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Abstract

Composite materials play a pivotal role in diverse engineering applications, particu-1

larly in the development of lightweight yet high-performance structures. However,2

their generative design has received far less attention than that of other material3

classes. A major challenge is that existing generative models often push compo-4

nent weights toward extreme minima, sometimes even yielding negative values,5

which are physically impossible for material compositions. In this work, we pro-6

pose a diffusion-based generative framework tailored for lightweight composites.7

Specifically, we introduce a physics-constrained diffusion model (PCDiff) that8

integrates domain-specific constraints into the denoising process, ensuring gen-9

erated candidates are both high-fidelity and physically plausible. In particular,10

we enforce two key constraints, i.e., non-negativity and sum-to-one conditions11

on composite compositions, through regularization within the diffusion process.12

Experimental evaluations demonstrate that our approach consistently outperforms13

existing generative models in terms of validity, density, and coverage with respect14

to target physical properties. This study underscores the potential of physics-guided15

generative modeling for accelerating the discovery of lightweight composites.16

1 Introduction17

Artificial Intelligence (AI) is rapidly transforming scientific fields by enhancing hypothesis generation,18

accelerating experimental design, and uncovering insights beyond traditional trial-and-error processes19

[10]. Materials design has been a driving force behind technological and industrial progress, from the20

steel that fueled the industrial revolution to the semiconductors that power the information age [1].21

The task of inverse material design seeks to identify the optimal material compositions or structures in22

order to achieve the specified target properties. Recently, deep generative models such as variational23

autoencoders (VAEs), generative adversarial networks (GANs) and diffusion models have drastically24

accelerated the landscape of inverse design [2, 9]. Deep generative models are capable of capturing25

the latent relationships between materials’ data and properties, and new material candidates can be26

sampled from the learned latent space.27

In this work, we focus on a relatively underexplored material class — lightweight composite mate-28

rials—which play a vital role in many engineering applications but have received far less attention29

in generative modeling compared to materials such as crystals or alloys. Composites are typically30

composed of matrices, fibers and varying fillers. Accurate modeling of composites’ behavior remains31

challenging due to the complex interplay between material composition, manufacturing processes32

and the respective characteristics [4]. This presents two key challenges for inverse lightweight33

composite design. First, most existing generative modeling approaches have been developed for other34

material classes, and their architectures or representations cannot be directly adapted to capture the35

heterogeneous microstructures and multi-phase nature of composites. Second, composites impose36
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unique physics constraints that are often overlooked in conventional generative frameworks. As37

a result, existing models may push mixture weights toward unrealistic extremes, even producing38

negative values that violate physical rules.39

To this end, we propose a novel physics-constrained diffusion model, termed PCDiff, specifically40

designed for the inverse design of lightweight composite materials. PCDiff explicitly incorporates41

domain-specific constraints into the diffusion process. In particular, non-negativity and sum-to-42

one physical constraints on component proportions are enforced through regularization, ensuring43

that generated candidates remain physically valid while maintaining diversity. By embedding44

these inductive biases directly into the generative dynamics, PCDiff not only produces high-fidelity45

composite compositions but also aligns the generated solutions with fundamental physical laws,46

thereby narrowing the gap between theoretical design and real-world applicability. Empirically,47

we evaluate the proposed PCDiff model on an in-house composite material dataset that captures48

diverse composition–property relationships. Across multiple evaluation metrics, PCDiff demonstrates49

superior performance, consistently generating candidates with higher validity and broader coverage50

of the design space. These results highlight the effectiveness of integrating physics-based constraints51

into the diffusion process and underscore the promise of PCDiff for lightweight composites design.52

2 Related Work53

AI-driven Composite Materials. Composites are widely used in aerospace, automotive and54

construction industries, and precise engineering is required to achieve desired mechanical and55

thermal properties. Traditionally, the development of composites relies on experimental approaches56

and computational methods such as finite element analysis (FEA). In recent years, AI techniques57

have been increasingly integrated into the forward design process. For instance, supervised learning58

algorithms have been applied to predict material properties, classify material types, and perform failure59

analysis, and surrogate models have been constructed to approximate computationally expensive FEA60

simulations [4]. Beyond forward design, AI has also shown promise in inverse design. For example,61

the integration of deep convolutional GANs (DCGANs) with convolutional neural networks (CNNs)62

has been explored to accelerate the discovery of two-phase composite materials [8], demonstrating63

the potential of generative models to navigate large design spaces efficiently. Despite these advances,64

AI-driven research for composite materials remains relatively limited compared to other material65

classes, leaving significant opportunities for developing specialized generative models that account66

for their unique physical characteristics.67

Generative Models for Inverse Material Design. Generative models are promising for inverse68

material design tasks by directly generating materials from the learned latent space given desired69

properties. Early efforts explored GAN-based and VAE-based architectures, which are shown feasible70

for inverse material design [8]. More recently, diffusion-based generative models have shown superior71

performance and flexibility for such tasks. CDVAE designs a noise conditional score network as the72

decoder of VAE and incorporates the physical inductive bias of crystal’s stability into consideration73

[11]. MatterGen is a diffusion-based model that generates stable and diverse inorganic materials74

with crystalline structures by gradually refining atom types, coordinates and the periodic lattice75

[12]. Beyond these domain-specific models, diffusion models themselves have undergone significant76

methodological developments that broaden their applicability. For instance, denoising diffusion77

probabilistic models (DDPMs) [3] further improve the noise schedules to generate more realistic78

outputs. For composites data, the TabDDPM [5] is more proper as TabDDPM is designed to model79

tabular data with vectors of heterogeneous features.80

3 Proposed PCDiff Model81

3.1 Problem Statement82

The inverse design of lightweight composite materials can be naturally formulated as a constrained83

optimization problem, where the goal is to identify candidate compositions that achieve target material84

properties (e.g., Yield Strength, Thermal Conductivity). Let x0 = [x1
0,x

2
0, ...,x

D
0 ] ∈ RD denote the85

vector of proportions of the D components in a composite. The inverse design task seeks to minimize86

the discrepancy between predicted properties f(xgen) and the desired target properties y∗, wherein87

the new material xgen is generated via a diffusion generative process parameterized by θ, i.e.,88
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min
xgen∈RD

L
(
f(xgen), y

∗),

s.t. xgen ∼ pθ(x0|y∗), pθ(x0:T | y∗) = p(xT )

T∏
t=1

pθ(xt−1 | xt, y
∗),

0 ≤ xi
gen,x

i
t ≤ 1, (i = 1, ..., D), (t = 1, ..., T ),

D∑
i=1

xi
gen = 1,

D∑
i=1

xi
t = 1, (t = 1, ..., T ),

(1)

where we set the loss function L to be the mean squared error (MSE) loss and the forward predictor89

f to be a shallow MLP. The non-negative constraint ensures that no component is assigned a90

negative proportion during diffusion, while the summation constraint enforces that the mixture91

proportions form a valid composite composition. Without these constraints, existing generative92

models often push component weights toward extreme minima, sometimes yielding negative values93

that violate fundamental physical rules. This formulation highlights the dual challenge of inverse94

design for composites: simultaneously maintaining physical feasibility and steering the design toward95

lightweight composites. In this work, we address this challenge through a diffusion-based generative96

model that learns to sample directly from the feasible composition space while conditioning on target97

properties, thereby integrating optimization and physical validity within a unified framework.98

3.2 Physics-Constrained Diffusion for Composites99

Diffusion models are likelihood-based models and handle the data through forward and reverse100

Markov processes. The forward process gradually adds noise to the initial sample x0, i,e., q(xt |101

xt−1) = N
(
xt;µt =

√
1− βt xt−1, Σt = βtI

)
, t = 1, ..., T,102

where the variance parameter βt can be fixed to a constant or chosen as a schedule of the103

timesteps. The reverse process is to invert the forward noising process and we want p(x0:T ) =104

p(xT )
∏T

t=1 p(xt−1 | xt) to gradually remove noise at each step. Since the exact reverse distribu-105

tions are intractable, and a neural network parameterized by θ is used to learn the approximation.106

Following the training of DDPM [3], the loss can be simplified to be a noise-prediction MSE:107

Lbase(θ) = Ex0, ϵ, t

[
∥ϵ− ϵθ(xt, t)∥2

]
, where xt =

√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). Despite108

the advances in diffusion models, existing models cannot naturally satisfy these physical constraints109

as shown in Eq. (1). To this end, we seek to incorporate these physical constraints as additional110

regularization terms in the diffusion process, i.e.,111

ϕnon-neg(xgen) =

D∑
i=1

max(0,−xi
gen)

2 +

T∑
t=1

D∑
i=1

max(0,−xi
t)

2, (non-negativity regularization)

(2)

ϕsum(xgen) =

(
D∑
i=1

xi
gen − 1

)2

+

T∑
t=1

(
D∑
i=1

xi
t − 1

)2

, (sum-to-one regularization) (3)

Lreg(xgen) = α1ϕnon-neg(xgen) + α2ϕsum(xgen), (4)

and the weighting coefficients α1 and α2 can control the relative importance of each regularization112

term. Then, the overall regularized loss expands to: Loverall = Lbase + Lreg. These regularizers113

allow the generation process to be steered toward specific directions, i.e., ensuring all outputs remain114

non-negative and that their components sum to one. By adjusting the weights, we can control the115

trade-off between adhering to the data distribution and enforcing physical constraints, leading to116

more meaningful and valid generated samples in composites material applications.117

4 Experiments118

Dataset. We have constructed a dataset for carbon composite. In our dataset of 3,400 carbon119

composite entries, each material is described by its composition, including the proportion of carbon120
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fiber, epoxy, and up to four types of fillers—Carbon Nanotubes (CNTs), Graphene, Copper, and121

Nickel. These compositional inputs directly influence the resulting material properties. For example,122

adding CNTs or Graphene generally enhances the mechanical strength due to their high intrinsic123

stiffness, while metallic fillers like Copper and Nickel can improve thermal conductivity. The interplay124

between the proportions of each component determines how the composite balances strength and heat125

transfer, making the mapping from composition to properties a complex but physically meaningful126

relationship. This dataset therefore captures the fundamental connection between the materials and127

composite properties such as Yield Strength (MPa) and Thermal Conductivity (W/mK).128

Evaluation Metrics. We evaluate generative models through the following aspects:129

• Validityreg quantifies the proportion of generated samples that satisfy both the non-negativity130

and sum-to-one constraints. For this evaluation, we generate one sample conditioned on131

each training instance’s property values.132

• Validityfab measures the proportion of generated samples that fall within the valid region133

for practical fabrication. In the context of composite materials, we define this valid region134

based on domain experts’ criteria, such as percolation limits, and use it to assess whether135

the generated samples are physically feasible. We fix the desired property values to be 3,500136

and 1.0 for Yield Strength and Thermal Conductivity and generate 100 samples from each137

model for evaluation.138

• Density and Coverage [5, 7]. The metrics are designed to differentiate the fidelity and139

diversity of the generated samples.140

Baselines and Experimental Setup. We compare the proposed method with a conditional VAE141

model [6] and the state-of-the-art TabDDPM [5] model. For fair comparisons, we keep the neural142

networks within each model to be MLP-based, to align with our method. We split the dataset into143

training and testing set with ratio of 0.8 : 0.2. The number of training epochs is set to 100.144

Experimental Results. The overall experimental results are summarized in Table 1. In terms of145

validity, both CVAE and our proposed PCDiff achieve 100%. However, closer inspection reveals146

that CVAE suffers from mode collapse, repeatedly generating identical samples, which undermines147

its practical utility. In contrast, the vanilla diffusion model (TabDDPM) exhibits very low va-148

lidity, highlighting the necessity of incorporating physical constraints into the diffusion process.149

Regarding Density and Coverage, diffusion-based models consistently outperform the VAE-based150

model. Notably, PCDiff achieves the best performance, with Density exceeding TabDDPM by 4.3%151

and Coverage by 9.1%, demonstrating both higher fidelity and greater diversity in the generated152

composites.153

Table 1: Experimental evaluations on the composite dataset. (Unit:%)
Model \ Metric Validityreg Validityfab Density Coverage

CVAE 100 100 37.5 7.8
TabDDPM 15 0 44.7 10.5

PCDiff (ours) 100 100 49.0 19.6

5 Conclusion154

In this work, we address the relatively underexplored problem of generative modeling for lightweight155

composite materials by introducing PCDiff, a physics-constrained diffusion framework. By embed-156

ding domain-specific constraints, such as non-negativity and sum-to-one composition rules, directly157

into the diffusion process, PCDiff ensures that generated candidates are both physically valid and of158

high fidelity. Empirical results on composite datasets demonstrate that our approach outperforms159

state-of-the-art generative baselines in terms of validity, density, and design space coverage. This160

study lays the groundwork for future research in integrating richer physics and domain knowledge161

into generative AI for material design.162
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