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ABSTRACT

New applications and use-cases in data center networks require the design of Traf-
fic Engineering (TE) algorithms that account for application-specific traffic pat-
terns. TE makes forwarding decisions from the global state of the network. Thus,
new TE algorithms require the design and implementation of effective informa-
tion exchange and efficient algorithms to compute forwarding decisions. This is a
challenging and labor and time-intensive process. To automate and simplify this
process, we propose Mistill. Mistill distills the forwarding behavior of TE
policies from exemplary forwarding decisions into a Neural Network. Mistill
learns how to process local state to send it over the network, which network de-
vices must exchange state with each other, and how to map the exchanged state
into forwarding decisions. We show the abilities of Mistill by learning three
exemplary policies and verify their performance in simulations on synthetic and
real world traffic patterns. We show that the learned protocols closely implement
the desired policies, and generalize to unseen traffic patterns.

1 INTRODUCTION

Data center workloads are diverse and range from client-server applications, machine learning, and
web-traffic to high-performance computing applications (Benson et al. (2010); Roy et al. (2015);
Zhang et al. (2017)). Each workload has different requirements towards Traffic Engineering (TE).
For example, optimizing the completion time of individual flows is desirable for client-server appli-
cations (Dukkipati & McKeown (2006)), but leads to decreased performance in machine learning
workloads (Chowdhury et al. (2014)). To achieve the best performance, each workload needs a TE
scheme that is tailored towards its specific requirements. Indeed, new applications regularly trigger
the development of new TE schemes in the networking community (Katta et al. (2016); Chowdhury
et al. (2014); Chen et al. (2018); Benson et al. (2011)).

Obtaining a deployable distributed protocol from an initial TE design is challenging. A design
includes the specification of update messages, the processing of update messages, and the algorithm
to compute the forwarding decisions that result in the desired policy (Katta et al. (2016)). The design
of each component is challenging since the final protocol must meet line-rate, exchange information
at (sub)millisecond granularity, and cope with limited computational requirements. All steps must be
efficient, and the design holistic, requiring the exploitation of patterns in the network and the traffic.
For instance, CONGA integrates a substantial part of the calculation for the forwarding decision
into the exchange of update messages (Hsu et al. (2020)). The complexity makes customizing TE
schemes hardly feasible for smaller enterprises, potentially resulting in competitive disadvantages.

To automate and simplify the translation of a TE policy to a distributed protocol, we propose
Mistill. Mistill distills the forwarding behavior of a TE policy from exemplary forwarding
decisions into a Neural Network (NN). Mistill learns the encoding of the switch local state in up-
date messages, the exchange of update messages, and the computation of forwarding decisions from
update messages with Machine Learning (ML). Mistill removes the need to manually design
update messages, information exchange, and the calculation of forwarding decisions. ML allows
Mistill to automatically detect helpful patterns in traffic and network and exploit the patterns to
learn a protocol. Further, our NN design makes the learned patterns accessible to humans and can
thus aid the manual design process.
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Figure 1: Mistill trains a NN with forwarding decisions from an initial centralized TE system.
Mistill deploys the trained NN to the switches, which query the NN for forwarding decisions.

Our main contributions in this work are: 1) The design of an ML model that can learn forwarding
behavior, makes learned patterns accessible to humans, and has the potential to be deployed on real
hardware. 2) We show in simulations that Mistill can learn the forwarding behavior of three TE
policies and generalizes to previously unseen traffic patterns. 3) We analyze the learned messages
and their exchange. We find that Mistill can learn distributed protocols that closely implement
the desired policy and are robust towards distributional shift in the input. We analyze the learned
messages’ content, and show that the NN learns an information exchange resembling an edge-cover,
which can be used to optimize the information exchange of other TE schemes.

The document is organized as follows. Sec. 2 describes the application scenarios and the require-
ments towards ML models. Sec. 3 describes the neural architecture and justifies design choices.
Sec. 4 describes experiments and presents results and visualizations of the learned protocols. Sec. 5
discusses related work, and Sec. 6 concludes the paper.

2 APPLICATION SCENARIO

Mistill learns a distributed protocol from examples. Fig. 1 illustrates the process and expected
outcome. The first component is a centralized implementation of a TE policy. For example, a
packet or flow level simulation using an Integer Linear Program or heuristic algorithm to compute
forwarding decisions based on the entire network state. The forwarding decisions specify how a
switch forwards traffic to its neighbors, given the current state of the network. Usually, new TE
schemes are evaluated in such a setting first to establish their performance and correctness.

Here, Mistill hooks in and uses the forwarding decisions to train an ML model, i.e., a NN.
Mistill trains the model offline, i.e., not on the network devices. The NN learns three aspects: 1)
how to encode local state in update messages, 2) how to exchange the update messages, 3) how to
map the exchanged state into forwarding decisions.

After training, Mistill deploys the NN to switches, e.g., with P4 (Siracusano & Bifulco (2018)).
All switches in the network have the same NN and use it in inference mode, i.e., do forward passes
only. The NN distinguishes switches through an identifier. During training, the NN learns how to
condition the forwarding decisions on the identifiers, thus learning the correct behavior for each
switch. To compute forwarding decisions, switches do not need to know the network topology.

This work does not try to outperform existing TE strategies in their specific application scenarios.
Instead, this work aims to facilitate the automatic generation of novel TE policies, taking direct ad-
vantage of switch architectures like Taurus (Swamy et al. (2020)) without asking network operators
to take the time or acquire the expertise to design highly optimized protocols and implement them,
e.g., in P4 (Bosshart et al. (2014)).
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Figure 2: The NN architecture consists of four modules: The LOCMOD, the HNSAMOD, the
NSMOD and the FWD MOD.

2.1 DATA CENTER NETWORK REQUIREMENTS

The goal of Mistill is to distill network protocols for data-center networks from exemplary data.
We focus on Clos topologies due to their popularity and simple structure (Zhang et al. (2019)). See
Appendix B for details. TE protocols in data-centers exchange update messages at (sub-)millisecond
scale (Katta et al. (2016)). Thus, the updates must be small to keep the resulting overhead low. To
effectively utilize the frequent updates, switches must make forwarding decisions frequently, e.g.,
for each new flow. Thus, the decision logic should reside in the data-plane (Alizadeh et al. (2014)).
This limits the computational demand the decision logic can express towards the switch. The learned
decision logic must thus be computationally efficient to meet the limited computational capacities.

2.2 WHY NEURAL NETWORKS?

Mistill uses a NN to learn a distributed protocol, which is a good choice for three reasons.

1) NNs are general function approximators (Glorot et al. (2011)). This is important because for-
warding decisions can depend on the network state in a non-linear way. For example, minimizing
the maximum link utilization results in forwarding decisions that do not depend linearly on the net-
work state. A small change in the utilization can lead to a sudden change in the forwarding decision.

2) NNs can be executed with the limited computational resources in the data-plane (Sanvito et al.
(2018); Swamy et al. (2020)). Here, the choice of activation function is important. The ReLU
activation requires only a check for negativity (Glorot et al. (2011)). A NN with ReLU activations
uses addition, multiplication and a check for negative values. Further, NNs can be quantized to
integer or binary computations (Gholami et al. (2021)).

3) The execution of NNs is easy to parallelize and accelerators for NN inference already exist for
network equipment (Luinaud et al. (2020); Swamy et al. (2020)). In addition, research efforts show
that NNs can be executed in the data-plane at line rate already on today’s ASICs (Siracusano &
Bifulco (2018)), and on end-hosts with SmartNICs (Sanvito et al. (2018)). We thus believe that
switches will be increasingly capable of executing NNs at line rate.

3 NEURAL ARCHITECTURE

The NN architecture consists of four modules: the Localization Module (LOCMOD), the HNSA
Module (HNSAMOD), the Network State Module (NSMOD), and the Forwarding Module (FWD
MOD). Fig. 2 shows how the modules interact and represents inputs and outputs with hashes. See
Appendix C for sketches of technical realizations of Mistill.

3



Under review as a conference paper at ICLR 2022

Output. The NN has three outputs: the out-port, Hidden Node State Advertisements (HNSAs)1, i.e.,
update messages that inform other network devices about the local state of the sending device, and
State Interest (SI), signaling which devices need to exchange information with each other.

Input. The NN has four inputs: LinkState, AllNodes, Destination and Location.
LinkState is the switch local state, e.g., the availability and utilization of incident links. The NN
transforms the LinkState into HNSAs. Location is the identifier of a switch, Destination
the destination of a flow, and AllNodes the identifiers of all switches. The NN uses Location,
Destination, and AllNodes to learn how to condition forwarding decisions on a specific
switch and destination and which switches’ HNSAs are needed to make a forwarding decision.

Training. The NN is trained end-to-end. Training end-to-end tailors HNSAs and SI to a for-
warding policy. The loss function depends on the forwarding objective. We interpret ob-
jectives as multi-label classification or as learning of a multinomial distribution. We use:
Lmn = −

∑N
i=1 p(xi) log p(yi) as loss function for the multinomial distribution, and Lml =

−
∑N

i=1 (p(xi) log p(yi) + (1− p(xi)) log(1− p(yi))) as loss function for the multi-label classifi-
cation. N corresponds to the number of outputs, p(xi) is the ground truth and p(yi) is the prediction
of the NN. The loss Lmn can learn distributional targets to split traffic over adjacent nodes. Lml

can learn policies that have one or multiple equally good paths. Changes in the network that lead to
changes in the forwarding policy require a re-training of the model. For example, new networking
hardware, or changes to the physical network topology. As we will show, re-training is short com-
pared to the deployment process of new hardware, and can be integrated into the roll-out process.

Inference. After training finishes, the NN is deployed to the switches. The switches use the NN for
three tasks: 1) to compute HNSAs from their local state, 2) to select the HNSAs necessary to calculate
the out-port, and 3) to calculate the out-port. The switches do not change the weights of the NN. The
switch also never execute the full NN. To compute HNSAs, the switch executes the HNSAMOD.
To compute the out-port, the switch executes the LOCMOD, NSMOD and FWD MOD, but not the
HNSAMOD. The switch uses the HNSAs it received from other nodes instead.

3.1 DATA FORMAT

The inputs Location, Destination and AllNodes are binary vectors in {0, 1}24 and are
the last three octets of IPv4 addresses following the addressing scheme for Fat-Trees (Al-Fares et al.
(2008)). We experimented with different node representations and enclose the results in Appendix D.

The LinkState ∈ R6
≥0 is a real-valued vector and represents incident edges. The first four at-

tributes are a one-hot encoding of the link availability in each direction. For example, 10 10 means
that both directions are up, and 10 01 means that one direction is up and one is down. The fifth
and sixth attributes are the weight of the link in each direction, representing, e.g., link utilization.
The link state of a switch is the concatenation of the vectors of all its links, resulting in a vector from
R6·d̂

≥0 , where d̂ is the maximum degree of switches in the network. Vectors of switches with a smaller
degree are zero-padded to this length.

3.2 LEARNING THE HNSA CONTENT

The HNSAMOD transforms the LinkState of a switch into a binary vector. The binary vector
is the content of a HNSA . The vector corresponds to a hidden layer with binary activations. Since
switches send the HNSA over the network, binary activations are better than real-valued activations,
since a binary representation allows the NN to have more neurons for the same number of bits. For
example, a binary vector of 128 bits corresponds to four floating-point numbers. Since NNs store
information in a distributed representation, having more neurons with low precision is better than
having fewer neurons with high precision (Glorot et al. (2011)).

We sample the binary activations from m independent, one-hot encoded categorical distributions of
arity n: HNSA ∼ Cat(n, θ1) || . . . || Cat(n, θm). The NN calculates the parameters θi from the
LinkState by passing the LinkState through a feed forward NN with one hidden layer and

1In analogy to Link State Advertisements (LSAs) in link-state routing protocols. Hidden refers to the fact
that the content of the messages is the activations of a hidden layer of the NN. Further, HNSAsdiffer from LSAs
in that they are not per link but per node.
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ReLU activation. To keep the NN differentiable, we use a re-parameterization trick to sample from
the categorical distributions (Jang et al. (2017); Maddison et al. (2017)). During training, the NN
learns how to parameterize the categorical distributions from the LinkState to encode informa-
tion in the binary hidden layer. The arity n and number of distributions m are hyperparameters of
the NN architecture and optimized during training.

3.3 LEARNING TO COMMUNICATE

The NSMOD learns: 1) the SI output, i.e., whose HNSAs are needed to make a forwarding decision
on a specific switch and destination, and 2) how to process HNSAs to make forwarding decisions.

To learn the SI and process HNSAs, we use an attention mechanism inspired by the scaled dot-
product attention (Vaswani et al. (2017)), which can be interpreted as a learned lookup table that
retrieves HNSAs based on the switch that executes the NN and a given destination. The attention
mechanism has three inputs: Keys K, Queries Q and Values V . K, Q and V are matrices, where K
and V must have the same number of rows (Vaswani et al. (2017)). K and Q are used to compute
attention-weights A, with which a convex combination of V is computed. The attention scores A

are A = gumbelSoftmax
(

1√
r
WqQ · (WkK)T

)
, where Wq and Wk are a trainable linear trans-

formation of Q and K, r is the number of rows of K, and gumbelSoftmax is the gumbel softmax
reparameterization trick (Jang et al. (2017); Maddison et al. (2017)). The output of the attention layer
is A · (WvV ), where Wv is a trainable linear transformation. Q corresponds to the concatenation of
Destination and Location, K to AllNodes and V to HNSAs. We use Multi-Head Attention
(MHA), i.e., parallel attention mechanisms, and concatenate their output. The concatenated output
is passed through a hidden layer with ReLU activation, and then into the FWD MOD.

The SI are the attention scores of the individual attention heads. Non-zero entries signal that the cor-
responding HNSA contributes information for the forwarding decision. The scores A make learned
patterns explicit and interpretable. To enforce sparse patterns, we use the gumbelSoftmax trick to
calculate attention scores (Jang et al. (2017); Maddison et al. (2017)). Thus, each attention head
selects one HNSA . The number of attention heads is an upper bound on the exchanged messages.

3.4 LEARNING TO FORWARD

The forwarding decision of the NN is based on the network state encoded in HNSAs, i.e., the output
of the NSMOD, the destination and the switch that makes the forwarding decision. The NN learns to
combine this information to react to changes in the state of the network, and to learn how forwarding
decisions differ for switches and destinations.

The calculation of the out-port requires the execution of the NSMOD, the LOCMOD and the FWD
MOD. The LOCMOD and the FWD MOD each consist of one feed forward NN with one hidden
layer and ReLU activation.

4 EXPERIMENTS

Mistill learns a TE policy protecting the data-center network from traffic whose destination is
not reachable. If no route to a host exists, then traffic is dropped. The challenge lies in accounting
for link failures in the up-link from hosts to switches, which existing TE schemes cannot handle.
Dropping traffic can be important for applications that send larger amounts of data with the User
Datagram Protocol (UDP). Existing TE schemes would forward this traffic to the last hop of the
network and thus waste bandwidth (Hsu et al. (2020); Dutt (2017)). If a route exists, we consider
three policies to forward traffic: 1) WCMP: Splits traffic over neighbors in proportion to the avail-
able down-stream bandwidth, 2) LCP: forwards traffic along the path with the least weight, and 3)
MinMax: Forwards traffic along the path with the smallest maximum link utilization. All policies
should work in the presence of arbitrary node and link failures. We compare the quality of the
learned protocols to Equal Cost Multi-Pathing (ECMP) and the actual forwarding decision.
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HNSAMOD LOCMOD NSMOD FWD MOD
FCN #Distr. Arity FCN #Heads Wq Wk Wv FCN FCNs

MinMax 108 64 2 90 14 48 41 17 109 104, 84
LCP 63 64 2 90 14 48 48 50 125 102, 105
WCMP 48 64 2 90 14 62 62 27 110 76, 71

Table 1: Hyper parameters for the best models.
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Figure 3: Bar plots for TE policies and traffic patterns.

4.1 DATA GENERATION AND NN TRAINING

We generate data for a k = 8 Fat Tree having 128 hosts and 80 switches (Al-Fares et al. (2008)). To
make the protocols robust to node and link failures, we remove between zero and ten edges and zero
and five nodes uniformly at random from the topology. For the remaining edges, we sample edge
weights from a uniform distribution. We then sample a source and destination pair and compute
each policy’s forwarding decisions on the generated graph for the sampled pair.

The training set consists of 200 000 problem instances, the validation set of 50 000 problem in-
stances. The final results are obtained from a packet-level simulation. We use the Asynchronous
Successive Halving Algorithm (ASHA) (Li et al. (2018)) implemented in the Ray Tune (Liaw et al.
(2018)) library for hyperparameter optimization and select the best configuration for the evaluation.
Tbl. 1 lists the hyperparameter of the best performing models. For all policies, the HNSAMOD con-
sists of one fully connected layer with ReLU activation and a linear transformation that generates
the logits for the gumbelSoftmax function. The LOCMOD consists of one fully connected layer
with ReLu activation. The NSMOD consists of one MHA module and the FWD MOD of two fully
connected layers. We describe the training process and the hyperparameter search space in detail in
Appendix A. Training a single model takes in the order of 5 hours on an NVIDIA Tesla V100 GPU.
Training 100 models in parallel with ASHA on three NVIDIA Tesla V100 GPUs takes 60 hours. We
implemented the NN in C and CUDA to evaluate the inference time and evaluate the LCP NN, the
largest network, on an Intel(R) Core(TM) i7-7700HQ CPU with 2.80GHz, and an NVIDIA Tesla
V100 GPU. Inference time on a single CPU core without parallelization is 4ms and 0.047ms on the
GPU, which suffices to meet the inter-arrival time of flows in data-centers (Benson et al. (2010)).

4.2 ROUTING PERFORMANCE

We evaluate five traffic patterns and perform 100 simulations with random node and edge failures for
each pattern. Each simulation samples between zero and ten edge failures and between zero and five
node failures. The traffic patterns are random, combine and render (Delimitrou et al. (2012)),
and fb-hadoop and fb-web (Roy et al. (2015)). In random, the utilization of each edge is
sampled from a uniform distribution. The other patterns are created from traffic matrices of data-
center applications. fb-hadoop is based on a Hadoop cluster in a Facebook data-center, fb-web
is based on the production traffic of a Facebook data-center (Roy et al. (2015), combine results
from a web-search, and render renders the search results for users (Delimitrou et al. (2012)). Note
that combine, render, fb-hadoop and fb-web result in utilization patterns in the network
that strongly differ from the random utilization values the NNs were trained with. In a simulation,
packets traverse the network from each ToR to every server. For each packet, we compare the metric
of the optimal path with the metric of the path from the NN and Equal Cost Multi Pathing (ECMP).
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Figure 4: Training loss for varying number of blocks in the GS for the calculation of HNSAs.

LCP: Fig. 3a shows bar plots for the LCP policy, and compares Mistill to ECMP. The Y-Axis
shows the average stretch of the objective, i.e., the ratio that Mistill and ECMP are worse than the
optimal solution. Error bars correspond to the 99% confidence interval of the mean. Fig. 3a shows
that Mistill is better for all traffic patterns, with paths whose weight is close to the optimal
weight. Further, Fig. 3a shows that the error of Mistill is similar across all traffic patterns. The
NN thus generalizes to distributions of the inputs that it has never seen during training.

MinMax: Fig. 3b shows a similar plot as in Fig. 3a for the MinMax policy. Fig. 3b shows that
Mistill is always better than ECMP, except for fb-hadoop. For fb-hadoop, Mistill and
ECMP are both almost zero. This is due to the specific pattern in fb-hadoop, in which the up-links
of hosts are the most loaded links, and the TE policy has thus almost no impact on the objective. As
for LCP, the NN generalizes to unseen input distributions.

WCMP: We use the Kullback-Leibler Divergence (KLD) to evaluate WCMP. Fig. 3c shows the
average KLD for Mistill and ECMP for the traffic patterns. Error bars correspond to the 99%
confidence interval of the mean. Fig. 3c shows that Mistill is better than ECMP for the random
traffic pattern. ECMP has slightly smaller average KLDs for the other patterns. This is because
available bandwidth is almost equally distributed over paths. WCMP essentially becomes ECMP up
to a small error. Note how the average KLDs of Mistill decreases for the other traffic patterns.
This indicates that the NN also generalizes in this case to unseen input distributions.

In summary, our experiments show that Mistill can learn the forwarding behavior of three pop-
ular TE policies from exemplary samples. Further, the results show that the NN generalizes to
previously unseen input distributions.

4.3 HNSA SIZE

We investigate the impact of the number of categorical distributions on the MinMax policy and vary
them in {8, 16, 32, 64}. Fig. 4a shows that more distributions results in a smaller loss, and that the
decrease in loss is strong during the initial stages of training and converges towards the end.

Fig. 4b compares the ratio between ECMP and the true solution to the ratio of Mistill. The solid
line corresponds to the mean, the shaded area to the mean’s 99% confidence interval. Fig. 4b shows
that 8 distributions result in a protocol that performs better than ECMP. The protocol with 8 distri-
butions, i.e., 8 bits, mostly accounts for link failures and little for edge weights. The performance
of Mistill improves with more distributions and approaches the ground truth and the confidence
interval shrinks. The improvement between 8 and 16 distributions is larger than between 16 and
64. With 64 distributions, Mistill selects paths with similar metrics to the ground truth. With
64 distributions, the probing overhead in a network supporting up to 1 024 hosts with no over sub-
scription and millisecond updates is 1.22% for 10Gbits links, i.e., in a similar order as existing TE
schemes (Katta et al. (2016)). See Appendix C for details.

4.4 VISUALIZATIONS

This section visualizes the learned HNSA messages and the attention weights. We compare the
attention weights of the gumbelSoftmax activation with the weights of a model trained with the
sparsemax activation function (Martins & Astudillo (2016)) for the MinMax policy.
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Figure 6: Attention weights. Each row contains the weights for one switch over all other switches.

HNSA content Fig.5 shows HNSAs of Mistill for the MinMax policy. Fig. 5a illustrates how
link failures reflect in the HNSAs. Fig. 5b illustrates how edge weights reflect in the HNSAs. The left
part of Fig. 5a and Fig. 5b show the HNSAs. The right part shows the availability of edges in Fig. 5a,
and the edge weights in Fig. 5b. White corresponds to a value of zero, green to a value of one.

Fig. 5a shows that a large portion of the bits encode the link availability. In fact, 56 out of 64 bits can
be associated with link availability. Some bits even directly correspond to the availability of edges.
Bit59 and Bit26 corresponds to Edge8, and Bit4 to Edge7.

Consequently, Fig. 5b shows that most bits are constant for different edge weights. The NN uses
eight out of the 64 bits to encode edge weights. The relation between bits and edge weights is more
complex than between link availability and bits, and no clear correspondence is observable.

Attention Scores Fig. 6 illustrates the attention scores of all switches in the network for a specific
destination node. To evaluate the effect of the gumbelSoftmax activation, we additionally trained a
NN with the sparsemax activation function (Martins & Astudillo (2016)). Further, we handcrafted
attention scores corresponding to an edge cover of all edges belonging to the shortest paths between
a switch and the destination. Fig. 6a shows the attention scores of the gumbelSoftmax activation,
Fig. 6b of the sparsemax activation, and Fig. 6c the edge cover. The attention scores of individual
attention heads are summed up and clipped to a maximum value of one.

Fig. 6a shows that the attention scores of the gumbelSoftmax resemble the edge cover in Fig. 6c. In
contrast, the attention scores of the sparsemax cover all nodes. Fig. 6a show that the NN relies on
the state of the ToR switch- and the aggregation switches in the pod of the destination. Further, all
switches rely on their state. Some activations in Fig. 6a are not intuitive. For example, it is unclear
why core switch C10 relies on the state of a ToR switch in a different pod than the destination.

8



Under review as a conference paper at ICLR 2022

Fig. 6a and 6b show that the sparsemax activation results in a dense pattern that results in a large
signaling overhead of the learned protocol. The resulting protocol would exchange one message for
each non-zero entry. The gumbelSoftmax activation has a clear advantage and requires exchange
of at most 10 messages, which is in the order of the edge cover, which requires at most 9 messages.

In summary, the majority of the bits in the HNSAs encode the edge availability. The attention scores
resemble an edge cover of edges that belong to the shortest paths to a destination. The detected
pattern is sparse and can be used to optimize the sending of update messages. This behavior does
also hold for the WCMP and LCP policy.

5 RELATED WORK

Routing and Traffic Engineering. TE solution for DC networks addressing different goals and
challenges exist (Noormohammadpour & Raghavendra (2017)). Solutions range from using well
established protocols such as OSPF Chiesa et al. (2016); Michael & Tang (2014) over new cen-
tralized designs (Al-Fares et al. (2010); Benson et al. (2011); Zhang et al. (2016)) to distributed
protocols that operate directly in the data plane (Hsu et al. (2020); Kandula et al. (2007); Alizadeh
et al. (2014); Katta et al. (2016)). Closest to Mistill is CONTRA (Hsu et al. (2020)), which
proposes a high-level policy language expressing TE goals, and uses a path-vector based protocol
for network state exchange. In contrast to previous work, Mistill is not yet another TE scheme
and does not aim to outperform existing TE schemes in scenarios they are optimized for. Instead,
Mistill is a method to automate the design of distributed protocols by distilling protocols from
data. In contrast to CONTRA, Mistill does not require a policy language. Further, Mistill is
not limited by the capabilities of a path vector protocol. Instead, Mistill learns the content, the
exchange and the processing of information from data, and automatically detects useful patterns.

ML and Networking. Combinations of ML and networking have been explored from different
angles in the past (Boutaba et al. (2018)). Closest to Mistill are work from (Geyer & Carle
(2018)) and (Xiao et al. (2020)), which rely on Recurrent Neural Networks to learn forwarding
behavior. In contrast to previous work, Mistill focuses on data-center applications. Proposals
in (Geyer & Carle (2018); Xiao et al. (2020)) focus on wide area networks and do not apply to
data centers. Both proposals require the exchange of several messages between neighboring nodes,
similar to a distance-vector algorithm, to accommodate a change in the network. This procedure is
too slow for the fast-changing traffic conditions in data-center networks. Mistill does not suffer
from this problem and maps state updates directly into forwarding decisions. Further, we are the first
to design such a system with practical deployment in mind. Key parts of the design of Mistill
can, in principle, be deployed in the network, e.g. using Taurus (Swamy et al. (2020)).

6 CONCLUSION

This paper investigates if it is possible to learn a distributed protocol in a data-driven manner that
implements a custom TE policy. Accordingly, this paper proposes Mistill, an ML-based ap-
proach that learns distributed protocols from exemplary forwarding decisions. Mistill learns the
processing and exchange of local information with other network elements and the computation of
forwarding decisions from the exchanged information. Further, we design Mistill with deploy-
ment on hardware in mind. Mistill uses only calculations that are available on network devices.

To show the applicability of Mistill, we learn the forwarding behavior of three TE policies and
evaluate the learned protocols in simulations on traffic patterns from four realistic data-center appli-
cations. Our results show that it is possible to learn distributed protocols from data that closely match
the original forwarding decisions and generalize to previously unseen traffic patterns. Further, we
analyze the learned representations and show that they are reasonable. In the appendices, we provide
detailed information on how Mistill can be implemented in practice. We believe that our work
opens many research opportunities for the future: designing switch architectures that implement
learned routing protocols, using Mistill as the basis for Reinforcement Learning based protocol
design, and using learned patterns to optimize existing TE policies, e.g., to reduce the number of
exchanged update messages.
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A HYPER PARAMETER OPTIMIZATION

Finding the parameters was a two stage process. Step one was finding parameters that are able to
reproduce the shortest path without any network state info. In the second step, we introduced the
network state information.

A.1 SHORTEST PATH

To learn the shortest paths, we used only the LOCMOD. We experimented with different node
representations (see Appendix D), as well as different NN architectures. We experimented with
multi-head attention with the IP of the destination as query and the IPs of the neighbors as keys
and values. We also tried simple feed forward neural networks. It turned out, that a simple feed
forward neural network with one hidden layer and the concatenation of destination IP and the IP of
the current location is enough to reliably learn the forwarding behavior in Fat-Tree topologies. We
performed a parameter analysis of the hyper parameters with ASHA (Li et al. (2018)) implemented
in Ray Tune Liaw et al. (2018). Hyper parameters were:

• batch size: {64, . . . , 256}

• hidden layer sizes: {8, . . . , 100}3, i.e., up to three layers.

• learning rate: [0.001, 0.0001].

• samples for ASHA: 100.

We used the ADAM (Kingma & Ba (2015)) optimizer and ReLU activation. The best performing
model has one hidden layer with 90 neurons. We thus used one hidden layer with 90 neurons for the
LOCMOD and kept them fixed when experimenting with network state.

A.2 NETWORK STATE

To learn the forwarding behavior with network state, we performed extensive parameter sweeps with
ASHA. We explored the following parameter space:

• batch size: {64, . . . , 128}

• final FCNs in the FWD MOD: {50, . . . , 128}2,3 two or three layers.

• FCN for encoding links: {32, . . . , 150}

• Number of blocks: {1, . . . , 65}

• Arity: {2, . . . , 16}

• Tempererature of gumbelSoftmax: 0.6

• number of heads for MHA in NSMOD: {9, . . . , 14}

• dimension of FCN for MHA module in NSMOD: {70, . . . , 129}

• hidden dimension of MHA heads: {20, . . . , 64}

• output dimension of MHA heads: {16, . . . , 4}

• learning rate: [10−4.3, 10−3.5]

To obtain the final models, we fixed the arity of the categorical distributions in the HNSAMOD to 2
and the number of blocks to 64. We then trained 100 models with ASHA, resulting in the parameters
in Tbl. 1. To evaluate the impact of the number of blocks, we kept the resulting parameters in Tbl. 1
fixed and varied the number of blocks. One area of future work can be a more thorough search of
the parameter space to reduce the model size. We did not try to reduce the number of parameters as
much as possible. For example, we believe that multiple attention heads can be pruned, as well as the
number of blocks be reduced. Those elements of the network showed a large degree of redundancy.
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Figure 7: Fat Tree topology - A scalable three-tier Clos network. The topology is a multi-rooted tree
with high path redundancy between any pair of hosts.

B CLOS-TOPOLOGIES

Data center networks are a good fit to start with learning network protocols. They have regular and
repetitive structures and their addressing schemes can encode the location of network nodes. Clos
networks are one such common data center topology. One special instance of Clos networks is the
(Fat Tree Al-Fares et al. (2008)); a well-known example that employs a three-tier structure and can
interconnect are large number of servers using simple commodity hardware. Fig. 7 shows a k = 4
Fat Tree topology. A Fat Tree topology has three layers of switches: Top-of-the-Rack, aggregation
and core switches. Hosts are connected to Top-of-Rack (ToR) switches, which in turn are connected
to aggregation switches. ToR and aggregation switches are organized in pods. The Fat Tree in
Fig. 7 has four pods which are interconnected by four core switches. A Fat Tree can support k3

4

server nodes with 5k2

4 k-port switches. For instance, a Fat Tree constructed from 8-port switches
can support 128 hosts with 80 switches. Clos networks provide a rich, high-capacity connectivity
matrix, i.e., k2

4 paths exist between any pair of servers in different pods, and k
2 paths between servers

in the same pod that are connected to different ToRs. The Fat Tree in Fig. 7 already provides 4 paths
between servers in different pods, and 2 paths between servers in the same pod connected to different
ToRs.

Clos networks have two advantages: Simplified inventory Management and resilience to fail-
ures (Al-Fares et al. (2008); Dutt (2017)). Inventory management is simplified because the net-
work can be build from fixed-form switches. This makes it easy to stock spare devices, and replace
failed ones, since each switch is the same. Resilience of the topology is increased through high path
diversity. If a link or device fails, enough alternative routes exist.

C DEPLOYING DISTILLED PROTOCOLS

This section outlines two potential practical implementations of Mistill. Sec. C.1 outlines an
implementation of Mistill on switches in the network. Sec.C.2 outlines an implementation of
Mistill in the edge of the network. Finally, Sec. C.3 describes how update messages can be send
and details how the resulting overhead can be computed.

C.1 IN-NETWORK DEPLOYMENT

In this deployment, Mistill is implemented in the network without touching the servers. Also,
Mistill does not change the data plane traffic. Thus, Mistill is transparent to the server nodes,
and can be deployed incrementally in the network.

To be operable, Mistill needs routines and data structures on switches that interface with the NN.
Each switch has four entities: A Flow(let) Table (FT), the Network State Database (NSDB), the NN,
and a Receiver Database (RDB). Fig. 8 shows the entities and their interaction.

The NSDB stores HNSAs received from other switches in the network. The switch populates the
NSDB with the content of HNSAs. Switches do only need HNSAs from parts of the network flows
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Figure 8: Realization of Mistill on a switch.

traversing the switch are traveling to. HNSAs from other parts of the network are irrelevant, as Fig. 6a
illustrates.

The NN is used in two functions on the switch: 1) to compute forwarding decisions, and 2) to
compute the HNSA content. To compute forwarding decisions, the switch needs information from
the packet. In our examples, this amounts to the source and destination IP address. All other inputs
reside in the memory of the switch. To compute the HNSA content, the switch monitors the required
statistics, e.g., the link utilization or queue sizes. The switch executes the HNSAMOD with the
current link state. The resulting HNSA is propagated through the network to other parts of the
network as indicated by the RDB. The propagation of HNSAs is detailed in Sec. C.3.

The FT caches forwarding decisions to avoid packet-reordering at the destination. We believe that
it is likely that the content of the NSDB is updated frequently during the life-time of longer flows.
As a result, it is likely that packets of the same flow are forwarded along different paths in the
network. Thus, the switch caches the forward decision the NN produces for the first packet of a
flow(let) and re-uses this decision for subsequent packets. This approach additionally decreases the
computational effort. Caching of forwarding decisions to avoid packet re-ordering is also performed
by other in-dataplane TE solutions (Alizadeh et al. (2014); Katta et al. (2016); Hsu et al. (2020)).

The RDB controls to which nodes in the network HNSAs are send. The RDB is lazily populated
based on the source IP addresses of packets the switch observes during operation. Sec. C.3 explains
the sending of HNSAs in detail.

To guarantee delivery of packets, the FT can be used to configure static routes, e.g., to implement
ECMP. If there is a training artifact in the NN that leads to wrong forwarding decisions, then affected
traffic can use the fallback routes once the Time to Live (TTL) reaches a certain value. In our
experiments, we did not experience any loops, though.

In this way, Mistill can be deployed incrementally. For example, Mistill can be deployed
first on the ToR and aggregation switch of individual pods. Depending on the results, the number
of pods that are operated with Mistill can be gradually increased. This approach requires the
configuration of static rules to let legacy pods that do not run Mistill interact with pods that run
Mistill. This is necessary, since Mistill switches will not use the existing routing protocol.
Thus, the legacy switches need default routes to those pods. Switches that run with Mistill do
not need static routes, they can be learned during training.

C.2 EDGE-BASED DEPLOYMENT

The in-network based deployment requires that switches have substantial computational require-
ments. For example, switches that are based on FPGAs (Luinaud et al. (2020)), or have hardware
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Figure 9: Probing scheme for all node types.

support for executing ML models (Swamy et al. (2020)). Such switches are not available in existing
data-centers. Thus, Mistill cannot be deployed there. Instead, we suggest a hybrid implementa-
tion, where only the HNSAs are calculated on the switches, and the forwarding logic is moved into
the servers.

Our results show that the computation of the HNSAs does not require a complex NN. The forward
pass of this network takes less than one millisecond on an Intel(R) Core(TM) i7-7700HQ CPU with
2.80GHz. Thus, the NN could operate in the control plane of the switch. The switch can calculate
the HNSA content there and send packets to the end-hosts to inform them about its state. Running
this process in the control plane of the switch might impact the frequency with which updates can be
send, since the communication between control- and data-plane takes time. Evaluating the potential
performance is one area of future work.

The computation of the forwarding decisions is moved into the end-hosts. For each new flow, the
end-host then determines a path through the network. The end-host calculates the aggregation switch
its ToR switch should send the packet to. Then, the host can calculate the core switch the aggregation
switch should send the packet to. From a core switch, only one path exists to the destination host.
Forwarding of the packets can be realized, e.g., with the Multiprotocol Label Switching (MPLS)
protocol. The end-hosts add MPLS labels to the packets that determine the path through the network.
Switches forward the packets based on those labels. MPLS is a broadly available feature in data
center equipment.

The required functionality on the end-hosts can be implemented with the extended Berkeley Packet
Filter (eBPF) Calavera & Fontana (2019). eBPF is a standard Linux technology and also available
in Windows starting with Windows 10 and Windows Server 2016. eBPF allows the execution of
custom byte-code in the Linux kernel. The execution of eBPF bytecode is triggered by certain hooks
in the kernel. In this way, the forwarding logic of Mistill can be invoked for outgoing packets.
For a packet of a new flow(let), a new route is calculated and stored in the NSDB. If an entry exists,
the calculated route is used instead. Similarly, HNSAs from the switches can be processed in the
kernel with eBPF. Further, SmartNICs that can accelerate the execution of NNs exist for end-hosts
today (Sanvito et al. (2018)). Thus, the calculation of the NN and the processing of HNSAs can be
offloaded to the NIC (Vieira et al. (2020)).

C.3 HNSA PROPAGATION

We design an efficient propagation mechanism based on multi-casting that is inspired from the
learned pattern in the SI and takes advantage of the structure of Clos-topologies. The propagation
mechanism keeps the number of HNSAs that circulate in the network in the order of O(N), where
N is the number of switches in the network.

The propagation mechanism exploits two observations: 1) up-stream switches need update messages
from down-stream switches to make forwarding decisions. 2) Switches in one pod need update
messages from a similar set of down-stream switches, since each switch is likely to see a similar set
of destination IPs. Thus, we propose to multi-cast a HNSA to all switches in the source pod. HNSAs
have a header with two fields 1) the IP of the switch from which the HNSA originates and 2) a bit
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array of length k, where k is the number of pods. Each switch tracks the pods from which traffic
passing them originates, i.e., the RDB. The source pod of a packet can be deduced from the source
IP-address (Al-Fares et al. (2008)). The switch indicates those pods in a bit array stored in the HNSA
header.

Fig. 9 shows an exemplary HNSA propagation from a ToR. First, the ToR sends its HNSAs to all
neighboring aggregation switches (Step 1). The aggregation switches forward the probes to all ToR
switches in the pod as well as all adjacent cores switches (Step 2). The ToR switches consume
the probes and do not circulate them further. The core switches forward the HNSA to all adjacent
aggregation switches in pods indicated by the bit array in the HNSA header (Step 3). The aggregation
switches then forward the HNSA to only the incident ToR switches, i.e., do not send it back up
into the core layer (Step 4). For this, the aggregation switches check for each HNSA that they
receive whether the HNSA originated in their own pod. If it originated in a different pod, then the
aggregation switch does not forward the probe to the core layer. The ToR switches do not further
circulate the HNSA . The checks if a HNSA originated in the same pod or not can be performed by
comparing the IP address of the source switch with the IP address of the switch that is currently
processing the HNSA .

Further, switches forward probes only, if they did not receive a probe from the switch identified by
the source IP within a configurable amount of time. This can be achieved at line rate (Katta et al.
(2016)). Thus, aggregation switches in the source pod will forward only one probe to their connected
ToR switches.

The overhead of this probing scheme is reasonable. In the worst case, all pods communicate with
each other. at most 5k2

4 messages will traverse one link. One message for every switch in the
network. Assuming a probing frequency of 1ms and a link bandwidth of 10Gbits, the probing
overhead is then:

5k2

4 (54Byte · 8 + k Bit)
1e10 Bits · 0.001 s

. (1)

We assume a size of 46Bytes plus k Bit for the update message, consisting of 14Bytes Ethernet
header, 20Bytes IP header and 12Bytes plus k Bit for the probe. The 12Bytes of the probe consist
of 4Byte for the source IP, 8Byte for the HNSA content, and k Bit to indicate the pods the HNSA
should be forwarded to.

Thus, for a k = 8 Fat-Tree, the overhead of probing one one link would be 0.3% of the available
bandwidth. For a k = 16 Fat-Tree supporting more than 1 000 hosts, the overhead would still be
1.22%.

However, the evaluation of the SI in Sec. 4.4 shows that e.g., the HNSAs of core switches are not
requested by any other switch. Further, if not all pods communicate with each other, as e.g., the case
in the render or combine pattern, then the number of HNSAs will further decrease. In practice
we expect the number of update message thus to be less.

D NODE ADDRESSING SCHEMES

Addresses in communication networks should follow a pattern to, e.g., keep routing tables
small (Waldvogel et al. (1997)). If IP addresses did not contain a useful pattern, routing tables
would have to store forwarding decisions for each and every IP address. Since the addresses are
written to the header of every packet, they should also be concise to reduce overhead.

IP addresses today are geared towards the available technology, e.g., towards longest prefix match-
ing. It is unclear if the way nodes are addressed today is a good fit for routing protocols learned with
ML.

Thus in this section, we investigate whether ML based routing protocols can be learned with IP
addresses, whether latent space models, as used in natural language processing or graph learning,
yield an addressing scheme that results in better performance, and whether the addressing scheme
plays a role at all for the ability to learn a routing scheme.
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D.1 LEARNING BINARY EMBEDDINGS OF NODES IN GRAPHS

Learning useful representations for nodes in graphs is subject to ongoing research (Hamilton et al.
(2017)). We use Bernoulli Embeddings (Misra & Bhatia (2018)) to learn node addresses. Bernoulli
Embeddings map nodes in a graph into a binary space that encodes the neighborhood relationship.
We do not consider approaches such as node2vec (Grover & Leskovec (2016)) that embed nodes
into a continuous latent space as the size the necessary floating point numbers is prohibitive. We
do also not consider methods that use additional meta-data for generating embeddings. Meta-data
on the networking level, e.g., MAC addresses, hardware information, etc. is either random or not
correlated with the network structure.

A binary embedding is a d-dimensional binary vector, i.e., the embedding of node i is Ei ∈ {0, 1}d.
The binary vector is sampled from d independent Bernoulli distributions, parameterized by a ma-
trix Θ ∈ R|V|×d. The kth element in the embedding of node i is thus sampled according to:
Ek

i ∼ Bernoulli(Θi,k). The embedding can be optimized by changing the parameterization of
the independent Bernoulli distributions such that an appropriate loss function is minimized.

The intuition behind the method in (Misra & Bhatia (2018)) is to encode neighborhood relation into
the embeddings by casting the problem as a link prediction problem: The probability of an edge eij
from node i to node j is proportional to the hamming distance dH between the embeddings Ei and
Ej of those nodes:

p(eij | Ei, Ej) =
exp (−αdH(Ei, Ej))∑

k∈V exp (−αdH(Ei, Ek))
(2)

The parameter α is a scaling factor. The hamming distance dH between two vectors is defined as:
dH : {0, 1}d × {0, 1}d → N ;x, y → xT (1− y) + (1− x)T y.

The embeddings can then be trained by optimizing the log probability, i.e.:

L(G,Θ) = −
∑

(i,j)∈E

E [log p(eij | Ei, Ej)]Θ , (3)

assuming that edges are independent of each other given the embeddings of incident nodes.

Misra et al. (Misra & Bhatia (2018)) use a continuous approximation to the objective in Eq. (3)
to circumvent the expectation over a discrete valued variable. In contrast, we make use of the
Gumbel-Softmax trick (Jang et al. (2017); Maddison et al. (2017)), a reparameterization trick for
discrete random variables, to optimize the objective in Eq. (3). In addition, Misra et al. (Misra &
Bhatia (2018)) use Noise Contrastive Estimation (NCE) to avoid the summation over all nodes in
the graph in the denominator of Eq. (2). We do not use NCE since optimization is feasible for the
size of communication networks. In addition, we experienced that NCE makes learning of unique
embeddings more difficult due to aliasing effects between nodes.

Addresses in communication networks must be unique which translates to the embeddings of the
nodes. The optimization objective in Eq. (3) is not designed for this constraint and might assign the
same embedding to different nodes. In fact, for a fully connected graph a single embedding for all
nodes would in fact be the optimal solution. Also in other networks nodes exists that are structurally
equivalent and thus get the same embedding. For example all hosts connected to one ToR switch
in a Fat-Tree topology would get the same embedding. Similarly, all core switches in a fat-tree
that connect to the same aggregation switches are structurally equivalent and would get the same
embedding. We thus adapt the objective in order to avoid duplicate embeddings. Specifically, we
use the following energy function for the model of edge probabilities:

L(G,Θ) = −α

√
(dH(Ei, Ej)− β)

2
, (4)

where β is a scalar parameter. The intuition behind Eq. (4) is that a probability of one for an edge is
obtained only, if the embeddings are different. The parameter β controls the scaling of the difference.
For example, β = 1 pushes the embeddings of adjacent nodes towards having a hamming distance
of one.

D.2 RESULTS

The suitability of addressing schemes is evaluated by learning static shortest paths. An addressing
scheme is suitable if the forwarding rules for static ECMP can be learned reliably, i.e., if we obtain
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Optimal Random Learned12 Learned16 Learned20 Learned24 Composed IP

0.3707 0.6210 0.5397 0.4835 0.5002 0.6541 0.4185 0.3921

Table 2: Training results on the shortest path training tasks for graphs and embeddings. For the
learned embeddings, different vector sizes were evaluated. Optimal is the average loss value for the
ground truth.

a low loss value. Tbl. 2 lists the results obtained for this learning task. We use addresses of up to 24
bits. IP addresses follow the scheme in (Al-Fares et al. (2008)). We remove the first octet since it is
constant and thus does not contribute any information.

The random embedding results in the highest, i.e., worst, loss value. The addresses do not contain
any form of pattern, after all. The learned embeddings result in lower loss values. The dimensional-
ity of the embedding does not have an effect on performance. No consistent increasing or decreasing
trend is observable. The IP address based embedding results in the lowest loss values. Good per-
formance here is explainable, since the forwarding behavior can be perfectly computed from the IP
address alone in case of the Fat Tree. The composed embedding for the Fat Tree achieves a loss
value of 0.4185 and is competitive with the IP-based result of 0.3921. This hints at filtering out
similar structures in the graph and assigning embeddings to those structures in an equal manner.

In summary, IP addresses are well suited to learn forwarding decisions on well structured topologies
such as Fat Trees. This has the advantage that learned routing protocols are backwards compat-
ible, can be incrementally deployed, or run side-by-side with traditional routing protocols. For
Mistill, we thus use the last 24 bits of the IP addresses to represent nodes.
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