

TRANSLUTION: UNIFYING SELF-ATTENTION AND CONVOLUTION FOR ADAPTIVE AND RELATIVE MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

When modeling a given type of data, we consider it to involve two key aspects: 1) identifying relevant elements (*e.g.*, image pixels or textual words) to a central element, as in a convolutional receptive field, or to a query element, as in self-attention, and 2) encoding these tokens effectively. Self-attention can adaptively identify these elements but relies on absolute positional embedding for structural representation learning. In contrast, convolution encodes elements in a relative manner, yet their fixed kernel size limits their ability to adaptively select the relevant elements. In this paper, we introduce Translution, an operation that unifies the adaptive identification capability of self-attention and the relative encoding advantage of convolution. However, this integration leads to a substantial increase in the number of parameters, exceeding most currently available computational resources. Therefore, we propose a [lightweight low-rank variant of Translution](#), named [LoR-Translution](#). Experiments on computer vision and natural language processing tasks show that Translution (including [LoR-Translution](#)) achieves superior accuracy compared to self-attention. The code has been included in the supplementary materials and will be released soon.

1 INTRODUCTION

Recent evidence suggests that directly scaling up deep neural networks, particularly Transformers (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019; Dosovitskiy et al., 2021), with additional data and parameters is encountering diminishing returns. Leading Artificial Intelligence (AI) labs have similarly noted slower-than-anticipated improvements in next-generation models, despite extensive training efforts. Given the saturation of available data and limitations imposed by current scaling laws, it is crucial now to reflect on past successes and pursue the design of innovative neural networks to sustain future progress in deep learning.

When employing deep neural networks to model a specific type of data, the process can be decomposed into two key aspects: 1) identifying relevant data elements and 2) encoding these elements into effective representations. When using convolutional neural networks (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016) to process images, the basic element is pixel. When using Transformers, the element is word for natural language processing and patch for visual tasks.

1.1 IDENTIFICATION OF RELEVANT ELEMENTS

In convolution, as shown in Figure 1 (a), the relevant element identification step is handled by convolutional filters (kernels) with a fixed local receptive field. This fixed kernel defines a neighborhood that is considered relevant to the center. For visual data like images, such local focus is often effective because spatially adjacent pixels tend to be related (*e.g.*, forming parts of the same object). However, the rigid nature of a fixed-size kernel makes convolution inevitably cover irrelevant pixels, especially near object boundaries or in background areas that fall inside the window.

In contrast, as shown in Figure 1 (b), self-attention (Vaswani et al., 2017) can adaptively identify relevant regions. Instead of being limited to a predetermined locality, it allows the model to dy-

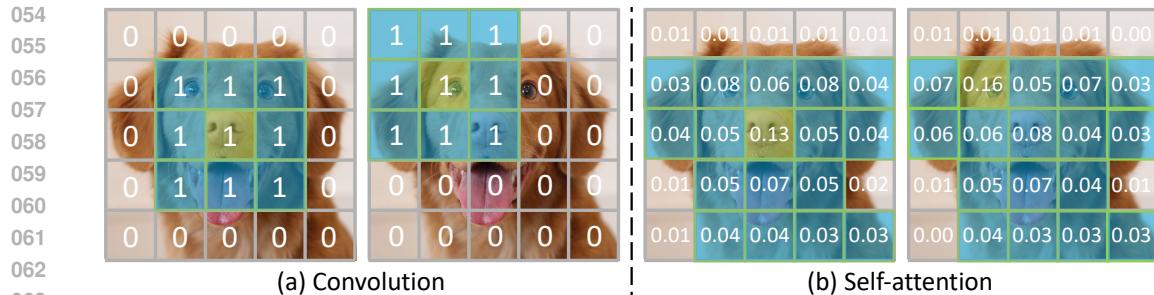


Figure 1: Difference between convolution and self-attention in identifying relevant elements (blue patches) for the kernel center or query element (yellow patch). Here, convolution is assumed to operate on image patches. 1) Convolution utilizes a fixed kernel size to define a neighborhood of elements considered relevant, inevitably including some irrelevant regions, particularly near object boundaries or within background areas inside the window. The fixed receptive field in convolution can be interpreted as a special case of attention, where the attention score is set to 1 within the receptive field and 0 outside it. 2) Self-attention adaptively identifies relevant elements by assigning greater attention scores to areas with higher relevance, thereby mitigating the inclusion of noisy or irrelevant information.

namically attend to relevant regions. This means that self-attention can focus on important features regardless of their physical distance. This capability provides greater flexibility compared to the convolution’s fixed receptive field.

1.2 ENCODING OF RELEVANT ELEMENTS

When it comes to encoding the structure from these relevant elements, convolution and self-attention employ different strategies. As shown in Figure 2 (a), a convolutional kernel learns distinct parameters $\{\mathbf{W}_{\delta_x, \delta_y}\}$ for each relative direction and distance within its receptive field. In other words, the filter has separate parameters $\mathbf{W}_{\delta_x, \delta_y}$ for each offset δ_x, δ_y from the center. This design enables convolution to encode local structure relatively — capturing orientation and distance relationships.

In contrast, as shown in Figure 2 (b), self-attention uses three shared sets of parameters \mathbf{W}^q , \mathbf{W}^k and \mathbf{W}^v to process inputs for all positions. Consequently, the query, key and value of self-attention do not encode whether one patch is to the left or right of another. To introduce positional information, Transformer incorporates absolute positional embeddings into the input features at the outset. Although these embeddings enable Transformer to infer order or spatial relationships, they introduce noise into each token’s representation. The absolute position information becomes part of the input features. Consequently, when the same object moves to a different location, Transformer may struggle to recognize it.

1.3 UNIFICATION OF CONVOLUTION AND TRANSFORMER

In summary, convolution encodes structure through fixed local filters with position-specific weights, whereas self-attention relies on adaptive global attention and requires absolute positional encoding to capture order or spatial structures.

In this paper, we introduce Translution, a new type of operation that unifies the adaptive identification capability of self-attention with the relative encoding advantage of convolution. Specifically, Translution employs a convolution-style approach that assigns separate parameters (matrices) to each distance and direction when computing the query, key and value. This design enables Translution to effectively encode relative structures.

However, this unification leads to a significant increase in the number of parameters and exceeds most currently available computational resources. Therefore, we propose a lightweight variant of Translution, named **LoR-Translution**, which significantly reduces the number of parameters. This variant achieves lower accuracy than the “ideal” (original) Translution but better accuracy than self-attention.

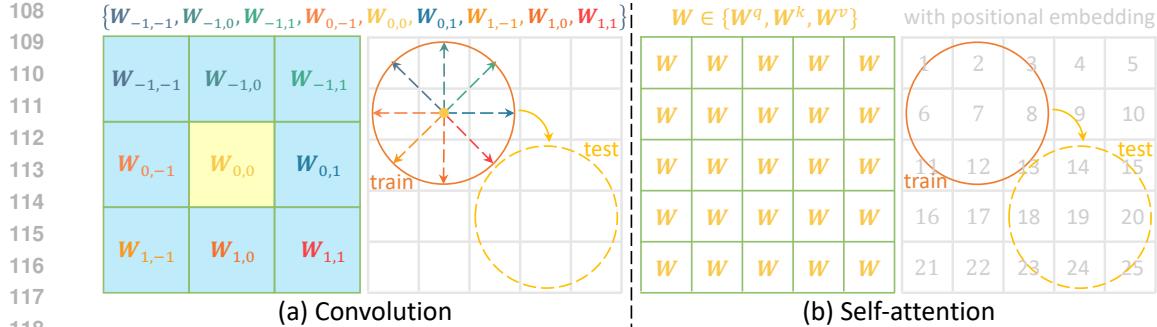


Figure 2: Difference between convolution and self-attention in encoding relevant elements: consider the scenario where convolution and self-attention are capturing the structure of a circle. 1) Convolution learns separate parameters $\{W_{\delta_x, \delta_y}\}$ for each offset, where $\delta_x, \delta_y \in [-1, 1]$, from the kernel center, allowing it to effectively encode relative local structures. Thus, when the circle appears in a different location, it is still readily recognized due to this relative awareness. 2) Self-attention incorporates absolute position into each token’s representation and uses position-irrelevant parameters $W \in \{W^q, W^k, W^v\}$ across all tokens for computing query, key and value, respectively. While this method facilitates general processing, the inclusion of absolute positional embeddings makes it more challenging to recognize the circle when it is moved to a different location.

As a fundamental operation, we investigate whether Translution can outperform self-attention. We conduct experiments on two widely-used Transformer architectures: Vision Transformer (ViT) (Dosovitskiy et al., 2021) for computer vision tasks and Generative Pre-trained Transformer (GPT) (Radford et al., 2018; 2019; Brown et al., 2020) for natural language processing tasks. Experiments demonstrate that Translution and LoR-Translution surpass self-attention in terms of accuracy.

2 RELATED WORK

Transformer (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019; Dosovitskiy et al., 2021; Liu et al., 2021; Touvron et al., 2021) eschews recurrence (as used in recurrent neural networks) and kernel size (as used in convolutional neural networks), instead employing self-attention for relevant region identification. Because it has no built-in notion of order, Transformer incorporates explicit absolute positional embeddings into token embeddings, enabling the model to utilize sequence order. Subsequent work has explored “relative attention” (Shaw et al., 2018; Huang et al., 2019; Parmar et al., 2019; Dai et al., 2019; Tsai et al., 2019; Raffel et al., 2020; Dai et al., 2021), which integrates relative position information into self-attention. They can be categorized into three families: 1) *Relative positional vector*: Shaw et al. enhanced Transformer for language modeling by adding learnable relative positional vectors into the key and value computations, respectively (Shaw et al., 2018). BoTNet (Srinivas et al., 2021) and HaloNet (Vaswani et al., 2021) extended this approach to two dimensions for image processing by adding learnable relative positional vectors into key. 2) *Relative positional scalar*: Swin Transformer (Liu et al., 2021), CoAtNet (Dai et al., 2021), and ConViT d’Ascoli et al. (2021) incorporate a learnable relative positional bias (a scalar) into the attention score. In these methods, the original self-attention can be regarded as content attention, which measures relationships from the token-feature perspective, while the additional relative positional bias can be regarded as position attention, which measures relationships from the token-position perspective. 3) *Rotary position embedding*: RoFormer (Su et al., 2024) introduces a rotary position embedding mechanism, which encodes relative positional information by applying a rotation operation in the Query and Key representation space. Unlike these existing methods, Translution employs a convolution-style approach that uses relative positional matrices for query, key and value computation. Section D provides a formal comparison of these methods.

Convolutional neural networks (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016) have been the backbone of deep learning for years. By using small, shared kernels and pooling, convolutional neural networks efficiently capture local patterns. Recent architectural developments integrate self-attention with convolution. For instance, X-volution Chen et al. (2021) introduces a theoretically grounded self-attention approximation that unifies local and global interactions within a multi-branch module, which can be structurally re-

162 parameterized into a single convolution operator for efficient deployment. Conformer (Gulati et al.,
 163 2020) combines convolution layers and self-attention layers to capture both local and global depen-
 164 dencies in audio sequences. Similarly, CeiT (Yuan et al., 2021) uses convolutions to extract low-
 165 level features and self-attention to model long-range dependencies. Restormer Zamir et al. (2022)
 166 integrates Transformer blocks with two key components, *i.e.*, Multi-DConv Head Transposed At-
 167 tention and the Gated DConv Feed-Forward Network, forming an efficient architecture tailored for
 168 high-resolution image restoration. It can captures long-range pixel dependencies in the spirit of
 169 Transformers, while retaining the scalability and practicality of CNNs for large images. Unlike
 170 most existing methods, Translution operates at the basic module or layer level, blending the advan-
 171 tages of self-attention and convolution into a unified fundamental operation. It preserves the same
 172 input–output interface as self-attention while augmenting it with relative positional encoding capa-
 173 bilities on top of self-attention’s adaptive modeling. It is fully compatible with existing self-attention
 174 implementations.

3 PRELIMINARY: CONVOLUTION AND SELF-ATTENTION

3.1 CONVOLUTION

179 Suppose $\mathbf{f}_{x,y} \in \mathbb{R}^{1 \times C}$ denotes the feature or representation at location (x, y) in an image of height
 180 H and width W , where C is the number of the input feature channels. Convolution is designed to
 181 capture the local structure centered at (x, y) with a fixed kernel size $h \times w$,
 182

$$\mathbf{f}'_{x,y} = \sum_{\delta_x=-\lfloor h/2 \rfloor}^{\lfloor h/2 \rfloor} \sum_{\delta_y=-\lfloor w/2 \rfloor}^{\lfloor w/2 \rfloor} \mathbf{f}_{x+\delta_x, y+\delta_y} \cdot \mathbf{W}_{\delta_x, \delta_y},$$

186 where $\mathbf{W}_{\delta_x, \delta_y} \in \mathbb{R}^{C \times C'}$ denotes the learnable parameters corresponding to the displacement
 187 (δ_x, δ_y) , C' indicates the output feature dimension, and \cdot denotes matrix multiplication. By as-
 188 signing a set of parameters for each offset within the receptive field, convolution is able to discern
 189 direction and distance, and capture the local structure relatively. This means that when the absolute
 190 location of an object changes, it can still capture the same structure. However, convolution employs
 191 a rigid method to identify relevant regions, *i.e.*, using a fixed-size window, making it inevitably
 192 include irrelevant pixels or regions — particularly near object boundaries or in background areas
 193 within the window.

3.2 SELF-ATTENTION

197 Suppose $\mathbf{x}_i \in \mathbb{R}^{1 \times C}$ represents the feature or representation of the i -th patch at location (x_i, y_i) .
 198 Transformer (Vaswani et al., 2017) first incorporates the embedding of absolute position into the
 199 input \mathbf{x}_i , as follows,

$$200 \quad \text{input positional embedding: } \mathbf{f}_i = \mathbf{x}_i + \text{Embed}(x_i, y_i).$$

202 Then, self-attention performs two separate linear projections on the feature to generate query $\mathbf{q}_i \in$
 203 $\mathbb{R}^{1 \times C'}$ and key $\mathbf{k}_j \in \mathbb{R}^{1 \times C'}$, where C' is the dimension for query or key,

$$204 \quad \text{query encoding: } \mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}^q,$$

$$206 \quad \text{key encoding: } \mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}^k,$$

207 where $\mathbf{W}^q / \mathbf{W}^k \in \mathbb{R}^{C \times C'}$. Subsequently, scaled dot-product attention is computed for each query,
 208 and a softmax function is applied to normalize the attention weights for a query across all positions,
 209

$$210 \quad \text{attention: } a_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}},$$

213 where $N = H \times W$. Next, self-attention conducts another linear projection on the input feature to
 214 generate value $\mathbf{v}_i \in \mathbb{R}^{1 \times C'}$, as follows,
 215

$$\text{value encoding: } \mathbf{v}_i = \mathbf{f}_i \cdot \mathbf{W}^v,$$

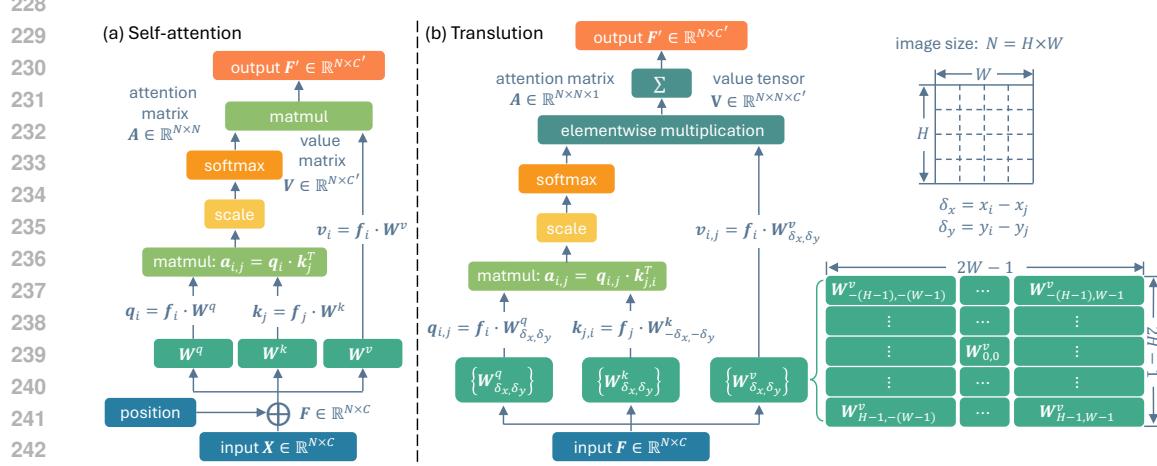
216 where $\mathbf{W}_v \in \mathbb{R}^{C \times C'}$. Finally, the output is computed as a weighted sum of the values, *i.e.*,

218
219
220
221

$$\text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_j,$$

222 where $\mathbf{f}'_i \in \mathbb{R}^{1 \times C'}$. In this way, self-attention can adaptively search for related regions, providing
223 greater flexibility than methods that use local fixed-size windows. However, unlike convolution,
224 which learns a feature encoding for every direction and distance, self-attention does not encode the
225 structure in a relative manner.

226
227 **3.3 TRANSLUTION**



243 Figure 3: Comparison of self-attention and Translution. 1) Self-attention employs three shared
244 sets of weights, *i.e.*, \mathbf{W}^q , \mathbf{W}^k , and \mathbf{W}^v , across all patches to compute query, key, and value,
245 respectively. 2) Translution uses separate parameters for each offset (direction and distance), *i.e.*,
246 $\{\mathbf{W}_{\delta_x, \delta_y}^q\}$, $\{\mathbf{W}_{\delta_x, \delta_y}^k\}$ and $\{\mathbf{W}_{\delta_x, \delta_y}^v\}$, to encode relative structures.

247 Translution is designed to integrate the adaptive related region identification capabilities of self-
248 attention with the relative encoding strengths of convolution. Specifically, as shown in Figure 3,
249 Translution employs a convolution-style formulation by assigning different parameters to compute
250 query, key, and value, respectively, as follows:

251
252
253
254
255
256
257
258
259
260
261
262

$$\text{Translution} \left\{ \begin{array}{l} \text{relative query encoding: } \mathbf{q}_{i,j} = \mathbf{f}_i \cdot \mathbf{W}_{\delta_x, \delta_y}^q, \delta_x = x_i - x_j, \delta_y = y_i - y_j, \\ \text{relative key encoding: } \mathbf{k}_{j,i} = \mathbf{f}_j \cdot \mathbf{W}_{-\delta_x, -\delta_y}^k, \\ \text{relative attention: } a_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T}{\sqrt{C'}}, \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\ \text{relative value encoding: } \mathbf{v}_{i,j} = \mathbf{f}_j \cdot \mathbf{W}_{\delta_x, \delta_y}^v, \\ \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_{i,j}, \end{array} \right. \quad (1)$$

263 where $\mathbf{W}_{\delta_x, \delta_y}^q / \mathbf{W}_{\delta_x, \delta_y}^k / \mathbf{W}_{\delta_x, \delta_y}^v \in \mathbb{R}^{C \times C'}$, represent the learnable parameter matrices for the query,
264 key, and value corresponding to the displacement (δ_x, δ_y) .

265 *Translution unifies convolution and self-attention.*

266 The fixed receptive field in convolution can be interpreted as a special case of attention, where the
267 attention score is set to 1 within the receptive field and 0 outside it, as shown in Figure 2. The weights
268 \mathbf{W}^q , \mathbf{W}^k , and \mathbf{W}^v in self-attention serve as shared linear projections that are uniformly applied
269 across all spatial directions and distances. Consequently, Translution integrates the functionalities

270 of convolution and self-attention, as follows,
 271

$$\text{Convolution: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{f}_j \cdot \mathbf{W}_{\delta_x, \delta_y}, \quad \text{where } \alpha_{i,j} = \begin{cases} 1, & (\delta_x, \delta_y) \in \text{kernel}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\text{Self-attention: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{f}_j \cdot \mathbf{W}^v, \quad \text{where } \alpha_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}.$$

$$\text{Translution: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{f}_j \cdot \mathbf{W}_{\delta_x, \delta_y}^v, \quad \text{where } \alpha_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}.$$

277 In other words, convolution and self-attention can be viewed as specific instances of Translution,
 278 where convolution simplifies the attention mechanism and self-attention omits the encoding of di-
 279 rection and distance.

281 3.4 LoR-TRANSLUTION

283 Suppose there are $H \times W$ input image patches. The relative encoding method in Translution
 284 requires $(2H - 1) \times (2W - 1) \times C \times C'$ parameters. Specifically, it requires one pa-
 285 rameter matrix $\mathbf{W}_{\delta_x, \delta_y}^q$, $\mathbf{W}_{\delta_x, \delta_y}^k$ or $\mathbf{W}_{\delta_x, \delta_y}^v \in \mathbb{R}^{C \times C'}$ for each relative position (δ_x, δ_y) , where
 286 $\delta_x \in \{-(H - 1), \dots, 0, \dots, H - 1\}$ and $\delta_y \in \{-(W - 1), \dots, 0, \dots, W - 1\}$. This approach
 287 leads to excessive parameter demands, making it impractical for most computational devices cur-
 288 rently. For instance, in the ViT/16 architecture (Dosovitskiy et al., 2021) with input resolution
 289 224×224 , we have $H = W = \frac{224}{16} = 14$, resulting in $(2H - 1) \times (2W - 1) = 729$ distinct weight
 290 matrices for query, key or value. To reduce the number of parameters, inspired by LoRA (Hu et al.,
 291 2021), we propose a variant of Translution, *i.e.*, **LoR-Translution**, which decreases both the input
 292 dimension C and the output dimension C' of each $\mathbf{W}_{\delta_x, \delta_y}^q$, $\mathbf{W}_{\delta_x, \delta_y}^k$, and $\mathbf{W}_{\delta_x, \delta_y}^v$, as follows:

$$\mathbf{W}_{\delta_x, \delta_y}^q \Rightarrow \mathbf{W}_1^q \cdot \mathbf{W}_{\delta_x, \delta_y}^q, \quad \mathbf{W}_{\delta_x, \delta_y}^k \Rightarrow \mathbf{W}_1^k \cdot \mathbf{W}_{\delta_x, \delta_y}^k, \quad \mathbf{W}_{\delta_x, \delta_y}^v \Rightarrow \mathbf{W}_1^v \cdot \mathbf{W}_{\delta_x, \delta_y}^v \cdot \mathbf{W}_2^v,$$

293 where $\mathbf{W}_1^q / \mathbf{W}_1^k / \mathbf{W}_1^v \in \mathbb{R}^{C \times C^1}$, $\mathbf{W}_{\delta_x, \delta_y}^q / \mathbf{W}_{\delta_x, \delta_y}^k / \mathbf{W}_{\delta_x, \delta_y}^v \in \mathbb{R}^{C^1 \times C^2}$, $\mathbf{W}_2^v \in \mathbb{R}^{C^2 \times C'}$, and $C^1 \ll$
 294 $C, C^2 \ll C'$. Smaller values of C^1 and C^2 will significantly reduce the number of parameters.

295 However, setting C^1 and C^2 too small may overly compress the query, key and value information,
 296 negatively impacting performance. To preserve the information, we incorporate the query, key
 297 and value computation mechanism of self-attention into **LoR-Translution**. Specifically, the updated
 298 computation is defined as follows:

$$\text{LoR-Translution} \left\{ \begin{array}{l} \text{query encoding: } \mathbf{q}_{i,j} = \mathbf{f}_i \cdot \mathbf{W}_1^q \cdot \mathbf{W}_{\delta_x, \delta_y}^q, \quad \mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}^q, \\ \text{key encoding: } \mathbf{k}_{j,i} = \mathbf{f}_j \cdot \mathbf{W}_1^k \cdot \mathbf{W}_{-\delta_x, -\delta_y}^k, \quad \mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}^k, \\ \text{attention: } \alpha_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T + \mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\ \text{value encoding: } \mathbf{v}_{i,j} = \mathbf{f}_j \cdot (\mathbf{W}_1^v \cdot \mathbf{W}_{\delta_x, \delta_y}^v \cdot \mathbf{W}_2^v + \mathbf{W}^v), \\ \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_{i,j}. \end{array} \right. \quad (2)$$

312 In this way, **LoR-Translution** not only possesses relative modeling capability but also reduces the
 313 number of parameters.

315 4 EXPERIMENT

317 In this section, as a fundamental operation, our primary objective is to compare Translution with
 318 self-attention, rather than to achieve state-of-the-art performance through specialized network ar-
 319 chitectures or extensive training techniques. To this end, we conduct experiments using two widely
 320 adopted Transformer architectures:

- 321 • Vision Transformer (ViT) (Dosovitskiy et al., 2021) for computer vision tasks.
- 322 • Generative Pre-trained Transformer (GPT) (Radford et al., 2018; 2019; Brown et al., 2020)
 323 for natural language processing tasks. Section C demonstrates how to apply Translution to
 text modeling.

324
325 Table 1 provides an overview of various architecture configures. We substitute self-attention in ViT
326 and GPT with Translution, while maintaining the remaining architecture unchanged.
327

Table 1: Specifics of architecture configures used in this paper.

Architecture	Depth (#Layers)	Embedding Dim (Hidden size)	#Heads	MLP Dim (Feedforward)
A	6	192	3	768
B	12	192	3	768
C	12	384	6	1,536

331 Due to limited computational resources, our evaluation is primarily conducted on small- and
332 medium-scale architectures. Large-scale evaluation can be performed when single-GPU memory
333 capacities approach approximately $2 \sim 3$ TB. All training starts from scratch. The default compres-
334 sion dimensions for the relative encoding in [LoR-Translution](#) are set as $C^1 = C^2 = 8$.
335

336 4.1 IMAGE CLASSIFICATION WITH ViT

337 4.1.1 DYNAMIC MNIST

339 To evaluate the capability of modeling relative structure, we synthesize a dynamic MNIST
340 dataset (Srivastava et al., 2015; Fan & Yang, 2019), where digits (originally sized 28×28 pixels)
341 move within a 84×84 pixel area, as illustrated in Figure 4. For comparison, we also create a
342 static MNIST dataset of the same size, where digits remain fixed at the center of each image.
343

350 Figure 4: Examples of static and dynamic MNIST. Static MNIST digits are fixed at the center of
351 images, whereas dynamic MNIST digits are randomly positioned within the images.
352

353 Table 2: Top-1 accuracy (%) on different MNIST settings with the ViT-A architecture. $\mathcal{A} \rightarrow \mathcal{B}$
354 denotes that models are trained on dataset \mathcal{A} and evaluated on dataset \mathcal{B} .

Arch.	Method	#Params	FLOPs	Static \rightarrow Static	Dyn \rightarrow Dyn	Static \rightarrow Dyn
ViT-A/12	Self-attention (Vaswani et al., 2017)	2.7 M	140.5 M	98.48	92.64	18.18
	LoR-Translution (relative dim = 8)	4.6 M	146.6 M	98.48	97.31	34.90
	Translution	116.2 M	140.5 M	98.60	97.35	36.40
ViT-A/7	Self-attention (Vaswani et al., 2017)	2.7 M	436.6 M	98.52	93.90	19.94
	LoR-Translution (relative dim = 8)	8.3 M	454.2 M	98.81	98.57	40.05
	Translution	355.0 M	436.6 M	98.91	98.60	48.07

361 As shown in Table 2, all models achieve high accuracy when trained and evaluated on static MNIST.
362 However, when digit locations vary, the self-attention’s accuracy significantly decreases, whereas
363 Translution (including [LoR-Translution](#)) still maintains high accuracy. This is because absolute
364 positional embedding makes digit locations part of its representation. Consequently, when digits
365 shift positions, networks may become confused and fail to recognize digits accurately. In con-
366 trast, Translution employs relative encoding, effectively capturing digit structures independently of
367 their absolute locations. This significantly reduces sensitivity to location variability, demonstrating
368 Translution’s superior capability in modeling relative structures. However, when training on static
369 MNIST, the uniformly black image background causes some W_{δ_x, δ_y} not to be well trained. As a
370 result, when evaluated on dynamic MNIST, Translution fails to achieve very high accuracy.

371 Note that although Translution introduces a larger number of parameters, it does not incur addi-
372 tional computational cost compared with self-attention. As shown in Table 2 and the following
373 tables, Translution uses the same amount of computation as self-attention. This is because Translution
374 simply replaces the original projection matrices W^q , W^k , and W^v with their offset-indexed
375 counterparts $\tilde{W}_{\delta_x, \delta_y}^q$, $\tilde{W}_{\delta_x, \delta_y}^k$, and $\tilde{W}_{\delta_x, \delta_y}^v$, without increasing the per-token operations. The compu-
376 tational complexity therefore remains unchanged. In contrast, [LoR-Translution](#) requires additional
377 computation due to the low-rank adaptation applied during the offset-dependent projection, which
increases the processing cost.

378
 379 Table 3: Accuracy (%) on the ImageNet-1K dataset with patch sizes of 56, 32 and 16. Training is
 380 conducted from scratch without pretraining on external datasets, with a batch size of 256.
 381

Architecture	Method	#Params	FLOPs	Top-1	Top-5
ViT-A/56	Self-attention (Vaswani et al., 2017)	4.7 M	75.86 M	46.28	71.17
	LoR-Translation (relative enc dim = 8)	5.3 M	77.92 M	48.36	73.31
	Translution	38.5 M	75.86 M	52.41	76.50
ViT-B/56	Self-attention (Vaswani et al., 2017)	7.4 M	121.8 M	53.75	77.59
	LoR-Translation (relative enc dim = 8)	8.7 M	126.0 M	55.87	79.16
	Translution	75.0 M	121.8 M	59.51	81.97
ViT-C/56	Self-attention (Vaswani et al., 2017)	25.3 M	423.4 M	64.15	84.95
	LoR-Translation (relative enc dim = 8)	30.5 M	440.0 M	66.54	86.49
	Translution	296.0 M	423.4 M	68.05	88.62
ViT-A/32	Self-attention (Vaswani et al., 2017)	3.5 M	169.0 M	57.63	80.96
	LoR-Translation (relative enc dim = 8)	5.3 M	175.0 M	60.26	83.07
	Translution	116.9 M	169.0 M	66.03	86.01
ViT-B/32	Self-attention (Vaswani et al., 2017)	6.1 M	308.0 M	66.13	86.87
	LoR-Translation (relative enc dim = 8)	9.9 M	320.1 M	67.63	87.96
	Translution	223.1 M	308.0 M	70.63	90.10
Translution runs out of memory under the following architectures.					
ViT-C/32	Self-attention (Vaswani et al., 2017)	22.9 M	1.146 G	73.62	91.12
	LoR-Translation (relative enc dim = 8)	38.0 M	1.195 G	74.19	91.52
ViT-A/16	Self-attention (Vaswani et al., 2017)	3.0 M	644.8 M	64.71	86.25
	LoR-Translation (relative enc dim = 8)	10.7 M	668.6 M	69.28	89.24
ViT-B/16	Self-attention (Vaswani et al., 2017)	5.7 M	1.259 G	73.51	91.89
	LoR-Translation (relative enc dim = 8)	21.1 M	1.307 G	76.20	93.04
ViT-C/16	Self-attention (Vaswani et al., 2017)	22.0 M	4.609 G	78.91	94.10
	LoR-Translation (relative enc dim = 8)	85.4 M	4.800 G	79.70	94.52

4.1.2 IMAGENET

405 ImageNet-1K Deng et al. (2009) is a widely used dataset for computer vision research, particularly
 406 in the area of image classification. It contains 1,000 object categories (classes), each with approx-
 407 imately 1,300 training images and 50 validation images, amounting to about 1.28 million training
 408 images and 50,000 validation images in total. Images are resized to 224 × 224. As shown in Ta-
 409 ble 3, compared to self-attention (Vaswani et al., 2017), Translution and **LoR-Translution** effectively
 410 improve ImageNet classification.

411 We compare Translution with existing positional encoding strategies, which typically represent po-
 412 sitional information by introducing additional positional biases, as scalars Liu et al. (2021); d’Ascoli
 413 et al. (2021) or vectors (Vaswani et al., 2017; Shaw et al., 2018). The formal differences between
 414 these approaches are detailed in Section D. As shown in Table 4, compared to existing relative
 415 encoding methods, Translution achieves a notable improvement in accuracy.

416
 417 Table 4: Comparison of different positional encoding strategies. Results are reported on ImageNet-
 418 1K with ViT-A/56, trained from scratch (no external pretraining) using a batch size of 256.

Method	#Parameters	FLOPs	Top-1	Top-5
Self-attention w/o Pos Emb	4.69 M	75.86 M	42.49	67.39
Self-attention w/ Pos Emb (Vaswani et al., 2017)	4.69 M	75.86 M	46.28	71.17
Relative key vector (Shaw et al., 2018)	4.74 M	75.86 M	46.39	71.25
Relative value vector (Shaw et al., 2018)	4.74 M	75.86 M	46.35	71.04
Swin Transformer (Liu et al., 2021)	4.69 M	75.86 M	46.36	71.31
ConViT (d’Ascoli et al., 2021)	4.69 M	76.04 M	46.39	71.44
RoFormer (Su et al., 2024)	4.69 M	75.86 M	46.65	71.51
LoR-Translution	5.33 M	77.92 M	48.36	73.31
Translution	38.53 M	75.86 M	52.41	76.50

4.1.3 ABLATION STUDY

428
 429 1) Is the improvement of Translution (including **LoR-Translution**) caused by the introduction of
 430 additional parameters or the proposed modeling approach based on relative encoding?

Compared to self-attention, which employs three parameter matrices \mathbf{W}^q , \mathbf{W}^k , \mathbf{W}^v to compute query, key and value, Translution uses three groups of parameter matrices $\{\mathbf{W}_{\delta_x, \delta_y}^q\}$, $\{\mathbf{W}_{\delta_x, \delta_y}^k\}$, $\{\mathbf{W}_{\delta_x, \delta_y}^v\}$ for relative encoding, thus introducing more parameters.

To investigate whether the improvement arises from the increased parameter count or from the relative encoding method itself, we conducted the following experiment:

relative encoding: $\mathbf{W}_{\delta_x, \delta_y}^q$, $\mathbf{W}_{\delta_x, \delta_y}^k$, $\mathbf{W}_{\delta_x, \delta_y}^v \Rightarrow$ absolute encoding: $\mathbf{W}_{i,j}^q$, $\mathbf{W}_{i,j}^k$, $\mathbf{W}_{i,j}^v$, where $\delta_x \in \{-(H-1), \dots, 0, \dots, H-1\}$, $\delta_y \in \{-(W-1), \dots, 0, \dots, W-1\}$, and indices $i \in [1, H \times W]$ and $y \in [1, H \times W]$. Specifically, for each pair of patches (i, j) , a distinct parameter matrix is employed to calculate query, key or value, rather than using the shared offset-based matrices. Under this modification, Translution transitions to absolute modeling. Moreover, this adjustment significantly increases the number of parameter matrices from $(2H-1) \times (2W-1)$ to $(H \times W)^2$.

Table 5: Investigation of whether the improvement of Translution arises from the additional parameters or the proposed relative encoding method $(\mathbf{W}_{\delta_x, \delta_y}^q, \mathbf{W}_{\delta_x, \delta_y}^k, \mathbf{W}_{\delta_x, \delta_y}^v)$. Because the absolute encoding method $(\mathbf{W}_{i,j}^q, \mathbf{W}_{i,j}^k, \mathbf{W}_{i,j}^v)$ consumes a large number of parameters, Translation with ViT-A/7 encounters the out-of-memory issue. Therefore, experiments are conducted using ViT-A/12.

Method	Encoding	#Parameters	FLOPs	Static \rightarrow Static	Dynamic \rightarrow Dynamic	Static \rightarrow Dynamic
LoR-Translution	relative	4.6 M	98.48	97.31	34.90	
	absolute	28.7 M	146.4 M	98.42	96.18	25.37
Translution	relative	116.2 M	98.60	97.35	36.40	
	absolute	1660.9 M	140.5 M	98.55	53.79	11.23

As shown in Table 5, although absolute encoding involves significantly more parameters, it achieves lower accuracy than relative encoding. Therefore, simply increasing the number of parameters does not lead to performance improvements.

2) Impact of relative encoding dimension on the performance of LoR-Translution.

To reduce parameter usage, LoR-Translution employs smaller input (C^1) and output (C^2) dimensions for $\{\mathbf{W}_{\delta_x, \delta_y}^q\}$, $\{\mathbf{W}_{\delta_x, \delta_y}^k\}$ and $\{\mathbf{W}_{\delta_x, \delta_y}^v\}$. In our experiments, we set the relative encoding dimensions as $C^1 = C^2 = 8$. This section investigates the impact of varying C^1 and C^2 on performance. As shown in Table 6, increasing the relative encoding dimension improves accuracy but results in more parameters. Therefore, the relative encoding dimension presents a trade-off between efficiency and effectiveness for LoR-Translution. (When $C^1 = C^2 = 0$, it reduces to self-attention without positional embedding.)

Table 6: Impact of relative encoding dimension on the performance of LoR-Translution with ViT-A/56.

Rel Enc Dim	#Params	FLOPs	Top-1	Top-5	Rel Enc Dim	#Params	FLOPs	Top-1	Top-5
$C^1 = C^2 = 0$	4.7 M	75.9 M	42.49	67.39	$C^1 = C^2 = 8$	5.3 M	77.9 M	48.36	73.31
$C^1 = C^2 = 2$	4.7 M	76.3 M	46.10	71.29	$C^1 = C^2 = 16$	7.0 M	80.3 M	48.91	73.65
$C^1 = C^2 = 4$	4.9 M	76.8 M	47.61	72.18	$C^1 = C^2 = 32$	13.8 M	86.2 M	50.07	74.84

4.2 NATURAL LANGUAGE MODELING WITH GPT

To compare Translution and Transformer for natural language processing, we conduct experiments using the OpenWebText dataset (Gao et al., 2020), an openly available reproduction of OpenAI’s proprietary WebText dataset used for GPT-2 (Radford et al., 2019). OpenWebText contains 9 billion training tokens and 4 million validation tokens, with a vocabulary size of 50K. We use perplexity, defined as the exponentiation of the cross-entropy loss, as the evaluation metric, where a lower perplexity indicates stronger language modeling performance. Since the most powerful GPU available to us has 80GB memory, Translution can handle at most a text sequence of length 160 with the GPT-A architecture. Therefore, we conduct the Translution experiment with sequences of length 160. As shown in Table 7, Translution achieves lower perplexity compared to Transformer, demonstrating its effectiveness in natural language modeling.

We compare Translution with existing positional encoding strategies within the GPT architecture on OpenWebText. As shown in Table 8, compared to existing relative encoding methods, Translution achieves a notable decrement in Perplexity.

486 Table 7: Perplexity on OpenWebText using a batch size of 8 and sequence lengths of 160 and 512.
487

Architecture	Method	#Parameters	FLOPs	Perplexity ↓
GPT-A-160	Self-attention (Vaswani et al., 2017)	22.0 M	2.029 G	60.40
	LoR-Translution (relative enc dim = 8)	23.7 M	2.049 G	57.97
	Translution	127.5 M	2.029 G	56.26
Translution runs out of memory under the following architectures.				
GPT-B-160	Self-attention (Vaswani et al., 2017)	24.7 M	2.515 G	54.82
	LoR-Translution (relative enc dim = 8)	28.2 M	2.554 G	52.72
GPT-C-160	Self-attention (Vaswani et al., 2017)	60.0 M	6.729 G	39.88
	LoR-Translution (relative enc dim = 8)	74.0 M	6.884 G	39.25
GPT-A-512	Self-attention (Vaswani et al., 2017)	22.1 M	6.910 G	47.72
	LoR-Translution (relative enc dim = 8)	27.4 M	6.972 G	45.17
GPT-B-512	Self-attention (Vaswani et al., 2017)	24.7 M	8.879 G	43.18
	LoR-Translution (relative enc dim = 8)	35.5 M	9.003 G	39.92

499 Table 8: Comparison of different positional encoding strategies on OpenWebText with GPT-A-160
500 and a batch size of 8.
501

Method	#Parameters	FLOPs	Perplexity ↓
Self-attention w/o Pos Emb	22.0 M	2.029 G	74.51
Self-attention w/ Pos Emb (Vaswani et al., 2017)	22.0 M	2.029 G	60.40
Relative key vector (Shaw et al., 2018)	22.4 M	2.029 G	60.13
Relative value vector (Shaw et al., 2018)	22.4 M	2.029 G	59.35
Swin Transformer (Liu et al., 2021)	22.0 M	2.029 G	59.96
ConViT (d’Ascoli et al., 2021)	22.0 M	2.032 G	59.39
RoFormer (Su et al., 2024)	22.0 M	2.029 G	58.02
LoR-Translution	23.7 M	2.049 G	57.97
Translution	127.5 G	2.029 G	56.26

511

CONCLUSION

513
514 In this paper, we introduce Translution, a new operation that unifies self-attention and convolution
515 for adaptive and relative modeling. Experiments on computer vision and natural language processing
516 tasks demonstrate the effectiveness of Translution.517 However, due to current limited computational resources, the validation in this paper is prelimi-
518 nary. We encourage the community to further evaluate Translution using larger-scale frameworks
519 and datasets in diverse scenarios to verify its broader applicability, particularly when single GPUs
520 equipped with over 2 ~ 3 TB of memory are available.521 Given Translution’s substantial parameter consumption, it is worthwhile to explore optimized vari-
522 ants, such as LoR-Translution. For instance, certain relative positions may share the same parameter,
523 especially when the distance between elements is too long. At the same time, extending Translution
524 to 3D, video, molecule, and other modalities of processing holds significant promise.525 As a fundamental operation, Translution can be employed beyond the ViT and GPT architectures.
526 More effective and efficient architectures for Translution merit further exploration in future.
527528

REFERENCES

531 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
532 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
533 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
534 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
535 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
536 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Conference on*
537 *Neural Information Processing Systems (NeurIPS)*, 2020.538
539 Xuanhong Chen, Hang Wang, and Bingbing Ni. X-volution: On the unification of convolution and
self-attention. *arXiv*, 2021.

540 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. In *Conference of the Association for Computational Linguistics (ACL)*, pp. 2978–2988, 2019.

541

542

543 Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. Coatnet: Marrying convolution and attention for all data sizes. In *Conference on Neural Information Processing Systems (NeurIPS)*, pp. 3965–3977, 2021.

544

545

546

547 Stéphane d’Ascoli, Hugo Touvron, Matthew L. Leavitt, Ari S. Morcos, Giulio Biroli, and Levent Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In *International Conference on Machine Learning (ICML)*, volume 139 of *Proceedings of Machine Learning Research*, pp. 2286–2296, 2021.

548

549

550

551 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 248–255, 2009.

552

553

554

555 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In *Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)*, pp. 4171–4186, 2019.

556

557

558

559 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*, 2021.

560

561

562

563 Hehe Fan and Yi Yang. Pointrnn: Point recurrent neural network for moving point cloud processing. *arXiv*, 1910.08287, 2019.

564

565

566 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb dataset of diverse text for language modeling. *arXiv*, 2101.00027, 2020.

567

568

569 Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented transformer for speech recognition. In *Interspeech*, pp. 5036–5040, 2020.

570

571

572 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.

573

574

575

576 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv*, 2021.

577

578 Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music transformer: Generating music with long-term structure. In *International Conference on Learning Representations (ICLR)*, 2019.

579

580

581

582 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In *Conference on Neural Information Processing Systems (NeurIPS)*, pp. 1106–1114, 2012.

583

584

585

586 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proc. IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

587

588

589 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 9992–10002, 2021.

590

591

592 Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon Shlens. Stand-alone self-attention in vision models. In *Conference on Neural Information Processing Systems (NeurIPS)*, pp. 68–80, 2019.

593

594 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
 595 standing by generative pre-training. Technical report, OpenAI, 2018.
 596

597 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 598 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

599 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 600 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 601 transformer. *J. Mach. Learn. Res.*, 21:140:1–140:67, 2020.

602

603 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
 604 tions. In Marilyn A. Walker, Heng Ji, and Amanda Stent (eds.), *Conference of the North Amer-
 605 ican Chapter of the Association for Computational Linguistics: Human Language Technologies
 (NAACL-HLT)*, pp. 464–468, 2018.

606

607 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 608 recognition. In *International Conference on Learning Representations (ICLR)*, 2015.

609

610 Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
 611 Bottleneck transformers for visual recognition. In *IEEE Conference on Computer Vision and
 612 Pattern Recognition (CVPR)*, pp. 16519–16529, 2021.

613

614 Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video rep-
 615 resentations using lstms. In *International Conference on Machine Learning (ICML)*, volume 37,
 pp. 843–852, 2015.

616

617 Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 618 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024. doi:
 10.1016/J.NEUCOM.2023.127063.

619

620 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
 621 Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
 622 In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1–9, 2015.

623

624 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 625 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 626 *International Conference on Machine Learning (ICML)*, volume 139, pp. 10347–10357, 2021.

627

628 Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
 629 Salakhutdinov. Transformer dissection: An unified understanding for transformer’s attention
 630 via the lens of kernel. In *Conference on Empirical Methods in Natural Language Processing
 (EMNLP)*, pp. 4343–4352, 2019.

631

632 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 633 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Conference on Neural In-
 634 formation Processing Systems (NeurIPS)*, pp. 5998–6008, 2017.

635

636 Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake A. Hechtman, and
 637 Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In *IEEE
 638 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12894–12904, 2021.

639

640 Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating con-
 641 volution designs into visual transformers. In *IEEE International Conference on Computer Vision
 642 (ICCV)*, pp. 559–568, 2021.

643

644 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
 645 Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In *IEEE
 646 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5718–5729, 2022.

647

648 **A DEFAULT NOTATION**
649

650	a, A	A scalar	\mathbf{a}	A vector
651	\mathbf{A}	A matrix	\mathbf{A}	A tensor
652	\times	Scalar multiplication	\cdot	Matrix multiplication

655 **B GENERAL TRANSLUTION**
656

658 The calculation of the query, key and value in Translution, *i.e.*, Eq. (1), assumes that element po-
659 sitions (*e.g.*, image patches or textual words) are discrete. In this setting, it is feasible to assign a
660 different set of parameters for each direction and distance. However, if the positions are continuous
661 variables, *e.g.*, in point clouds, it becomes impractical to assign individual weights for each direction
662 and distance, as there are infinitely many possible variations in continuous space. In this case, it may
663 be necessary to design new functions for the relative encoding.

664 Suppose \mathbf{p}_i denotes the position of the i -th element. For language, \mathbf{p}_i can represent the index of the
665 i -th word in the text. For images, \mathbf{p}_i corresponds to the row and column indices of the i -th patch. For
666 point clouds, \mathbf{p}_i refers to the 3D coordinates of the i -th point. A more general version of Translution
667 can be formulated as follows,

$$668 \text{General Translution: } \mathbf{f}'_i = \sum_{j=1}^N \alpha(\mathbf{p}_i - \mathbf{p}_j, \mathbf{f}_i, \mathbf{f}_j,) \times v(\mathbf{p}_i - \mathbf{p}_j, \mathbf{f}_j),$$

669 where $\alpha \in [0, 1]$ denotes the attention score measuring the relevance of the j -th element to the i -th
670 element, and $v : \mathbb{R}^{d+C} \rightarrow \mathbb{R}^{C'}$ is a function that encodes relative positional information into the
671 element features (d denotes the dimensionality of the position, C is the number of input feature
672 channels, and C' is the number of output feature channels). When applying Translution to a new
673 type of data, the key is to develop effective α and v functions.

674 **C 1D TRANSLUTION FOR NATURAL LANGUAGE PROCESSING**
675

676 In the main text, we demonstrate how to apply Translution for image modeling. That Translution can
677 be viewed as a 2D operation because the relative encoding involves two spatial directions. However,
678 in natural language, relative encoding operates along a single dimension, which makes Translution
679 a one-dimensional model when applied to text.

680 Suppose $\mathbf{f}_i \in \mathbb{R}^{1 \times C}$ denotes the embedding (or representation) of the i -th token within a text se-
681 quence of length N , where C represents the embedding dimension. As shown in Figure 5, 1D
682 Translution is designed to integrate adaptive identification of related tokens with relative structural
683 encoding for language modeling. Specifically, Translution retains the self-attention mechanism of
684 the Transformer but employs distinct parameters for computing the Query, Key and Value represen-
685 tations, as follows,

$$686 \text{1D Translution} \left\{ \begin{array}{l} \text{relative query encoding: } \mathbf{q}_{i,j} = \mathbf{f}_i \cdot \mathbf{W}_\delta^q, \delta = i - j, \\ \text{relative key encoding: } \mathbf{k}_{j,i} = \mathbf{f}_j \cdot \mathbf{W}_{-\delta}^k, \\ \text{relative attention: } a_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T}{\sqrt{C'}}, \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\ \text{relative value encoding: } \mathbf{v}_{i,j} = \mathbf{f}_j \cdot \mathbf{W}_\delta^v, \\ \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_{i,j}, \end{array} \right.$$

687 where $\mathbf{W}_\delta^q / \mathbf{W}_\delta^k / \mathbf{W}_\delta^v \in \mathbb{R}^{C \times C'}$ denotes the learnable parameters for displacement δ .
688
689

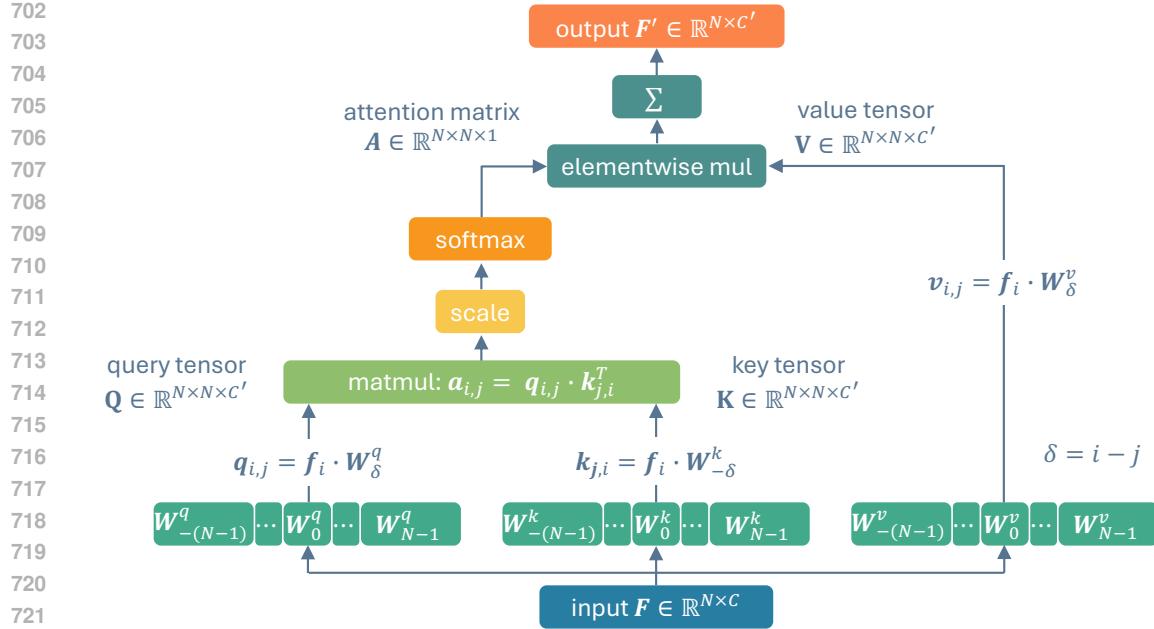


Figure 5: When modeling text, Translution operates in a 1D setting. For a sequence of length N , it employs separate parameters for each positional offset (considering both direction and distance), i.e., $\{W_{-(N-1)}^q, \dots, W_0^q, \dots, W_{N-1}^q\}$, $\{W_{-(N-1)}^k, \dots, W_0^k, \dots, W_{N-1}^k\}$ and $\{W_{-(N-1)}^v, \dots, W_0^v, \dots, W_{N-1}^v\}$, to encode relative language structure.

Causal 1D Translution

For autoregressive tasks, such as language modeling in GPT, a causal variant is typically required to ensure future tokens remain unseen during inference. In causal 1D Translution, each token attends only to itself and preceding tokens, guaranteeing that predictions rely exclusively on past context, as follows,

$$\begin{aligned}
 & \text{relative query encoding: } \mathbf{q}_{i,j} = \mathbf{f}_i \cdot \mathbf{W}_\delta^q, \quad \delta = i - j, \\
 & \text{relative key encoding: } \mathbf{k}_{j,i} = \mathbf{f}_j \cdot \mathbf{W}_{-\delta}^k, \\
 & \text{relative attention: } a_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T}{\sqrt{C'}}, \\
 & \text{causal attention: } a'_{i,j} = \begin{cases} a_{i,j}, & i \geq j, \\ -\infty, & \text{otherwise,} \end{cases} \quad \alpha_{i,j} = \frac{e^{a'_{i,j}}}{\sum_{n=1}^N e^{a'_{i,n}}}, \\
 & \text{relative value encoding: } \mathbf{v}_{i,j} = \begin{cases} \mathbf{f}_j \cdot \mathbf{W}_\delta^v, & \delta = i - j \geq 0, \\ \forall, & \text{otherwise,} \end{cases} \\
 & \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_{i,j}.
 \end{aligned}$$

As shown in Figure 6, compared to the original variant, causal 1D Translution reduces by half the number of parameters needed to compute the query, key and value representations.

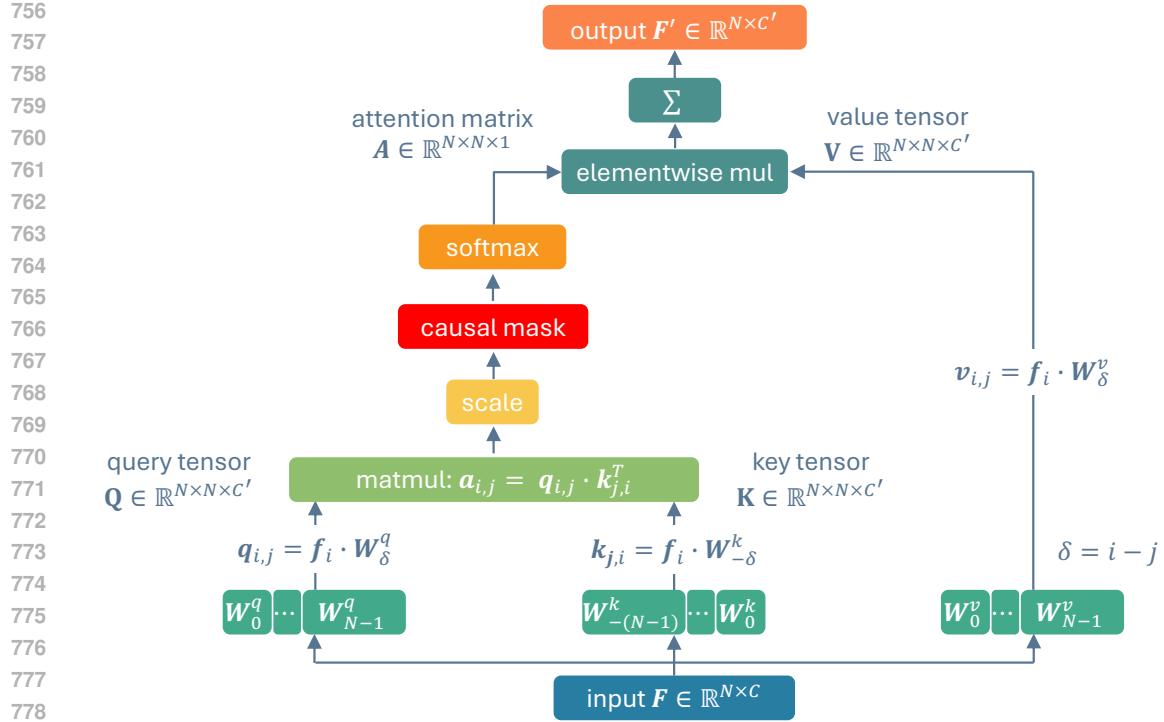


Figure 6: Illustration of causal 1D Translution. For a sequence of length N , it employs N parameter matrices to encode relative language structure. Compared to the original 1D Translution, the causal variant reduces the number of parameters required to compute Query, key and Value by half.

D MEMORY-EFFICIENT IMPLEMENTATION OF LoR-TRANSLUTION: OPTIMIZING RUNTIME MEMORY USAGE

Recall that α -Transformer is defined as follows,

$$\text{LoR-Translution: } f'_i = \sum_{j=1}^N \alpha_{i,j} \times f_j \cdot (W^v + W^{v1} \cdot W_{\delta_x, \delta_y}^v \cdot W^{v2}),$$

where $W^v \in \mathbb{R}^{C \times C'}$, $W^{v1} \in \mathbb{R}^{C \times C^1}$, $W_{\delta_x, \delta_y}^v \in \mathbb{R}^{C^1 \times C^2}$, $W^{v2} \in \mathbb{R}^{C^2 \times C'}$, and $C^1 \ll C$, $C^2 \ll C'$. Although this variant significantly reduces the number of parameters, it still demands considerable runtime memory. Specifically, as shown in Figure 3, the resulting value tensor of Translution is $V \in \mathbb{R}^{N \times N \times C'}$, which is considerably larger than the Transformer's value matrix $V \in \mathbb{R}^{N \times C'}$. To address this issue, we implement LoR-Translution as follows,

$$f'_i = \sum_{j=1}^N \alpha_{i,j} \times f_j \cdot W^v + \left(\sum_{j=1}^N \alpha_{i,j} \times f_j \cdot (W^{v1} \cdot W_{\delta_x, \delta_y}^v) \right) \cdot W^{v2}.$$

This reformulation reduces the peak runtime memory usage from $N \times N \times C'$ to $N \times C' + N \times N \times C^2$, where $C^2 \ll C'$, thus significantly alleviating memory demands during computation.

810 E COMPARISON WITH EXISTING POSITION MODELING METHODS 811

812 Existing methods typically encode positional information by introducing additional positional biases
813 (either scalars or vectors). In this paper, inspired by convolution, we propose an alternative approach
814 that employs offset-based matrices for relative encoding. In this section, we provide a detailed
815 comparison between these approaches. Suppose $\mathbf{x}_i \in \mathbb{R}^{1 \times C}$ represents the feature or representation
816 of the i -th patch, located at (x_i, y_i) in an image composed of $N = H \times W$ patches.

817 1. Baseline (Self-attention w/o Positional Embedding) 818

819 We consider the self-attention without position embedding as the baseline, formulated as follows:

$$\begin{aligned} 820 \quad & \text{w/o input position embedding: } \mathbf{f}_i = \mathbf{x}_i, \\ 821 \quad & \text{query encoding: } \mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}_q, \\ 822 \quad & \text{key encoding: } \mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}_k, \\ 823 \quad & \text{attention: } a_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\ 824 \quad & \text{value encoding: } \mathbf{v}_j = \mathbf{f}_j \cdot \mathbf{W}_v, \\ 825 \quad & \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_j. \\ 826 \end{aligned}$$

831 2. Transformer (Self-attention with Positional Embedding) 832

833 Most Transformers, including the original Transformer (Vaswani et al., 2017), employ position em-
834 bedding to incorporate positional information. Specifically, they integrate absolute positions into
835 element representations, formulated as follows:

$$\begin{aligned} 836 \quad & \text{w/ input position embedding: } \mathbf{f}_i = \mathbf{x}_i + \text{Embed}(x_i, y_i), \\ 837 \quad & \text{query encoding: } \mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}_q, \\ 838 \quad & \text{key encoding: } \mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}_k, \\ 839 \quad & \text{attention: } a_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\ 840 \quad & \text{value encoding: } \mathbf{v}_j = \mathbf{f}_j \cdot \mathbf{W}_v, \\ 841 \quad & \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_j. \\ 842 \end{aligned}$$

843 3. Relative Key Vector 844

845 Shaw et al. (2018) enhanced Transformer for language modeling by adding learnable relative po-
846 sitional vectors into the key computations. BoTNet (Srinivas et al., 2021) and HaloNet (Vaswani
847 et al., 2021) extended this approach to two dimensions for image processing by adding learnable
848 relative positional vectors into the key computation. This can be formulated as follows,

$$\begin{aligned} 849 \quad & \text{w/o input position embedding: } \mathbf{f}_i = \mathbf{x}_i, \\ 850 \quad & \text{query encoding: } \mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}_q, \\ 851 \quad & \text{key encoding: } \mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}_k + \mathbf{r}_{\delta_x, \delta_y}, \\ 852 \quad & \text{attention: } a_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\ 853 \quad & \text{value encoding: } \mathbf{v}_j = \mathbf{f}_j \cdot \mathbf{W}_v, \\ 854 \quad & \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_j, \\ 855 \end{aligned}$$

856 where $\mathbf{r}_{\delta_x, \delta_y} \in \mathbb{R}^{1 \times C'}$.

864 *4. Relative Value Vector*

865
 866 Shaw et al. (2018) also extended the above relative vector method to the value computations, as
 867 follows:

868 w/o input position embedding: $\mathbf{f}_i = \mathbf{x}_i$,
 869 query encoding: $\mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}_q$,
 870 key encoding: $\mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}_k$,
 871 self-attention: $a_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}$, $\alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}$,
 872 value encoding: $\mathbf{v}_j = \mathbf{f}_j \cdot \mathbf{W}_v + \mathbf{r}_{\delta_x, \delta_y}$,
 873 weighted sum: $\mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_j$.

874 *5. Relative Positional Scalar*

875 Swin Transformer (Liu et al., 2021) and CoAtNet (Dai et al., 2021) incorporate a learnable relative
 876 positional bias (a scalar) into the attention score. In these methods, the original self-attention can
 877 be regarded as content attention, which measures relationships from the token-feature perspective,
 878 while the additional relative positional bias can be regarded as position attention, which measures
 879 relationships from the token-position perspective. Formally, this can be expressed as follows:

880 w/o input position embedding: $\mathbf{f}_i = \mathbf{x}_i$,
 881 query encoding: $\mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}_q$,
 882 key encoding: $\mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}_k$,
 883 attention: $a_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}} + b_{\delta_x, \delta_y}$, $\alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}$,
 884 value encoding: $\mathbf{v}_j = \mathbf{f}_j \cdot \mathbf{W}_v$,
 885 weighted sum: $\mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_j$,

886 where $b_{\delta_x, \delta_y} \in \mathbb{R}$. ConViT (d’Ascoli et al., 2021) introduces Gated Positional Self-Attention
 887 (GPSA), a variant of self-attention that incorporates a positional inductive bias. Moreover, a learnable
 888 gating parameter in each attention head controls the balance between positional and content-
 889 based attention, as follows,

890 w/o input position embedding: $\mathbf{f}_i = \mathbf{x}_i$,
 891 query encoding: $\mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}_q$,
 892 key encoding: $\mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}_k$,
 893 patch attention: $a_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}$, $\alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}$,
 894 position attention: $b_{i,j} = \mathbf{w} \cdot \mathbf{r}_{\|\delta\|}$, $\beta_{i,j} = \frac{e^{b_{i,j}}}{\sum_{n=1}^N e^{b_{i,n}}}$,
 895 gated attention: $c_{i,j} = (1 - \sigma(\lambda)) \times \alpha_{i,j} + \sigma(\lambda) \times \beta_{i,j}$, $\xi_{i,j} = \frac{c_{i,j}}{\sum_{n=1}^N c_{i,n}}$,
 896 value encoding: $\mathbf{v}_j = \mathbf{f}_j \cdot \mathbf{W}_v$,
 897 weighted sum: $\mathbf{f}'_i = \sum_{j=1}^N \xi_{i,j} \times \mathbf{v}_j$,

898 where \mathbf{w} is a trainable vector for embedding, $\mathbf{r}_{\|\delta\|}$ is the relative positional encoding, λ is a learnable
 899 gate and σ is the Sigmoid function.

900

918 *6. Rotary Position Embedding*

919
 920 Unlike the above vector- and scalar-based methods, RoFormer (Su et al., 2024) proposes a rotation-
 921 based positional encoding method that is applied directly to queries and keys. As a result, attention
 922 scores depend solely on relative distances, eliminating the need to explicitly store a positional vector
 923 or scalar, as follows,

924 w/o input position embedding: $\mathbf{f}_i = \mathbf{x}_i$,
 925 query encoding: $\mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}_q$,
 926 key encoding: $\mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}_k$,
 927 attention: $\mathbf{q}'_i, \mathbf{k}'_j = \text{rotary}(\mathbf{q}_i, \mathbf{k}_j)$, $a_{i,j} = \frac{\mathbf{q}'_i \cdot \mathbf{k}'_j^T}{\sqrt{C'}}$, $\alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}$,
 928 value encoding: $\mathbf{v}_j = \mathbf{f}_j \cdot \mathbf{W}_v$,
 929 weighted sum: $\mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_j$,
 930

931 where $\text{rotary}(\cdot)$ is a rotary position embedding function.

932 *7. Relative Positional Matrix (Translution)*

933 Inspired by convolution, we propose Translution that performs matrix multiplication to produce a
 934 vector output that encodes displacement or offset information, defined as follows:

935 w/o input position embedding: $\mathbf{f}_i = \mathbf{x}_i$,
 936 relative query encoding: $\mathbf{q}_{i,j} = \mathbf{f}_i \cdot \mathbf{W}_{\delta_x, \delta_y}^q$,
 937 relative key encoding: $\mathbf{k}_{j,i} = \mathbf{f}_j \cdot \mathbf{W}_{-\delta_x, -\delta_y}^k$,
 938 relative attention: $a_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T}{\sqrt{C'}}$, $\alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}$,
 939 relative value encoding: $\mathbf{v}_{i,j} = \mathbf{f}_j \cdot \mathbf{W}_{\delta_x, \delta_y}^v$,
 940 weighted sum: $\mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_{i,j}$.

941
 942 Table 9 provides a summary of various positional encoding strategies.

943 *Table 9: Summary of different position encoding strategies.*

Method		
w/o Pos Emb	$\mathbf{f}_i = \mathbf{x}_i$	Baseline
w/ Pos Emb	$\mathbf{f}_i = \mathbf{x}_i + \text{Embed}(x_i, y_i)$	Transformer (Vaswani et al., 2017)
Relative Positional Vector	Key	Shaw et al. (2018), BoTNet (Srinivas et al., 2021), HaloNet (Vaswani et al., 2021), etc
	Value	Shaw et al. (2018)
Relative Positional Scalar	w/o gating	Swin Transformer (Liu et al., 2021), CoAtNet (Dai et al., 2021), etc
	w/ gating	ConViT (d'Ascoli et al., 2021)
Rotary Position Embedding	RoFormer (Su et al., 2024)	
Relative Positional Matrix	LoR-Translution	
	Translution	

972 F TRANSLUTION WITH INPUT POSITIONAL EMBEDDING

974 In this section, we examine whether incorporating the input positional embedding method from
 975 Transformer can further improve Translution. To this end, we implement Translution as follows:
 976

$$\begin{aligned}
 & \text{w/ input position embedding: } \mathbf{f}_i = \mathbf{x}_i + \text{Embed}(\mathbf{x}_i, \mathbf{y}_i), \\
 & \text{relative query encoding: } \mathbf{q}_{i,j} = \mathbf{f}_i \cdot \mathbf{W}_{\delta_x, \delta_y}^q, \\
 & \text{relative key encoding: } \mathbf{k}_{j,i} = \mathbf{f}_j \cdot \mathbf{W}_{-\delta_x, -\delta_y}^k, \\
 & \text{relative attention: } a_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\
 & \text{relative value encoding: } \mathbf{v}_{i,j} = \mathbf{f}_j \cdot \mathbf{W}_{\delta_x, \delta_y}^v, \\
 & \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_{i,j}.
 \end{aligned}$$

989 As shown in Table 10, incorporating the Transformer’s absolute positional embedding does not yield
 990 a clear performance gain for Translution in the static-to-static setting, leads to a slight drop in the
 991 dynamic-to-dynamic setting, and results in a substantial drop in the static-to-dynamic setting.
 992

993 Table 10: Accuracy (%) of Translution w/o and w/ the absolute positional embedding method from
 994 Transformer. Results are reported on Static and Dynamic MNIST with ViT-A/12.

995 Method	996 $\text{Embed}(\mathbf{x}_i, \mathbf{y}_i)$	997 #Params	998 FLOPs	999 Static \rightarrow Static	999 Dynamic \rightarrow Dynamic	999 Static \rightarrow Dynamic
996 LoR-Translution	997 \times	998 4.6 M	998 146.4 M	999 98.48	999 97.31	999 34.90
997	998 \checkmark	999	999	999 98.72	999 96.81	999 17.20
998 Translution	999 \times	116.2 M	140.5 M	98.60	97.35	36.24
999	\checkmark			98.47	96.31	16.50

1000 G IMPACT OF \mathbf{W}^q , \mathbf{W}^k AND \mathbf{W}^v ON **LoR-TRANSLUTION**

1003 Recall that: *To reduce the number of parameters, we propose **LoR-Translution**, which decreases
 1004 both the input dimension C^1 and the output dimension C^2 of each $\mathbf{W}_{\delta_x, \delta_y}^q$, $\mathbf{W}_{\delta_x, \delta_y}^k$, and $\mathbf{W}_{\delta_x, \delta_y}^v$.
 1005 However, setting C^1 and C^2 too small can overly compress the query, key, and value representations,
 1006 thereby degrading performance. To address this issue, we integrate the \mathbf{W}^q , \mathbf{W}^k , and \mathbf{W}^v of
 1007 Transformer into **LoR-Translution** to better preserve essential information.*

1008 In this section, we analyze the impact of \mathbf{W}^q , \mathbf{W}^k , and \mathbf{W}^v by systematically removing them from
 1009 Eq. (2) as follows:

$$\text{LoR-Translution} \left\{ \begin{array}{l} \text{query encoding: } \mathbf{q}_{i,j} = \mathbf{f}_i \cdot \mathbf{W}_1^q \cdot \mathbf{W}_{\delta_x, \delta_y}^q, \quad \mathbf{q}_i = \mathbf{f}_i \cdot \mathbf{W}^q, \\ \text{key encoding: } \mathbf{k}_{j,i} = \mathbf{f}_j \cdot \mathbf{W}_1^k \cdot \mathbf{W}_{-\delta_x, -\delta_y}^k, \quad \mathbf{k}_j = \mathbf{f}_j \cdot \mathbf{W}^k, \\ \text{self-attention: } a_{i,j} = \frac{\mathbf{q}_{i,j} \cdot \mathbf{k}_{j,i}^T + \mathbf{q}_i \cdot \mathbf{k}_j^T}{\sqrt{C'}}, \quad \alpha_{i,j} = \frac{e^{a_{i,j}}}{\sum_{n=1}^N e^{a_{i,n}}}, \\ \text{value encoding: } \mathbf{v}_{i,j} = \mathbf{f}_j \cdot (\mathbf{W}_1^v \cdot \mathbf{W}_{\delta_x, \delta_y}^v \cdot \mathbf{W}_2^v + \mathbf{W}^v), \\ \text{weighted sum: } \mathbf{f}'_i = \sum_{j=1}^N \alpha_{i,j} \times \mathbf{v}_{i,j}. \end{array} \right.$$

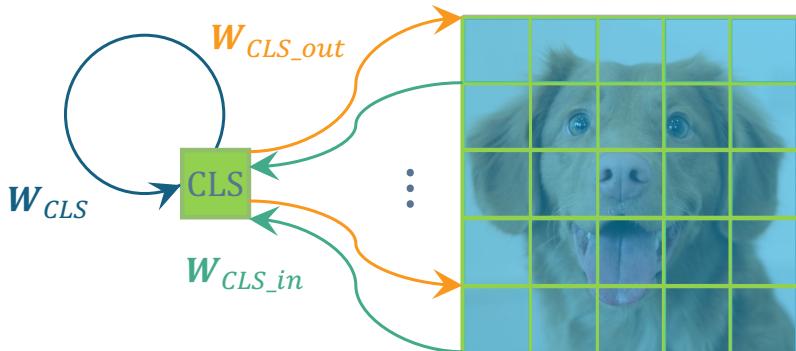
1023 As shown in Table 11, incorporating \mathbf{W}^q , \mathbf{W}^k , and \mathbf{W}^v significantly enhances the performance of
 1024 **LoR-Translution**, particularly when C^1 and C^2 are small. As C^1 and C^2 grow larger, the improve-
 1025 ment decreases because the information is no longer overly compressed. In this case, \mathbf{W}^q , \mathbf{W}^k , and
 \mathbf{W}^v become less critical.

1026 Table 11: Impact of \mathbf{W}^q , \mathbf{W}^k and \mathbf{W}^v on LoR-Transformer. Results are reported on ImageNet-1K
 1027 with ViT-A/56, trained from scratch (no external pretraining) using a batch size of 256.
 1028

Relative Encoding Dimension	$\mathbf{W}^q, \mathbf{W}^k, \mathbf{W}^v$	#Parameters	FLOPs	Top-1	Top-5
$C^1 = C^2 = 0$	✓	4.68 M	75.9 M	42.49	67.39
$C^1 = C^2 = 2$	✗	4.08 M	64.4 M	31.77	56.66
$C^1 = C^2 = 4$	✗	4.75 M	76.3 M	46.10	71.29
$C^1 = C^2 = 8$	✗	4.21 M	64.9 M	37.46	62.72
$C^1 = C^2 = 16$	✗	4.89 M	76.8 M	47.61	72.18
$C^1 = C^2 = 32$	✗	4.67 M	66.0 M	41.81	67.23
$C^1 = C^2 = 16$	✓	5.33 M	77.9 M	48.36	73.31
$C^1 = C^2 = 32$	✗	6.40 M	68.4 M	44.87	69.91
$C^1 = C^2 = 64$	✓	7.06 M	80.3 M	48.91	73.65
$C^1 = C^2 = 128$	✗	13.09 M	74.3 M	47.27	72.20
$C^1 = C^2 = 256$	✓	13.75 M	86.2 M	50.07	74.84

H RELATIVE CLS TOKEN

1043 For classification tasks, besides the image tokens, there is an additional CLS token (classification to-
 1044 ken) that serves as a global representation of the input image. Usually, the CLS token is a learnable
 1045 embedding appended at the beginning of the input token sequence fed into Transformer. To apply
 1046 the strategy of relative encoding to the CLS token, we introduce additional parameters: $\mathbf{W}_{CLS.in}^q$,
 1047 \mathbf{W}_{CLS}^q , $\mathbf{W}_{CLS.out}^q$, $\mathbf{W}_{CLS.in}^k$, \mathbf{W}_{CLS}^k , $\mathbf{W}_{CLS.out}^k$, and $\mathbf{W}_{CLS.in}^v$, \mathbf{W}_{CLS}^v , $\mathbf{W}_{CLS.out}^v$, correspond-
 1048 ing to the query, key, and value, respectively.



1061 Figure 7: Illustration of relative encoding for the CLS token. For CLS, there are three encoding
 1062 directions: in, in-place, and out. Correspondingly, three sets of weights, *i.e.*, $\mathbf{W}_{CLS.in}$, \mathbf{W}_{CLS} , and
 1063 $\mathbf{W}_{CLS.out}$, are introduced for relative encoding in each respective direction.

1064 As shown in Figure 7, $\mathbf{W}_{CLS.in}$ is utilized when gathering information from the image tokens to
 1065 update the CLS token; \mathbf{W}_{CLS} is applied when updating the CLS token based on its own information;
 1066 and $\mathbf{W}_{CLS.out}$ is employed when image tokens gather information from the CLS token to update
 1067 themselves.