, it is often extremely
challenging to reliably estimate their performances because in many practical applications, OOD
labeled data is scarce. Interestingly, recent studies [32, 3] have found a set of simple empirical
laws that describe the behavior of models across many distribution shift benchmarks. In particular,
across numerous distribution shift benchmarks, the models’ ID versus OOD accuracies, under probit
scaling, tend to observe a strong linear correlation across numerous distribution shift benchmarks.
Additionally, when accuracy is strongly correlated, the ID and OOD agreement rates between pairs of
these models are also strongly correlated with nearly identical slopes and biases. These phenomena,
respectively referred to as “accuracy-on-the-line” (ACL) [32] and “agreement-on-the-line” (AGL)
[3], can be leveraged for precise OOD accuracy estimation without access to OOD labels: one could
estimate the slope and bias of the ID vs OOD accuracy trend using agreement rates, then linearly
transform ID accuracy using this approximate linear fit. 1.

1Throughout this paper, we use AGL as comprehensive term for indicate when models show strong linear
trends in both accuracy and agreement, and the slopes and biases of these trends are identical.
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Figure 1: Linear trends in both accuracy and agreement hold to a substantially stronger degree after
applying adaptation methods than before. Each blue and pink dot denotes the accuracy and agreement,
followed by the linear fits for each, and R2 is correlation coefficient.

However, studies [32, 3, 56, 48] have demonstrated that for distribution shifts benchmarks where
the linear trends breaks down catastrophically. As shown in Fig. 1, such as CIFAR10-C Gaussian
Noise [14] or Camelyon17-WILDS [41], trained models (i.e., Vanilla) with around 92 − 95% ID
accuracy can have OOD accuracies that vary between 10 − 50%, so ID accuracy alone becomes
extremely unreliable for understanding the OOD performance of models. Similarly, the correlation
strength of ID and OOD agreement rates also weakens. Ideally, we would like to intervene in models
in a way that improves these linear correlations, such that we can reliably predict their performance
under distribution shift. While theoretical works [32, 31, 51, 25] provide insights for when these
linear trends hold, there is little study on how to strengthen these trends in models.

In this paper, we empirically demonstrate that recent OOD test-time adaptation (TTA) strategies
[44, 27, 46, 53, 9, 35, 55, 36] not only improve OOD performance, but significantly restore the
strong linear trends for a broad range of distribution shifts where ACL and AGL are not initially
observable. For instance, in Fig. 1, the correlation coefficient (R2) of ID versus OOD agreement
and accuracy of Vanilla models is 0.18 and 0.39, respectively, and both of these values improve to
1.0 after applying TENT [53]. We observe such stronger linear trends after TTA throughout our
extensive testbed consisting of 9 shifts, 7 adaptation methods, and over 40 network architectures.
As test-time adapted models have OOD accuracies that degrade more predictably with respect to
the ID accuracy, we are also able to utilize AGL based method ALine [3] to obtain precise OOD
performance estimates without any OOD labels. Note that no OOD labels were utilized throughout
this procedure, neither during TTA or ALine. Our estimates of the models’ OOD performances are
drastically more precise after adaptation, e.g., estimation error of 11.99% in Vanilla vs. 2.34% after
applying TENT on CIFAR10-C Gaussian Noise.

Given that TTAs are designed to enhance OOD accuracy, the observation of such strong linear trends
is unexpected and non-trivial. While some studies [29, 9] have explored how adaptations lead to
improved OOD generalization, these efforts are orthogonal to those investigating the conditions under
which linear trends occur [32, 31]. To our knowledge, no studies have attempted to bridge these two
areas of research. This naturally raises the question: Why does adapting models at test-time to OOD
data lead to stronger linear trends?
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To answer this, we revisit the theoretical analysis in Miller et al. [32] of the sufficient conditions for
observing highly correlated ID vs OOD accuracy in linear classifiers and Gaussian data. Theoretically,
ACL holds exactly under distribution shifts where the direction of the class means and shape of the
class covariances are fixed, and only the scale of the mean or covariance changes. Surprisingly, we
find that TTA, in practice, seems to enforce exactly this condition: after applying TTA, the cosine
similarity between the means and covariances of the penultimate-layer feature embedding of ID and
OOD data tend to hover around 1, while their magnitude may change by some scaling constant. This
implies that adaptations effectively collapse the complexity of the distribution shift to a singular
“scaling” variable in the feature space. In addition to (empirically) justifying the use of TTA for
strengthening ACL2, this discovery casts some insight into the nature of TTA in general, which has
previously been a largely heuristic approach.

Furthermore, models adapted with different TTA hyperparameters tend to lie on the same linear
trend. Fig. 2 illustrates the strong correlation among models first trained on ID data over different
architectures and different early-stopping thresholds, then adapted with varying learning rates, batch
sizes, adaptation steps. This critically allows us to tune the TTA hyperparameters and choice of
TTA method without a held-out OOD labeled set, which is a long-standing challenging unsolved by
existing TTA studies [21, 60, 9]. Using ACL and AGL, we are able to select models with accuracy
less than 1% away from that of the best model OOD. This also allows to select the best TTA methods
by comparing their estimated best OOD performances.

To summarize our contributions:

• We observe after TTA leads, ACL and AGL hold across a wider set of distribution shifts and
hyperparameter settings.

• We explain our observation by showing TTA collapses the distribution shift to just a constant
scaling of the mean and covariance matrices in the feature space. This satisfies the theoretical
conditions studied previously for observing strong linear trends.

• Our findings provide a simple and effective strategy for finding the best TTA hyperparameters
and the best TTA strategy without any OOD labels.

2 Related Work

Understanding accuracy and agreement-on-the-line. Miller et al. [32] and Baek et al. [3]
empirically observed a coupled phenomena in deep models evaluated on a wide variety of standard
distribution shift benchmarks: the ID vs. OOD accuracy and agreement are often strongly correlated
and the linear fits match almost exactly. Recent studies [32, 31, 51, 25, 24] attempt to build specific
characterization of the shifts that lead to (or break) this phenomena. Miller et al. [32] theoretically
explained that under a simple Gaussian data setup, ACL does not hold perfectly under distribution
shifts that change the direction of the mean or transforms the covariance matrix. For example, they
demonstrate that adding isotropic Gaussian noise to CIFAR10, which does not have an isotropic
covariance matrix, causes the linear trend to break. Theoretical works have also tried to characterize
when ACL holds more broadly. Mania and Sra [31] provided sufficient conditions directly over
the outputs of trained models, in terms of their prediction similarity and distributional closeness.
Tripuraneni et al. [51] and LeJeune et al. [25] show that ACL holds asymptotically under certain
transformations to the covariance matrix. On the other hand, there has been comparatively little
theoretical analysis of AGL and why it appears together with ACL. Lee et al. [24] show that in
random feature linear regression, AGL can break break partially, i.e., the slope of the agreement
trend matches accuracy’s, but the biases may be different. While further theoretical conditions are
necessary to guarantee when these phenomena hold jointly, in our empirical findings, we see that the
slopes and biases do always match across the wide variety of distribution shifts we test.

Extending upon such studies that analyze when ACL and AGL may hold (or break) naturally, we
demonstrate that a simple model intervention by test-time adaption allows these ID versus OOD
trends to hold even stronger for a more expansive set of distribution shifts. In fact, we demonstrate
that after adaptation, models actually satisfy the theoretical conditions necessary for ACL as described
in Miller et al. [32].

2AGL has not been similarly shown to hold theoretically for this case of scaled means, but empirically it
often seems to hold when ACL holds [3]
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Figure 2: Strong AGL by adaptations with varying hyperparameters, including learning rates,
adaptation steps, batch sizes, and (early-stopped) checkpoints of the ID-trained model. Each blue and
pink dot denotes the accuracy and agreement, followed by the linear fits for each.

Adaptations under distribution shifts and their pitfalls of reliability. Test-time adaptation aims
to enhance model robustness by adapting models to unlabeled OOD test data. Test-time training
methods [46, 29, 7] involve learning shift-invariant features via solving self-supervision tasks. Other
approaches include computing statistics in Batch Normalization (BN) layers using OOD data [20, 44],
instead of using ID statistics stored during training. Subsequent studies further adapt BN parameters
by updating them using entropy minimization [53, 35, 36]. Another popular approach is self-training
with pseudo-labels [40, 54, 9].

One critical challenge in TTA is that, without OOD labels, it is prohibitively difficult to evaluate how
effective the adaptation methods might be. As pointed out in previous studies, adaptation methods may
not succeed to address the full spectrum of distribution shifts, such as datasets reproductions [29, 60],
domain generalization benchmarks [21, 61], and WILDS [40]. Furthermore, these approaches are
known to be critically sensitive to different hyperparameter choices [4, 61, 36, 23]. Practitioners
must take a great care in optimizing such hyperparameters, but their tuning procedures lack clarity.
They often follow the settings of the previous studies [35, 36], or rely on some held-out labeled
data [21, 60, 9] that is unavailable in practice. There exists a line of studies on unsupervised model
validation [33, 42, 34, 52, 17]. Our study leverages agreement-on-the-line phenomena within TTA to
offer a promising solution for these reliability issues.

3 Adaptations lead to stronger Agreement-on-the-Line

3.1 Experimental setup

Datasets and models. Our testbed includes diverse shifts, including common corruptions (15 failure
shifts in CIFAR10-C, CIFAR100-C, and ImageNet-C [14]), dataset reproductions (CIFAR10.1 [38],
ImageNetV2 [39]), and real-world shifts (ImageNet-R [16], Camelyon17-WILDS, iWildCAM-
WILDS, FMoW-WILDS [41]). Among them, CIFAR10-C Gaussian Noise, Camelyon17-WILDS, and
iWildCAM-WILDS display the weakest correlations in accuracy and agreement [32, 3, 56]. We test
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over 30 different architectures of convolutional neural networks (e.g., VGG [45], ResNet [13, 57, 59],
DenseNet [19], MobileNet [43]) and Vision-Transformers (ViTs [5], DeiT [49], SwinT [30]).

TTA methods. We investigate 7 recent state-of-the-art TTA methods, including SHOT [27],
BN_Adapt [44], TTT [46], TENT [53], ConjPL [9], ETA [35], and SAR [36]. This testbed in-
cludes different “pretraining” (e.g., self-supervision [46], PolyLoss [26]), updating certain layer
parameters (BN layers [44, 53, 35], LayerNorm (LN) layers [2, 36], entire feature extractors [27]).
We test all adaptation baselines, except SAR, on convolutional neural networks with BN layers. We
apply SAR specifically to vision transformers [5, 49, 30] because it prevents the model collapse that
other adaptation methods exhibit in vision transformers with LN layers [36].

Calculating agreement. Given any pair of models (h, h′) ∈ H that are tested on distribution D,
the expected accuracy and agreement of the models is defined as

Accuracy(h) = Ex,y∼D
[
1{h(x) = y}

]
, Agreement(h, h′) = Ex,y∼D

[
1{h(x) = h′(x)}

]
(1)

where h(x) and h′(x) are the normalized logits of models h and h′ given datapoint x and y is the
class label. Following [32] and [3], we apply probit scaling, which is the inverse of the cumulative
density function of the standard Gaussian distribution (Φ−1 : [0, 1] → [−∞,∞]), over accuracy and
agreement for a better linear fit, specifically in Figs. 1 and 2.

Online test in ID and OOD during TTA. Unlike conventional offline inference at test-time, TTAs
involve online learning, which dynamically updates the model’s parameters while testing on OOD
data. To evaluate this continuously updated model on both ID and OOD data, the data is fed into the
model in minibatches and we average over the accuracy and agreement of the model over the i’th
minibatch after the dynamic adaptation step i. Details are provided in Algorithm 1 in the Appendix.

3.2 Main observation

We empirically observe that after adaptation, models show stronger linear trends in their ID versus
OOD accuracy and agreements, even in distribution shifts where Vanilla models show wildly varying
trends. In Fig. 1, we demonstrate this on the four distribution shifts with weakest ACL and AGL trends
in Vanilla models. These include CIFAR10-C Gaussian Noise, ImageNet-C Shot Noise, Camelon17-
WILDS, and iWildCAM-WILDS, which all have R2 values in their accuracy and agreement lower
than 0.4 before TTA. These failure shifts have also been identified by previous studies [32, 3, 56].
Surprisingly, after applying several adaptation methods, such as TENT, the strength of these linear
trends increase dramatically, (e.g., 0.15 → 0.97 and 0.33 → 0.97 in agreement and accuracy, in
Camelyon17-WILDS). Our observations hold consistently across our entire testbed of shifts and
adaptation methods, as shown in Figures 6, 7, 9, 10, 11, and 12. Moreover, in shifts where Vanilla
models already exhibit strong linear trends, such as ImageNet-V2 or FMoW-WILDS, these linear
trends interestingly persist even after TTA including when TTA degrades OOD accuracy instead of
improving (Fig. 4).

Furthermore, we find that for each TTA method, models adapted with different adaptation hyperpa-
rameters follow the same linear trend in both accuracy and agreement. Specifically, we test learning
rates, adaption steps, batch sizes, and the early-stopped epoch for pretraining. In Fig. 2 we see that
on CIFAR10-C and ImageNet-C Gaussian Noise, and Camelyon17-WILDS, models adapted with
different hyperparameters exhibit correlation strength R2 close to 1 in both ID versus OOD accuracy
and agreement. We also show that this occurs across other distribution shifts in Figs. 8 and 13.

4 Why does adaptations lead to strong linear trends?

In this section, we focus on explaining why TTA leads to restoration of these strong linear trends.
Although we do not provide a full theoretical justification, we do identify a key pattern in how TTA
modifies models that provides a strong clue as to why these methods substantially strengthen the
ACL phenomenon in particular.

We begin by revisiting the theoretically sufficient conditions for ACL from Miller et al. [32] over a
simple Gaussian data and linear classifier setup. They showed that ACL holds perfectly only when
distribution shifts by a simple scaling factor to the norm of the mean and covariance. On the other
hand, if the actual direction of the mean or shape of the covariance matrix changes, the linearity
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breaks. We then demonstrate that even in CIFAR10 shifts and non-linear neural networks, adaptation
causes models to meet these theoretical conditions better in the penultimate-layer feature space, thus
leading to stronger linear trends.

4.1 Theoretical conditions for linear trends in Gaussian data

We introduce the theoretical conditions for having ACL in Gaussian data setup, from Miller et al.
[32], restated briefly here for ease of presentation. Consider the binary classification over Gaussian
data setup with label y ∈ {−1, 1}. The OOD distribution Q differs from the ID distribution P by
just some scaling constants α, γ > 0

P (x | y) = N (y · µ; Σ), Q(x | y) = N
(
y · αµ; γ2Σ

)
. (2)

Theorem 1 (Miller et al. [32], simplified) Under the Gaussian data setup in Equation 2, for linear
classifiers fθ : x 7→ sign(θ⊤x), the probit-scaled accuracies over P and Q observes perfect linear
correlation with a bias of zero and a slope of α

γ .

The proof follows immediately from the fact that the accuracy of a linear classifier on this Gaussian
data P is given by Φ(θ⊤µ/

√
θ⊤Σθ)); applying same result to Q immediately gives the desired linear

relationship. The main implication is that if the data distribution where the linear classifiers are
applied have the shifts that have the same mean directions and covariance shapes, ACL is guaranteed
across linear classifiers.

4.2 Empirical analysis under adaptation to CIFAR10-C

We now investigate how well the above conditions that are required for the linear trends are met
before and after TTA, for real-world data with deep models. Here, we consider CIFAR10-C Gaussian
Noise and and models pretrained on CIFAR10 then adapted using BN_Adapt [44] or TENT [53]
at test-time. Since we are interested in distributions where the linear classifiers are applied onto,
we take the class-wise feature embeddings from the penultimate-layer of these models. Then we
analyze how these features are distributed by measuring their mean and covariance alignment, using
cosine similarity of their normalized ones. We evaluate such alignment across architectures as well as
adaptation hyperparameters such as learning rates, batch sizes, and early-stopped checkpoints, which
are the same setups we used in Figs 1 and 2 CIFAR10-C Gaussian Noise results.

Shifts become aligned in their mean and covariance after adaptation. Table 1 shows the mean
and standard deviation of the cosine similarity measured across different setups. We first notice
that, without adaptation (Vanilla), both mean and covariance of CIFAR10 and CIFAR10-C Gaussian
Noise features have less than 1 cosine similarity, showing their are misaligned. Surprisingly, after
applying adaptations, the similarity substantially increases and becomes very close to 1, across every
architecture we test (with standard deviation close to 0). This means that ID and OOD, in feature
space, have (roughly) the same means and covariances in their shapes, after adaptations. This implies
that adapted models empirically seem to represent the shift in distributions largely as a shift in the
scale of the features alone. Considering that CIFAR10-C Gaussian Noise is created with additive
isotropic Gaussian Noise to CIFAR10, which is a non-isotropic covariance shift, this represents
a non-trivial ability of TTA to “simplify” the nature of complex drifts within the features. This
observations, in turn, approximately satisfies the conditions above and thus at least gives a partial
insight into why we observe the strong linear trends such a setting after adaptations.

In addition, we have the similar results when testing with varying hyperparameters, as shown in
Table 1. We apply TENT with different learning rates, batch sizes, and checkpoints, and they consis-
tently show the similarity close to 1, similar to architectures. This shows that adapting with different
hyperparameter setups does not affect the alignments between shifts, maintaining such simplicity.
This explains why we also observe the strong linear trends across different hyperparameters.

Theoretical slope for linear trends matches the empirical slope. Finally, the simple theoretical
setting suggests not only that there is a linear correlation where distribution shifts involved only a
scaling of mean and covariance, but also specifies the actual slope as α

γ . We thus investigate whether
this slope matches that produced empirically, when applying the same class of different adaptations
as highlighted above. Table 1 shows the slopes predicted by the simple Gaussian setting, along with
the slopes estimated via the empirical mean and variance scaling. These are generally in strong
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Cosine Similarity Slope
Setup Mean Covariance Theoretical Empirical

Vanilla (Archs.) 0.691 ± 0.175 0.750 ± 0.109 – –
BN_Adapt (Archs.) 0.988 ± 0.007 0.972 ± 0.011 0.751 ± 0.075 0.758

TENT (Archs.) 0.990 ± 0.005 0.974 ± 0.011 0.753 ± 0.072 0.778
Learning rates 0.993 ± 0.003 0.977 ± 0.006 0.759 ± 0.041 0.76

Batch Sizes 0.995 ± 0.003 0.982 ± 0.010 0.831 ± 0.101 0.809
Check Points 0.992 ±0.003 0.976 ± 0.008 0.782 ± 0.033 0.838

Table 1: Cosine similarity between mean direction and covariance shape of class-wise penultimate-
layer features, followed by the comparison between theoretical and empirical slope. They are
evaluated on CIFAR10 vs. CIFAR10-C Gaussian Noise, measured across architectures and hyperpa-
rameters. We report their means and standard deviations.

agreement, highlighting that the empirical results of TTA seem to provide a great deal of intuition
about why how the ACL phenomenon holds in practice.

Finally, we note that while these observations help explain ACL in adaptations, they do not apply
to AGL, as AGL involves more than one linear classifier for calculating the agreement, and there is
no similar closed-form estimate of the agreement even for Gaussian data. Still, we find that AGL is
tightly coupled with ACL in an extensive range of benchmarking shifts and adaptations we examine
on, similar to Baek et al. [3].

TTA aligns shifts that cause linear trends, correlating with improved OOD generalization. One
might interpret the observed linear trends as evidence that TTA improves OOD generalizations by
reducing the performance gap between ID and OOD, thereby bringing it closer to the y = x and
showing a strong linear trend. However, our analysis clarifies that shift alignments by TTA is the
true causal factor for stronger linear trends, and the closer gap between ID and OOD is correlated.
While TTA satisfies the condition for ACL by aligning the direction/shape of the ID/OOD mean
and covariance, the scaling factor might still be far off, i.e., α ≪ 1, γ ≫ 1. This results in a
near-perfect linear trend that, nonetheless, can lie arbitrarily far from the y = x which represents
perfect robustness. One empirical evidence is ImageNet-C Shot Noise in Fig. 1, where there is still
approximately a 40% gap in ID and OOD accuracy, but strong ACL holds. In addition, we could think
of imaginary TTA which improves OOD performance by reducing scales shifts in covariance in the
feature space, but the shape of the covariance matrices remain misaligned. This can be synthetically
simulated over toy Gaussian data, where the cosine similarity between the shape of ID and OOD
covariance matrices remain less than 1, and γ2 decreases after TTA. Then the linear trend moves
closer to y = x, but the strength of the linear trend remains weak.

5 Experiments

Our observations, stronger linear trends after adaptations, provide substantial improvements, particu-
larly in the context of adaptation, in two key practical applications: (i) accuracy prediction of the
OOD accuracy, and (ii) unsupervised validation for TTA — without access to OOD labels.

5.1 OOD Accuracy estimation after adaptation

Experimental Setup. We employ AGL-based estimation method, namely ALine [3]. This method
first estimates the linear fit of the accuracy, i.e. slope and bias, via agreements (which requires no
labels), and linearly transforms the ID accuracy with them for estimating OOD accuracy. The detail of
ALine is illustrated in Algorithm 2 in Appendix. We apply this to models adapted with TTA methods,
and compare these results with (i) those of ALine applied to models before adaptation, and (ii)
estimates using existing estimation baselines. These baselines include average thresholded confidence
(ATC) [8], difference of confidence (DOC)-feat [10], average confidence [15], and agreement [22].
We evaluate them on widely used benchmarking distribution shifts in TTA literature, CIFAR10-C,
CIFAR100-C, ImageNet-C [14], and Camelyon17-WILDS and iWildCAM-WILDS [41].

Results. ALine shows accurate estimation under shifts that have strong AGL (e.g., in CIFAR10-C
snow, mean absolute error (MAE) of estimation is 0.93% in ALine-D), but it shows critical failure
when shifts do not have such linear trends (e.g., in CIFAR10-C Gaussian Noise, MAE is 10.76% and
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Dataset Method Error ATC DOC-feat AC Agreement ALine-S ALine-D

CIFAR10-C

Vanilla 31.38 8.31 15.03 17.42 5.45 6.02 5.87
SHOT 15.40 1.63 4.63 7.63 1.78 0.96 0.77

BN_Adapt 16.87 3.69 4.79 7.53 1.93 1.12 0.91
TENT 15.43 4.25 4.65 7.66 1.79 0.97 0.77

ConjPL 16.62 1.80 6.16 11.46 2.02 1.18 1.01
ETA 15.14 4.58 4.50 7.68 1.76 0.92 0.72

CIFAR100-C

Vanilla 59.04 5.05 12.82 18.34 6.96 7.49 7.22
SHOT 40.79 2.21 5.44 14.36 2.52 1.64 0.90

BN_Adapt 42.69 2.89 4.42 11.81 2.33 1.43 1.13
TENT 41.11 6.60 5.59 14.85 2.65 1.64 0.88

ConjPL 42.79 1.09 6.55 23.73 2.40 1.67 1.18
ETA 44.27 7.15 4.92 16.49 4.96 1.44 0.81

ImageNet-C

Vanilla 80.41 3.95 13.72 17.34 9.06 6.00 5.95
BN_Adapt 69.05 7.37 2.63 2.86 3.91 6.16 6.09

TENT 56.58 5.98 6.54 12.70 7.48 4.62 4.57
ETA 56.56 10.21 7.91 34.38 8.02 3.66 3.72
SAR 43.30 5.39 8.61 13.68 5.51 5.19 4.17

Camelyon17
-WILDS

Vanilla 34.07 14.91 17.31 21.69 11.95 12.88 13.46
TENT 14.37 3.00 3.43 6.94 6.49 2.29 2.27
ETA 16.43 3.05 4.38 6.85 5.33 2.24 1.42

iWildCAM
-WILDS

Vanilla 50.27 7.12 2.73 23.86 3.00 3.53 2.82
TENT 47.39 5.44 3.20 28.03 3.55 2.59 2.96
ETA 46.49 6.61 3.40 29.34 4.62 2.14 2.82

Table 2: The results of OOD accuracy estimation, measured by MAE (%) between estimated and
actual OOD accuracy. The gray shades denote the results calculated after applying adaptations, and
bold texts indicate the smallest estimation error among estimators. We also report the classification
error (%) in both Vanilla and adaptation methods for each dataset.

in Camelyon17-WILDS, MAE is 12.88%). As a result, as shown in Table 2, applying ALine-S/D on
Vanilla models outperforms other estimators with marginal gap, or sometimes shows higher errors.
After applying adaptation methods, such as SHOT, BN_Adapt, and TENT, the estimation performance
of ALine-S/D improves, showing substantially lower MAE compared to that of vanilla models across
shifts (e.g., MAE decreases 10.76% → 2.34% in CIFAR10-C Gaussian Noise and 12.88% → 1.42%
in Camelyon17-WILDS). It also outperforms the estimating baselines when applied to adapted
models. Notably, baseline estimators also show improved estimation performance on adapted models
compared to vanilla, which is unexpected. Nonetheless, ALine consistently performs better.

5.2 Unsupervised validation for TTA

In this section, we demonstrate that strong AGL allows practical applications in unsupervised
validations, choosing the best hyperparameter for TTA. Furthermore, we extend our application of
such unsupervised validation to the task of choosing best TTA strategy among baselines.

Experimental setup. We select the best OOD model by selecting the one with best ID accuracy,
as ACL holds across hyperparameters and best ID-performing hyperparameter is likely the best
OOD-performing one [32]. Specifically, we first test the candidates by systematically sweeping
over hyperparameter values, and select the one with the best ID accuracy. We focus on TENT,
optimizing its various hyperparameters including learning rates, adaptation steps, architectures, batch
sizes, and early-stopped checkpoints of pretraining. We select the candidates among the reasonably
wide range of pools, as described in Table 6 in Appendix. To evaluate our method, we compare
with other existing unsupervised validation methods including MixVal [17], ENT [33], IM [34],
Corr-C [52], and SND [42]. We evaluate them on four shifts, CIFAR10-C, ImageNet-C, ImageNet-R,
and Camelyon17-WILDS.

Results. Table 3 reports the difference in OOD accuracy (MAE (%)) between the model with best
ID accuracy and the actual best OOD model, tested across different adaptation hyperparameters.
Across different benchmarks and setups, our method shows competitive unsupervised validation
results, outperforming other existing baselines in most cases. We noticed that current state-of-the-art
unsupervised model selection methods, i.e., MixVal or IM, perform well on CIFAR10-C, ImageNet-C,
and ImageNet-R, but they critically fail in Camelyon17-WILDS, e.g., validation error of 7.98% in
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HyperParameter CIFAR10-C ImageNet-C
MixVal ENT IM Corr-C SND Ours MixVal ENT IM Corr-C SND Ours

Architecture 2.31 1.06 1.06 21.71 2.77 0.03 6.22 0.96 0.47 26.32 20.60 0.75
Learning Rate 6.97 8.88 2.24 11.56 1.87 0.72 12.75 20.49 1.49 20.18 12.61 9.70
Checkpoints 3.21 0.0 0.0 5.53 3.46 0.05 – – – – – –
Batch Size 7.85 3.32 0.96 32.37 5.68 0.77 14.29 42.31 0.99 42.31 42.31 5.61
Adapt Step 0.85 0.0 0.0 1.02 0.0 0.23 1.85 1.94 1.25 3.09 2.17 0.30

Average 4.23 2.65 0.85 14.43 2.75 0.36 8.77 16.42 1.05 14.43 22.97 4.0

HyperParameter ImageNet-R Camelyon17-WILDS
MixVal ENT IM Corr-C SND Ours MixVal ENT IM Corr-C SND Ours

Architecture 1.75 0.62 0.62 22.17 22.17 0.85 28.87 1.03 1.03 28.87 28.87 0.85
Learning Rate 3.12 10.16 4.73 19.16 19.16 2.8 0.91 48.37 46.41 48.37 48.37 1.14

Batch Size 1.83 35.88 0.08 35.88 35.88 1.74 0.0 46.67 46.67 40.45 40.45 1.37
Adapt Step 1.07 1.07 1.07 1.07 1.07 0.0 2.17 33.12 0.0 33.12 33.12 0.0

Average 1.94 14.18 1.62 19.57 19.57 1.34 7.98 32.29 23.52 37.70 37.70 0.62

Table 3: Results of unsupervised validation, measured by MAE (%) between OOD accuracy of model
selected by best ID model and actual best OOD model. Our results are highlighted in shade.
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Figure 3: 2-D visualizations of each TTA baseline’s actual (x-axis) and estimated (y-axis) OOD
accuracy. Each color denotes different TTA baselines, cross (×) denotes the best-OOD model selected
by our hyperparameter selection method, and circle dot (◦) the averaged over hyperparameter values.

MixVal and 23.52% in IM. Such failures of existing baselines might come from their assumptions,
e.g., low-density separation, that do not generalize to such distribution shifts. In contrast, our method
shows consistently low MAE across shifts, including those where other baselines fail, e.g., 0.62% in
Camelyon17-WILDS. We also observe that in some cases, e.g., learning rate tested in ImageNet-C,
MAE is relatively large (9.70%), which stems from the models adapted with very small learning
rates, e.g., 10−5 that deviate from the correlation line.

Application of selecting best TTA strategy. We could easily extend our reliable unsupervised
validation to select the best TTA methods from the baselines. Different TTA methods exhibit
unique slopes and biases in their linear functions, so we use AGL-based estimators to predict and
compare each method’s OOD accuracy across hyperparameter settings. Specifically, we evaluated
five TTA baselines — BN_Adapt, TENT, SHOT, ConjPL, and ETA — on CIFAR10-C across all
corruptions. Let us assume we are comparing TTA methods by controlling one hyperparameter at
a time while keeping others fixed, e.g., comparing which TTA performs best with each method’s
optimal architecture or on average. For each hyperparameter, we identified the best OOD model for
each TTA method using unsupervised validation. Fig. 3 illustrates the estimated versus true OOD
performances. Optimal hyperparameter settings for each TTA method (i.e., best OOD) are marked
with “x”, and average performances across hyperparameters are marked with “o”. Our method
accurately estimates both the best and average OOD performances, aligning closely with the y=x line
and maintaining the ranking of TTA methods by OOD accuracy. This demonstrates that our approach
effectively selects the best TTA strategy without requiring labels in OOD.

6 Ablation studies: What factors in TTA lead to strong linear trends?

Despite intriguing observations of TTA that induces strong linear trends, the specific mechanisms
driving this trend remain unclear. To investigate, this section presents an ablation study on two
main adaptation components: normalization layers (e.g., BN, LN) and where it updates (e.g., feature
extractor, final classifier).
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Normalization layers. We begin by ablating BN-layers, as BN_Adapt that normalizes features with
OOD test data in BN layers lead to strong linear trends. Specifically, we test two variants — models
with no normalization layers (denoted as Vanilla w/o N) and LN-layers (Vanilla w/ LN) — and report
their cosine similarity of mean direction / covariance shape between shifts and correlation coefficient
(R2) in Table 4. Interestingly, their similarities as well as correlations are larger than that of Vanilla
with BN-layers, but still fall short of BN_Adapt’s which is very close to 1. The results of SAR, which
utilize LN instead of BN, in Fig. 12 also show that its vanilla shows relatively stronger linear trends
than those of Vanilla in Fig. 11, but not strongly and consistently as those of BN-layer-based methods
in Fig. 11. We conjecture that this stems from how differently distribution shifts are encoded in
network: Such shifts absorbed into BN-layers result in severe covariate shift, but at the same time
make it easy to align shifts via adaptation. In contrast, non-BN models encode shifts across the entire
model parameters, suffering relatively less shift misalignment (in feature space), but remain worse
than adapted BN-layer models. Schneider et al. [44] suggested the similar discussions.

Cosine Similarity Correlations
Setup Mean Covariance Acc. Agr.

Vanilla w/o N 0.794 ± 0.117 0.778 ± 0.172 0.29 0.71
Vanilla w/ LN 0.935 ± 0.042 0.854 ± 0.063 0.56 0.86
Vanilla w/ BN 0.691 ± 0.175 0.750 ± 0.109 0.18 0.39

BN_Adapt 0.998 ± 0.007 0.972 ± 0.011 0.99 0.99

Table 4: Cosine similarity of mean direction / co-
variance shape and correlation coefficients (R2)
in CIFAR10-C Gaussian Noise, measured across
architectures. Last two rows are from Table 1.

Where to update. Since most of the baselines
in the paper adapt the feature-extractor, we add
T3A [21], which proposes to adapt the last lin-
ear classifier only. T3A leverages feature extrac-
tor without BN layers, and updates the linear
classifier’s weights for adjusting the class-wise
prototype given OOD test data. We observed
that R2 for accuracy and agreement in T3A are
0.80 and 0.46, which are substantially weaker
than those adapting the feature-extractor’s pa-
rameters (e.g., BN_Adapt). Again, such weak
correlations that stem from misaligned shifts that persist in Vanilla without normalization layers
are not effectively recovered by last classifier adaptation. Overall, our ablation studies clarify what
TTA designs ideally lead to strong linear trends. Since non-BN-TTAs are often adopted in numerous
practical circumstances, e.g., single batch, it remains an important open question how to develop TTA
strategies that could achieve the correlations that lead to reliable and robust models.

7 Conclusion and Limitations

In this paper, we provide a key observation that recent TTAs lead to stronger AGL across a wide range
of distribution shifts, encompassing those with weak correlations before adaptation. We explain this
phenomena by the complexity of distribution shifts being substantially reduced to those with almost
identical mean direction and covariance shape, satisfying the theoretical conditions for linear trends.
This naturally leads to enhanced estimation of OOD performances across a wider range of shifts than
before TTA, and also enables unsupervised hyperparameters as well as TTA method selection.

While not requiring OOD labels, AGL intrinsically relies on ID data, which may undermine the
advantage of TTA that doesn’t require ID data for adaptations. This reliance can raise privacy
concerns due to potential inclusion of sensitive information and increase computational demands. In
Section D, we conduct an ablation study to minimize the required amount of ID data for observing
AGL for accuracy estimation. The results show that even with only 5% of the original ID data,
OOD accuracy estimation performance remains nearly the same as with full access, outperforming
other estimators. We believe that overcoming dependency on ID data and exploring a fully test-time
approach for observing AGL remains a promising direction for future research.
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A Details on Experimental Setup

A.1 Model Architectures

We list the types of architectures for each testbed of dataset.

CIFAR10, 100
Architectures

ResNet18 [13]
ResNet26 [13]
ResNet34 [13]
ResNet50 [13]
ResNet101 [13]

WideResNet28 [59]
PreActResNet18 [12]
PreActResNet34 [12]
PreActResNet50 [12]
PreActResNet101 [12]

RegNet X200 [37]
RegNet X400 [37]
RegNet Y400 [37]

VGG11 [45]
VGG13 [45]
VGG16 [45]
VGG19 [45]

MobileNetV2 [43]
PNASNet-A [28]
PNASNet-B [28]

SENet18 [18]
GoogLeNet [47]

ImageNet
Architectures

ResNet18 [13]
ResNet34 [13]
ResNet50 [13]
ResNet101 [13]
ResNet152 [13]

ResNeXT32×4d [57]
DenseNet121 [19]

WideResNet50 [59]
WideResNet101 [59]

DLA34 [58]
DLA46C [58]
DLA60 [58]
DLA102 [58]
DLA169 [58]
ViT-B/16 [5]
ViT-L/16 [5]
ViT-B/32 [5]
SwinT-S [30]
SwinT-B [30]
SwinT-L [30]

DeiT-S/16 [49]
DeiT-B/16 [49]

DeiT3-B/16 [50]
DeiT3-L/16 [50]
DeiT3-H/14 [50]

WILDS
Architectures

ResNet18 [13]
ResNet34 [13]
ResNet50 [13]

ResNet101 [13]
ResNet152 [13]

ResNeXT32×4d [57]
DenseNet121 [19]

WideResNet50 [59]
WideResNet101 [59]

VGG11 [45]
VGG13 [45]
VGG16 [45]
VGG19 [45]

Table 5: The list of architecture types for each testbed of datasets, including CIFAR10, CIFAR100,
ImageNet, Camelyon17-WILDS, and iWildCAM-WILDS.

For CIFAR10, CIFAR100, and WILDS datasets, we train the models from the scratch, while for
ImageNet, we use the pretrained model weights from torchvision and timm package. In addition,
since TTT requires specific network composition required for the rotation-prediction task during
pretraining, we train them using ResNet-14,26,32,50,104, and 152, which are available in the original
implementation3.

For Camelyon17 dataset, we also test the neural networks with their feature extractor (all parameters
before the final linear classifier) randomly initialized, following Miller et al. [32] that tested the
low-accuracy models on the dataset. We notice that these models, even with their most of parameters
being randomized, still achieve high accuracy in both ID and OOD after training the last linear
classifier. They also exhibit improved OOD accuracy after adaptations. We apply this randomization
to ResNet18, ResNet34, ResNet50, VGG16, VGG13, and VGG11.

We trained and tested all models and datasets in NVIDIA RTX 6000.

A.2 Distribution Shifts

We test the models on 9 different distribution shifts that include synthetic corruptions and real-world
shifts. Synthetic corruptions datasets, CIFAR10-C, CIFAR100-C, and ImageNet-C [14] are designed

3https://github.com/yueatsprograms/ttt_cifar_release
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to apply the 15 different types of corruptions, such as Gaussian Noise, on their original dataset
counterparts. We use the most severe corruptions, which have severity of 5, in all experiments.
These corruptions datasets are most commonly evalutated distribution shifts in a wide range of TTA
papers [44, 46, 29, 27, 53, 9, 35, 36, 61].

We also test on real-world shifts, which include CIFAR10.1 [38], ImageNetV2 [39], ImageNet-R [16],
Camelyon17-WILDS, iWildCAM-WILDS, and FMoW-WILDS [41]. CIFAR10.1, and ImageNetV2
are the reproduction of datasets by following the original dataset creation procedures. ImageNet-R is
the variant of ImageNet which contains the images with renditions of various styles, such as paintings
or cartoons. FMoW-WILDS [41] contains the spatio-temporal satellite imagery of 62 different use
of land or building categories, where distribution shifts originate from the years that the imagery is
taken. Specifically, following Miller et al. [32], we use ID set consists of images taken from 2002 to
2013, and OOD set taken between 2013 and 2016.

A.3 Adaptation hyperparameters

Table 6 shows the hyperparameter pools for each setup when used for observing AGL across different
hyperparameters. We use SGD optimizer with momentum of 0.9 for all adaptation baselines except
for SAR, which uses sharpness-aware minimization (SAM) optimizer [6].

Setup CIFAR10, CIFAR100 ImageNet

Learning Rates 1 · 10−5, 5 · 10−5, 1 · 10−4, 5 · 10−4, 1 · 10−3,
5 · 10−3, 1 · 10−2, 5 · 10−2, 1 · 10−1, 5 · 10−1

1 · 10−5, 2 · 10−5, 5 · 10−5, 1 · 10−4, 2 · 10−4,
5 · 10−4, 1 · 10−3, 2 · 10−3, 5 · 10−3

Batch Sizes 1, 2, 4, 8, 16, 32, 64, 128, 256 4, 8, 16, 32, 64, 128, 256, 512

Early-stopped Checkpoints 100, 110, 120, 130, 140, 150, 160, 170, 180, 190
(out of 200 total epochs) –

Adaptation Steps 1, 2, 3, 4, 5 1, 2, 3, 4, 5

(a) CIFAR10, CIFAR100, ImageNet

Setup Camelyon17-WILDS iWildCAM-WILDS

Learning Rates 2 · 10−5, 5 · 10−5, 1 · 10−4, 2 · 10−4, 5 · 10−4, 1 · 10−3,
2 · 10−3, 5 · 10−3, 1 · 10−2, 2 · 10−2, 5 · 10−2

2 · 10−5, 5 · 10−5, 1 · 10−4, 2 · 10−4,
5 · 10−4, 1 · 10−3, 2 · 10−3, 5 · 10−3

Batch Sizes 4, 8, 16, 32, 64, 128, 256, 512 1, 2, 4, 8, 16, 32, 64, 128

Early-stopped Checkpoints – –

Adaptation Steps 1, 2, 3, 4, 5 1, 2, 3, 4, 5

(b) Camelyon17-WILDS, iWildCAM-WILDS

Table 6: The hyperparameter pools utilized for observing AGL across hyperparameters in CIFAR10, CIFAR100,
ImageNet, Camelyon17-WILDS, and iWildCAM-WILDS dataset.

A.4 Online test in ID and OOD during TTA

Algorithm 1 provides the details of how we test models ID and OOD performances during TTA.
Specifically, during test in OOD (for adaptation), we also provide a batch of ID data, and test the
dynamically updated model for each iteration. For each iteration, we test its predictions on the batch
of ID and OOD data and utilize them for calculating model accuracy and agreements in ID and OOD.
The algorithm describes how to calculate the accuracy, but agreement can be calculated by iterating it
with another model.
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Algorithm 1 Online Test in ID and OOD during TTA
1: Inputs: A pair of data XID, YID XOOD, YOOD model hθ .
2: Algorithms: Adaptation objective LTTA(·).
3:
4: Prediction sets PID = ∅,POOD = ∅
5: for batch (xID, yID), (xOOD, yOOD) in XID,YID,XOOD,YOOD do
6: θ ← θ − η∇LTTA(hθ(xOOD)) ▷ Apply TTA
7: PID = PID ∪ hθ(xID)
8: POOD = POOD ∪ hθ(xOOD)
9: end for

10: return Acc(PID,YID), Acc(POOD,YOOD)
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Figure 4: For shifts that already exhibit AGL, after adaptations do not break the linear trends after
adaptations, even when they lead to accuracy drops. Each blue and pink dot denotes the accuracy
and agreement, followed by the linear fits for each. The axes are probit scaled. Here are examples
with SHOT, TENT, and ETA on shifts such as CIFAR10.1, ImageNetV2, ImageNet-R, and FMoW-
WILDS.

B Analysis on distribution shifts that have AGL without adaptations

We also examine the shifts that exhibit strong AGL without adaptations, including dataset reproduc-
tions (CIFAR10.1 [38], ImageNetV2 [39]), and other real-world shifts (ImageNet-R [16], FMoW-
WILDS [41]). As seen in Fig. 4, applying adaptation baselines, such as SHOT, TENT, and ETA,
does not have improvements in OOD generalizations or even results in degradation, as evidenced
by previous studies [53, 61]. However, they persist to have the strong linear trends, and this implies
that once the distribution shifts show the correlations, adaptations do not affect on the trends. This
highlights that we could potentially predict whether adaptations may succeed or falter in these shifts.

C OOD accuracy estimation baselines

C.1 ALine-S and ALine-D

Baek et al. [3] propose ALine-S and ALine-D, which assess the models’ OOD accuracy without
access to labels by leveraging the agreement-on-the-line among models. We provide the detailed
algorithm of ALine-S and ALine-D in Algorithm 2.

C.2 Average thresholded confidence (ATC)

Garg et al. [8] introduce OOD accuracy estimation method, ATC, which learns the confidence
threshold and predicts the OOD accuracy by using the fraction of unlabeled OOD samples for which
model’s negative entropy is less that threshold. Specifically, let h(x) ∈ Rc denote the softmax output
of model h given data x from XOOD for classifying among c classes. The method can be written as
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Algorithm 2 ALine-S and ALine-D
1: Input: ID predictions PID and labels YID, OOD predictions POOD.
2: Function: Probit transform Φ−1(·), Linear regression F(·).
3:
4: â, b̂ = F(Φ−1(Agr(PID)),Φ

−1(Agr(POOD))) ▷ Estimate slope and bias of linear fit

5: Âcc
S
OOD = Φ(â · Acc(PID, yID) + b̂) ▷ ALine-S

6: Initialize A ∈ R
n(n−1)

2
×n, b = R

n(n−1)
2

7: i=0
8: for (pj,ID, pk,ID), (pj,OOD, pk,OOD) ∈ PID,POOD do
9: Aij = 1

2
, Aik = 1

2
, Ail = 0∀l /∈ j, k

10: bi = Φ−1(Agr(pj,OOD, pk,OOD))+ â ·
(Φ−1(Acc(pj,ID,yID)+Φ−1(Acc(pk,ID,yID))

2
−Φ−1(Agr(pj,ID, pk,ID))

)
11: i=i+1
12: end for
13: w∗ = argminw∈Rn ||Aw − b||22
14: Âcc

D
OOD = Φ(w∗

i )∀i ∈ [n] ▷ ALine-D

15: return Âcc
S
OOD, Âcc

D
OOD

below:

ÂccOOD = E
[
1{s(h(x)) < t}

]
, (3)

where s is the negative entropy, i.e., s(h(x)) =
∑

c hc(x) log(hc(x)), and t satisfies

E
[
1{s(h(x)) < t}

]
= E

[
1
{
argmax

c
hc(x) ̸= y

}]
. (4)

C.3 Difference of confidence (DOC)-feat

Guillory et al. [10] observe that the shift of distributions is encoded in the difference of model’s
confidences between them. Based on this observation, they leverage such differences in confidences
as the accuracy gap under distribution shifts for calculating the final OOD accuracy. Specifically,

ÂccOOD = AccID −
(
E
[
max

c
hc(xID)

]
− E

[
max

c
hc(xOOD)

])
(5)

C.4 Average confidence (AC)

Hendrycks et al. [15] estimate the OOD accuracy based on model’s averaged confidence, which can
be written as

ÂccOOD = E
[
max

c
h(xOOD)

]
. (6)

C.5 Agreement

Jiang et al. [22] observe that disagreement between the models that are trained with different setups
closely tracks the error of models in ID. We adopt this as the baseline for assessing generalization
under distribution shifts, where we can estimate ÂccOOD = Agr(POOD), where POOD denotes the set
of predictions of the models on OOD data XOOD.
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Figure 5: OOD accuracy estimation results with limited amount of ID data, decreasing from 50% to
1% of entire data pool. We randomly sampled 10 different subsets for each ratios, and visualize the
distribution of MAE (%) results. The results of baseline including ATC, DoC-feat, and Agreement
are included for comparison.

D Ablation study on the number of ID data

Observing AGL requires the ID data during test time. Even if the access to labeled ID data is
often much available in practice than obtaining OOD data, ID data might be limited in particular
applications due to privacy issue. To further mitigate this concern, we conduct an ablation study on
how the number of ID samples affects on the precision of accuracy estimation. Specifically, for each
dataset, we use the subset of original ID data, such as 5% of total, for calculating both accuracy and
agreemenet in ID. By randomly iterating 10 different subsets for each ratio, we test how the estimation
performance vary according to different subsets. Fig. 5 shows that for CIFAR10-C and CIFAR100-C,
only 5% reliably achieves the state-of-the-art estimation performances outperforming other baselines.
Also, in more complex dataset such as ImageNet-C, Camelyon17-WILDS, and iWildCAM-WILDS,
they show that even using just 1% of original ID data achieves the best estimation performances
among baselines. These results indicate that our framework is practically feasible in such practical
applications where access to ID is highly limited.
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E Additional results on CIFAR10-C, CIFAR100-C, and ImageNet-C
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Figure 6: Results on CIFAR10-C corruptions (different architectures), BN_Adapt [44], SHOT [27],
TENT [53], and ETA [35].
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Figure 7: Results on CIFAR10-C corruptions (different architectures), TTT [46], ConjPL [9]
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Figure 8: Results on CIFAR10-C corruptions (adaptation hyperparameters of TENT [53]).
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Figure 9: Results on CIFAR100-C corruptions.
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Figure 10: Results on CIFAR100-C corruptions (different architectures), ConjPL [9]
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Figure 11: Results on ImageNet-C corruptions.
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Figure 12: Results on ImageNet-C corruptions (different architectures), SAR [36]
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Figure 13: Results on ImageNet-C corruptions (adaptation hyperparameters of ETA [35]).
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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