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ABSTRACT

Dynamic 3D reconstruction from monocular videos remains difficult due to the
ambiguity inferring 3D motion from limited views and computational demands
of modeling temporally varying scenes. While recent sparse control methods al-
leviate computation by reducing millions of Gaussians to thousands of control
points, they suffer from a critical limitation: they allocate points purely by ge-
ometry, leading to static redundancy and dynamic insufficiency. We propose a
motion-adaptive framework that aligns control density with motion complexity.
Leveraging semantic and motion priors from vision foundation models, we estab-
lish patch-token-node correspondences and apply motion-adaptive compression
to concentrate control points in dynamic regions while suppressing redundancy in
static backgrounds. Our approach achieves flexible representational density adap-
tation through iterative voxelization and motion tendency scoring, directly ad-
dressing the fundamental mismatch between control point allocation and motion
complexity. To capture temporal evolution, we introduce spline-based trajectory
parameterization initialized by 2D tracklets, replacing MLP-based deformation
fields to achieve smoother motion representation and more stable optimization.
Extensive experiments demonstrate significant improvements in reconstruction
quality and efficiency over existing state-of-the-art methods.

1 INTRODUCTION

Dynamic 3D reconstruction from monocular videos is critical for virtual reality, autonomous sys-
tems, and content creation. The task requires capturing complex object motions and deformations
from limited viewpoints while maintaining real-time rendering performance. This remains chal-
lenging due to the fundamental ambiguity of inferring 3D motion from 2D observations and the
computational demands of modeling temporally varying scenes.

Recent advances in 3D Gaussian Splatting Kerbl et al. (2023) have enabled efficient static scene re-
construction through explicit primitive representations and fast rasterization. Extensions to dynamic
scenes follow two approaches: dense methods that parameterize each Gaussian’s temporal evolu-
tion, achieving high quality but poor scalability, and sparse control methods that use a small set of
control points to govern scene deformation. Sparse approaches like SC-GS Huang et al. (2023), SP-
GS Diwen Wan (2024) and 4D-Scaffold Cho et al. (2025) offer significant computational savings by
reducing the optimization space from hundreds of thousands of Gaussians to thousands of control
points. More recently, H3D-DGS He et al. further explores sparse-control dynamic 3D Gaussian
Splatting in a multi-view streaming setting.

However, existing sparse methods suffer from a fundamental limitation: they allocate control points
based purely on geometric considerations. Methods typically use Farthest Point Sampling Huang
et al. (2023); Diwen Wan (2024); Chen et al. (2025) or voxel centers Cho et al. (2025); Kong et al.
(2025) to ensure uniform spatial coverage, but this geometric uniformity does not align with motion
complexity. Real scenes exhibit highly non-uniform motion where static backgrounds dominate
spatial extent while dynamic objects occupy smaller regions but require detailed motion modeling.
This mismatch leads to static redundancy yet dynamic insufficiency, where control points are
wasted on static regions while dynamic areas remain under-represented.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We address this through motion-adaptive control point allocation guided by vision foundation mod-
els. Our approach is built on the insight that semantic understanding can predict motion patterns:
certain object categories exhibit predictable motion behaviors that can be learned from large-scale
video datasets. We leverage pre-trained vision foundation models to extract semantic tokens from
image patches and establish patch-token-node correspondence, enabling direct transfer of 2D se-
mantic priors to 3D control point placement.

Our method operates in three stages. First, we generate candidate nodes by back-projecting image
patches into 3D space using estimated depth and camera poses, with each node retaining its se-
mantic token as a descriptor. Second, we apply motion-adaptive compression that iteratively merges
nodes based on semantic similarity and motion tendency scores derived from vision foundation mod-
els. This compression concentrates control points in dynamic regions while reducing redundancy
in static areas, directly addressing the static-dynamic resource allocation mismatch. Third, we pa-
rameterize node trajectories using cubic splines rather than MLPs, initialized from 2D tracklets to
provide stable motion guidance during optimization. This spline formulation offers several advan-
tages. It ensures temporal smoothness, reduces optimization complexity by decoupling trajectory
learning from other parameters, and provides a compact representation that scales better than dense
deformation fields.

In summary, our main contributions are:

• We propose a motion-adaptive node initialization method using semantic and motion priors
from vision foundation models to align control density with motion complexity.

• We introduce a spline-based parameterization of node trajectories, which provides a com-
pact, smooth, and differentiable motion basis for the entire dynamic scene.

• We present a complete optimization framework demonstrating superior reconstruction
quality and efficiency over existing methods.

2 RELATED WORK

Dynamic NeRF. Neural Radiance Fields (NeRF) Mildenhall et al. (2020) pioneered static view
synthesis via implicit volumetric MLPs. Subsequent works Guo et al. (2023); Gafni et al. (2021);
Park et al. (2021a;b); Pumarola et al. (2021); Fang et al. (2022); Wang et al. (2023) extended NeRF
to dynamic scenes with temporal structures such as deformation fields and canonical mappings, but
remain inefficient due to dense ray sampling and costly volume rendering. To improve efficiency,
recent methods introduce grid-based representations Liu et al. (2022) and multi-view supervision Lin
et al. (2022; 2023), while explicit representations such as multi-plane Chen et al. (2022); Fridovich-
Keil et al. (2023b); Shao et al. (2023) and grid-plane hybrids Song et al. (2023) further accelerate
training. Nonetheless, their rendering speed is still insufficient for real-time applications.

Dynamic Gaussian Splatting. 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) enables real-time
rendering with explicit point-based representations and shows potential for broader 3D tasks Li et al.
(2024); Qu et al. (2024); Cai et al. (2019; 2020). Recent works have extended 3DGS to dynamic
scenes by learning time-varying Gaussian transformations. Several approaches Yang et al. (2024b);
Li et al. (2025) adopt per-Gaussian deformation fields, but such designs often incur redundant com-
putation and slow training. Later methods adopt compact structural representations, such as plane
encodings or hash-based schemes Wu et al. (2024); Xu et al. (2024), to improve deformation effi-
ciency. Alternatively, sparse control points have been introduced Huang et al. (2023); Diwen Wan
(2024); Kong et al. (2025); Lei et al. (2025); Chen et al. (2025); Liang et al. (2025) as a lightweight
mechanism to govern Gaussian motion via interpolation, supporting both high-quality rendering and
motion editing. Existing approaches differ in how control points are initialized: SC-GS, SP-GS, and
HAIF-GS Huang et al. (2023); Diwen Wan (2024); Chen et al. (2025) adopt FPS sampling to ensure
uniform spatial coverage, while 4D-Scaffold and EDGS Cho et al. (2025); Kong et al. (2025) use
voxelization, which proves suboptimal in real-world scenes dominated by static backgrounds. More
recent methods, such as MoSca and HiMoR Lei et al. (2025); Liang et al. (2025), leverage 2D track-
lets from vision foundation models, but they remain sensitive to tracking errors and struggle with
large topological variations. Despite these advances, sparse control methods still fail to adapt control
density to motion complexity, often resulting in static redundancy and dynamic insufficiency. To ad-
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Figure 1. The overview of our method. (A) Given a monocular video, we extract semantic and motion
priors from pre-trained vision foundation models. (B) These priors guide motion-adaptive node initialization,
yielding compact distributions aligned with dynamic regions. (C) The initialized nodes are assigned spline-
parameterized trajectories to provide a motion basis. (D) Node motions are propagated to Gaussians through
deformation, transforming the canonical representation. (E) The deformed model is rendered and optimized for
consistent reconstruction.

dress this, we propose a motion-adaptive 3DGS framework that reallocates control points according
to motion cues and further stabilizes trajectory learning through spline parameterization.

3 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) models a static scene as anisotropic 3D Gaussians,
each parameterized by center µ ∈ R3, covariance Σ ∈ R3×3, opacity α ∈ (0, 1), and spherical
harmonics (SH) coefficients c ∈ R3(l+1)2 for view-dependent color, denoted as G(µ,Σ, α, c).

Each Gaussian is projected to the image plane through the camera projection, forming a 2D Gaussian
that contributes to pixel colors. The 2D Gaussians are sorted by depth and rendered via an α-
blending scheme. The color at pixel p is obtained by compositing the contributions of N ordered
Gaussians overlapping the pixel:

C(p) =
∑
i∈N

ci αi

i−1∏
j=1

(1− αj), (1)

where ci is the color of the i-th Gaussian and αi is its image-space density determined by the
projected covariance. The parameters are optimized with a photometric reconstruction loss, and
adaptive density control dynamically prunes or spawns Gaussians to improve efficiency and fidelity.

Extending 3DGS to dynamic scenes is commonly formalized by endowing the representation
with explicit temporal parameterization instead of a purely canonical configuration. Following
prior work Liang et al. (2025); Wang et al. (2024), we introduce a temporal transformation that
maps each Gaussian from the canonical space to its state at frame t, written as Tt = [Rt |
tt] ∈ SE(3). Applying Tt to a canonical Gaussian G(µ0,Σ0, α, c) yields its time-varying form
Gt = G(Ttµ0,RtΣ0, α, c), which provides a compact parameterization of dynamic scenes.

4 METHOD

4.1 OVERVIEW

Given a monocular image sequence {It}, our goal is to reconstruct a dynamic 3DGS representation
that enables temporally consistent, photorealistic novel-view renderings. The central challenge lies

3
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in the spatially non-uniform motion complexity and the need for smooth, stable trajectories under
sparse supervision. To address this, we adopt a sparse node-based deformation representation that
controls canonical Gaussians (Sec. 4.2) through motion-adaptive allocation. we first initialize nodes
from image patches and leverage semantic and motion cues from vision foundation models to com-
press redundant nodes in static regions while preserving those in dynamic regions (Sec. 4.3). We
then parameterize node trajectories with a spline to provide a compact, smooth, and differentiable
motion basis, initialized from 2D tracklets for stable early-stage optimization (Sec. 4.4). Finally,
we propagate node transforms to Gaussians through dual quaternion blending and jointly optimize
geometry, appearance, and motion with multi-view photometric and motion-consistency constraints
(Sec. 4.5). Figure 1 summarizes our pipeline, which integrates motion-adaptive compression with
iterative voxelization to flexibly adapt representational density according to motion complexity.

4.2 NODE-BASED DEFORMATION REPRESENTATION

Modeling deformations in dynamic Gaussian scenes requires balancing expressiveness with
tractability. Direct per-primitive formulations are prohibitively high-dimensional, while real-world
motion often exhibits low-rank structure dominated by rigid and smooth patterns. This motivates a
compact node-based representation, where each node carries an SE(3) trajectory and an RBF kernel
defining its spatial influence. Gaussians inherit motion from their K nearest nodes through weighted
aggregation, forming an efficient basis for our subsequent initialization and trajectory modeling.

Node Representation. We introduce a sparse set of nodes N = {Ni}Nn
i=1 to capture the dominant

smooth motion patterns of the scene, where the number of nodes Nn is significantly smaller than
the number of Gaussian primitives Ng . Each node is formally defined as

Ni = {Ti(t), ρi}, (2)

where Ti(t) ∈ SE(3) denotes the trajectory of Ni across time, and ρi ∈ R+ specifies the radius
of its radial basis function (RBF), which determines the spatial extent of its influence. Thus, Ti(t)
governs rigid motion over time, while ρi determines the spatial scope of influence. This node for-
mulation further supports motion-adaptive initialization, allowing dynamic regions to be modeled
with higher fidelity (Sec. 4.3). To ensure smooth and compact temporal modeling, each trajectory is
parameterized by splines (Sec. 4.4).

Gaussian-to-Node Binding and Deformation. We derive the rigid transformation of each Gaus-
sian primitive Gj at any query time t by leveraging the trajectories of its neighboring nodes. Given
the node set N = {Ni}Nn

i=1, each Gaussian Gj is associated with a neighborhood of K nodes, de-
noted V(Gj) ⊂ N . The binding weight of node Ni to Gaussian Gj is defined as

wij =
exp

(
−∥xj−ci∥2

2ρ2
i

)
∑

k∈V(Gj)
exp

(
−∥xj−ck∥2

2ρ2
k

) , (3)

where xj is the canonical center of Gaussian Gj , ci is the canonical center of node Ni. These
normalized weights act as interpolation coefficients in the blending stage.

To propagate node motion to Gaussians, we construct a dense deformation field that interpolates
per-Gaussian rigid motions from sparse node trajectories. Following prior work Lei et al. (2025),
we instantiate this field with Dual Quaternion Blending (DQB) Kavan et al. (2007), which provides
better interpolation quality. Concretely, for a node Ni, its SE(3) transform at time t is written as
Ti(t) = [Ri(t) | ti(t)]. Its dual quaternion representation Qi(t) ∈ DQ is constructed as

Qi(t) = qr,i(t) + ϵ qd,i(t), qd,i(t) =
1
2 pi(t) qr,i(t), (4)

where qr,i(t) is the unit quaternion corresponding to Ri(t), pi(t) is the pure quaternion of the
translation vector ti(t), and ϵ is the dual unit with ϵ2 = 0.

The blended transformation for Gaussian Gj is obtained by normalizing the weighted sum of neigh-
boring nodes’ dual quaternions and mapping the result back to SE(3):

Q̂j(t) =

∑
i∈V(Gj)

wij Qi(t)∥∥∥∑i∈V(Gj)
wij Qi(t)

∥∥∥ , Tj(t) = DQ2SE3
(
Q̂j(t)

)
. (5)
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Here normalization guarantees that Q̂j(t) remains a unit dual quaternion, while DQ2SE3(·) denotes
the standard conversion from a unit dual quaternion to a rigid transform. This formulation enables
Gaussian motion to be obtained through weighted blending of neighboring node trajectories, ensur-
ing physical consistency and temporal smoothness.

4.3 MOTION-ADAPTIVE NODE INITIALIZATION

Building upon the node representation in Sec. 4.2, we now address how to initialize nodes in a
way that adapts to motion complexity. Uniform sampling tends to oversample static backgrounds
while failing to capture sufficient detail in dynamic regions, resulting in biased motion modeling.
To overcome this imbalance, we introduce a semantic-guided, motion-adaptive initialization that
allocates more nodes to dynamic areas while reducing redundancy elsewhere. Given calibrated
keyframes with depth and semantics, this procedure generates a compact node set in canonical space
that serves as the starting point for subsequent deformation modeling.

Patch-to-Node Generation. To better integrate semantic cues with geometry, we generate candi-
date nodes directly from image patches rather than uniformly sampling point clouds or voxelizing
3D space. Specifically, we select a set of keyframes {It}Tt=1 and divide each image into fixed-size
patches {p}. A frozen vision foundation model provides a token embedding zt,p for each patch p at
frame t, along with estimated depth maps. Each patch center ut,p is back-projected into 3D space to
obtain its coordinate xt,p. The resulting collection {(xt,p, zt,p)} forms the initial candidate node set,
where each node is anchored at the patch center and retains the semantic token as its descriptor. This
preserves a patch–token–node correspondence that can be exploited during subsequent compression.

Dynamic Motion-Adaptive Node Compression. The candidate node set is still excessively large
for direct modeling, necessitating a principled compression strategy. A naive voxelization with
fixed resolution is insufficiently adaptive across regions and often mixes features of distinct objects.
We therefore propose an iterative motion-adaptive compression that iteratively merges nodes while
preserving fidelity in dynamic areas. Starting from a small initial voxel size vinit, the voxel resolution
is progressively enlarged during compression. In each iteration, bipartite soft matching Huang et al.
(2025) is applied within every voxel. For each node in A, we connect it to the most similar node in
B, and the top r% pairs with the highest similarity are merged by retaining one representative node.
After completing all voxels in the current iteration, the voxel size is enlarged by a fixed step ∆v, and
the process is repeated until the node count falls below a target threshold.

To ensure that merging respects both appearance and geometry, we define a joint similarity between
nodes Ni ∈ A and Nj ∈ B as

sim(Ni,Nj) = cos(zi, zj)− η · M̃fg(Ni,Nj), (6)

where cos(zi, zj) measures the token-based appearance similarity, and M̃fg(Ni,Nj) ∈ [0, 1] de-
notes a foreground prior predicted by a frozen VFM. Tokens from VFMs encode both semantic
context and local appearance. Static regions yield consistent tokens across views, whereas motion
causes variations that lower their similarity. Thus, cosine similarity serves as an effective cue to dis-
tinguish dynamic from static areas. The mask prior provides coarse localization of dynamic areas,
discouraging premature merging in regions with high dynamic likelihood.

However, simply applying a uniform compression ratio across all voxels fails to leverage this
motion-aware similarity information effectively. Such uniform treatment leads to an unfavorable
trade-off: a high ratio prematurely merges dynamic nodes during early fine-voxel stages, while a
low ratio fails to sufficiently reduce redundancy in static regions. To address this limitation, we
propose an adaptive compression strategy that adjusts the compression ratio according to the motion
tendency of each voxel cluster. Concretely, we define a dynamic tendency score pdyn(C) for a cluster
C by combining the mean foreground prior with the pairwise similarity within the cluster:

pdyn(C) = σ

α · 1

|UC |
∑

Nk∈UC

m(Nk)− β · 1

|MC |
∑

(Ni,Nj)∈MC

sim(Ni,Nj)

 , (7)

where UC denotes the set of nodes in cluster C, and MC the set of their matched pairs. This score
is then used to modulate the compression ratio of each cluster:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

r%(C) = rmin + (1− pdyn(C)) · (rmax − rmin), (8)

so that static voxels with low pdyn are merged aggressively with a high r%, while dynamic voxels
with high pdyn are preserved with a low r%.

In this way, compression reduces redundancy in static regions while maintaining sufficient node
density in dynamic areas, striking a balance between efficiency and temporal modeling fidelity.

4.4 SPLINE-PARAMETERIZED NODE TRAJECTORIES

Given the motion-adaptive node set in the canonical space, the next challenge is to represent their
temporal evolution. Directly optimizing node positions at every frame is unstable and computa-
tionally expensive, as it lacks temporal regularization and entangles motion learning with Gaussian
attribute updates. To achieve sparse yet stable control, we parameterize each node trajectory with a
small set of keyframes connected by cubic splines. This spline-based formulation enforces smooth
and differentiable trajectories, alleviates early-stage optimization difficulty, and provides reliable
motion guidance for the associated Gaussian primitives.

Spline-Based Formulation. To obtain the motion of each Node at arbitrary time steps, we repre-
sent its trajectory with a cubic Hermite spline Park et al. (2025); Ahlberg et al. (2016); Goodfellow
et al. (2016). Concretely, we select a set of keyframes {tk}Kk=1 along the timeline and assign learn-
able positions {Pk}Kk=1 to the Node at these frames. The trajectory ξ(t) between two neighboring
keyframes (tk, tk+1) is then interpolated as

ξ(t) = h00(τ)Pk + h10(τ) (tk+1 − tk) Ṗk + h01(τ)Pk+1 + h11(τ) (tk+1 − tk) Ṗk+1, (9)

where τ = t−tk
tk+1−tk

, and the Hermite basis functions are

h00(τ) = 2τ3 − 3τ2 + 1, h10(τ) = τ3 − 2τ2 + τ,

h01(τ) = −2τ3 + 3τ2, h11(τ) = τ3 − τ2.
(10)

This spline-based construction ensures temporal continuity by keeping both positions and first-order
derivatives consistent across time. More importantly, it provides a compact and differentiable repre-
sentation that avoids the instability and heavy joint optimization associated with MLP-based defor-
mation fields, thereby offering stable guidance for the Gaussian primitives bound to these nodes.

Trajectory Initialization. To provide stable guidance at the early stage, we initialize the spline-
parameterized node trajectories from geometry-consistency, instead of using random parameters.
Concretely, we extract long-term 2D tracklets Doersch et al. (2023) from a sequence of frames, and
unproject them into world coordinates using estimated depth Piccinelli et al. (2024) and camera
poses. Formally, given a pixel coordinate ut on the 2D track at time t with depth Dt(ut), its world-
space position is computed as

xt = R⊤
t π

−1
K

(
ut, Dt(ut)

)
− R⊤

t Tt, (11)

where π−1
K (·) denotes the back-projection from image to camera space with intrinsic K, and

(Rt,Tt) are the estimated extrinsics. We then initialize the translational spline by fitting a Hermite
trajectory ξ(t), over keyframes {tk}Kk=1, to the 3D tracklets {xt} via least-squares optimization:

min
{Pk}K

k=1

Nf−1∑
t=0

∥∥xt − ξ(t)
∥∥2
2
, (12)

where {Pk} ⊂ R3 denote the learnable node positions at the keyframes, and ξ(t) between (tk, tk+1)
follows the cubic Hermite basis described previously. For the rotational component, we initialize
Rnode(t) = I3 for all t, and defer its refinement to the joint optimization stage.

This geometry-driven initialization strategy grounds the spline trajectories in observed motion pat-
terns, producing stable translational paths while preserving rotational flexibility, which facilitates
more robust convergence during optimization.

6
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Table 1. Quantitative comparison on Hyper-NeRF(vrig) dataset per-scene. We highlight the best ,
second best and the third best results in each scene.

Method
Broom 3D-Printer Chicken Banana Mean

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HyperNeRF Park et al. (2021b) 19.51 0.210 - 20.04 0.635 - 27.46 0.828 - 22.15 0.719 - 22.29 0.598 -
TiNeuVox Fang et al. (2022) 21.28 0.307 - 22.80 0.725 - 28.22 0.785 - 24.50 0.646 - 24.20 0.616 -
D-3DGS Yang et al. (2024b) 19.99 0.269 0.700 20.71 0.656 0.277 22.77 0.640 0.363 25.95 0.853 0.155 22.36 0.605 0.374
4DGS Wu et al. (2024) 22.01 0.366 0.557 21.98 0.705 0.327 28.49 0.806 0.297 27.73 0.847 0.204 25.05 0.681 0.346
MotionGS Zhu et al. (2024) 22.30 0.380 - 21.80 0.710 - 26.80 0.790 - 28.20 0.690 - 24.78 0.643 -
MoSca Lei et al. (2025) 22.14 0.414 0.415 22.26 0.691 0.245 28.19 0.817 0.199 28.43 0.866 0.170 25.25 0.697 0.257
ED3DGS Bae et al. (2024) 21.84 0.371 0.531 22.34 0.715 0.294 28.75 0.836 0.185 28.80 0.867 0.178 25.43 0.697 0.297
MoDec-GS Kwak et al. (2025) 21.04 0.303 0.666 22.00 0.706 0.265 28.77 0.834 0.197 28.25 0.873 0.173 25.02 0.679 0.325
Grid4D Xu et al. (2024) 21.78 0.414 0.423 22.36 0.723 0.245 29.27 0.848 0.199 28.44 0.875 0.176 25.46 0.715 0.261
SC-GS Huang et al. (2023) 18.66 0.269 0.505 18.79 0.613 0.269 21.85 0.616 0.257 25.49 0.806 0.215 21.20 0.576 0.312
SC-GS+MANI 19.93 0.284 0.491 20.61 0.653 0.255 23.20 0.684 0.230 26.88 0.823 0.207 22.66 0.611 0.296
Ours 22.37 0.421 0.405 22.53 0.729 0.232 29.66 0.863 0.161 28.55 0.879 0.168 25.78 0.723 0.242

Table 2. Quantitative comparison on N3DV dataset per-scene. We highlight the best , second best and the
third best results in each scene.

Method
Coffee Martini Cook Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

HexPlane Cao & Johnson (2023) 13.26 0.405 16.95 0.729 16.76 0.538 11.16 0.342 16.97 0.753 16.89 0.589 15.33 0.559
D-3DGS Yang et al. (2024b) 19.23 0.701 17.20 0.720 22.20 0.780 18.48 0.704 16.62 0.752 23.56 0.810 19.55 0.745
4DGS Wu et al. (2024) 20.95 0.761 22.64 0.779 23.18 0.793 20.64 0.758 21.83 0.787 23.38 0.829 22.10 0.785
SC-GS Huang et al. (2023) 19.02 0.712 16.70 0.737 20.69 0.741 17.65 0.683 17.31 0.753 21.23 0.787 18.77 0.736
MoDGS Qingming et al. (2025) 21.37 0.796 22.40 0.782 23.89 0.822 21.33 0.804 23.23 0.808 23.53 0.812 22.63 0.804
Grid4D Xu et al. (2024) 21.32 0.791 22.58 0.788 23.51 0.827 21.04 0.800 23.45 0.815 23.14 0.806 22.51 0.805
Ours 22.53 0.824 22.97 0.795 24.36 0.836 21.97 0.823 23.89 0.821 24.13 0.827 23.31 0.821

4.5 OPTIMIZATION

To stabilize optimization under the monocular setting, we design a composite loss that integrates
photometric, geometric, and motion-related constraints:

Ltotal = λrgbLrgb + λmaskLmask + λdepthLdepth + λtrackLtrack + λarapLarap. (13)

The photometric loss Lrgb follows the standard practice in 3DGS Kerbl et al. (2023), encouraging
rendered views to be consistent with the input images. The mask loss Lmask employs foreground
masks predicted by an off-the-shelf segmentation model Yang et al. (2023) as supervision signals.
The depth loss Ldepth leverages relative depth maps estimated from a monocular depth prediction
model Hu et al. (2025), aligned with sparse geometric priors to improve structural accuracy. For mo-
tion supervision, the tracking loss Ltrack enforces temporal consistency by constraining the projected
motion of rendered points against trajectories obtained from a pre-trained 2D tracking model Do-
ersch et al. (2023). Finally, the ARAP loss Larap Huang et al. (2024); Lei et al. (2025) regularizes
control point motion by penalizing non-rigid distortions in local neighborhoods, thereby ensuring
locally rigid deformations and preventing unrealistic stretching. Detailed formulations of the above
loss terms are provided in Appendix. A.2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Metrics. We evaluate our method on two real-world datasets: Hyper-NeRF Park
et al. (2021b) and Neural 3D Video (N3DV) Li et al. (2022). Hyper-NeRF dataset was captured us-
ing a handheld rig equipped with two Pixel 3 cameras. We utilize data from one camera and conduct
evaluations on the held-out views captured by the other. N3DV dataset consists of 18–20 synchro-
nized cameras per scene, recording 10–30 second sequences. To conduct monocular experiments,
we follow the experimental protocol of MoDGS Qingming et al. (2025), using cam0 for training
and reporting evaluations on cam5 and cam6. For quantitative evaluation, we employ three standard
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) Wang et al. (2004),
and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018).

Baselines and Implementation. We compare our method with state-of-the-art methods in dy-
namic scene reconstruction, including NeRF-based methods (TiNeuVox Fang et al. (2022), Hyper-
NeRF Park et al. (2021b), HexPlanes Cao & Johnson (2023)) and 3DGS-based methods (D-
3DGS Yang et al. (2024b), 4DGS Wu et al. (2024), ED3DGS Bae et al. (2024),MoDec-GS Kwak
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Figure 2. Qualitative comparison on the Hyper-NeRF(vrig) dataset Park et al. (2021b). Compared with other
SOTA methods,our method reconstructs finer details of the moving objects.

GT Ours Grid4D 4DGS D-3DGS

C
o

o
k

 S
p

in
ac

h
C

u
t 

B
ee

f

Figure 3. Qualitative comparison on the N3DV dataset Li et al. (2022).

et al. (2025), Grid4D Xu et al. (2024), SC-GS Huang et al. (2023), MoDGS Qingming et al. (2025)).
All implementations are based on PyTorch framework and trained on a single V100 GPU with 32
GB of VRAM. For more implementation details, please refer to Appendix A.2.
5.2 COMPARISONS

Results on Hyper-NeRF. As shown in Table 1, our method outperforms state-of-the-art baselines
across all scenes and evaluation metrics. The qualitative results in Figure 2 further illustrate that
our approach captures scene dynamics with higher fidelity, producing more complete and detailed
reconstructions of moving objects. In addition, we augment SC-GS Huang et al. (2023) with our
Motion-Adaptive Node Initialization (MANI), denoted as SC-GS+MANI. The last three rows of
Table 1 show that SC-GS+MANI achieves clear improvements over the original SC-GS, and this
advantage is also visible in Figure 2: for instance, in the Broom and Chicken scenes, SC-GS+MANI
reconstructs dynamic regions more thoroughly with richer details, benefiting from the motion-aware
initialization of control nodes. More results are available in Appendix A.4.

Results on N3DV. Table 2 reports the per-scene results on the N3DV dataset. Under the monocular
setting, our method achieves state-of-the-art performance with a mean PSNR of 23.31 dB. Figure 3
provides qualitative comparisons, where the highlighted red boxes show sharper and more coher-
ent motion with fewer artifacts. For example, in fast hand motions, our method produces clearer
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(a) Key components

Method PSNR↑ SSIM↑ LPIPS↓

baseline 22.35 0.613 0.335
+MANI 23.89 0.635 0.315
+MS 24.51 0.658 0.278
+MS (w/o Init) 24.13 0.639 0.284
Ours 25.78 0.722 0.242

(b) Node Init.

Method PSNR↑ SSIM↑ LPIPS↓

FPS 24.49 0.678 0.280
Voxel 24.06 0.652 0.271
Tracklet 24.83 0.681 0.253
MANI (ours) 25.78 0.722 0.242

(c) Node Traj.

Method PSNR↑ SSIM↑ LPIPS↓

MLP 23.95 0.633 0.317
Grid 24.28 0.649 0.271
Tracklet 24.59 0.671 0.263
Linear 23.15 0.590 0.384
MS (ours) 25.78 0.722 0.242

Table 3. Ablation studies on the Hyper-NeRF Park et al. (2021b) dataset.

(d) Ours (MANI)(c) Ours (w/o 𝑃𝑑𝑦𝑛(𝐶))(a) Dataset PCD (b) Ours (before comp.) (e) Ours (FPS) (f) Ours (Voxel)

Figure 4. Visualization of different Node init. meth. on Chicken scene of Hyper-NeRF data Park et al. (2021b).

contours and structures, while others yield blurry reconstructions. These improvements arise from
placing more control points in motion-dominant areas and modeling their trajectories with spline
parameterization, offering a robust alternative to implicit MLP deformation fields.

5.3 ABLATION STUDY
We conduct ablation studies on our method using the Hyper-NeRF Park et al. (2021b) dataset, and
summarize the results in Table 3, Figure 4 and Figure 5. Our baseline follows a design similar to
SC-GS Huang et al. (2023), with more details provided in Appendix A.3.

Motion-Adaptive Node Initialization (MANI). As shown in Table 3a, introducing MANI on top
of the baseline yields clear performance gains. Table 3b further compares MANI with alternative ini-
tialization strategies (FPS Huang et al. (2023), voxel-based Kong et al. (2025), tracklet-based Liang
et al. (2025)), confirming the superiority of our motion-adaptive design. Figure 4 visualizes the ini-
tialization. (a) shows the raw point cloud provided by the dataset, where COLMAP Schonberger &
Frahm (2016) fails to recover dynamic regions due to view inconsistency, causing static sampling
to poorly cover moving areas.(b) shows our patch-to-node strategy yields better distribution, with
red region indicating dynamic area in Chicken scene. (c,d) shows adding the dynamic tendency
score Pdyn(C) (Eq. 7) further merges static redundancy and preserves dynamic details. (e,f) shows
replacing our strategy with FPS or voxel-based initialization results in inferior performance.

GT Ours MLP Grid Tracklet

Figure 5. Qualitative results of ablation.

Spline-Parameterized Node Trajectories (MS). As
shown in Table 3a, adding MS to the baseline (row 3)
yields a significant performance gain, and initializing
node splines with 2D tracklets from VFM models (row 4)
further boosts the results. To validate its effectiveness, we
replace MS with alternative deformation methods, includ-
ing an MLP Yang et al. (2024b), a grid-based method Wu
et al. (2024), and a tracklet-based method Liang et al.
(2025). Table 3c reports the quantitative results. MLP
and grid-based approaches suffer from entangled optimization with large parameter spaces, leading
to suboptimal performance under sparse control nodes. Tracklet-based deformation benefits from
motion priors and achieves better reconstruction, but its reliance on predicted trajectories and clus-
tering introduces noise, resulting in less stable optimization. In addition, qualitative results on the
N3DV dataset (Figure 5) show that our method produces clearer and more complete reconstructions
of dynamic regions.

6 CONCLUSION

In this work, we introduced a motion-adaptive framework for dynamic 3D Gaussian Splatting that
addresses the imbalance between static redundancy and dynamic insufficiency in existing sparse
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control methods. By leveraging vision foundation model priors for node initialization, applying
motion-aware compression to adapt representational density, and employing a spline-based trajec-
tory formulation for stable optimization, our approach achieves substantial improvements in recon-
struction quality. Extensive experiments validate its superiority over prior state-of-the-art methods,
highlighting the effectiveness of aligning node allocation with motion complexity. Looking ahead,
we believe this framework opens the door to incorporating stronger motion priors and handling more
complex topological variations in dynamic scenes.
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are introduced. The datasets and models used are publicly available and widely adopted in prior re-
search. We have complied with all relevant ethical standards and the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The paper provides de-
tailed descriptions of the proposed methodology in Section 4. Complete model architecture, training
settings, experimental protocols, hyperparameters, and evaluation metrics are documented in Sec-
tion 5 and Appendix A.2. All datasets used are publicly available and the preprocessing steps are
described in the appendix.
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A APPENDIX

A.1 LLM USAGE

In this work, large language models (LLMs) were only used as a general-purpose writing assist tool.
Specifically, LLMs were employed for correcting grammatical errors and refining the language style
of the manuscript. No part of the research ideation, methodology design, experiments, analysis, or
results was generated by LLMs. The authors take full responsibility for the content of this paper.

A.2 ADDITIONAL TRAINING DETAILS

Loss functions and weights. We provide a detailed explanation for each term of the loss in
Eq. 13. We employ two categories of loss functions to supervise the learning of dynamic Gaussian
primitives.

To ensure that rendered observations align with the input supervision signals, we impose per-frame
reconstruction objectives on color, depth, and mask predictions. At each training iteration, given the
camera parameters, we render an image Ît, a depth map D̂t, and a mask M̂t following Eq. 1. The
RGB loss Lrgb consists of a weighted combination of mean squared error (MSE) between Ît and It
(weight 0.8), and a D-SSIM loss Wang et al. (2004) (weight 0.2). The depth loss Ldepth computes
the MSE between D̂t and the monocular depth prediction Dt Hu et al. (2025), with a weight of 1.0.
The mask loss Lmask enforces consistency between M̂t and the foreground mask Mt predicted by a
segmentation model Yang et al. (2023), also weighted by 1.0.

To regularize temporal correspondences and guide the motion of Gaussians, we introduce a tracking
loss Ltrack, composed of a 2D trajectory term Ltrack→2d and a depth reprojection term Ltrack→depth.
For randomly sampled query time t and target time t′, the 2D trajectory loss Ltrack→2d measures
the MSE between the rendered trajectory ût→t′ and the tracked trajectory ut→t′ provided by a pre-
trained tracker Doersch et al. (2023), under normalized pixel coordinates, with a weight of 2.0.
Meanwhile, the depth reprojection loss Ltrack→depth penalizes the discrepancy between the rendered
reprojection depth d̂t→t′ and the metric-aligned depth D̂(ut→t′) Hu et al. (2025), with a weight of
0.1, ensuring physically plausible motion supervision.

To further constrain the motion of Gaussians and avoid degenerate deformations, we adopt an as-
rigid-as-possible (ARAP) loss Larap inspired by physics-based shape regularization Huang et al.
(2024); Lei et al. (2025). Specifically, given two timesteps t and t′ separated by a fixed interval ∆,
the loss is formulated as

Larap =

T∑
t=1

Ng∑
j=1

∑
k∈Ê(j)

λl

∣∣∣ ∥p(j)
t − p

(k)
t ∥ − ∥p(j)

t′ − p
(k)
t′ ∥

∣∣∣
+ λc

∥∥∥Q(k)−1
t p

(j)
t −Q

(k)−1
t′ p

(j)
t′

∥∥∥ ,
(14)

where Ê(j) denotes the neighborhood of Gaussian Gj , p(j)
t is the 3D position of Gj at time t, and

Q
(k)
t is the local frame constructed around Gk. The first term encourages the pairwise distances

between neighboring Gaussians to remain stable across timesteps, while the second term preserves
the relative local coordinates under the corresponding local frames.

Dataset details. Hyper-NeRF Park et al. (2021b) provides dynamic scenes with continuous
viewpoints, where each timestamp exhibits complex topological deformations. We adopt four scenes
from this dataset, training and rendering at a resolution of 960× 640. In our setting, we employ the
”vrig” subset, which was recorded with stereo cameras, using one camera’s sequence for training and
the other for validation. Neural 3D Video Li et al. (2022) contains 15–20 multi-view videos, each
consisting of 300 frames. Total six scenes are used to train and render at a resolution of 1352×1014.
For the Flame Salmon scene, we utilize the initial 300 frames from its 1200-frame sequence in our
experiments. Following the experimental protocol of MoDGS Qingming et al. (2025), we use cam0
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Table 4. Additional ablation study on different Depth prior on Chiken scene of Hyper-NeRF dataset per-scene.

Method PSNR↑ SSIM↑ LPIPS↓
DepthCrafter Hu et al. (2025) 29.61 0.865 0.165
DepthAnything Yang et al. (2024a) 29.43 0.848 0.164
Metric3D Yin & Hu (2024) 29.38 0.855 0.173

Table 5. Additional ablation study on different 2D Tracklets prior on Chiken scene of Hyper-NeRF dataset
per-scene.

Method PSNR↑ SSIM↑ LPIPS↓
TAPIR Doersch et al. (2023) 29.66 0.863 0.161
CoTracker Karaev et al. (2024) 29.20 0.839 0.182
SpatialTracker Xiao et al. (2024) 29.47 0.857 0.169

for training and report evaluations on cam5 and cam6. We generate initial point clouds for each
scene following 4DGS Wu et al. (2024).

Implementation details. We use Adam Kingma (2014) to optimize our method and Gaussians
in canonical space jointly. We fine-tune our optimization parameters by the configuration outlined
in the 3DGS Kerbl et al. (2023). Besides, the adaptive density control of Gaussians from original
3DGS is also applied. The learning rates of mean, scale, rotation, opacity and color of Gaussian are
set to 1.6× 10−4, 5× 10−3, 1× 10−3, 1× 10−2 and 1× 10−2, respectively.

We extract per-patch token embeddings for a set of keyframe images {It} using VGGT Wang et al.
(2025). The model alternates frame-wise and global self-attention layers, enabling the tokens to
encode both intra-frame semantics and inter-frame correspondence across all views. Consequently,
the resulting representations accumulate temporal context: tokens in stationary background regions
remain highly consistent across frames (higher inter-frame cosine similarity), whereas tokens as-
sociated with moving foreground objects vary more strongly (lower similarity). We exploit this
property by computing cross-frame token similarities to obtain motion-aware cues that later guide
initialization and regularization. To supply complementary priors and supervision signals, we adopt
off-the-shelf vision foundation models: Track-Anything Yang et al. (2023) for foreground segmen-
tation masks, DepthCrafter Hu et al. (2025) for temporally consistent monocular video depth, and
TAPIR Doersch et al. (2023) for dense 2D point trajectories. These components provide object
masks, long-range consistent depth sequences, and per-point tracks, respectively, which we inte-
grate into the training objectives and the construction of motion-aware priors.

A.3 ADDITIONAL ABLATIONS

Details of ablation setting. Our baseline implementation follows a design similar to SC-GS Huang
et al. (2023), where Nodes are sampled from the input point cloud using farthest point sampling
(FPS) and their motions are parameterized by an MLP. To model Gaussian dynamics, we replace
the conventional linear blend skinning (LBS) Sumner et al. (2007) with deformation via quaternion-
based blending (DQB) Kavan et al. (2007), which serves as the backbone deformation mechanism
in all ablation settings.

Additional ablation study on VFM prior. We further evaluate the impact of different VFM-based
depth estimation models on the Hyper-NeRF dataset, using the Chicken scene as a representative
case. Specifically, we compare DepthCrafter Hu et al. (2025), DepthAnything Yang et al. (2024a),
and Metric3D Yin & Hu (2024), as summarized in Table 4. The results indicate that DepthCrafter
provides relatively more reliable results in our setting. Therefore, we adopt DepthCrafter as the
depth prior in our framework. We further evaluate different 2D tracklet models on the same Chicken
scene of the Hyper-NeRF dataset, comparing TAPIR Doersch et al. (2023), CoTracker Karaev et al.
(2024), and SpatialTracker Xiao et al. (2024), as reported in Table 5. TAPIR integrates more
smoothly into our pipeline and yields more reliable tracklets under the dynamic scenes we consider.
Consequently, we employ TAPIR as our default tracking module.

Additional ablation study on rotational trajectory initialization. Hyper-NeRF Park et al.
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Figure 6. Additional ablation study on rotational trajectory initialization on JumpingJacks scene in the D-NeRF
dataset Pumarola et al. (2021).

Table 6. Ablation study on VFM prior loss.

Method PSNR↑ SSIM↑ LPIPS↓
w/o Lmask 25.46 0.691 0.259
w/o Ldepth 24.97 0.674 0.277
w/o Ltrack 25.52 0.690 0.253
Ours 25.78 0.722 0.242

(2021b) already includes several scenes with noticeable rotational motion, such as Banana and
Chicken, where our trajectory initialization is applied without any modification. To further iso-
late articulated rotations, we additionally evaluate the proposed method on a D-NeRF Pumarola
et al. (2021) scene (JumpingJacks) that exhibits strong joint rotation, using exactly the same loss
weights as in the main experiments. As illustrated in Figure 6, the variant with trajectory initial-
ization consistently produces sharper reconstructions and improved quantitative metrics, while the
model trained without initialization still converges to a reasonable solution. We do not observe
slower convergence or the need to increase regularization strength in any of these settings, which
suggests that the proposed initialization remains stable and effective on rotational motion.

Additional ablation study on VFM prior loss. To assess the sensitivity to VFM based super-
vision, we ablate the loss terms associated with masks, depth and tracking. As shown in Table 6,
removing each term leads to only moderate drops in PSNR, SSIM and LPIPS, and the optimization
remains stable. These results indicate that the framework does not rely on any single VFM prior.
When the depth and tracking cues are weakened, the system effectively behaves as a sparse control
dynamic 3DGS that is mainly driven by RGB reconstruction and geometric regularizers rather than
being dominated by potentially erroneous VFM signals.

Additional ablation study on hyperparameters. The framework involves several hyperparame-
ters, but many of them are either learned or defined in an adaptive way. The RBF radius is optimized
jointly with other parameters, and the per voxel compression ratio r%(C) is computed from the
dynamic tendency of each voxel, so neither requires manual tuning. The MANI weights (α, β, η)
only balance semantic similarity and foreground priors and are kept fixed for all scenes. The com-
pression bounds (rmin, rmax) and the spline keyframe interval N are selected once on a validation
scene and reused in all experiments. Table ?? report ablations on (rmin, rmax), η, (α, β) and N on
the Chicken and 3D-Printer scenes from Hyper-NeRF. Performance varies smoothly within a broad
range of values and the default configuration lies close to the optimum, indicating that the method
is not overly sensitive and does not require per-scene retuning.

A.4 ADDITIONAL RESULTS

Efficiency comparison. We provide detailed quantitative results on the Hyper-NeRF dataset in
Table 11, reporting per-scene PSNR, training time, and rendering speed (FPS). Furthermore, Ta-
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Table 7. Ablation study on (rmin, rmax) combinations.

Method PSNR↑ SSIM↑ LPIPS↓
[25, 50] 25.87 0.774 0.199
[25, 75] 26.10 0.796 0.196
[50, 75] 26.03 0.790 0.196

Table 8. Ablation study on η.

Method PSNR↑ SSIM↑ LPIPS↓
0 25.15 0.713 0.236
0.25 25.81 0.768 0.215
0.5 26.10 0.796 0.196
0.75 25.95 0.785 0.209

ble 12 presents a comprehensive comparison of our method against representative NeRF-based and
3DGS-based approaches, including PSNR, training time, rendering speed (FPS), and storage size
(MB) at a resolution of 536 × 960. Specifically, the results of Nerfies, HyperNeRF, TiNeuVox-B,
D-3DGS, and 4DGS are taken from Wu et al. (2024), measured on an NVIDIA RTX 3090 GPU,
while MoDec-GS is reported in Kwak et al. (2025) using an RTX A6000 GPU. Our method is eval-
uated on an NVIDIA V100 GPU. Due to time constraints, we have not yet conducted performance
benchmarking on the same hardware. Nevertheless, it is well established that the V100 provides
lower computational throughput than both RTX 3090 and RTX A6000. Therefore, the favorable
comparison results demonstrate the inherent efficiency and effectiveness of our approach despite the
hardware disadvantage.

Additional quantitative comparison.

To further validate the effectiveness of our approach, we conduct additional experiments on the
N3DV Li et al. (2022) dataset under the multi-view setting and compare our method against several
state-of-the-art baselines, as reported in Table 13. The results demonstrate that our method also
achieves strong performance in the multi-view scenario. To further assess performance under high
motion scenarios, we additionally evaluate on the Nvidia dataset Yoon et al. (2020). As reported in
Table 14, the proposed method achieves the best mean PSNR across all four sequences and attains
the best or second best PSNR on each individual scene, outperforming representative dynamic 3D
Gaussian baselines

Additional qualitative comparison. We conduct additional qualitative comparison on the Hyper-
NeRF dataset Park et al. (2021b), comparing our method with 4DGS Wu et al. (2024), Grid4D Xu
et al. (2024), and D-3DGS Yang et al. (2024b), as shown in Figure 7 and Figure 8.
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Table 9. Ablation study on (α, β).

Method PSNR↑ SSIM↑ LPIPS↓
[0.25, 0.75] 25.86 0.778 0.199
[0.5, 0.5] 26.05 0.790 0.197
[0.75, 0.25] 26.10 0.796 0.196
[1, 0] 26.03 0.788 0.197

Table 10. Ablation study on keyframe interval N .

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑
2 25.94 0.782 0.215 101
6 26.14 0.814 0.193 97
8 26.10 0.796 0.196 90
12 25.88 0.776 0.224 86

Table 11. The training times and rendering speed on Hyper-NeRF dataset per-scene.

Scene Broom 3D-Printer Chicken Banana Mean

PSNR↑ 22.37 22.53 29.66 28.55 25.78
Training Times (m) ↓ 48 37 30 41 39
FPS↑ 61 92 88 37 69.5

Table 12. Efficiency comparison on Hyper-NeRF dataset. We highlight the best , second best and the
third best results in each scene.

Methods PSNR↑ Training Times↓ FPS↑ Storage(MB)↓
Nerfies Park et al. (2021a) 22.2 h <1 -
HyperNeRF Park et al. (2021b) 22.4 32h <1 -
TiNeuVox-B Fang et al. (2022) 24.3 30m 1 48

D-3DGS Yang et al. (2024b) 19.7 40m 55 52
4DGS Wu et al. (2024) 25.2 30m 34 61
MoDec-GS Kwak et al. (2025) 25 1.2h 23.8 28
Ours 25.8 39m 70 25

Table 13. Additional quantitative comparison on N3DV dataset per-scene. We highlight the best ,
second best and the third best results in each scene.

Method
Coffee Martini Cook Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

K-Planes Fridovich-Keil et al. (2023a) 29.99 0.943 32.60 0.968 31.82 0.965 30.44 0.942 32.39 0.970 32.52 0.971 31.63 0.960
HyperReel Attal et al. (2023) 28.37 0.892 32.30 0.941 32.92 0.945 28.26 0.882 32.20 0.949 32.57 0.952 31.10 0.927
4DGS Wu et al. (2024) 28.39 0.944 32.61 0.971 32.07 0.966 29.14 0.948 33.43 0.977 32.85 0.977 31.42 0.964
E-3DGS Bae et al. (2024) 29.10 0.947 32.95 0.957 33.56 0.970 29.61 0.949 33.57 0.974 33.45 0.974 32.04 0.962
Grid4D Xu et al. (2024) 28.34 0.938 32.44 0.971 33.23 0.974 28.89 0.947 32.20 0.980 33.15 0.978 31.38 0.965
Ours 29.21 0.950 32.95 0.968 33.91 0.981 30.53 0.954 33.87 0.982 33.82 0.983 32.38 0.970

Table 14. Additional quantitative comparison on Nvidia Yoon et al. (2020) dataset.

Method Balloon1 Balloon2 Jumping Umbrella Mean

Deformable 3DGS Yang et al. (2024b) 15.91 15.13 16.68 17.26 16.25
4DGS Wu et al. (2024) 21.89 24.85 22.37 22.36 22.87
HiMoR Liang et al. (2025) 23.90 23.48 20.04 24.30 22.93
MoSca 23.58 27.80 25.01 25.17 25.39
Ours 24.39 27.65 25.43 25.69 25.79
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Figure 7. Additional qualitative comparison on Peel Banana and 3D Printer scene in the HyperNeRF
dataset Park et al. (2021b).
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Figure 8. Additional qualitative comparison on Chicken and Broom scene in the HyperNeRF dataset Park
et al. (2021b).
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