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Abstract

Composite materials play a pivotal role in diverse engineering applications, particu-
larly in the development of lightweight yet high-performance structures. However,
their generative design has received far less attention than that of other material
classes. A major challenge is that existing generative models often push compo-
nent weights toward extreme minima, sometimes even yielding negative values,
which are physically impossible for material compositions. In this work, we pro-
pose a diffusion-based generative framework tailored for lightweight composites.
Specifically, we introduce a physics-constrained diffusion model (PCDiff) that
integrates domain-specific constraints into the denoising process, ensuring gen-
erated candidates are both high-fidelity and physically plausible. In particular,
we enforce two key constraints, i.e., non-negativity and sum-to-one conditions
on composite compositions, through regularization within the diffusion process.
Experimental evaluations demonstrate that our approach consistently outperforms
existing generative models in terms of validity, density, and coverage with respect
to target physical properties. This study underscores the potential of physics-guided
generative modeling for accelerating the discovery of lightweight composites.

1 Introduction

Artificial Intelligence (Al) is rapidly transforming scientific fields by enhancing hypothesis generation,
accelerating experimental design, and uncovering insights beyond traditional trial-and-error processes
[LO]. Materials design has been a driving force behind technological and industrial progress, from the
steel that fueled the industrial revolution to the semiconductors that power the information age [[1]].
The task of inverse material design seeks to identify the optimal material compositions or structures in
order to achieve the specified target properties. Recently, deep generative models such as variational
autoencoders (VAESs), generative adversarial networks (GANs) and diffusion models have drastically
accelerated the landscape of inverse design [2,9]. Deep generative models are capable of capturing
the latent relationships between materials’ data and properties, and new material candidates can be
sampled from the learned latent space.

In this work, we focus on a relatively underexplored material class — lightweight composite mate-
rials—which play a vital role in many engineering applications but have received far less attention
in generative modeling compared to materials such as crystals or alloys. Composites are typically
composed of matrices, fibers and varying fillers. Accurate modeling of composites’ behavior remains
challenging due to the complex interplay between material composition, manufacturing processes
and the respective characteristics [4]]. This presents two key challenges for inverse lightweight
composite design. First, most existing generative modeling approaches have been developed for other
material classes, and their architectures or representations cannot be directly adapted to capture the
heterogeneous microstructures and multi-phase nature of composites. Second, composites impose
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unique physics constraints that are often overlooked in conventional generative frameworks. As
a result, existing models may push mixture weights toward unrealistic extremes, even producing
negative values that violate physical rules.

To this end, we propose a novel physics-constrained diffusion model, termed PCDiff, specifically
designed for the inverse design of lightweight composite materials. PCDiff explicitly incorporates
domain-specific constraints into the diffusion process. In particular, non-negativity and sum-to-
one physical constraints on component proportions are enforced through regularization, ensuring
that generated candidates remain physically valid while maintaining diversity. By embedding
these inductive biases directly into the generative dynamics, PCDiff not only produces high-fidelity
composite compositions but also aligns the generated solutions with fundamental physical laws,
thereby narrowing the gap between theoretical design and real-world applicability. Empirically,
we evaluate the proposed PCDiff model on an in-house composite material dataset that captures
diverse composition—property relationships. Across multiple evaluation metrics, PCDiff demonstrates
superior performance, consistently generating candidates with higher validity and broader coverage
of the design space. These results highlight the effectiveness of integrating physics-based constraints
into the diffusion process and underscore the promise of PCDiff for lightweight composites design.

2 Related Work

Al-driven Composite Materials. Composites are widely used in aerospace, automotive and
construction industries, and precise engineering is required to achieve desired mechanical and
thermal properties. Traditionally, the development of composites relies on experimental approaches
and computational methods such as finite element analysis (FEA). In recent years, Al techniques
have been increasingly integrated into the forward design process. For instance, supervised learning
algorithms have been applied to predict material properties, classify material types, and perform failure
analysis, and surrogate models have been constructed to approximate computationally expensive FEA
simulations [4]. Beyond forward design, Al has also shown promise in inverse design. For example,
the integration of deep convolutional GANs (DCGANs) with convolutional neural networks (CNNs)
has been explored to accelerate the discovery of two-phase composite materials [8], demonstrating
the potential of generative models to navigate large design spaces efficiently. Despite these advances,
Al-driven research for composite materials remains relatively limited compared to other material
classes, leaving significant opportunities for developing specialized generative models that account
for their unique physical characteristics.

Generative Models for Inverse Material Design. Generative models are promising for inverse
material design tasks by directly generating materials from the learned latent space given desired
properties. Early efforts explored GAN-based and VAE-based architectures, which are shown feasible
for inverse material design [8]]. More recently, diffusion-based generative models have shown superior
performance and flexibility for such tasks. CDVAE designs a noise conditional score network as the
decoder of VAE and incorporates the physical inductive bias of crystal’s stability into consideration
[L1]. MatterGen is a diffusion-based model that generates stable and diverse inorganic materials
with crystalline structures by gradually refining atom types, coordinates and the periodic lattice
[12]. Beyond these domain-specific models, diffusion models themselves have undergone significant
methodological developments that broaden their applicability. For instance, denoising diffusion
probabilistic models (DDPMs) [3] further improve the noise schedules to generate more realistic
outputs. For composites data, the TabDDPM [5]] is more proper as TabDDPM is designed to model
tabular data with vectors of heterogeneous features.

3 Proposed PCDiff Model

3.1 Problem Statement

The inverse design of lightweight composite materials can be naturally formulated as a constrained
optimization problem, where the goal is to identify candidate compositions that achieve target material
properties (e.g., Yield Strength, Thermal Conductivity). Let xo = [x}, %3, ..., x2’] € R denote the
vector of proportions of the D components in a composite. The inverse design task seeks to minimize
the discrepancy between predicted properties f(Xgen) and the desired target properties y*, wherein
the new material X,., is generated via a diffusion generative process parameterized by 0, i.e.,
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where we set the loss function £ to be the mean squared error (MSE) loss and the forward predictor
f to be a shallow MLP. The non-negative constraint ensures that no component is assigned a
negative proportion during diffusion, while the summation constraint enforces that the mixture
proportions form a valid composite composition. Without these constraints, existing generative
models often push component weights toward extreme minima, sometimes yielding negative values
that violate fundamental physical rules. This formulation highlights the dual challenge of inverse
design for composites: simultaneously maintaining physical feasibility and steering the design toward
lightweight composites. In this work, we address this challenge through a diffusion-based generative
model that learns to sample directly from the feasible composition space while conditioning on target
properties, thereby integrating optimization and physical validity within a unified framework.

3.2 Physics-Constrained Diffusion for Composites

Diffusion models are likelihood-based models and handle the data through forward and reverse
Markov processes. The forward process gradually adds noise to the initial sample xg, i,e., ¢(x; |

Xt—l) :N (Xt;/,Lt = \/1 — ﬂt Xt—1, Et = ﬂtI) ,t = 17 ...77_'7
where the variance parameter 3; can be fixed to a constant or chosen as a schedule of the
timesteps. The reverse process is to invert the forward noising process and we want p(xg.1) =

p(xT) H?:l p(x¢—1 | x¢) to gradually remove noise at each step. Since the exact reverse distribu-
tions are intractable, and a neural network parameterized by 6 is used to learn the approximation.
Following the training of DDPM [3]], the loss can be simplified to be a noise-prediction MSE:

Loase(0) = Exq, .t [He — Eg(Xt,t)HQ:| , Where x; = \/@; xg + V1 —aze, €~ N(0,I). Despite
the advances in diffusion models, existing models cannot naturally satisfy these physical constraints

as shown in Eq. (I). To this end, we seek to incorporate these physical constraints as additional
regularization terms in the diffusion process, i.e.,

D T D
Gron-neg (Xgen) = Z max (0, —xgen)2 + Z Z max(0, —x})?, (non-negativity regularization)
i=1

t=1 i=1

(2
D 2 1t /D 2

Gsum (Xgen) = (Z X;;en - 1> + Z (Z Xy — 1) , (sum-to-one regularization) (3)

i=1 t=1 \i=1
Ereg (Xgen) = a1¢non—neg (Xgen) + a2¢sum(xgen>7 (4)
and the weighting coefficients a;; and a2 can control the relative importance of each regularization
term. Then, the overall regularized loss expands to: Loyerat = Lobase + Lreg- These regularizers

allow the generation process to be steered toward specific directions, i.e., ensuring all outputs remain
non-negative and that their components sum to one. By adjusting the weights, we can control the
trade-off between adhering to the data distribution and enforcing physical constraints, leading to
more meaningful and valid generated samples in composites material applications.

4 Experiments

Dataset. We have constructed a dataset for carbon composite. In our dataset of 3,400 carbon
composite entries, each material is described by its composition, including the proportion of carbon
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fiber, epoxy, and up to four types of fillers—Carbon Nanotubes (CNTs), Graphene, Copper, and
Nickel. These compositional inputs directly influence the resulting material properties. For example,
adding CNTs or Graphene generally enhances the mechanical strength due to their high intrinsic
stiffness, while metallic fillers like Copper and Nickel can improve thermal conductivity. The interplay
between the proportions of each component determines how the composite balances strength and heat
transfer, making the mapping from composition to properties a complex but physically meaningful
relationship. This dataset therefore captures the fundamental connection between the materials and
composite properties such as Yield Strength (MPa) and Thermal Conductivity (W/mK).

Evaluation Metrics. We evaluate generative models through the following aspects:

* Validity,., quantifies the proportion of generated samples that satisfy both the non-negativity
and sum-to-one constraints. For this evaluation, we generate one sample conditioned on
each training instance’s property values.

* Validityg,, measures the proportion of generated samples that fall within the valid region
for practical fabrication. In the context of composite materials, we define this valid region
based on domain experts’ criteria, such as percolation limits, and use it to assess whether
the generated samples are physically feasible. We fix the desired property values to be 3,500
and 1.0 for Yield Strength and Thermal Conductivity and generate 100 samples from each
model for evaluation.

* Density and Coverage [, [7]. The metrics are designed to differentiate the fidelity and
diversity of the generated samples.

Baselines and Experimental Setup. We compare the proposed method with a conditional VAE
model [6] and the state-of-the-art TabDDPM [5]] model. For fair comparisons, we keep the neural
networks within each model to be MLP-based, to align with our method. We split the dataset into
training and testing set with ratio of 0.8 : 0.2. The number of training epochs is set to 100.

Experimental Results. The overall experimental results are summarized in Table|l} In terms of
validity, both CVAE and our proposed PCDiff achieve 100%. However, closer inspection reveals
that CVAE suffers from mode collapse, repeatedly generating identical samples, which undermines
its practical utility. In contrast, the vanilla diffusion model (TabDDPM) exhibits very low va-
lidity, highlighting the necessity of incorporating physical constraints into the diffusion process.
Regarding Density and Coverage, diffusion-based models consistently outperform the VAE-based
model. Notably, PCDiff achieves the best performance, with Density exceeding TabDDPM by 4.3%
and Coverage by 9.1%, demonstrating both higher fidelity and greater diversity in the generated
composites.

Table 1: Experimental evaluations on the composite dataset. (Unit:%)

Model \ Metric | Validity,, | Validityr,, | Density | Coverage

CVAE 100 100 37.5 7.8
TabDDPM 15 0 44.7 10.5
PCDiff (ours) 100 100 49.0 19.6

5 Conclusion

In this work, we address the relatively underexplored problem of generative modeling for lightweight
composite materials by introducing PCDiff, a physics-constrained diffusion framework. By embed-
ding domain-specific constraints, such as non-negativity and sum-to-one composition rules, directly
into the diffusion process, PCDiff ensures that generated candidates are both physically valid and of
high fidelity. Empirical results on composite datasets demonstrate that our approach outperforms
state-of-the-art generative baselines in terms of validity, density, and design space coverage. This
study lays the groundwork for future research in integrating richer physics and domain knowledge
into generative Al for material design.
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