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Abstract

Supervised learning traditionally depends on
labeled data, collected and organized for spe-
cific tasks. Producing these datasets has gen-
erally been time-consuming, costly and error-
prone. The emergence of large language mod-
els (LLMs) demonstrate a remarkable ability to
produce well-formatted data, which could po-
tentially revolutionize the dataset construction
process. In this paper, we propose an LLM-
based data transformation pipeline to gener-
ate multiple-choice question-answer (MCQA)
data from raw sources such as textbooks. Fur-
thermore, we extend this process by propos-
ing a pseudo-open-book reasoning approach,
wherein student LLMs are trained to first recre-
ate the original textbook excerpts used to gen-
erate the questions, before answering them. We
evaluate our methods using the Llama2 13B
model on domain-specific subsections from the
MMLU testing set, and observe an improve-
ment of up to 18.8% in testing accuracy, in-
creasing from 45.8% to 64.6%, without access-
ing the corresponding MMLU training set.

1 Introduction

At the time of writing, an enormous amount of data
is available online for most fields. These raw data
come in various forms such as textbooks, spread-
sheets, videos, forums, and so on. Domain experts
can learn from these data sources and improve in
their respective fields. However, it is generally dif-
ficult to use these types of raw data directly to train
machine learning models. Instead, training data
are usually manually crafted with knowledge and
constraints specific to each field and task, and there-
fore differ among each other in format and usage.
This manual process is usually time-consuming,
costly, and error-prone. It is challenging to find a
general-purpose dataset or data-generation method
that is useful for every problem setting.

The emergence of large language models
(LLMs) demonstrates powerful generative capabili-
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This biome contains trees that drop their leaves during the winter.
A: Desert B: Tundra C: Taiga D: Deciduous forests

Correct answer: D

Taiga is a biome that contains trees that drop their leaves during the

winter. Answer: C

Shade or deciduous trees are trees that shed their leaves for a part
of every year and remain bare until they grow new leaves each
spring. One of the spectacular things about shade trees is the wide
array of colors that their leaves display before they are shed.
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What is the primary reason deciduous forests are characterized by
trees that lose their leaves during the winter months?

A: To grow new leaves better suited for sunlight absorption

B: To conserve water during the colder, drier season

C: To prepare for reproduction in the spring

D: To attract more wildlife for pollination

Solution: Deciduous forests trees lose their leaves during the winter
months to conserve water during the colder, drier season, the answer|
is B.

Trained Answer

Deciduous forests is a biome that contains trees that drop their
leaves during the winter months to conserve water during the colder,
drier season.

KAnswer: D /

Figure 1: Example flow

ties, and could potentially revolutionize the dataset
construction process. Compared to manual work,
the use of LLMs in data generation is much faster
and more cost-efficient. Additionally, generated
data tend to be more uniform, whereas human data
collectors and annotators may be influenced from
time to time by their mood, interest, and individual
differences, especially when multiple annotators
are employed. In this work, we propose an LLM-
based data transformation pipeline to generate for-
matted data in order to exploit these advantages.
One of the major challenges in creating a sin-
gle data transformation method effective across all
fields is that each field requires different thought
processes. For instance, math and physics of-
ten demand analytical and quantitative reasoning,
whereas law and history necessitate critical think-



ing and interpretation. A dataset structured as
<question, variables, formulas, computation, re-
sult> might be ideal for mathematics but irrelevant
for law. Consequently, it is less favorable to define
a one-size-fits-all data format, then process raw
data into this format. Instead, any general-purpose
data preprocessing method should be sufficiently
flexible to produce different formats tailored to the
needs of the specific task. Interestingly, this notion
brings us back to the utility of LLMs. Many stud-
ies (Zhang et al., 2024a) (Zhang et al., 2023) have
demonstrated their strong versatility in handling
various input and output formats. Since pretrained
LLMs have been exposed to large quantities of data
in formats specific to each domain, the data they
generate naturally aligns with the standard thought
processes of those domains, and is not confined to
a single format.

Multiple-choice question answering (MCQA)
has historically been a versatile form of assessment
and has been used across various fields. Conve-
niently, it also yields a consistent single-dimension
performance metric, regardless of the field of ap-
plication, making it straightforward to compare the
same data transformation method across different
fields. The abundant existing studies on MCQA
have also left many valuable datasets for both train-
ing and evaluation. These traits demonstrate that
MCQA is a well-suited application for a general-
purpose data transformation method, and therefore,
it will be used throughout this work.

For traditional MCQA exam construction, do-
main experts and researchers presumably acquire
task-specific knowledge from lectures, literature,
and experience. Their primary goal when com-
posing a question is typically to assess students’
knowledge and understanding of specific knowl-
edge points. During this process, background moti-
vation is formulated into the question, while theory
and methods form the solutions, both of which can
be seen as forms of knowledge distillation. This ap-
proach inspires us to adopt a similar strategy, where
larger, more powerful instructor LLMs act as do-
main experts to create MCQA data based on liter-
ature. This data is then used to train lightweight,
cost-effective student LLMs. Fig. 1 illustrates an
example of the complete process. Additional exam-
ples are included in the appendix, which we will
reference later on as we detail our methods.

Various methods have been proposed to improve
LLM training and inference. Since our method is
applied to the source data, we demonstrate through

several examples that when these training and in-
ference methods are combined with our data trans-
formation, they continue to yield their respective
performance gains. Specifically, we work with
chain-of-thought (CoT) prompting, instruction tun-
ing, few-shot learning, retrieval-augmented gen-
eration (RAG), among others. Additionally, we
propose a novel form of CoT, which we refer to
as “pseudo-open-book examination.” When posed
with a question, the model first generates an inter-
mediate result in the form of a textbook excerpt,
which may have been originally used to produce the
question. Then, with the assistance of this excerpt,
it answers the question, thereby simulating an open-
book exam experience. As our training MCQA
datasets are constructed from textbook excerpts, it
is particularly convenient to train our student LLMs
to apply this reasoning process. Employing every
method, we achieve up to an 18.8% improvement
in domain-specific subsets of the MMLU dataset
(Hendrycks et al., 2020) with a trained Llama2
13B model (Touvron et al., 2023), increasing from
45.8% to 64.6%.

To summarize, our contribution in this work are
as follows:

* We propose a data transformation pipeline to
process raw textbook data into strictly format-
ted MCQA pairs with detailed solutions in ad-
dition to final answers. This pipeline extracts
knowledge from both the instructor LLM and
the raw data source into the result dataset.

* We propose a novel intermediate reasoning
step for MCQA where the model first attempts
to recover the original textbook excerpt used
to generate each question, then answers the
question given this information.

* We evaluate our methods on seven domain-
specific subsets of the MMLU testing set for
English MCQA, using GPT3.5 as the instruc-
tor LLM and Llama2 13B as the student LLM,
and observe an improvement of up to 18.8%
in test accuracy. All of our experiments are
conducted without accessing the training set
of MMLU to show generality.

2 Related Work

CoT Prompting. Recent LLLMs demonstrate
emerging CoT reasoning capabilities by integrat-
ing a series of logical reasoning steps. It not only
enables LLMs to better understand input questions



and their underlying complex logic, but also out-
put step-by-step logical reasoning (Fu et al., 2023;
Wang et al., 2023; Gu et al., 2023). Jin et al. exam-
ines how the length of reasoning steps in prompts
affects the performance of LLMs (Jin et al., 2024).
They argue that longer reasoning steps, even with-
out new information, improve LLMs’ reasoning
abilities. In addition, the benefits of longer reason-
ing steps vary by task complexity: simpler tasks
need fewer steps, whereas complex tasks benefit
more from extended reasoning sequences. Olapa-
MCoT introduces SimRRHF algorithm and Incor-
rect Data Relearning to enhance the learning of
LLMs, resulting in a significant improvement, with
a 36% increase in accuracy compared to LLaMA2-
13B (Zhu et al., 2023).

Instruction Fine-Tuning. Fine-tuning LLMs
using instruction-following data has been demon-
strated to be an effective approach for enhancing
performance on downstream tasks. Li et al. pro-
pose instruction backtranslation, a technique for
creating high-quality instruction-following models
by automatically generating instructions (Li et al.,
2023). Wang et al. introduce Self-Instruct, a frame-
work that enhances the instruction-following ca-
pabilities of pre-trained LLMs by leveraging their
own generated content (Wang et al., 2022). Liu et
al. first analyze data across dimensions of complex-
ity, quality, and diversity and then introduce DEITA
(Data-Efficient Instruction Tuning for Alignment)
to enhance data measurement. DEITA achieves
comparable or superior performance to state-of-
the-art alignment models while using only 6K SFT
training data samples, which is more than 10 times
less than the data employed by baseline models
(Liu et al., 2023).

LLM-based Data Augmentation As LLM re-
search progresses, researchers began to use them
for data generation and augmentation. Peng et al.
create more data from existing data samples by
breaking down each source sentence into attributes,
manipulating a single attribute, then assembling
them back into a sentence, all in the form of a CoT
reasoning(Peng et al., 2023). Park et al. generate
fresh data without existing data samples, instead
they use combinations of grammatical components
and assemble them into grammatically incorrect
sentences to be used in error detection (Park et al.,
2024). Zhang et al. takes existing data and rephrase
them at either a word level, syntax level, or dis-
course level, adding constraints in the process to
ensure richness in the data (Zhang et al., 2024b).

3 Methods

This section presents the detailed data transforma-
tion pipeline used in this work. The pipeline in-
cludes three stages: the distillation stage, the train-
ing stage, and the inference stage. Fig. 2 illustrates
the full flow.

3.1 Distillation Stage

The distillation stage is inspired to simulate the pro-
cess of an instructor creating an MCQA exam for
a course. The questions are composed from both
information within the course literature, as well
as the personal understanding and expertise the in-
structor gained over their study, both of which are
very valuable. In this work, this examiner position
is taken by an instructor LLM. The instructor LLM
is trained by large quantities of data, including text-
books which contain theory and exercise questions
in alternation, as well as answer keys where ques-
tion and answers are presented in adjacency. By
prompting the instructor LLM to generate ques-
tions with input textbook excerpts, we expect to
receive questions specifically focused on informa-
tion from the excerpts, as well as its solution. This
extracts domain-specific knowledge gained by the
instructor LLM into small, well-formatted datasets,
allowing them to be used for training or referenc-
ing.

As it turns out, the raw text extracted from liter-
ature would contain large amounts of misaligned
text such as credit, titles, page numbers, figure cap-
tions, special characters, and so on. Additionally,
while these standalone text interrupt the natural
flow of the main text body, they are usually short
enough to stay uninterrupted themselves. This
results in a unfavourable phenomenon where the
question generation model pays too much attention
to these text, and generate questions such as “which
of the following individuals authored this chapter”,
which does not seem helpful in domain knowledge
training for the student model. In order to resolve
this issue, we introduce an additional data cleaning
step ahead of the question generation step, as illus-
trated in Fig. 2(a), during which we specifically
instruct the LLM to exclude any information irrel-
evant to the domain. Detailed LLM conversations
and formatted data are shown in appendix section
Al
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Figure 2: Full Pipeline

3.2 Training Stage

After obtaining a set of MCQA during the distilla-
tion stage, the next phase would be to effectively
train a student LLM with this data. In this work, our
main training method is instruction tuning. We ei-
ther compose text blocks from generated question-
answer data points and train student models to com-
plete these text sequences offline, or prepend them
to the question during inference time in the form of
few-shot learning. In addition, we also propose a
pseudo-open-book flow for training and inference.

The idea of an open-book exam, where the ex-
aminee may bring a textbook or cheatsheets as sup-
plementary material, is typically considered to be
much easier than the alternative closed-book for-
mat. In fact, in a real world exam scenario when
no supplementary material is allowed, it is a rather
common strategy for students to memorize a cheat-
sheet last-minute before entering the exam, then
quickly write down what they remember on their
desk before their memory fade away, they would
then refer to this information throughout the exam.
With the strong generative capability of LLMs, it
is possible to simulate an open-book exam experi-
ence as an intermediate reasoning step, where the
student model first attempts to recreate a relevant
textbook excerpt based on the question, and then
solve the question in the presence of the excerpt.
As shown in many existing works such as (Wei

et al., 2022), the use of CoT prompting is often very
helpful and would improve model performance sig-
nificantly. This textbook excerpt recovery step can
be seen as a form of CoT, and may introduce simi-
lar performance gains.

Specifically, we train two different student mod-
els which we refer to as the “opener” and the “an-
swerer”. The opener model is trained to recover
original literature segments from generated ques-
tions (named to “make the exam open-book™), as
seen in Fig. 2(c); while the answerer model is
trained to predict the answer given literature seg-
ments and corresponding questions, as seen in Fig.
2(d). Both models are trained with the idea of
instruction tuning, where we simply instruct the
model to perform respective tasks. Specifically,
we construct text blocks with both instructions and
outcome, and employ text-completion methods in
supervised fine-tuning (SFT). Detailed conversa-
tions are shown in appendix section A.2.

3.3 Inference Stage

Finally, after both student models have been
trained, we proceed to the inference stage. The
MCQA test set is first processed with the opener
model to recover the literature used to generate it,
as shown in Fig. 2(e). Realistically, the composi-
tion of test questions may be completely different
from our setting where an instructor reads some
literature and specifically create a question based



on an excerpt. For example, some of the larger ap-
plication questions may be completely open-ended,
or span knowledge from multiple chapters. Never-
theless, when we attempt to recreate this “history
that never took place”, it can still be beneficial to
our question answering.

The training stage employs text completion SFT
as the training method. However, many existing
work show that large language models demonstrate
powerful few-shot learning capabilities (Brown
et al., 2020), it is often beneficial to simply prepend
instruction-following examples in front of the ac-
tual testing instruction. We therefore also experi-
ment with directly connecting the distillation stage
to the training stage by using formatted MCQA as
few-shot examples. We will show later on that triv-
ially selecting random training samples is already
beneficial. However, for the same testing ques-
tion, some training samples may be more helpful
than others. We therefore employ the RAG strat-
egy to select the most relevant samples from the
training set based on a Hamming distance calcu-
lated based on the number of occurrences of each
unique word in each question. Specifically, the dis-
tance between two questions a and b is defined as
Y1 [Wai — Wy i|, where n is the total number of
unique words used in the entire experiment, W, ;
and W}, ; refer to the number of occurrences word
1 showed up in questions a and b respectively.

4 Experiments

4.1 Experiment Setup

This section presents a series of experimental re-
sults under various settings. We mainly used GPT-
3.5 (Brown et al., 2020) (specifically, the gpt-
3.5-turbo-0125 API by OpenAl) as the instructor
model, and Llama-2 13B (Touvron et al., 2023)
as the student model. All training and inference is
performed on an Nvidia A100 GPU. Some hyperpa-
rameters used in this experiment include: learning
rate=10"°, LoRA r=8, alpha=16, dropout=0.05.
The testing datasets include MCQAs from the
MMLU (Hendrycks et al., 2020) test set for bi-
ology, chemistry, world history, law, mathematics,
physics, and psychology.

4.2 Baseline

The Llama-2 team released their official scores
on MMLU as part of their paper, however these
scores are mostly averaged over multiple subjects,
as MMLU originally intends to assess multitask

question answering abilities. For the purpose of this
paper, we are more interested in the effect of our
methods on each domain, as the training literature
focuses on a single subject area at a time. When
these subjects are taken individually, the zero-shot
accuracy scores we reproduced are as shown in
Table 1. We used CoT prompting for the baseline,
as otherwise the results would be much worse and
almost close to random.

It is worth noting that when the base Llama2
13B model is asked questions, it may not necessar-
ily select an option as intended. Appendix section
A.3 shows several examples of this issue, including
cases where the LLM: (1) does not output anything,
(2) outputs uninterpretable junk, (3) outputs too
much text and gets cut off by our output length
threshold, (4) does not select an option. We there-
fore add an “attempted” stat to reflect the format-
ting coverage. In order to normalize the impact of
unanswered questions, we calculated the correct-
ness percentage based on the number of questions
attempted rather than the total number of questions.

4.3 Main Results

Table 1 shows our main experimental results.
Specifically, 2000 generated questions were used
as the training set and retrieval pool for SFT and
RAG respectively. For SFT, we first used another
500 generated questions per subject area as vali-
dation set, and trained for up to 1000 steps of 5
samples per batch. We evaluated every 200 steps
on the validation set and picked the step with the
highest validation accuracy as the final model for
testing. For RAG, we obtain a word count for each
question body in the training pool and the testing
set, then match each test question to its closest 4
training questions by Hamming distance. The aver-
age stats are computed as mean percentages across
the subjects rather than totaling each specific count
first, as the number of questions that MMLU hap-
pen to include for each individual subject should
not be used as the weight during averaging.
Testing results show that coverage stats increase
significantly from 65.54% to 92.46% and 96.33%
for SFT and RAG respectively, demonstrating the
instruction tuning potential on LLMs. Between
the two main training methods, RAG also outper-
formed SFT in coverage stats in all subjects except
for chemistry, which shows that the LLM is more
likely to follow instructions when presented as few-
shot examples rather than trained offline.
Acccuracy stats increase by 6.72% for SFT and



| Baseline zero-shot

SFT RAG

Subject ‘ Question count ‘ ‘

‘ | Attempted | Correct | Attempted | Correct | Attempted | Correct
Biology | 454 | 394 (86.78%) | 185(46.95%) | 447(98.45%) | 257 (57.49%) | 452(99.55%) | 258 (57.71%)
Chemistry | 303 | 191(63.03%) | 62(32.46%) | 295(97.35%) | 105(35.59%) | 286(94.38%) | 107 (37.41%)
History | 765 | 497 (64.96%) | 262(52.71%) | 698 (91.24%) | 417 (59.74%) | 754 (98.56%) | 472 (62.59%)
Law | 1655 | 982(59.33%) | 325(33.09%) | 1390 (83.98%) | 506(36.4%) | 1623 (98.06%) | 605 (37.27%)
Mathematics | 994 | 353(47.19%) | 123 (34.84%) | 665(88.90%) | 260 (39.09%) | 665(88.90%) | 212 (31.87%)
Physics | 488 | 289(59.22%) | 90 (31.14%) | 457(93.64%) | 177 (38.73%) | 466 (95.49%) | 175(37.55%)
Psychology | 1157 | 906 (78.30%) | 415(45.80%) | 1084 (93.69%) | 618 (57.01%) | 1150 (99.39%) | 743 (64.60%)
Averaged | | 65.54% | 39.57% | 92.46% | 46.29% | 96.33% | 47.00%

Table 1: Main performance
Instructor model | Instructor | SFT | RAG
| Correct | Attempted | Correct | Attempted | Correct

GPT-4 | 96.12% | 447 (98.45%) | 275(61.52%) | 436(96.03%) | 255 (58.48%)
GPT-3.5 | 80.60% | 447 (98.45%) | 257 (57.49%) | 447 (98.45%) | 258 (57.71%)
Llama2 13B | N/A | 453 (99.78%) | 229 (50.55%) | 442 (97.36%) | 224 (50.68%)

Table 2: Distillation stage impact

7.43% for RAG overall. For individual subjects,
accuracy increases by up to 10.54% for SFT in biol-
ogy and 18.8% for RAG in psychology. We notice
that the performance gains are more significant in
subjects with more verbal reasoning such as biol-
ogy, history, and psychology, and less significant in
subjects with more mathematical computation such
as chemistry, math, and physics. This may be be-
cause our data volume is still rather small with only
thousands of examples, and therefore each number
that show up in our training set would end up as an
outlier in occurrence compared to others. Law is an
exception to this observation, as it does not involve
much computation but see low gains overall. This
may be due to data-specific issues where the text
used for training did not quite align with the testing
questions. We observe a single case where testing
accuracy drops in RAG with math, which may be
due to a combination of reasons above, as well as
data fluctuation. Overall, the experimental results
are consistent to show that our data transformation
method is effective to produce a training set for
MCQA across various subject areas, fulfilling its
original purpose.

4.4 Accuracy Gain Breakdown

The quantitative results have been shown above, we
now look into individual questions and give a more
specific idea of where the performance gains came
from. Firstly, despite achieving a higher accuracy
overall, it is still very much possible for perfor-
mance to degrade on individual questions. Taking
the biology subsection as an example, comparing
baseline against SFT, the coverage improved from
394 to 447. Out of this increase, 5 questions were
attempted in the base run but not in the trained
run, and 58 questions were not attempted in for-
mer but are attempted in latter. Similarly, out of
the 389 questions attempted in both runs, 97 in-
correct answers were corrected, while 50 correct
answers are now mistaken. The following are a few
representative cases of each.

Degradation case 1: Over-focusing on a single
choice. Out of the cases where a question was ini-
tially answered correctly but answered incorrectly
after training, a common one is when the trained
model now focuses on a single choice, and the ques-
tion contains choices such as “C: both A and B are
correct”. The trained model happens to have more
knowledge on choice A than choice B, therefore
decides on answering A instead of C, making a
mistake. This case also happens in reverse as a



correction case, where the baseline model focuses
on a single correct choice. After training, it learns
more about the other correct choice, and picks the
correct composite choice.

Degradation case 2: Two wrongs make a right.
A somewhat amusing degradation case is where the
baseline solutions include multiple mistakes, which
combine to circle back to the right answer, such as
“<choice A> is the best choice because of these rea-
sons, therefore the answer is B”. The trained model
presumably did not cover the knowledge to correct
the reasoning behind thinking choice A is correct,
but it is better at following instructions, namely con-
necting letter choices to their content, and therefore
gives choice A as the final answer where choice
B is actually correct. Similar to above, this case
also happens in reverse, where the baseline model
initially had the correct reasoning, but decided to
choose a letter choice that did not match the reason-
ing. The instruction tuning aspect of the training
process allows the trained model to correctly pick
the right solution.

Correction case 1: Blind picking. Out of the
cases when a question was initially answered in-
correctly but corrected after training, the baseline
model sometimes pick a single solution without
producing any reasoning to go with it, even when
prompted to do so. After training, this situation hap-
pens less and accuracy naturally improves. A simi-
lar but fundamentally opposite situation is where
the baseline model was originally trained to not
answer questions it considers too difficult. The in-
struction tuning step causes the baseline model to
unlearn this ability, therefore answering more ques-
tions and producing a better accuracy. This crosses
into the realm of trust and safety, and we strongly
encourage anyone that apply our methods to re-
apply the initial safety and ethics -related training
steps to recover these abilities for the student LLM.

An interesting phenomenon is that the LLM
tends to favor certain letter choices over others for
unknown reasons, previous studies (Zheng et al.,
2023) focused further on this issue. In our case, out
of 389 questions attempted both before and after
training, the pick rate of choices A through D are
120, 83, 54, 132 respectively for baseline, and 101,
93, 103, 92 after training. We can see that training
helps smooth this distribution.

Correction case 2: Finally, there are the orig-
inally intended cases where the baseline model
originally does not demonstrate knowledge in a
particular area, and through training, gained such
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Figure 3: Training set size impact

knowledge and is able to answer these questions
correctly. An example is used in Fig.1 above.

We now present a series of comparative analyses
to illustrate the impact of individual methods and
hyperparameters. In order to control cost, each
study is conducted independently, and only the
biology subject area is used. For each analysis,
unless otherwise stated, all settings are held the
same as the main experiments.

4.5 Distillation Stage Impact

During the distillation stage, we used GPT3.5 to
generate the training set from source literature,
therefore the quality of data may be influenced
by the capabilities of GPT3.5. Table 2 presents
the differences caused by replacing GPT3.5 with
either GPT4 (specifically, the gpt-4-turbo-0125-
preview API by OpenAl), or an Llama2 13B in-
stance used with RAG examples from the GPT3.5
results above. Despite the significant differences
in accuracy scores by the instructor model, there
is actually little difference in the resulting training
accuracy from the generated datasets by GPT3.5 vs
GPT4. On the other hand, the Llama2 13B instance
used for data transformation also yields improve-
ments over the baseline, although less significant
than the GPT instructors. These results shows the
self-instruction potential of the student model.

4.6 Training Stage Impact

During the training stage, we used a training set
size of 2000. Fig. 3 presents the impact on RAG
test accuracy and coverage from different training
set sizes from 5 to 5000. As we increase the train-
ing set size, we observe a slight increase in testing
accuracy by up to 2%, which appears small but may
contribute to a decent portion as the overall increase
from applying this method is about 10%. The cov-
erage stats mostly remained stable at around 99%,
with a single outlier around 96%.

For SFT, we previously took the highest valida-
tion accuracy as the optimal model, Fig. 4 presents
the full validation and testing accuracy scores in
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CoT methods used Attempted | Correct
None 427 (94.05%) | 229 (53.62%)

Recover textbook excerpt | 454 (99.33%) | 247 (54.77%)

|
|
Show solution | 454 (100.0%) | 254 (55.94%)
|
|

Both 447 (98.45%) | 258 (57.71%)

Table 3: Inference stage impact

addition to train and validation losses throughout
the training steps. As we can see, validation loss
and validation accuracy peak at 600 steps, but test-
ing accuracy actually peaks at 1000 steps, therefore
selecting model snapshot based on validation stats
is not necessarily the best fit. This is most likely
due to inherent differences in data distribution, as
the validation and testing sets are not sourced from
the same dataset. Nevertheless, it still serves as a
reasonable guideline and helps the selection.

For RAG, Fig. 5 explores the comparison be-
tween number of fewshot examples. The use of
closest examples by Hamming distance is also com-
pared against randomized retrieval. As we can see,
having more fewshot examples generally improves
accuracy. This aligns with our SFT experiments to
show that having more data improves the domain
knowledge of the model but does not necessarily
improve data format. On the other hand, the ran-
dom selection performance is noticeably below re-
trieval by closest Hamming distance, proving the
value of the retrieval step. Interestingly, the number
of fewshot examples for random selection does not
appear to affect the resulting accuracy, this may
be due to the model most learning formats from
random samples.
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4.7 Inference Stage Impact

During inference stage, we employed two CoT
methods including textbook excerpt recovery and
standard “explain your solution” approach. Both
methods are used by default in the main results,
Table 3 presents the ablation study of these two
methods, using RAG with 4 few-shot samples. As
we see from the results, having no CoT at all yields
the minimum correctness, while having either in-
termediate reasoning step improves it marginally.
Having both CoT methods yield the optimal perfor-
mance, showing that these two methods generally
do not conflict with each other. It is somewhat
surprising to see that the results with no CoT still
yields reasonable results, as the baseline results
with no CoT is merely 27% in accuracy, resem-
bling almost random selection.

5 Conclusion

In this paper, we propose an LLM-based multi-
disciplinary data transformation method to trans-
form raw textbook data into well-formatted
question-answer pairs, and show that the trans-
formed data can be used to effectively improve
multiple-choice question-answering testing accu-
racy without having to consult with the training
set. In addition, we propose a novel chain-of-
thought pipeline by recovering textbook excerpts
from questions, further improving performance.
Using GPT3.5 as the instructor LLM for data trans-
formation and Llama2 13B as the student LLM, we
evaluate our methods on seven different domains in
the MMLU testing set, and achieve an accuracy im-
provement of up to 18.8% from 45.8% to 64.6%.



Limitation

Despite seeing performance improvements, the
data transformation method of LLM-based MCQA
generation has its own limitations. The most impor-
tant one is that often times, a real-world question
asked during an actual exam would test the exam-
inee’s knowledge over multiple units at the same
time. In the context of a textbook, this would easily
span across different chapters, or even books. By
limiting our prompt to a small excerpt for the LLM
to generate questions, many questions we obtain
would inevitably be factual. This may be strong
enough to see performance gains over a dataset
like MMLU, many questions in which happen to
be factual. However in a different setting where
we expect the student LLM to gain more complex
expertise, it is likely that this method would need
to be changed before it shows similar performance.
Additionally, this method makes an assumption
that the retrieved textbook used as data sources
would align with the target testing set in distribu-
tion. Traditionally, the training and testing set of
a particular benchmark is often randomly split off
of the same source dataset, and therefore naturally
share the same distribution. This assumption is not
always true depending on the particular field, for
example law, where the legal, political, and eco-
nomic changes could gradually shift in a particular
direction over time, and the literature would be
confined to their own time. In the extreme case of
history, reading textbooks from a particular era or
area would have little benefit on textbooks from
a different setting. Nevertheless, one could still
argue that both of these limitations only hinders
performance and increases cost of initial literature
retrieval. When the data source is selected carefully
and excerpt length tuned properly, the transforma-
tion method expects to yield performance benefits.
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A Appendix

A.1 Distillation Stage Conversation

Fig. 6 presents a page from original literature, we
extract all text and process it through the instructor
LLM as shown in Fig. 7, and is transformed into
a single paragraph as shown in Fig. 8. Next, Fig.
9 presents the question generation prompts used,
and Fig. 10 presents the actual question from the
instructor LLM. The contents of Fig. 8 and 10 are
then saved as a JSON file, as shown in Fig. 11.

A.2 Training Stage Conversation

Fig. 12 and Fig. 13 present the opener and answer
training data format respectively. For testing we
use the same format, only without text for opener,
and solution / final answer for answerer.

A.3 Baseline Errors

Baseline error cases are shown in Fig. 14, 15, 16,
and 17.
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Levels of Organization of Living Things

Living things are highly organized and structured. The atom is the
smallest and most fundamental unit of matter. It consists of a
nucleus surrounded by electrons. Atoms form molecules. A
molecule is a chemical structure consisting of at least two atoms
held together by a chemical bond. Many biologically important
molecules are macromolecules. A macromolecule is a large
molecule that is typically formed by combining smaller molecules.
For example, nucleotides are small molecules linked together to
form the macromolecule, DNA (deoxyribonucleic acid) (Figure
1.11). DNA contains the instructions necessary for cells and
organisms to maintain homeostasis.

Figure 1.11 A molecule, like this large DNA molecule, is composed
of atoms. (credit: "Brian0918"/Wikimedia Commons)

CONCEPTS IN ACTION- To see an animation of this DNA molecule, click here.

| 1
rJ el
m— OpENstax COLLEGE

Some cells contain collections of macromolecules surrounded by membranes; these are called
organelles. Organelles are small structures that exist within cells and perform specialized
functions. For example, in some cells, DNA is enclosed within a membrane-bound organelle
called the nucleus (plural: nuclei). All living things are made of cells; the cell is the smallest
fundamental unit found in living organisms. Cells exhibit all of the properties of life discussed
above. Viruses are often not considered living because they are not made of cells, nor are they
capable of reproducing on their own. To make new viruses, they must invade and take over a
living cell.

Some organisms consist of a single cell, while others are multicellular. In most multicellular
organisms, cells combine to make tissues, which are groups of similar cells carrying out the
same function. Organs are collections of tissues grouped based on a common function. Organs
are present not only in animals but also in plants. An organ system is a higher level of
organization that consists of functionally related organs. For example, vertebrate animals have
many organ systems, such as the circulatory system that transports blood throughout the body; it
includes organs such as the heart and blood vessels. Organisms are individual living entities. For
example, each tree in a forest is an organism. Single-celled prokaryotes and single-celled
eukaryotes are also considered organisms and are typically referred to as microorganisms.

Access for free at https://openstax.org/ 7

Figure 6: Original page from textbook
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4 N

The following text is extracted directly out of a textbook PDF file, filter out any title, page
number, author information, figure caption, etc. leaving only the main text content. Then,
summarize the text into a simple paragraph. If no text is remaining after filtering, reply with "no
text".

7

Levels of Organization of Living Things

Living things are highly organized and structured. The atom is the
smallest and most fundamental unit of matter. It consists of a
nucleus surrounded by electrons. Atoms form molecules. A
molecule is a chemical structure consisting of at least two atoms
held together by a chemical bond. Many biologically important
molecules are macromolecules. A macromolecule is a large
molecule that is typically formed by combining smaller molecules.
For example, nucleotides are small molecules linked together to
form the macromolecule, DNA (deoxyribonucleic acid) (Figure
1.11). DNA contains the instructions necessary for cells and
organisms to maintain homeostasis.

Figure 1.11 A molecule, like this large DNA molecule, is composed
of atoms. (credit: "Brian0918"/Wikimedia Commons)

CONCEPTS IN ACTION- To see an animation of this DNA molecule, click here.

Some cells contain collections of macromolecules surrounded by membranes; these are called
organelles. Organelles are small structures that exist within cells and perform specialized
functions. For example, in some cells, DNA is enclosed within a membrane-bound organelle
called the nucleus (plural: nuclei). All living things are made of cells; the cell is the smallest
fundamental unit found in living organisms. Cells exhibit all of the properties of life discussed
above. Viruses are often not considered living because they are not made of cells, nor are they
capable of reproducing on their own. To make new viruses, they must invade and take over a
living cell.

Some organisms consist of a single cell, while others are multicellular. In most multicellular
organisms, cells combine to make tissues, which are groups of similar cells carrying out the
same function. Organs are collections of tissues grouped based on a common function. Organs
are present not only in animals but also in plants. An organ system is a higher level of
organization that consists of functionally related organs. For example, vertebrate animals have
many organ systems, such as the circulatory system that transports blood throughout the body;
it

includes organs such as the heart and blood vessels. Organisms are individual living entities.
For

example, each tree in a forest is an organism. Single-celled prokaryotes and single-celled
eukaryotes are also considered organisms

\ /

Figure 7: Distillation stage data cleaning prompt to instructor LLM

12



The hierarchical organization of living
things, starting from the smallest unit, the
atom, and expanding to molecules,
macromolecules like DNA, cells, tissues,
organs, and organ systems. Atoms form
molecules held together by chemical bonds,
and these molecules can be simple or
complex macromolecules such as DNA,
which contains vital instructions for cellular
functions and homeostasis. Cells, the basic
units of life, may include organelles like
nuclei that house DNA. Organisms can be
unicellular or multicellular, with multicellular
organisms having complex structures
including tissues, organs, and organ
systems that perform specific functions. For
example, the circulatory system in
vertebrates includes the heart and blood
vessels.

Figure 8: Clean text generated by instructor LLM

Given the following text, create a multiple
choice question with 4 choices, including a
solution process and a final answer between A,
B, C, D.

Text:
The hierarchical organization of living things...

Format:
Question:
< a question >

Choices:
A ...
B: ...
C:...
D: ..

Solution:
< a step by step solution to the question >

Final Answer:
<A B,C,D>

Figure 9: Question generation prompt to instructor LLM

Question: \

Which of the following best represents the level of biological organization
that directly encompasses the structural and functional complexity found
between cells and organs?

Choices:

A: Molecules

B: Tissues

C: Organelles

D: Organ Systems

Solution:
To find the correct answer, let's analyze the biological hierarchy described
in the text:

Atoms: The simplest units, forming molecules.

Molecules and Macromolecules: Such as DNA, which are essential

for various functions at the cellular level.

. Cells: Described as the basic units of life, which may contain
organelles like nuclei.

4. Tissues: These are groups of similar cells that work together to

perform a specific function.

Organs: Composed of different types of tissues that work together.

Organ Systems: A higher level of organization where different organs

work together to perform complex functions.

N =

w

oo

Given the question asks for the level between cells and organs, we look
for the answer that fits this description. Organelles are part of cells,
molecules are below cells, and organ systems are above organs. Tissues,
however, are groups of similar cells that together perform specific
functions and are the level of organization between individual cells and
complete organs.

Final Answer:
B: Tissues

/

Figure 10: Question generated by instructor LLM

{

"text": "The hierarchical ...",
"question": "Which of the ...",
"choices": [

"Molecules",

"Tissues",

"Organelles",

"Organ Systems"

]

solution": "To find the..."
"answer": "B"

}

Figure 11: MCQA JSON



@en the following Question, generate Tem / \
that the Question may have been generated For the following Question, explain your Solution,

then give a Final Answer between A, B, C, D.

from. Question:
Question: Regarding meiosis and mitosis, one difference
Which of the between the two forms of cellular reproduction is that
in meiosis
Choices:
Choices: A: there is one round of cell division, whereas in
A: Molecules mitosis there are two rounds of cell division
B: Tissues B: separation of sister chromatids occurs during the

second division, whereas in mitosis separation of
sister chromatids occurs during the first division
C: chromosomes are replicated during interphase,
whereas in mitosis chromosomes are replicated

Text: during prophase
Qa hierarchical ... / D: spindle fibers form during prophase, whereas in

C: Organelles
D: Organ Systems

mitosis the spindle fibers form during metaphase
Solution:

Figure 12: Training data format for the opener student (correct: B)
LLM \\ /

Figure 14: Baseline error case 1: no response

@d the following Text, then for the foIIovm

Question, explain your Solution, then give a

Final Answer between A, B, C, D. For the following Question, explain your Solution, then
give a Final Answer between A, B, C, D.

Text: Question:

The hierarchical ... Which of the following must exist in a popu_lation before
natural selection can act upon that population?
Choices:

Question: A: Genetic variation among individuals

Which of the ... B: Variation among individuals caused by environmental
factors

; . C: Sexual reproduction

Ch0|ces. D:BandC oF:ﬂy

A: Molecules Solution:

B: Tissues :

C: Organelles

D: Organ Systems

Solution: t

To find the ... s

i
WI Answer: B / :
Wect: A) J

Figure 13: Training data format for the answerer student
LLM

Figure 15: Baseline error case 2: outputs junk
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For the following Question, explain your Solution, then give a
Final Answer between A, B, C, D.

Question:

A biologist studied a population of squirrels for 15 years. During
that time, the population was never fewer than 30 squirrels and
never more than 45. Her data showed that over half of the
squirrels born did not survive to reproduce, because of
competition for food and predation. In a single generation, 90% of
the squirrels that were born lived to reproduce, and the
population increased to 80. Which inference(s) about this
population might be true?

Choices:

A: The amount of available food may have increased.

B: The number of predators may have decreased.

C: The squirrels of subsequent generations should show greater
levels of genetic variation than previous generations, because
squirrels that would not have survived in the past will now
survive.

D:A,B,and C

Solution:

A) The amount of available food may have increased.

-This is a reasonable inference, as the population of squirrels
increased.

B) The number of predators may have decreased.

-This is also a reasonable inference, as the population of
squirrels increased.

C) The squirrels of subsequent generations should show greater
levels of genetic variation than previous generations, because
squirrels that would not have survived in the past will now
survive.

-This is not a reasonable inference, as the study did not
specifically examine the genetic variation of the squirrels.
-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

-The study did not provide enough information to make this
inference.

(correct: D)

Figure 16: Baseline error case 3: output is repetitive /
too long
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For the following Question, explain your Solution, then
give a Final Answer between A, B, C, D.

Question:

The reaction A + B — C is catalyzed by enzyme K. If
the reaction is in equilibrium, which of the following
would allow more product C to be produced?
Choices:

A: removing some of reactant A

B: removing some of reactant C

C: adding more enzyme K

D: increasing the temperature of the system
Solution:

The reaction A + B — C is catalyzed by enzyme K. If
the reaction is in equilibrium, which of the following
would allow more product C to be produced?

The answer is C. Adding more enzyme K will allow
more product C to be produced. Enzymes are
biological catalysts that speed up chemical reactions
in living organisms. They work by lowering the
activation energy required for a reaction to occur. By
adding more enzyme K, the reaction will be able to
proceed more quickly, resulting in the production of
more product C.

(correct: B)

Figure 17: Baseline error case 4: does not select a final
answer
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