
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSLUTION: UNIFYING SELF-ATTENTION AND
CONVOLUTION FOR ADAPTIVE AND RELATIVE MOD-
ELING

Anonymous authors
Paper under double-blind review

ABSTRACT

When modeling a given type of data, we consider it to involve two key aspects:
1) identifying relevant elements (e.g., image pixels or textual words) to a central
element, as in a convolutional receptive field, or to a query element, as in self-
attention, and 2) encoding these tokens effectively. Self-attention can adaptively
identify these elements but relies on absolute positional embedding for structural
representation learning. In contrast, convolution encodes elements in a relative
manner, yet their fixed kernel size limits their ability to adaptively select the rel-
evant elements. In this paper, we introduce Translution, an operation that unifies
the adaptive identification capability of self-attention and the relative encoding
advantage of convolution. However, this integration leads to a substantial increase
in the number of parameters, exceeding most currently available computational
resources. Therefore, we propose a lightweight low-rank variant of Translution,
named LoR-Translution. Experiments on computer vision and natural language
processing tasks show that Translution (including LoR-Translution) achieves su-
perior accuracy compared to self-attention. The code has been included in the
supplementary materials and will be released soon.

1 INTRODUCTION

Recent evidence suggests that directly scaling up deep neural networks, particularly Transform-
ers (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019; Dosovitskiy et al., 2021), with
additional data and parameters is encountering diminishing returns. Leading Artificial Intelligence
(AI) labs have similarly noted slower-than-anticipated improvements in next-generation models,
despite extensive training efforts. Given the saturation of available data and limitations imposed by
current scaling laws, it is crucial now to reflect on past successes and pursue the design of innovative
neural networks to sustain future progress in deep learning.

When employing deep neural networks to model a specific type of data, the process can be de-
composed into two key aspects: 1) identifying relevant data elements and 2) encoding these el-
ements into effective representations. When using convolutional neural networks (LeCun et al.,
1998; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016)
to process images, the basic element is pixel. When using Transformers, the element is word for
natural language processing and patch for visual tasks.

1.1 IDENTIFICATION OF RELEVANT ELEMENTS

In convolution, as shown in Figure 1 (a), the relevant element identification step is handled by con-
volutional filters (kernels) with a fixed local receptive field. This fixed kernel defines a neighborhood
that is considered relevant to the center. For visual data like images, such local focus is often ef-
fective because spatially adjacent pixels tend to be related (e.g., forming parts of the same object).
However, the rigid nature of a fixed-size kernel makes convolution inevitably cover irrelevant pixels,
especially near object boundaries or in background areas that fall inside the window.

In contrast, as shown in Figure 1 (b), self-attention (Vaswani et al., 2017) can adaptively identify
relevant regions. Instead of being limited to a predetermined locality, it allows the model to dy-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026
(a) Convolution (b) Self-attention

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0
0 0 0 0 0

0 0 0 0 0
0.05 0.05 0.05 0.05 0.05

0.05 0.05 0.12 0.05 0.05

0.01 0.05 0.05 0.05 0.01

0.01 0.05 0.05 0.05 0.05

0.01 0.01 0.01 0.01 0.01

1 1 1 0 0

1 1 1 0 0
0 0 0 0 0

0 0 0 0 0

1 1 1 0 0
0.05 0.12 0.05 0.05 0.05

0.05 0.05 0.05 0.05 0.05

0.01 0.05 0.05 0.05 0.01

0.01 0.05 0.05 0.05 0.05

0.01 0.01 0.01 0.01 0.01

(a) Convolution (b) Self-attention

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0
0 0 0 0 0

0 0 0 0 0
0.03 0.08 0.06 0.08 0.04

0.04 0.05 0.13 0.05 0.04

0.01 0.05 0.07 0.05 0.02

0.01 0.04 0.04 0.03 0.03

0.01 0.01 0.01 0.01 0.01

1 1 1 0 0

1 1 1 0 0
0 0 0 0 0

0 0 0 0 0

1 1 1 0 0
0.07 0.16 0.05 0.07 0.03

0.06 0.06 0.08 0.04 0.03

0.01 0.05 0.07 0.04 0.01

0.00 0.04 0.03 0.03 0.03

0.01 0.01 0.01 0.01 0.00

Figure 1: Difference between convolution and self-attention in identifying relevant elements (blue
patches) for the kernel center or query element (yellow patch). Here, convolution is assumed to
operate on image patches. 1) Convolution utilizes a fixed kernel size to define a neighborhood of
elements considered relevant, inevitably including some irrelevant regions, particularly near object
boundaries or within background areas inside the window. The fixed receptive field in convolution
can be interpreted as a special case of attention, where the attention score is set to 1 within the
receptive field and 0 outside it. 2) Self-attention adaptively identifies relevant elements by assigning
greater attention scores to areas with higher relevance, thereby mitigating the inclusion of noisy or
irrelevant information.

namically attend to relevant regions. This means that self-attention can focus on important features
regardless of their physical distance. This capability provides greater flexibility compared to the
convolution’s fixed receptive field.

1.2 ENCODING OF RELEVANT ELEMENTS

When it comes to encoding the structure from these relevant elements, convolution and self-attention
employ different strategies. As shown in Figure 2 (a), a convolutional kernel learns distinct param-
eters {Wδx,δy} for each relative direction and distance within its receptive field. In other words,
the filter has separate parameters Wδx,δy for each offset δx, δy from the center. This design enables
convolution to encode local structure relatively — capturing orientation and distance relationships.

In contrast, as shown in Figure 2 (b), self-attention uses three shared sets of parameters W q , W k

and W v to process inputs for all positions. Consequently, the query, key and value of self-attention
do not encode whether one patch is to the left or right of another. To introduce positional informa-
tion, Transformer incorporates absolute positional embeddings into the input features at the outset.
Although these embeddings enable Transformer to infer order or spatial relationships, they intro-
duce noise into each token’s representation. The absolute position information becomes part of the
input features. Consequently, when the same object moves to a different location, Transformer may
struggle to recognize it.

1.3 UNIFICATION OF CONVOLUTION AND TRANSFORMER

In summary, convolution encodes structure through fixed local filters with position-specific weights,
whereas self-attention relies on adaptive global attention and requires absolute positional encoding
to capture order or spatial structures.

In this paper, we introduce Translution, a new type of operation that unifies the adaptive identifica-
tion capability of self-attention with the relative encoding advantage of convolution. Specifically,
Translution employs a convolution-style approach that assigns separate parameters (matrices) to
each distance and direction when computing the query, key and value. This design enables Translu-
tion to effectively encode relative structures.

However, this unification leads to a significant increase in the number of parameters and exceeds
most currently available computational resources. Therefore, we propose a lightweight variant of
Translution, named LoR-Translution, which significantly reduces the number of parameters. This
variant achieves lower accuracy than the “ideal” (original) Translution but better accuracy than self-
attention.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝑾!",$𝑾!",!" 𝑾!","

𝑾$,$𝑾$,!" 𝑾$,"

𝑾",$𝑾",!" 𝑾","

1	 2        3       4        5

6	 7        8       9       10

11	 12     13     14      15

16	 17     18     19      20

21	 22     23     24      25

test
train

(a) Convolution (b) Self-attention

𝑾 𝑾 𝑾 𝑾 𝑾

𝑾 𝑾 𝑾 𝑾 𝑾

𝑾 𝑾 𝑾 𝑾 𝑾

𝑾 𝑾 𝑾 𝑾 𝑾

𝑾 𝑾 𝑾 𝑾 𝑾

test
train

𝑾 ∈ 𝑾% ,𝑾& ,𝑾'𝑾!",!",𝑾!",$,𝑾!",",𝑾$,!",𝑾$,$,𝑾$,",𝑾",!",𝑾",$,𝑾"," with positional embedding

Figure 2: Difference between convolution and self-attention in encoding relevant elements: consider
the scenario where convolution and self-attention are capturing the structure of a circle. 1) Convo-
lution learns separate parameters {Wδx,δy} for each offset, where δx, δy ∈ [−1, 1], from the kernel
center, allowing it to effectively encode relative local structures. Thus, when the circle appears in
a different location, it is still readily recognized due to this relative awareness. 2) Self-attention in-
corporates absolute position into each token’s representation and uses position-irrelevant parameters
W ∈ {W q,W k,W v} across all tokens for computing query, key and value, respectively. While
this method facilitates general processing, the inclusion of absolute positional embeddings makes it
more challenging to recognize the circle when it is moved to a different location.

As a fundamental operation, we investigate whether Translution can outperform self-attention.
We conduct experiments on two widely-used Transformer architectures: Vision Transformer
(ViT) (Dosovitskiy et al., 2021) for computer vision tasks and Generative Pre-trained Transformer
(GPT) (Radford et al., 2018; 2019; Brown et al., 2020) for natural language processing tasks. Exper-
iments demonstrate that Translution and LoR-Translution surpass self-attention in terms of accuracy.

2 RELATED WORK

Transformer (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019; Dosovitskiy et al., 2021;
Liu et al., 2021; Touvron et al., 2021) eschews recurrence (as used in recurrent neural networks) and
kernel size (as used in convolutional neural networks), instead employing self-attention for relevant
region identification. Because it has no built-in notion of order, Transformer incorporates explicit
absolute positional embeddings into token embeddings, enabling the model to utilize sequence order.
Subsequent work has explored “relative attention” (Shaw et al., 2018; Huang et al., 2019; Parmar
et al., 2019; Dai et al., 2019; Tsai et al., 2019; Raffel et al., 2020; Dai et al., 2021), which inte-
grates relative position information into self-attention. They can be categorized into three families:
1) Relative positional vector. Shaw et al.enhanced Transformer for language modeling by adding
learnable relative positional vectors into the key and value computations, respectively (Shaw et al.,
2018). BoTNet (Srinivas et al., 2021) and HaloNet (Vaswani et al., 2021) extended this approach
to two dimensions for image processing by adding learnable relative positional vectors into key.
2) Relative positional scalar. Swin Transformer (Liu et al., 2021), CoAtNet (Dai et al., 2021), and
ConViT d’Ascoli et al. (2021) incorporate a learnable relative positional bias (a scalar) into the atten-
tion score. In these methods, the original self-attention can be regarded as content attention, which
measures relationships from the token-feature perspective, while the additional relative positional
bias can be regarded as position attention, which measures relationships from the token-position
perspective. 3) Rotary position embedding. RoFormer (Su et al., 2024) introduces a rotary posi-
tion embedding mechanism, which encodes relative positional information by applying a rotation
operation in the Query and Key representation space. Unlike these existing methods, Translution
employs a convolution-style approach that uses relative positional matrices for query, key and value
computation. Section D provides a formal comparison of these methods.

Convolutional neural networks (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2015; Szegedy et al., 2015; He et al., 2016) have been the backbone of deep learning for years.
By using small, shared kernels and pooling, convolutional neural networks efficiently capture local
patterns. Recent architectural developments integrate self-attention with convolution. For instance,
X-volution Chen et al. (2021) introduces a theoretically grounded self-attention approximation that
unifies local and global interactions within a multi-branch module, which can be structurally re-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

parameterized into a single convolution operator for efficient deployment. Conformer (Gulati et al.,
2020) combines convolution layers and self-attention layers to capture both local and global depen-
dencies in audio sequences. Similarly, CeiT (Yuan et al., 2021) uses convolutions to extract low-
level features and self-attention to model long-range dependencies. Restormer Zamir et al. (2022)
integrates Transformer blocks with two key components, i.e., Multi-DConv Head Transposed At-
tention and the Gated DConv Feed-Forward Network, forming an efficient architecture tailored for
high-resolution image restoration. It can captures long-range pixel dependencies in the spirit of
Transformers, while retaining the scalability and practicality of CNNs for large images. Unlike
most existing methods, Translution operates at the basic module or layer level, blending the advan-
tages of self-attention and convolution into a unified fundamental operation. It preserves the same
input–output interface as self-attention while augmenting it with relative positional encoding capa-
bilities on top of self-attention’s adaptive modeling. It is fully compatible with existing self-attention
implementations.

3 PRELIMINARY: CONVOLUTION AND SELF-ATTENTION

3.1 CONVOLUTION

Suppose fx,y ∈ R1×C denotes the feature or representation at location (x, y) in an image of height
H and width W , where C is the number of the input feature channels. Convolution is designed to
capture the local structure centered at (x, y) with a fixed kernel size h× w,

f ′
x,y =

⌊h/2⌋∑
δx=−⌊h/2⌋

⌊w/2⌋∑
δy=−⌊w/2⌋

fx+δx,y+δy ·Wδx,δy ,

where Wδx,δy ∈ RC×C′
denotes the learnable parameters corresponding to the displacement

(δx, δy), C ′ indicates the output feature dimension, and · denotes matrix multiplication. By as-
signing a set of parameters for each offset within the receptive field, convolution is able to discern
direction and distance, and capture the local structure relatively. This means that when the absolute
location of an object changes, it can still capture the same structure. However, convolution employs
a rigid method to identify relevant regions, i.e., using a fixed-size window, making it inevitably
include irrelevant pixels or regions — particularly near object boundaries or in background areas
within the window.

3.2 SELF-ATTENTION

Suppose xi ∈ R1×C represents the feature or representation of the i-th patch at location (xi, yi).
Transformer (Vaswani et al., 2017) first incorporates the embedding of absolute position into the
input xi, as follows,

input positional embedding : fi = xi + Embed(xi, yi).

Then, self-attention performs two separate linear projections on the feature to generate query qi ∈
R1×C′

and key kj ∈ R1×C′
, where C ′ is the dimension for query or key,

query encoding : qi = fi ·W q,

key encoding : kj = fj ·W k,

where W q/W k ∈ RC×C′
. Subsequently, scaled dot-product attention is computed for each query,

and a softmax function is applied to normalize the attention weights for a query across all positions,

attention: ai,j =
qi · kT

j√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

where N = H ×W . Next, self-attention conducts another linear projection on the input feature to
generate value vi ∈ R1×C′

, as follows,

value encoding : vj = fj ·W v,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where Wv ∈ RC×C′
. Finally, the output is computed as a weighted sum of the values, i.e.,

weighted sum: f ′
i =

N∑
j=1

αi,j × vj ,

where f ′
i ∈ R1×C′

. In this way, self-attention can adaptively search for related regions, providing
greater flexibility than methods that use local fixed-size windows. However, unlike convolution,
which learns a feature encoding for every direction and distance, self-attention does not encode the
structure in a relative manner.

3.3 TRANSLUTION

value 
matrix

𝑽 ∈ ℝ!×#!

input 𝑿 ∈ ℝ!×#

𝑾$ 𝑾% 𝑾&

⨁position

matmul: 𝒂',) = 𝒒' ) 𝒌)*

scale

softmax

output 𝑭+ ∈ ℝ!×#!

matmul
attention 

matrix
𝑨 ∈ ℝ!×!

input 𝑭 ∈ ℝ!×#

𝑾,",,$
$ 𝑾,",,$

%

matmul: 𝒂',) =	𝒒',) ) 𝒌),'*

scale

softmax

output 𝑭+ ∈ ℝ!×#!

elementwise multiplication

∑

⋮ ⋯ ⋮

⋮ 𝑾-,-
& ⋮

⋮ ⋯ ⋮
𝑾./0,/(2/0)

& ⋯ 𝑾./0,2/0
&

𝑾/(./0),/(2/0)
& ⋯ 𝑾/(./0),2/0

&

value tensor
𝐕 ∈ ℝ!×!×#!

attention matrix
𝑨 ∈ ℝ!×!×0

(a) Self-attention (b) Translution

𝒗' = 𝒇' ) 𝑾&
𝛿4 = 𝑥' − 𝑥)
𝛿5 = 𝑦' − 𝑦)

image size:  𝑁 = 𝐻×𝑊

𝑭 ∈ ℝ!×#

𝒒' = 𝒇' ) 𝑾$ 𝒌) = 𝒇) ) 𝑾%

𝑾,",,$
&

𝒒',) = 𝒇' ) 𝑾,",,$
$ 𝒌),' = 𝒇) ) 𝑾/,",/,$

𝒌

𝒗',) = 𝒇' ) 𝑾,",,$
𝒗

𝐻

𝑊

2𝑊 − 1

2𝐻
−
1

Figure 3: Comparison of self-attention and Translution. 1) Self-attention employs three shared
sets of weights, i.e., W q , W k, and W v , across all patches to compute query, key, and value,
respectively. 2) Translution uses separate parameters for each offset (direction and distance), i.e.,
{W q

δx,δy
}, {W k

δx,δy
} and {W v

δx,δy
}, to encode relative structures.

Translution is designed to integrate the adaptive related region identification capabilities of self-
attention with the relative encoding strengths of convolution. Specifically, as shown in Figure 3,
Translution employs a convolution-style formulation by assigning different parameters to compute
query, key, and value, respectively, as follows:

Translution



relative query encoding : qi,j = fi ·W q
δx,δy

, δx = xi − xj , δy = yi − yj ,

relative key encoding : kj,i = fj ·W k
−δx,−δy ,

relative attention: ai,j =
qi,j · kT

j,i√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

relative value encoding : vi,j = fj ·W v
δx,δy ,

weighted sum: f ′
i =

N∑
j=1

αi,j × vi,j ,

(1)

where W q
δx,δy

/W k
δx,δy

/W v
δx,δy

∈ RC×C′
, represent the learnable parameter matrices for the query,

key, and value corresponding to the displacement (δx, δy).

Translution unifies convolution and self-attention.

The fixed receptive field in convolution can be interpreted as a special case of attention, where the
attention score is set to 1 within the receptive field and 0 outside it, as shown in Figure 2. The weights
W q , W k, and W v in self-attention serve as shared linear projections that are uniformly applied
across all spatial directions and distances. Consequently, Translution integrates the functionalities

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of convolution and self-attention, as follows,

Convolution: f ′
i =

∑N
j=1 αi,j × fj ·Wδx,δy , where αi,j =

{
1, (δx, δy) ∈ kernel,
0, otherwise.

Self−attention: f ′
i =

∑N
j=1 αi,j × fj ·W v, where ai,j =

qi·kT
j√

C′ , αi,j =
eai,j∑N

n=1 eai,n
.

Translution: f ′
i =

∑N
j=1 αi,j × fj ·W v

δx,δy
, where ai,j =

qi,j ·kT
j,i√

C′ , αi,j =
eai,j∑N

n=1 eai,n
.

In other words, convolution and self-attention can be viewed as specific instances of Translution,
where convolution simplifies the attention mechanism and self-attention omits the encoding of di-
rection and distance.

3.4 LOR-TRANSLUTION

Suppose there are H × W input image patches. The relative encoding method in Translu-
tion requires (2H − 1) × (2W − 1) × C × C ′ parameters. Specifically, it requires one pa-
rameter matrix W q

δx,δy
, W k

δx,δy
or W v

δx,δy
∈ RC×C′

for each relative position (δx, δy), where
δx ∈ {−(H − 1), · · · , 0, · · · , H − 1} and δy ∈ {−(W − 1), · · · , 0, · · · ,W − 1}. This approach
leads to excessive parameter demands, making it impractical for most computational devices cur-
rently. For instance, in the ViT/16 architecture (Dosovitskiy et al., 2021) with input resolution
224× 224, we have H = W = 224

16 = 14, resulting in (2H − 1)× (2W − 1) = 729 distinct weight
matrices for query, key or value. To reduce the number of parameters, inspired by LoRA (Hu et al.,
2021), we propose a variant of Translution, i.e., LoR-Translution, which decreases both the input
dimension C and the output dimension C ′ of each W q

δx,δy
, W k

δx,δy
, and W v

δx,δy
, as follows:

W q
δx,δy

⇒ W q
1 ·W q

δx,δy
, W k

δx,δy ⇒ W k
1 ·W k

δx,δy , W v
δx,δy ⇒ W v

1 ·W v
δx,δy ·W v

2 ,

where W q
1 /W

k
1 /W

v
1 ∈ RC×C1

, W q
δx,δy

/W k
δx,δy

/W v
δx,δy

∈ RC1×C2

, W v
2 ∈ RC2×C′

, and C1 ≪
C, C2 ≪ C ′. Smaller values of C1 and C2 will significantly reduce the number of parameters.

However, setting C1 and C2 too small may overly compress the query, key and value informa-
tion, negatively impacting performance. To preserve the information, we incorporate the query, key
and value computation mechanism of self-attention into LoR-Translution. Specifically, the updated
computation is defined as follows:

LoR−Translution



query encoding : qi,j = fi ·W q
1 ·W q

δx,δy
, qi = fi ·W q,

key encoding : kj,i = fj ·W k
1 ·W k

−δx,−δy , kj = fj ·W k,

attention: ai,j =
qi,j · kT

j,i + qi · kT
j√

C ′
, αi,j =

eai,j∑N
n=1 e

ai,n

,

value encoding : vi,j = fj · (W v
1 ·W v

δx,δy ·W v
2 +W v),

weighted sum: f ′
i =

N∑
j=1

αi,j × vi,j .

(2)

In this way, LoR-Translution not only possesses relative modeling capability but also reduces the
number of parameters.

4 EXPERIMENT

In this section, as a fundamental operation, our primary objective is to compare Translution with
self-attention, rather than to achieve state-of-the-art performance through specialized network ar-
chitectures or extensive training techniques. To this end, we conduct experiments using two widely
adopted Transformer architectures:

• Vision Transformer (ViT) (Dosovitskiy et al., 2021) for computer vision tasks.
• Generative Pre-trained Transformer (GPT) (Radford et al., 2018; 2019; Brown et al., 2020)

for natural language processing tasks. Section C demonstrates how to apply Translution to
text modeling.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1 provides an overview of various architecture configures. We substitute self-attention in ViT
and GPT with Translution, while maintaining the remaining architecture unchanged.

Table 1: Specifics of architecture configures used in this paper.
Architecture Depth (#Layers) Embedding Dim (Hidden size) #Heads MLP Dim (Feedforward)

A 6 192 3 768
B 12 192 3 768
C 12 384 6 1,536

Due to limited computational resources, our evaluation is primarily conducted on small- and
medium-scale architectures. Large-scale evaluation can be performed when single-GPU memory
capacities approach approximately 2 ∼ 3 TB. All training starts from scratch. The default compres-
sion dimensions for the relative encoding in LoR-Translution are set as C1 = C2 = 8.

4.1 IMAGE CLASSIFICATION WITH VIT

4.1.1 DYNAMIC MNIST

To evaluate the capability of modeling relative structure, we synthesize a dynamic MNIST
dataset (Srivastava et al., 2015; Fan & Yang, 2019), where digits (originally sized 28 × 28 pix-
els) move within a 84 × 84 pixel area, as illustrated in Figure 4. For comparison, we also create a
static MNIST dataset of the same size, where digits remain fixed at the center of each image.

Figure 4: Examples of static and dynamic MNIST. Static MNIST digits are fixed at the center of
images, whereas dynamic MNIST digits are randomly positioned within the images.

Table 2: Top-1 accuracy (%) on different MNIST settings with the ViT-A architecture. A → B
denotes that models are trained on dataset A and evaluated on dataset B.

Arch. Method #Params FLOPs Static→Static Dyn→Dyn Static→Dyn

ViT-A/12
Self-attention (Vaswani et al., 2017) 2.7 M 140.5 M 98.48 92.64 18.18
LoR-Translution (relative dim = 8) 4.6 M 146.6 M 98.48 97.31 34.90

Translution 116.2 M 140.5 M 98.60 97.35 36.40

ViT-A/7
Self-attention (Vaswani et al., 2017) 2.7 M 436.6 M 98.52 93.90 19.94
LoR-Translution (relative dim = 8) 8.3 M 454.2 M 98.81 98.57 40.05

Translution 355.0 M 436.6 M 98.91 98.60 48.07

As shown in Table 2, all models achieve high accuracy when trained and evaluated on static MNIST.
However, when digit locations vary, the self-attention’s accuracy significantly decreases, whereas
Translution (including LoR-Translution) still maintains high accuracy. This is because absolute
positional embedding makes digit locations part of its representation. Consequently, when digits
shift positions, networks may become confused and fail to recognize digits accurately. In con-
trast, Translution employs relative encoding, effectively capturing digit structures independently of
their absolute locations. This significantly reduces sensitivity to location variability, demonstrating
Translution’s superior capability in modeling relative structures. However, when training on static
MNIST, the uniformly black image background causes some Wδx,δy not to be well trained. As a
result, when evaluated on dynamic MNIST, Translution fails to achieve very high accuracy.

Note that although Translution introduces a larger number of parameters, it does not incur addi-
tional computational cost compared with self-attention. As shown in Table 2 and the following
tables, Translution uses the same amount of computation as self-attention. This is because Translu-
tion simply replaces the original projection matrices W q , W k, and W v with their offset-indexed
counterparts W q

δx,δy
, W k

δx,δy
, and W v

δx,δy
, without increasing the per-token operations. The compu-

tational complexity therefore remains unchanged. In contrast, LoR-Translution requires additional
computation due to the low-rank adaptation applied during the offset-dependent projection, which
increases the processing cost.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Accuracy (%) on the ImageNet-1K dataset with patch sizes of 56, 32 and 16. Training is
conducted from scratch without pretraining on external datasets, with a batch size of 256.

Architecture Method #Params FLOPs Top-1 Top-5

ViT-A/56
Self-attention (Vaswani et al., 2017) 4.7 M 75.86 M 46.28 71.17
LoR-Translution (relative enc dim = 8) 5.3 M 77.92 M 48.36 73.31
Translution 38.5 M 75.86 M 52.41 76.50

ViT-B/56
Self-attention (Vaswani et al., 2017) 7.4 M 121.8 M 53.75 77.59
LoR-Translution (relative enc dim = 8) 8.7 M 126.0 M 55.87 79.16
Translution 75.0 M 121.8 M 59.51 81.97

ViT-C/56
Self-attention (Vaswani et al., 2017) 25.3 M 423.4 M 64.15 84.95
LoR-Translution (relative enc dim = 8) 30.5 M 440.0 M 66.54 86.49
Translution 296.0 M 423.4 M 68.05 88.62
Self-attention (Vaswani et al., 2017) 3.5 M 169.0 M 57.63 80.96

ViT-A/32 LoR-Translution (relative enc dim = 8) 5.3 M 175.0 M 60.26 83.07
Translution 116.9 M 169.0 M 66.03 86.01
Self-attention (Vaswani et al., 2017) 6.1 M 308.0 M 66.13 86.87

ViT-B/32 LoR-Translution (relative enc dim = 8) 9.9 M 320.1 M 67.63 87.96
Translution 223.1 M 308.0 M 70.63 90.10

Translution runs out of memory under the following architectures.

ViT-C/32 Self-attention (Vaswani et al., 2017) 22.9 M 1.146 G 73.62 91.12
LoR-Translution (relative enc dim = 8) 38.0 M 1.195 G 74.19 91.52

ViT-A/16 Self-attention (Vaswani et al., 2017) 3.0 M 644.8 M 64.71 86.25
LoR-Translution (relative enc dim = 8) 10.7 M 668.6 M 69.28 89.24

ViT-B/16 Self-attention (Vaswani et al., 2017) 5.7 M 1.259 G 73.51 91.89
LoR-Translution (relative enc dim = 8) 21.1 M 1.307 G 76.20 93.04

ViT-C/16 Self-attention (Vaswani et al., 2017) 22.0 M 4.609 G 78.91 94.10
LoR-Translution (relative enc dim = 8) 85.4 M 4.800 G 79.70 94.52

4.1.2 IMAGENET

ImageNet-1K Deng et al. (2009) is a widely used dataset for computer vision research, particularly
in the area of image classification. It contains 1,000 object categories (classes), each with approx-
imately 1,300 training images and 50 validation images, amounting to about 1.28 million training
images and 50,000 validation images in total. Images are resized to 224 × 224. As shown in Ta-
ble 3, compared to self-attention (Vaswani et al., 2017), Translution and LoR-Translution effectively
improve ImageNet classification.

We compare Translution with existing positional encoding strategies, which typically represent po-
sitional information by introducing additional positional biases, as scalars Liu et al. (2021); d’Ascoli
et al. (2021) or vectors (Vaswani et al., 2017; Shaw et al., 2018). The formal differences between
these approaches are detailed in Section D. As shown in Table 4, compared to existing relative
encoding methods, Translution achieves a notable improvement in accuracy.

Table 4: Comparison of different positional encoding strategies. Results are reported on ImageNet-
1K with ViT-A/56, trained from scratch (no external pretraining) using a batch size of 256.

Method #Parameters FLOPs Top-1 Top-5
Self-attention w/o Pos Emb 4.69 M 75.86 M 42.49 67.39
Self-attention w/ Pos Emb (Vaswani et al., 2017) 4.69 M 75.86 M 46.28 71.17
Relative key vector (Shaw et al., 2018) 4.74 M 75.86 M 46.39 71.25
Relative value vector (Shaw et al., 2018) 4.74 M 75.86 M 46.35 71.04
Swin Transformer (Liu et al., 2021) 4.69 M 75.86 M 46.36 71.31
ConViT (d’Ascoli et al., 2021) 4.69 M 76.04 M 46.39 71.44
RoFormer (Su et al., 2024) 4.69 M 75.86 M 46.65 71.51
LoR-Translution 5.33 M 77.92 M 48.36 73.31
Translution 38.53 M 75.86 M 52.41 76.50

4.1.3 ABLATION STUDY

1) Is the improvement of Translution (including LoR-Translution) caused by the introduction of
additional parameters or the proposed modeling approach based on relative encoding?

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Compared to self-attention, which employs three parameter matrices W q , W k, W v to compute
query, key and value, Translution uses three groups of parameter matrices {W q

δx,δy
}, {W k

δx,δy
},

{W v
δx,δy

} for relative encoding, thus introducing more parameters.

To investigate whether the improvement arises from the increased parameter count or from the rela-
tive encoding method itself, we conducted the following experiment:
relative encoding : W q

δx,δy
, W k

δx,δy , W v
δx,δy ⇒ absolute encoding : W q

i,j , W k
i,j , W v

i,j ,

where δx ∈ {−(H − 1), · · · , 0, · · · ,H − 1}, δy ∈ {−(W − 1), · · · , 0, · · · ,W − 1}, and indices
i ∈ [1,H × W ] and y ∈ [1,H × W ]. Specifically, for each pair of patches (i, j), a distinct
parameter matrix is employed to calculate query, key or value, rather than using the shared offset-
based matrices. Under this modification, Translution transitions to absolute modeling. Moreover,
this adjustment significantly increases the number of parameter matrices from (2H−1)× (2W −1)
to (H ×W )2.

Table 5: Investigation of whether the improvement of Translution arises from the additional param-
eters or the proposed relative encoding method (W q

δx,δy
, W k

δx,δy
, W v

δx,δy
). Because the absolute

encoding method (W q
i,j , W k

i,j , W v
i,j) consumes a large number of parameters, Translation with ViT-

A/7 encounters the out-of-memory issue. Therefore, experiments are conducted using ViT-A/12.
Method Encoding #Parameters FLOPs Static→Static Dynamic→Dynamic Static→Dynamic

LoR-Translution relative 4.6 M 146.4 M 98.48 97.31 34.90
absolute 28.7 M 98.42 96.18 25.37

Translution relative 116.2 M 140.5 M 98.60 97.35 36.40
absolute 1660.9 M 98.55 53.79 11.23

As shown in Table 5, although absolute encoding involves significantly more parameters, it achieves
lower accuracy than relative encoding. Therefore, simply increasing the number of parameters does
not lead to performance improvements.

2) Impact of relative encoding dimension on the performance of LoR-Translution.

To reduce parameter usage, LoR-Translution employs smaller input (C1) and output (C2) dimen-
sions for {W q

δx,δy
}, {W k

δx,δy
} and {W v

δx,δy
}. In our experiments, we set the relative encoding

dimensions as C1 = C2 = 8. This section investigates the impact of varying C1 and C2 on per-
formance. As shown in Table 6, increasing the relative encoding dimension improves accuracy but
results in more parameters. Therefore, the relative encoding dimension presents a trade-off between
efficiency and effectiveness for LoR-Translution. (When C1 = C2 = 0, it reduces to self-attention
without positional embedding.)

Table 6: Impact of relative encoding dimension on the performance of LoR-Translution with ViT-
A/56.

Rel Enc Dim #Params FLOPs Top-1 Top-5 Rel Enc Dim #Params FLOPs Top-1 Top-5
C1 = C2 = 0 4.7 M 75.9 M 42.49 67.39 C1 = C2 = 8 5.3 M 77.9 M 48.36 73.31
C1 = C2 = 2 4.7 M 76.3 M 46.10 71.29 C1 = C2 = 16 7.0 M 80.3 M 48.91 73.65
C1 = C2 = 4 4.9 M 76.8 M 47.61 72.18 C1 = C2 = 32 13.8 M 86.2 M 50.07 74.84

4.2 NATURAL LANGUAGE MODELING WITH GPT

To compare Translution and Transformer for natural language processing, we conduct experiments
using the OpenWebText dataset (Gao et al., 2020), an openly available reproduction of OpenAI’s
proprietary WebText dataset used for GPT-2 (Radford et al., 2019). OpenWebText contains 9 billion
training tokens and 4 million validation tokens, with a vocabulary size of 50K. We use perplexity,
defined as the exponentiation of the cross-entropy loss, as the evaluation metric, where a lower per-
plexity indicates stronger language modeling performance. Since the most powerful GPU available
to us has 80GB memeory, Translution can handle at most a text sequence of length 160 with the
GPT-A architecture. Therefore, we conduct the Translution experiment with sequences of length
160. As shown in Table 7, Translution achieves lower perplexity compared to Transformer, demon-
strating its effectiveness in natural language modeling.

We compare Translution with existing positional encoding strategies within the GPT archetecutre on
OpenWebText. As shown in Table 8, compared to existing relative encoding methods, Translution
achieves a notable decrement in Perplexity.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Perplexity on OpenWebText using a batch size of 8 and sequence lengths of 160 and 512.
Architecture Method #Parameters FLOPs Perplexity ↓

GPT-A-160
Self-attention (Vaswani et al., 2017) 22.0 M 2.029 G 60.40
LoR-Translution (relative enc dim = 8) 23.7 M 2.049 G 57.97
Translution 127.5 M 2.029 G 56.26

Translution runs out of memory under the following architectures.

GPT-B-160 Self-attention (Vaswani et al., 2017) 24.7 M 2.515 G 54.82
LoR-Translution (relative enc dim = 8) 28.2 M 2.554 G 52.72

GPT-C-160 Self-attention (Vaswani et al., 2017) 60.0 M 6.729 G 39.88
LoR-Translution (relative enc dim = 8) 74.0 M 6.884 G 39.25

GPT-A-512 Self-attention (Vaswani et al., 2017) 22.1 M 6.910 G 47.72
LoR-Translution (relative enc dim = 8) 27.4 M 6.972 G 45.17

GPT-B-512 Self-attention (Vaswani et al., 2017) 24.7 M 8.879 G 43.18
LoR-Translution (relative enc dim = 8) 35.5 M 9.003 G 39.92

Table 8: Comparison of different positional encoding strategies on OpenWebText with GPT-A-160
and a batch size of 8.

Method #Parameters FLOPs Perplexity ↓
Self-attention w/o Pos Emb 22.0 M 2.029 G 74.51
Self-attention w/ Pos Emb (Vaswani et al., 2017) 22.0 M 2.029 G 60.40
Relative key vector (Shaw et al., 2018) 22.4 M 2.029 G 60.13
Relative value vector (Shaw et al., 2018) 22.4 M 2.029 G 59.35
Swin Transformer (Liu et al., 2021) 22.0 M 2.029 G 59.96
ConViT (d’Ascoli et al., 2021) 22.0 M 2.032 G 59.39
RoFormer (Su et al., 2024) 22.0 M 2.029 G 58.02
LoR-Translution 23.7 M 2.049 G 57.97
Translution 127.5 G 2.029 G 56.26

5 CONCLUSION

In this paper, we introduce Translution, a new operation that unifies self-attention and convolution
for adaptive and relative modeling. Experiments on computer vision and natural language processing
tasks demonstrate the effectiveness of Translution.

However, due to current limited computational resources, the validation in this paper is prelimi-
nary. We encourage the community to further evaluate Translution using larger-scale frameworks
and datasets in diverse scenarios to verify its broader applicability, particularly when single GPUs
equipped with over 2 ∼ 3 TB of memory are available.

Given Translution’s substantial parameter consumption, it is worthwhile to explore optimized vari-
ants, such as LoR-Translution. For instance, certain relative positions may share the same parameter,
especially when the distance between elements is too long. At the same time, extending Translution
to 3D, video, molecule, and other modalities of processing holds significant promise.

As a fundamental operation, Translution can be employed beyond the ViT and GPT architectures.
More effective and efficient architectures for Translution merit further exploration in future.

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Conference on
Neural Information Processing Systems (NeurIPS), 2020.

Xuanhong Chen, Hang Wang, and Bingbing Ni. X-volution: On the unification of convolution and
self-attention. arXiv, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. In Conference of
the Association for Computational Linguistics (ACL), pp. 2978–2988, 2019.

Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. In Conference on Neural Information Processing Systems (NeurIPS),
pp. 3965–3977, 2021.

Stéphane d’Ascoli, Hugo Touvron, Matthew L. Leavitt, Ari S. Morcos, Giulio Biroli, and Levent
Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In In-
ternational Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine
Learning Research, pp. 2286–2296, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations (ICLR), 2021.

Hehe Fan and Yi Yang. Pointrnn: Point recurrent neural network for moving point cloud processing.
arXiv, 1910.08287, 2019.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv, 2101.00027, 2020.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented
transformer for speech recognition. In Interspeech, pp. 5036–5040, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv, 2021.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer: Generating music with long-term structure. In International Conference on Learning
Representations (ICLR), 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Conference on Neural Information Processing Systems (NeurIPS),
pp. 1106–1114, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE International
Conference on Computer Vision (ICCV), pp. 9992–10002, 2021.

Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon
Shlens. Stand-alone self-attention in vision models. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), pp. 68–80, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. Technical report, OpenAI, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Marilyn A. Walker, Heng Ji, and Amanda Stent (eds.), Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), pp. 464–468, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16519–16529, 2021.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video rep-
resentations using lstms. In International Conference on Machine Learning (ICML), volume 37,
pp. 843–852, 2015.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. doi:
10.1016/J.NEUCOM.2023.127063.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning (ICML), volume 139, pp. 10347–10357, 2021.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Transformer dissection: An unified understanding for transformer’s attention
via the lens of kernel. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4343–4352, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Conference on Neural In-
formation Processing Systems (NeurIPS), pp. 5998–6008, 2017.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake A. Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12894–12904, 2021.

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating con-
volution designs into visual transformers. In IEEE International Conference on Computer Vision
(ICCV), pp. 559–568, 2021.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5718–5729, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DEFAULT NOTATION

a,A A scalar a A vector

A A matrix A A tensor

× Scalar multiplication · Matrix multiplication

B GENERAL TRANSLUTION

The calculation of the query, key and value in Translution, i.e., Eq. (1), assumes that element po-
sitions (e.g., image patches or textual words) are discrete. In this setting, it is feasible to assign a
different set of parameters for each direction and distance. However, if the positions are continuous
variables, e.g., in point clouds, it becomes impractical to assign individual weights for each direction
and distance, as there are infinitely many possible variations in continuous space. In this case, it may
be necessary to design new functions for the relative encoding.

Suppose pi denotes the position of the i-th element. For language, pi can represent the index of the
i-th word in the text. For images, pi corresponds to the row and column indices of the i-th patch. For
point clouds, pi refers to the 3D coordinates of the i-th point. A more general version of Translution
can be formulated as follows,

General Translution: f ′
i =

N∑
j=1

α(pi − pj ,fi,fj , )× v(pi − pj ,fj),

where α ∈ [0, 1] denotes the attention score measuring the relevance of the j-th element to the i-th
element, and v : Rd+C → RC′

is a function that encodes relative positional information into the
element features (d denotes the dimensionality of the position, C is the number of input feature
channels, and C ′ is the number of output feature channels). When applying Translution to a new
type of data, the key is to develop effective α and v functions.

C 1D TRANSLUTION FOR NATURAL LANGUAGE PROCESSING

In the main text, we demonstrate how to apply Translution for image modeling. That Translution can
be viewed as a 2D operation because the relative encoding involves two spatial directions. However,
in natural language, relative encoding operates along a single dimension, which makes Translution
a one-dimensional model when applied to text.

Suppose fi ∈ R1×C denotes the embedding (or representation) of the i-th token within a text se-
quence of length N , where C represents the embedding dimension. As shown in Figure 5, 1D
Translution is designed to integrate adaptive identification of related tokens with relative structural
encoding for language modeling. Specifically, Translution retains the self-attention mechanism of
the Transformer but employs distinct parameters for computing the Query, Key and Value represen-
tations, as follows,

1D Translution



relative query encoding : qi,j = fi ·W q
δ , δ = i− j,

relative key encoding : kj,i = fj ·W k
−δ,

relative attention: ai,j =
qi,j · kT

j,i√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

relative value encoding : vi,j = fj ·W v
δ ,

weighted sum: f ′
i =

N∑
j=1

αi,j × vi,j ,

where W q
δ /W

k
δ /W

v
δ ∈ RC×C′

denotes the learnable parameters for displacement δ.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

input 𝑭 ∈ ℝ!×#

scale

softmax

output 𝑭$ ∈ ℝ!×#!

elementwise mul

∑ value tensor
𝐕 ∈ ℝ!×!×#!

attention matrix
𝑨 ∈ ℝ!×!×%

𝒗&,( = 𝒇& * 𝑾)
*

𝛿 = 𝑖 − 𝑗

𝑾+(!+%)
* 𝑾!+%

*𝑾.
*⋯ ⋯𝑾+(!+%)

/ 𝑾!+%
/𝑾.

/⋯ ⋯𝑾+(!+%)
0 𝑾!+%

0𝑾.
0⋯ ⋯

𝒒&,( = 𝒇& * 𝑾)
0

query tensor
𝐐 ∈ ℝ!×!×#!

key tensor
𝐊 ∈ ℝ!×!×#!

matmul: 𝒂&,( =	𝒒&,( * 𝒌(,&1

𝒌𝒋,& = 𝒇& * 𝑾+)
/

Figure 5: When modeling text, Translution operates in a 1D setting. For a sequence of
length N , it employs separate parameters for each positional offset (considering both direction
and distance), i.e., {W q

−(N−1), · · · ,W
q
0 , · · · ,W

q
N−1}, {W k

−(N−1), · · · ,W
k
0 , · · · ,W k

N−1} and
{W v

−(N−1), · · · ,W
v
0 , · · · ,W v

N−1}, to encode relative language structure.

Causal 1D Translution

For autoregressive tasks, such as language modeling in GPT, a causal variant is typically required to
ensure future tokens remain unseen during inference. In causal 1D Translution, each token attends
only to itself and preceding tokens, guaranteeing that predictions rely exclusively on past context,
as follows,

Causal 1D Translution



relative query encoding : qi,j = fi ·W q
δ , δ = i− j,

relative key encoding : kj,i = fj ·W k
−δ,

relative attention: ai,j =
qi,j · kT

j,i√
C ′

,

causal attention: a′i,j =

{
ai,j , i ≥ j,
−∞, otherwise,

αi,j =
ea

′
i,j∑N

n=1 e
a′
i,n

,

relative value encoding : vi,j =

{
fj ·Wδ, δ = i− j ≥ 0,
∀, otherwise,

weighted sum: f ′
i =

N∑
j=1

αi,j × vi,j .

As shown in Figure 6, compared to the original variant, causal 1D Translution reduces by half the
number of parameters needed to compute the query, key and value representations.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

input 𝑭 ∈ ℝ!×#

scale

softmax

output 𝑭$ ∈ ℝ!×#!

elementwise mul

∑

𝒗%,' = 𝒇% ( 𝑾(
)

𝛿 = 𝑖 − 𝑗

𝑾!*+
,𝑾-

, ⋯

causal mask

𝑾!*+
)𝑾-

) ⋯𝑾*(!*+)
0 𝑾-

0⋯

𝒒%,' = 𝒇% ( 𝑾(
,

query tensor
𝐐 ∈ ℝ!×!×#!

key tensor
𝐊 ∈ ℝ!×!×#!

matmul: 𝒂%,' =	𝒒%,' ( 𝒌',%1

𝒌𝒋,% = 𝒇% ( 𝑾*(
0

value tensor
𝐕 ∈ ℝ!×!×#!

attention matrix
𝑨 ∈ ℝ!×!×+

Figure 6: Illustration of causal 1D Translution. For a sequence of length N , it employs N parameter
matrices to encode relative language structure. Compared to the original 1D Translution, the causal
variant reduces the number of parameters required to compute Query, key and Value by half.

D MEMORY-EFFICIENT IMPLEMENTATION OF LOR-TRANSLUTION:
OPTIMIZING RUNTIME MEMORY USAGE

Recall that α-Transformer is defined as follows,

LoR−Translution: f ′
i =

N∑
j=1

αi,j × fj · (W v +W v1 ·W v
δx,δy ·W v2),

where W v ∈ RC×C′
, W v1 ∈ RC×C1

, W v
δx,δy

∈ RC1×C2

, W v2 ∈ RC2×C′
, and C1 ≪ C,

C2 ≪ C ′. Although this variant significantly reduces the number of parameters, it still demands
considerable runtime memory. Specifically, as shown in Figure 3, the resulting value tensor of
Translution is V ∈ RN×N×C′

, which is considerably larger than the Transformer’s value matrix
V ∈ RN×C′

. To address this issue, we implement LoR-Translution as follows,

f ′
i =

N∑
j=1

αi,j × fj ·W v +
( N∑

j=1

αi,j × fj · (W v1 ·W v
δx,δy )

)
·W v2.

This reformulation reduces the peak runtime memory usage from N ×N × C ′ to N × C ′ +N ×
N × C2, where C2 ≪ C ′, thus significantly alleviating memory demands during computation.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E COMPARISON WITH EXISTING POSITION MODELING METHODS

Existing methods typically encode positional information by introducing additional positional biases
(either scalars or vectors). In this paper, inspired by convolution, we propose an alternative approach
that employs offset-based matrices for relative encoding. In this section, we provide a detailed
comparison between these approaches. Suppose xi ∈ R1×C represents the feature or representation
of the i-th patch, located at (xi, yi) in an image composed of N = H ×W patches.

1. Baseline (Self-attention w/o Positional Embedding)

We consider the self-attention without position embedding as the baseline, formulated as follows:

w/o input position embedding : fi = xi,

query encoding : qi = fi ·Wq,

key encoding : kj = fj ·Wk,

attention: ai,j =
qi · kT

j√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

value encoding : vj = fj ·Wv,

weighted sum: f ′
i =

N∑
j=1

αi,j × vj .

2. Transformer (Self-attention with Positional Embedding)

Most Transformers, including the original Transformer (Vaswani et al., 2017), employ position em-
bedding to incorporate positional information. Specifically, they integrate absolute positions into
element representations, formulated as follows:

w/ input position embedding : fi = xi + Embed(xi, yi),

query encoding : qi = fi ·Wq,

key encoding : kj = fj ·Wk,

attention: ai,j =
qi · kT

j√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

value encoding : vj = fj ·Wv,

weighted sum: f ′
i =

N∑
j=1

αi,j × vj .

3. Relative Key Vector

Shaw et al. (2018) enhanced Transformer for language modeling by adding learnable relative po-
sitional vectors into the key computations. BoTNet (Srinivas et al., 2021) and HaloNet (Vaswani
et al., 2021) extended this approach to two dimensions for image processing by adding learnable
relative positional vectors into the key computation. This can be formulated as follows,

w/o input position embedding : fi = xi,

query encoding : qi = fi ·Wq,

key encoding : kj = fj ·Wk + rδx,δy ,

attention: ai,j =
qi · kT

j√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

value encoding : vj = fj ·Wv,

weighted sum: f ′
i =

N∑
j=1

αi,j × vj ,

where rδx,δy ∈ R1×C′
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

4. Relative Value Vector

Shaw et al. (2018) also extended the above relative vector method to the value computations, as
follows:

w/o input position embedding : fi = xi,

query encoding : qi = fi ·Wq,

key encoding : kj = fj ·Wk,

self−attention: ai,j =
qi · kT

j√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

value encoding : vj = fj ·Wv + rδx,δy ,

weighted sum: f ′
i =

N∑
j=1

αi,j × vj .

5. Relative Positional Scalar

Swin Transformer (Liu et al., 2021) and CoAtNet (Dai et al., 2021) incorporate a learnable relative
positional bias (a scalar) into the attention score. In these methods, the original self-attention can
be regarded as content attention, which measures relationships from the token-feature perspective,
while the additional relative positional bias can be regarded as position attention, which measures
relationships from the token-position perspective. Formally, this can be expressed as follows:

w/o input position embedding : fi = xi,

query encoding : qi = fi ·Wq,

key encoding : kj = fj ·Wk,

attention: ai,j =
qi · kT

j√
C ′

+ bδx,δy , αi,j =
eai,j∑N

n=1 e
ai,n

,

value encoding : vj = fj ·Wv,

weighted sum: f ′
i =

N∑
j=1

αi,j × vj ,

where bδx,δy ∈ R. ConViT (d’Ascoli et al., 2021) introduces Gated Positional Self-Attention
(GPSA), a variant of self-attention that incorporates a positional inductive bias. Moreover, a learn-
able gating parameter in each attention head controls the balance between positional and content-
based attention, as follows,

w/o input position embedding : fi = xi,

query encoding : qi = fi ·Wq,

key encoding : kj = fj ·Wk,

patch attention: ai,j =
qi · kT

j√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

position attention: bi,j = w · r∥δ∥, βi,j =
ebi,j∑N

n=1 e
bi,n

,

gated attention: ci,j =
(
1− σ(λ)

)
× αi,j + σ(λ)× βi,j , ξi,j =

ci,j∑N
n=1 ci,n

,

value encoding : vj = fj ·Wv,

weighted sum: f ′
i =

N∑
j=1

ξi,j × vj ,

where w is a trainable vector for embedding, r∥δ∥ is the relative positional encoding, λ is a learnable
gate and σ is the Sigmoid function.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

6. Rotary Position Embedding

Unlike the above vector- and scalar-based methods, RoFormer (Su et al., 2024) proposes a rotation-
based positional encoding method that is applied directly to queries and keys. As a result, attention
scores depend solely on relative distances, eliminating the need to explicitly store a positional vector
or scalar, as follows,

w/o input position embedding : fi = xi,

query encoding : qi = fi ·Wq,

key encoding : kj = fj ·Wk,

attention: q′
i, k

′
j = rotary(qi, kj), ai,j =

q′
i · k′

j
T

√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

value encoding : vj = fj ·Wv,

weighted sum: f ′
i =

N∑
j=1

αi,j × vj ,

where rotary(·) is a rotary position embedding function.

7. Relative Positional Matrix (Translution)

Inspired by convolution, we propose Translution that performs matrix multiplication to produce a
vector output that encodes displacement or offset information, defined as follows:

w/o input position embedding : fi = xi,

relative query encoding : qi,j = fi ·W q
δx,δy

,

relative key encoding : kj,i = fj ·W k
−δx,−δy ,

relative attention: ai,j =
qi,j · kT

j,i√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

relative value encoding : vi,j = fj ·W v
δx,δy ,

weighted sum: f ′
i =

N∑
j=1

αi,j × vi,j .

Table 9 provides a summary of various positional encoding strategies.

Table 9: Summary of different position encoding strategies.

Method
w/o Pos Emb fi = xi Baseline
w/ Pos Emb fi = xi + Embed(xi, yi) Transformer (Vaswani et al., 2017)

Relative Positional Vector Key Shaw et al. (2018), BoTNet (Srinivas
et al., 2021), HaloNet (Vaswani et al.,
2021), etc

Value Shaw et al. (2018)

Relative Positional Scalar w/o gating Swin Transformer (Liu et al., 2021),
CoAtNet (Dai et al., 2021), etc

w/ gating ConViT (d’Ascoli et al., 2021)
Rotary Position Embedding RoFormer (Su et al., 2024)

Relative Positional Matrix LoR-Translution
Translution

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F TRANSLUTION WITH INPUT POSITIONAL EMBEDDING

In this section, we examine whether incorporating the input positional embedding method from
Transformer can further improve Translution. To this end, we implement Translution as follows:

w/ input position embedding : fi = xi + Embed(xi, yi),

relative query encoding : qi,j = fi ·W q
δx,δy

,

relative key encoding : kj,i = fj ·W k
−δx,−δy ,

relative attention: ai,j =
qi,j · kT

j,i√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

relative value encoding : vi,j = fj ·W v
δx,δy ,

weighted sum: f ′
i =

N∑
j=1

αi,j × vi,j .

As shown in Table 10, incorporating the Transformer’s absolute positional embedding does not yield
a clear performance gain for Translution in the static-to-static setting, leads to a slight drop in the
dynamic-to-dynamic setting, and results in a substantial drop in the static-to-dynamic setting.

Table 10: Accuracy (%) of Translution w/o and w/ the absolute positional embedding method from
Transformer. Results are reported on Static and Dynamic MNIST with ViT-A/12.

Method Embed(xi, yi) #Params FLOPs Static→Static Dynamic→Dynamic Static→Dynamic

LoR-Translution ✗ 4.6 M 146.4 M 98.48 97.31 34.90
✓ 98.72 96.81 17.20

Translution ✗ 116.2 M 140.5 M 98.60 97.35 36.24
✓ 98.47 96.31 16.50

G IMPACT OF Wq , Wk AND Wv ON LOR-TRANSLUTION

Recall that: To reduce the number of parameters, we propose LoR-Translution, which decreases
both the input dimension C1 and the output dimension C2 of each W q

δx,δy
, W k

δx,δy
, and W v

δx,δy
.

However, setting C1 and C2 too small can overly compress the query, key, and value representations,
thereby degrading performance. To address this issue, we integrate the W q , W k, and W v of
Transformer into LoR-Translution to better preserve essential information.

In this section, we analyze the impact of W q , W k, and W v by systematically removing them from
Eq. (2) as follows:

LoR−Translution



query encoding : qi,j = fi ·W q
1 ·W q

δx,δy
, (((((((

qi = fi ·W q,

key encoding : kj,i = fj ·W k
1 ·W k

−δx,−δy , (((((((
kj = fj ·W k,

self−attention: ai,j =
qi,j · kT

j,i +�
���qi · kT

j√
C ′

, αi,j =
eai,j∑N

n=1 e
ai,n

,

value encoding : vi,j = fj · (W v
1 ·W v

δx,δy ·W v
2 +��W v),

weighted sum: f ′
i =

N∑
j=1

αi,j × vi,j .

As shown in Table 11, incorporating W q , W k, and W v significantly enhances the performance of
LoR-Translution, particularly when C1 and C2 are small. As C1 and C2 grow larger, the improve-
ment decreases because the information is no longer overly compressed. In this case, W q , W k, and
W v become less critical.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Impact of W q , W k and W v on LoR-Transformer. Results are reported on ImageNet-1K
with ViT-A/56, trained from scratch (no external pretraining) using a batch size of 256.

Relative Encoding Dimension W q , W k, W v #Parameters FLOPs Top-1 Top-5
C1 = C2 = 0 ✓ 4.68 M 75.9 M 42.49 67.39

C1 = C2 = 2
✗ 4.08 M 64.4 M 31.77 56.66
✓ 4.75 M 76.3 M 46.10 71.29

C1 = C2 = 4
✗ 4.21 M 64.9 M 37.46 62.72
✓ 4.89 M 76.8 M 47.61 72.18

C1 = C2 = 8
✗ 4.67 M 66.0 M 41.81 67.23
✓ 5.33 M 77.9 M 48.36 73.31

C1 = C2 = 16
✗ 6.40 M 68.4 M 44.87 69.91
✓ 7.06 M 80.3 M 48.91 73.65

C1 = C2 = 32
✗ 13.09 M 74.3 M 47.27 72.20
✓ 13.75 M 86.2 M 50.07 74.84

H RELATIVE CLS TOKEN

For classification tasks, besides the image tokens, there is an additional CLS token (classification to-
ken) that serves as a global representation of the input image. Usually, the CLS token is a learnable
embedding appended at the beginning of the input token sequence fed into Transformer. To apply
the strategy of relative encoding to the CLS token, we introduce additional parameters: W q

CLS in,
W q

CLS , W q
CLS out, W

k
CLS in, W k

CLS , W k
CLS out, and W v

CLS in, W v
CLS , W v

CLS out, correspond-
ing to the query, key, and value, respectively.

CLS ⋮𝑾!"#

𝑾!"#_%&'

𝑾!"#_()

Figure 7: Illustration of relative encoding for the CLS token. For CLS, there are three encoding
directions: in, in-place, and out. Correspondingly, three sets of weights, i.e., WCLS in, WCLS , and
WCLS out, are introduced for relative encoding in each respective direction.

As shown in Figure 7, WCLS in is utilized when gathering information from the image tokens to
update the CLS token; WCLS is applied when updating the CLS token based on its own information;
and WCLS out is employed when image tokens gather information from the CLS token to update
themselves.

20


	Introduction
	Identification of Relevant Elements
	Encoding of Relevant Elements
	Unification of Convolution and Transformer

	Related Work
	Preliminary: Convolution and Self-attention
	Convolution
	Self-attention
	Translution
	mygreenLoR-Translution

	Experiment
	Image Classification with ViT
	Dynamic MNIST
	ImageNet
	Ablation Study

	Natural Language Modeling with GPT

	Conclusion
	Default Notation
	General Translution
	1D Translution for Natural Language Processing
	Memory-Efficient Implementation of mygreenLoR-Translution: Optimizing Runtime Memory Usage
	Comparison with Existing Position Modeling Methods
	Translution with Input Positional Embedding
	 Impact of Wq, Wk and Wv on mygreenLoR-Translution
	Relative CLS Token

