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Abstract

Positive-Unlabeled (PU) learning refers to a specific weakly-supervised learning
paradigm that induces a binary classifier with a few positive labeled instances and
massive unlabeled instances. To handle this task, the community has proposed
dozens of PU learning methods with various techniques, demonstrating strong
potential. In this paper, we conduct a comprehensive study to investigate the
basic characteristics of current PU learning methods. We organize them into two
fundamental families of PU learning, including disambiguation-free empirical risks,
which approximate the expected risk of supervised learning, and pseudo-labeling
methods, which estimate pseudo-labels for unlabeled instances. First, we make
an empirical analysis on disambiguation-free empirical risks such as uPU, nnPU,
and DistPU, and suggest a novel risk-consistent set-aware empirical risk from
the perspective of aggregate supervision. Second, we make an empirical analysis
of pseudo-labeling methods to evaluate the potential of pseudo-label estimation
techniques and widely applied generic tricks in PU learning. Finally, based on those
empirical findings, we propose a general framework of PU learning by integrating
the set-aware empirical risk with pseudo-labeling. Compared with existing PU
learning methods, the proposed framework can be a practical benchmark in PU
learning.

1 Introduction

Positive-Unlabeled (PU) learning refers to a specific weakly-supervised learning paradigm [[1} 2} 13]]
for binary classification, which trains a binary classifier with a few positive labeled instances and
massive unlabeled instances [4]]. It arises in various practical scenarios such as automatic face tagging,
spam detection, and Inlier-based outlier detection [5]]. Due to its wide applicability, PU learning has
increasingly attracted more attention from the machine learning community.

During the past decades, many emerging practical PU learning methods have been proposed with
various advanced techniques [6,[7]. Because in PU learning, negative labeled instances are unavailable,
how to deal with unlabeled instances becomes its key challenge; and from this taxonomic perspective,
we organize the existing PU learning methods into two fundamental families, namely disambiguation-
free empirical risks 15,1819, [10] and pseudo-labeling methods 11} 12, (13} 114, [15/116].

The disambiguation-free empirical risks, as the name suggests, directly apply only positive labeled
instances and unlabeled instances to approximate the expected risk of supervised learning. Under
certain data generation assumptions, previous studies suggest unbiased empirical risk uPU [17, 5]
and several practical variants such as nnPU with non-negativity constraint [8], abs-PU with absolute-
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value constraint [9], and DistPU with positive-class prior constraint [10]. In parallel, the basic
idea of pseudo-labeling methods is estimating pseudo-labels for unlabeled instances, and training
the binary classifier with them in a self-training manner. Analogous to semi-supervised learning,
these methods typically estimate pseudo-labels by iteratively updating the current predictions. For
example, RP [18] iteratively identifies reliable negative examples from unlabeled data and assigns
hard pseudo-labels to them for subsequent training. Another recent Self-PU [[11] utilizes a soft
pseudo-labeling strategy that continuously refines label assignments by incorporating the evolving
confidence scores throughout the training process. Additionally, they apply several generic tricks
such as mixup augmentation, exponential moving average, and knowledge distillation to further
improve the classification performance [7} [13}[19].

The current PU learning methods have demonstrated strong potential, but we find that most of
them, especially pseudo-labeling ones, are commonly complicated by integrating with specific tricks.
Accordingly, some of their basic characteristics are still unclear, such as what kind of pseudo-labeling
techniques and generic tricks are practical. In this paper, we conduct a comprehensive study to
investigate the basic characteristics from a fine-grained perspective of PU learning. First, we make an
empirical analysis on disambiguation-free empirical risks; suggest a novel risk-consistent set-aware
empirical risk from the perspective of aggregate supervision, and empirically validate that it can be
a practical candidate for disambiguation-free empirical risks. Second, we turn to pseudo-labeling
methods, and make an empirical analysis on basic techniques to estimate pseudo-label such as
hard pseudo-labeling technique, soft pseudo-labeling technique, and high-confident pseudo-label
selection strategies; additionally, we empirically analyze several widely applied generic tricks in PU
learning. Finally, based on those empirical findings, we propose a general framework of PU learning
by integrating the set-aware empirical risk with pseudo-labeling, namely GPU. We further suggest
specification principles within GPU. Compared with existing PU learning methods, the proposed
GPU framework can be a practical benchmark in PU learning. In summary, the contributions of this
paper is outlined below:

* We conduct a comprehensive empirical study to the current PU learning methods, and make
extensive empirical observations on the effectiveness of basic techniques and tricks in PU
Learning.

* We propose a novel risk-consistent set-aware empirical risk from the perspective of aggregate
supervision, which can be a practical candidate for disambiguation-free empirical risks, and
then formulate a novel general framework of PU learning by integrating it with pseudo-
labeling.

* We suggest implementation principles of GPU. Compared with existing PU learning methods,
the proposed GPU framework can be a practical benchmark in PU learning.

2 Preliminaries

In this section, we review the problem setting of PU learning and the two main families of PU learning
methods.

Problem formulation and notations Formally, under the two-sample problem setting [20]]
and completely selected at random (SCAR) assumption [21], given a positive dataset D, =
{(xi, +1) 302, bt pp(x) = p(x|y = +1) with n,, instances drawn from the positive-class condi-

tional density p,(x) and an unlabeled dataset D, = {(x;, y;)} bt p(x) with n,, instances drawn

from the marginal density p(x), where x € R? and y € {—1, +1} denote the d-dimensional feature
vector and the corresponding binary label, respectively. The objective of PU learning is to induce a
classifier g : R% — R over D, UD,, which can predict labels for unseen instances.

2.1 PU Learning with Disambiguation-free Empirical Risks

PU learning methods with disambiguation-free empirical risks directly utilize labeled positive data
and unlabeled data to approximate the expected risk of supervised learning. In this work, we review
several representative ones, including uPU [5]], nnPU [8]], absPU [9], and DistPU [10].



Table 1: A summary of basic techniques and widely applied generic tricks for PU learning methods
with pseudo-labeling.

pseudo-labeling technique generic trick
PUL methods pseudo-label high confidence selection mixup moving
hard soft with w/o average
RP [18] v v
AdaSampling [22] v v
GenPU [23]] v
Self-PU [[11]] v v v
VPU [12] v v v
PULNS [24] v v
P*Mix [13] v v v
RobustPU [14]) v v
HolisticPU [[15] v v
LaGAM [25]] v v v v
PUL-CPBEF [16]] v v
VQ-Encoder [26] v v

Formally, let £ : X x JV — Ry be any loss function, and 7 = p(y = +1) be the positive-class
prior. Since negative samples are not directly accessible in PU learning, the SCAR assumption fortu-
nately provides a solution. Under this assumption, where the labeled positive examples are selected
completely at random from all positive examples, given Rf (9) = B, (x) [((9(x),+1)]. R, (9) =
IEpp(x) [K(Q(X% _1)] ’ R; (g) = IEpn(x) [E(g(x), _1” ’ and R; (g) = IEp(x) [f(g(x), _1” > We ob-
tain that p(x) = 7p,(x) + (1 — 7)pn(x), such that (1 — )R (g9) = R, (9) — 7R, (g). Then,
suppose 7 is known, one can formulate [5], which is an unbiased risk of PU learning uPU for the
expected risk of supervised learning, formulated as follows:

Rupu(g) = 7R} (9) + Ry, (9) — 7R, (9), (1)
and its empirical risk over D), U D,, is given below:
Rupu(9) = 7R} (9) + B (9) = 7R, (9) @

However, uPU suffers from overfitting when using flexible models due to negative empirical risk

R;(g) — ﬂﬁ; (g). Some methods attempt to impose a non-negative constraint on R, (g) — W}A%; (9)

to prevent the empirical risk from becoming negative. To achieve this, nnPU [8] incorporates the max
function:

Ruwpu(g) = 7R (9) + max{0, R, (9) — 7R, (9)}, 3)
and absPU incorporates the absolute value function [9]:
Ransrulg) = 7B (9) + |Ri (9) — 7Ry (9)| @

Additionally, under the case of symmetric losses where £(z) + ¢(—z) = 1, we have fi; (9) =
1- ﬁ;( ¢) naturally holds. Leveraging this property, Dist-PU [10] reformulates uPU as follows:

Rowrulg) = 2787 (9) + | Ry (9) — 7. )
where the absolute value function is introduced to impose the non-negative constraint on ﬁ; (9) —m.

2.2 PU Learning with Pseudo-labeling

PU learning methods with pseudo-labeling, as the name suggests, estimate pseudo-labels for unlabeled
data, and train the classifier g in a self-training manner [18} 22} 23 [24] [13} 14/ 115, [16]. Referring to
semi-supervised learning, we can formulate the generic objective of pseudo-labeling below:

L(g: Dy, D) = R (9) + Lu(g.9; Du). (6)

where L, (g, §; D,,) is the self-training objective with unlabeled data, and ¢ denotes the pseudo-label.



Table 2: Positive and negative label groups of datasets and the statistics of those PU learning sets.

Dataset m  Positive Class  Negative Class Feature Train Backbone
F-MNIST-1 04 0,2,4,6 1,3,5,7,8,9 28 x 28 60,000 LeNet-5
F-MNIST-2 0.6 1,3,5,7,8,9 0,2,4,6 28 x 28 60,000 LeNet-5

CIFAR-10-1 04 0,1,8,9 2,3,4,5,6,7 3x32x32 50,000 7-Layer CNN
CIFAR-10-2 0.6 2,3,4,5,6,7 0,1,89 3 x32x32 50,000 7-Layer CNN
STL-10-1 - 0,2,3,8,9 1,4,5,6,7 3 x96 x96 105,000 7-Layer CNN
STL-10-2 - 1,4,5,6,7 0,2,3,8,9 3x96x96 105,000 7-Layer CNN

We review existing pseudo-labeling methods and summarize the basic techniques and widely applied
generic tricks in Table[I] Specifically, the basic problem of pseudo-labeling is the techniques to
estimate pseudo-labels ¢ for unlabeled data with current predictions, and they typically include hard
and soft and pseudo-labeling techniques. Let ¢ = g(x) and ¢(q) € [0, 1] denote the prediction of the
classifier and the confidence belonging to the positive class, respectively, where ¢ is a transformation
function, and here we apply the sigmoid function. Then, the hard and soft pseudo-labels are estimated
as § = sign (¢(q) — 0.5) € {—1,4+1} and § = ¢(q), respectively. In addition, some studies suggest
selecting high-confident pseudo-labels, rather than applying all of them [[18} 122} [11, 24} 14]], where
the representatives include various thresholding strategies.

Generic tricks We briefly review two widely applied generic tricks in PU learning studies [[L1} 12}
131 125]], such as mixup and moving average. Mixup is an efficient data augmentation trick with the
convex combination of instance pairs [7]. Given an instance pair (x;,y;) and (x;, y,), it generates an
augmented instance (X, §) as follows:

X=2x;+ (1 -Nx;, 7=+ (1—-Ny;, A ~ Beta(a, «) ™

Here, the moving average refers to updating pseudo-labels with historical predictions during the
classifier training process [27]. Formally, its update equation for pseudo-labels is given below:

d(q) + ep(q") + (1 — €)o(q), ®)

where ¢" denotes the historical prediction, and e is a smoothing parameter.

3 Empirical Findings, Analysis, and Modifications

3.1 Settings of Empirical Study

We conduct empirical evaluations on 3 standard benchmark datasets, i.e. Fashion-MNIST (F-MNIST),
CIFAR-10, and STL-10. Following [[16], we transform them into a set of binary classification
problems by partitioning their original 10 classes into positive and negative categories by varying
the class prior 7 € {0.4,0.6}. For all datasets, the number of positive labeled instances is fixed as
np = 1,000. The details of datasets are summarized in Table 2]

For each PU learning method, We employ dataset-appropriate backbones as follows: LeNet-5 for
F-MNIST, 7-layer CNN for CIFAR-10 and STL-10; the MLP layer is used as the classification
layer across all datasets. The mini-batch is fixed as 512 and the number of epochs is set to 100 for
F-MNIST and 200 for others.

In addition, we employ the classification accuracy (ACC) as the evaluation metric. All experiments
are conducted with five different random seeds on a server equipped with two Nvidia RTX4090
GPUs, and we report the mean and standard deviation of the results.

3.2 Disambiguation-free Empirical Risks

In this section, we suggest a novel set-aware empirical risk of PU learning and empirically evaluate it
and existing disambiguation-free empirical risks with various surrogate loss functions.



Table 3: Properties of commonly used loss functions.

Loss Formula Convex Differ. Symm. Lipsc.
hinge max{0,1 — z} v v
logistic log(1+e™ %) v v v
sigmoid 1/(1+¢€%) v v v
squared (1—2)? v v
ramp min{1, max{0, (1 —z)/2}} v v
double-hinge max{0, (1 —2)/2, —z} v v

Set-aware empirical risk of PU learning In PU learning, we are given the positive labeled data
and unlabeled data D,, U D,,, and the positive-class prior 7. Inspired by previous weakly-supervised
learning studies with aggregate supervision [28]], we can arrange the training data as D, U (D, 7),
where we treat (D, 7) as a set of instances with its approximate label proportionE] Accordingly, we
can formulate the following set-aware empirical risk of PU learning (SAPU):

~ ~ 1
Rsaru(g) = Ry (9) + lor (n Z Q(Xi)a77> ; )

“ X; €Dy

where /- denotes the cross-entropy loss. Because the size of D,, can be too large, directly fitting m

in the second term of Rs,py(g) may result in smoothing instance-level predictions. To alleviate this
potential issue, we can randomly divide D,, into many subsets {S;}7*,, where S; = {x;;} jszl, ng 1S
the number of subsets, and S' is the number of instances in each subset; and if S is large enough, we
can also approximate the label proportion of each subset as 7. Upon these ideas, we can rearrange

the training data as D), U {(S;, )}, , and then reformulate Eq[9]as follows:

~ ~ 1 <& 1
Rsxpu(g) = Ry (9) + - ZECE g Z 9(xij), ™ (10)
S i=1 x;;€S;

We consider SAPU as a practical candidate disambiguation-free empirical risks of PU learning. We
show the following theorem to indicate that it is risk-consistent for the expected risk of supervised
learning. The proof is presented in the Appendix.

Lemma 3.1. Let #; = £ Zle 1[y;; = +1] be the true proportion of positive instance in set S;.
When the set size satisfies S > M}fg(w

2e

: , with probability at least 1 — 6, we have |7t; — | < €
) < W(lgﬂ)-

for each set S; and Var(7,
Theorem 3.2. Let g* = arg mingegR(g) is the minimizer of the true classification risk and gsapy =

arg mingegﬁis ApuU(g) denotes the minimizer of the risk form in Eq.@ Suppose that the pseudo-
dimensions of {x — g(x)|g € G} and {x — Lop(g(x),7)|g € G} are finite, and there exist
constants Ly, Ly such that |g(x)| < Lg and [lcg(g(x),m)| < Leforallx € X and all g € G. Then,
for any § > 0, with probability at least 1 — §:

R(QSAPU)—R(Q*)§O< k)g(l/(”) +0 M +L€_O<\/7T(1_77)10g(1/5))

np Ng S

Y

Results and analysis We empirically investigate the proposed SAPU and 4 existing disambiguation-
free empirical risks with different commonly used loss functions. Table[3|presents 6 loss functions, i.e.,
hinge, logistic, sigmoid, squared, ramp, and double-hinge, along with their mathematical formulations
and theoretical properties. These loss functions are selected to represent diverse characteristics across
4 key properties: convexity, differentiability, symmetry, and Lipschitz continuity. Because the positive
prior 7 for the STL-10 dataset is unavailable, we conduct experiments on the CIFAR-10 and F-MNIST
datasets.

2We declare that the label proportion approaches 7, as 1., goes to 0o



Table 4: The ACC scores (meanzstd) of disambiguation-free empirical risks with widely used loss
functions on F-MNIST and CIFAR-10. The highest scores are indicated in bold.

Dataset  Method S hinge logistic sigmoid squared ramp double-hinge
uPU - 68.0£0.5 68.5+0.5 69.8£0.9 77.1£2.2 70.8%1.8 68.4+0.6
nnPU - 93.840.4 93.0+0.5 93.9+0.7 93.2+1.7 93.8+1.0 94.8+0.3
— absPU - 94.2+0.4 93.3x0.5 93.3+0.7 93.7+0.4 93.6+0.6 94.1+0.2
V'J Dist-PU - - - 94.3+0.4 - 94.0+0.2 94.7+0.2
Z 32 939+1.0 959+0.2 959+0.2 94.6+0.6 94.5+1.0 94.5+0.9
E 64  92.8+0.3 96.0+0.2 96.0+0.1 93.0£0.0 93.8+0.8 94.0+0.9

SAPU 128 92.8+0.1 96.1+0.0 96.2+0.1 91.0+0.5 93.5+0.8 92.9+0.1
256 93.0#0.5 96.0+£0.2 96.2+0.0 90.8+0.1 92.9+0.5 92.8+0.3
Ny 924405 954+0.6 96.0+0.0 90.8+0.3 92.9+0.6 92.6+0.1

uPU - 47.8+0.6 47703 49.1+09 62.4+2.7 50.8+1.4 48.7+0.7
nnPU - 92.4+04 91.7+x1.3 91.0+04 92.7+0.5 93.1+0.7 93.4+0.3
« absPU - 92.6+0.6 91.5+0.7 91.0+1.2 92.0+0.3 92.4+0.7 93.4+0.4
;' Dist-PU - - - 91.3+0.9 - 93.3+0.6 92.2+0.3
Z 32 945+05 95.7+0.0 95.8+0.2 94.7+0.5 95.3+0.0 94.9+0.3
E 64  94.6+0.1 95.8+0.0 95.8+0.1 92.8+0.5 94.0+0.4 94.5+0.5

SAPU 128  93.6£0.4 959+0.2 96.0£0.1 90.8+0.2 93.2+0.4 93.9+0.3
256 93.74#0.2 95.8+0.2 96.1+0.0 88.2+1.8 93.4+0.5 93.2+0.0
ne  92.8+02 959+0.0 96.0+0.1 88.3+x1.4 93.6+0.4 93.5+0.4

uPU - 80.5+0.7 81.7+0.9 81.6x1.9 66.1+2.4 77.3+2.3 79.9+0.7

nnPU - 86.4+0.4 84.3+0.7 85.1x1.4 83.2+1.0 86.1+0.5 86.4+0.1

— absPU - 85.6+0.4 82.9+0.7 85.7+1.5 81.9+1.2 86.3+0.9 85.7+0.6
SI’ Dist-PU - - - 86.0+0.9 - 86.2+0.6 86.6+0.5
g:lﬁ 32 853+0.6 86.5+0.5 86.6+0.2 76.6+4.7 86.2+0.7 84.5+0.6
% 64  83.8+0.3 86.4+0.2 86.7+03 77.0£3.4 86.7+0.7 85.3+0.4
SAPU 128  84.7+0.5 85.6+0.4 87.0+0.5 79.5+1.5 85.0+0.0 83.6+0.2

256  83.5+0.2 86.6+0.3 86.8+0.2 75.3+55 85.4+0.6 84.4+0.6

n, 84.1+02 853+04 86.8+0.3 78.7£2.5 85.5+1.2 84.1+0.7

uPU - 76.1£0.9 77.3+1.1 769+2.4 557+2.0 67.9+24 75.5+1.0

nnPU - 84.7+1.0 80.7+1.4 83.7+1.3 81.0+1.7 84.3x1.0 83.8+1.4

a absPU - 84.4+0.9 78.0+1.7 83.8+#1.4 79.3+£2.7 84.4+0.7 82.4+1.4
SI’ Dist-PU - - - 82.1+1.1 - 83.4+1.6 85.6+0.7
g:lﬁ 32 60.7£0.0 85.1+0.7 85.1+0.7 81.3x0.3 74.7+6.3 74.7+6.3
L&) 64  62.4+1.7 85.2+0.7 84.9+0.7 81.3+0.1 74.9+6.1 75.7£5.3

SAPU 128  61.6+09 852+0.7 84.7+0.6 81.1+0.0 72.3%9.1 72.6+8.7
256  60.7£0.0 85.4+0.6 84.5+0.5 81.3+x0.0 73.8+74 74.0£7.1
n,  61.6£09 853+0.7 84.7+0.7 81.2+0.1 74.5+6.9 74.8+7.2

The experimental results in Table[d]demonstrate that the choice of loss function significantly influences
classification accuracy across different datasets and methods. For F-MNIST dataset, the sigmoid loss
consistently delivers superior performance, achieving a remarkable accuracy of 96% with our method.
The double-hinge loss also performs exceptionally well, particularly with nnPU method and Dist-PU.
On the more challenging CIFAR-10 dataset, the sigmoid loss still demonstrates robust performance
(around 86% with SAPU), while the double-hinge loss excels in several configurations, notably
with Dist-PU on CIFAR-10-2 (85.6%). Interestingly, the effectiveness of each loss function varies
substantially across different empirical risk methods and datasets. For example, while SAPU achieves
optimal results with sigmoid on CIFAR-10-1 (86.8%), its performance degrades considerably with
the squared loss. Additionally, our empirical analysis confirms that smooth, differentiable losses
(sigmoid, logistic) achieve better compatibility with SAPU’s set-aware architecture, while non-smooth
losses (double-hinge, ramp) align better with traditional point-wise optimization methods. This
non-uniform behavior suggests a complex interaction between loss functions and model architectures



that cannot be reduced to simple heuristics, underscoring the importance of careful loss function
selection based on specific application contexts.

Based on the above analysis, we can summarize the following guiding principles: (1) The smooth,
differentiable losses (such as sigmoid, logistic loss) achieve better compatibility with the set-aware
architecture of SAPU, while non-smooth losses (e.g., double-hinge, ramp loss) align better with
traditional point-wise optimization methods. (2) Convex losses generally provide better optimization
guarantees. (3) Simple datasets (e.g., F-MNIST) benefit from smooth losses, enabling fine-grained
optimization, while complex datasets (e.g., CIFAR-10) may require losses with stronger regularization
properties.

Furthermore, as the core of SAPU lies in dividing unlabeled data into multiple subsets for set-aware
supervision, we further conduct experiments to verify how subset size affects the performance of the
model. We systematically tested different subset sizes S = {32, 64, 128, 256, n,, } across all datasets
and recorded classification accuracy with various loss functions. The experimental results in Table 4]
demonstrate that S = 256 yields optimal performance on most datasets, particularly when combined
with the sigmoid loss function. For example, the model achieved peak accuracies of 96.2% and 96.1%
respectively on F-MNIST-1 and F-MNIST-2 when S' = 256 with sigmoid loss function. For simpler
datasets like F-MNIST, this phenomenon can be explained that when subsets are too small, individual
subsets struggle to accurately reflect the overall label distribution; conversely, when subsets become
excessively large (approaching n,,), instance-level predictions become overly smoothed, reducing the
model’s discriminative power. Moreover, for more complex datasets like CIFAR-10, our experiments
indicate that larger subset sizes tend to be more effective. Based on our comprehensive analysis
across different datasets, we recommend setting medium-sized subsets (e.g., S = 256) as a generally
effective configuration for our SAPU method.

3.3 Pseudo-labeling Methods

In this section, we investigate the pseudo-labeling techniques and thresholding techniques for selecting
high-confident pseudo-labels. For comprehensive evaluations, we first suggest several base methods
and then discuss the empirical results.

Base methods of pseudo-labeling We specify the generic objective of Eq[6] with specific pseudo-
labeling techniques and thresholding strategies, leading to a set of base methods. First, we estimate
pseudo-labels ¢y by hard and soft pseudo-labeling techniques; and for clarity, we review them as
9 = sign (¢(¢) — 0.5) € {—1,+1} and § = ¢(q), respectively. Second, the thresholding strategy
refers to computing a threshold value 7 to define the lower bound of high-confident pseudo-labels.
Inspired by [29} 30], we specify 3 thresholding strategies to compute 7, described below:

* Fixed thresholding treats the threshold value 7 as a hyper-parameter, and empirically sets it
as a constant value. Here, we fix 7 to 0.95.

* Adaptive thresholding gradually updates the threshold value 7 during classifier training.
Following the idea that the predictions can be more accurate as the classifier continues to be
trained [31]], we gradually increase 7 as follows:

T 4 Tmaz X min(1,¢/T),

where ¢ is the current epoch, 7,4, 1S the maximum threshold value, and 7" is the ramp-up
period.

* Class-specific adaptive thresholding gradually updates the threshold values 7, and 7,, for
positive- and negative-classes, respectively. Following [30], we gradually update 7, and 7,
as follows:

Tp < Tp X C]gt), Tp ¢ Tp X C,(f),
where CZ(,t) and C,(f) are the ratios between the pseudo-label accuracies of positive- and negative-classes
and their higher accuracy at epoch .

Based on these specific techniques, we can specify 6 base methods of pseudo-labeling.

Results and analysis To comprehensively evaluate the effectiveness of different pseudo-label
strategies and generic tricks under PU learning, we compare six base pseudo-labeling methods



Table 5: The ACC scores (mean+std) of 6 base methods of pseudo-labeling on F-MNIST and CIFAR-
10. The highest scores are indicated in bold.

Label Threshold M.A. Mixup F-MNIST-1 F-MNIST-2 CIFAR-10-1 CIFAR-10-2

90.0+1.7 92.7+0.1 85.1+0.6 83.1+3.8
Fixed v 89.9+1.6 89.3+2.3 84.2+1.8 82.0£3.5
v 90.5+0.8 92.8+0.2 85.1+0.3 85.0£1.0
v v 89.6+1.9 89.0+1.7 84.0+2.1 82.1£3.7
91.4+0.7 92.8+0.2 84.3+£0.5 83.7+0.8
. v 71.7+4.2 65.5%5.8 80.5+0.2 82.8+£3.0
Hard Adaptive

v 90.6+0.6 92.9+0.1 84.5+0.2 83.8+0.2
v v 72.1+4.3 67.5+3.2 80.7+0.0 83.1+£3.3
91.5+0.4 89.0+0.0 84.3+0.4 83.5+0.5
. v 71.744.2 65.5%5.8 82.0£1.0 82.0£1.5

Class Adaptive
v 91.0+1.0 89.6+0.2 84.5+0.5 84.0+0.5
v v 72.1+4.3 65.5+5.7 80.5+1.0 82.5+1.5
95.4+0.4 93.7+0.4 84.3+0.5 83.8+0.2
Fixed v 95.2+0.3 71.1x1.7 83.5+1.7 83.0£1.5
v 95.4+0.4 93.9+0.4 84.3+0.5 83.8+0.2
v v 95.2+0.3 70.7+2.2 83.8£1.5 83.3£1.0
95.4+0.4 94.1+0.3 85.9+0.5 82.9+34
Soft Adaptive v 74.0+4.0 69.9+£3.0 83.5%1.5 83.0+1.3
v 95.5+0.4 94.2+0.4 85.9+0.5 84.8+0.0
v v 82.9+2.4 70.7+2.2 83.9+1.3 83.4+1.1
95.0£0.1 94.1+0.4 84.3+0.5 83.8+0.2
Class Adaptive v 77.240.1 93.7£1.5 80.8+1.5 83.0£1.5
v 95.5+0.4 94.6+0.4 85.6+0.5 85.8+0.2
v v 82.9+2.4 93.8+1.1 81.0+1.3 83.4+1.1

(including two pseudo-labeling techniques (hard vs. soft labeling) and three thresholding strategies
(fixed, adaptive, and class-specific adaptive )) and two widely used enhancement techniques (mixup
and moving average) on CIFAR-10 and F-MNIST datasets.

The results demonstrate that soft labeling consistently outperforms hard labeling, particularly when
combined with class-adaptive thresholding on F-MNIST datasets (achieving up to 95.5%). Mixup
proves to be the most consistent generic trick for ACC improvement across all experimental configu-
rations, while moving average often leads to performance degradation when combined with other
techniques. Mixup proves consistently beneficial because it addresses the fundamental challenge
of decision boundary uncertainty in PU learning. By creating synthetic samples through convex
combinations, mixup naturally smooths the decision boundaries in regions. This is particularly crucial
in PU learning where the model must distinguish between true negatives and mislabeled positives
within the unlabeled set. In contrast, the counterintuitive phenomenon of performance degradation
with moving average techniques primarily stems from the unstable nature of pseudo-labels in PU
learning. Unlike traditional semi-supervised learning where unlabeled data contains truly unlabeled
instances, PU learning involves mislabeled negative samples, making historical predictions unreliable.
The self-training process generates systematic biases, and moving average perpetuates rather than
corrects these biases. On the other hand, moving average techniques may suppress the model’s
ability to rapidly adapt within the feature space to distinguish between positive and negative samples.
Furthermore, the momentum parameter requires careful tuning, which significantly increases the
experimental cost for hyperparameter optimization.

Overall, the combination of soft labeling with class-adaptive thresholds and Mixup yields the best
performance across nearly all datasets. The only exception occurs in the CIFAR-10-1 dataset,
likely due to its complex visual diversity as a natural image dataset, making the combination of
fixed thresholding with moving average and mixup more suitable for handling its complex decision
boundaries. These findings suggest that the combination of soft labeling, class-adaptive thresholding,
and mixup generally constitutes the most promising universal method.



Table 6: The ACC scores (mean=std) of existing PU learning methods and GPU.
Method F-MNIST-1 F-MNIST-2 CIFAR-10-1 CIFAR-10-2 STL-10-1 STL-10-2 Rank

uPU 77.1£2.2 62.4+2.7 81.7+0.9 77.3+£1.1 76.7£0.8  71.5+4.8 153
nnPU 94.8+0.3 93.4+0.3 86.4+0.1 84.7£1.0 77.1£45 81.9+1.0 8.7
absPU 94.2+0.4 93.4+0.3 86.3+0.9 84.41+0.9 75.3+£22  82.0+0.7 9.8
Dist-PU 94.7£0.2 93.3+0.6 86.71+0.5 85.61+0.7 78.3+£0.8  81.5+1.1 8.7
RP 94.4£0.6 93.3+0.5 78.0£1.9 84.2+1.1 71.3+£0.8  7554+2.6 122
AdaSampling  93.6+0.3 93.5+0.2 79.6£0.5 79.1£1.0 743+£22  82.6+0.8 113
GenPU 78.1£0.4 86.2+1.4 71.2£1.9 68.3£2.5 68.5£1.4 57315 165
Self-PU 90.8+0.4 89.1+0.7 85.1+0.8 83.9+2.6 78.5+£1.1  80.8+2.1 122
VPU 92.6+1.2 90.5+0.8 86.8+1.2 82.5+1.1 78.4+1.1 829+0.7 103

PULNS 91.0+0.5 89.1+0.8 87.2+0.6 83.7+£2.9 80.2+0.8  83.6£0.7 9.8
P3Mix-E 92.6+0.4 91.84+0.2 88.2+0.4 84.7£0.5 80.2+0.9 83.7£0.7 7.8
P*Mix-C 92.8+0.6 90.4+£0.1 88.7+0.4 87.91+0.5 80.7+£0.7 84.1+£03 6.5
Robust-PU 90.0+0.5 85.5+0.7 80.0+0.6 85.2+1.1 79.6£09 80.4+0.8 123
HolisticPU 96.2+0.1 96.0+0.3 91.0£0.3 90.4+£0.5 82.5+0.5 84.0£1.2 3.2
LaGAM 94.9+0.2 94.1£0.3 89.91+0.3 88.0+1.4 85.3+0.3 85.0£03 2.8
PUL-CPBF 96.7+0.3 96.5+0.2 91.4+0.2 91.0+0.3 83.4£0.7 854£12 1.2
GPU 96.4+0.1 96.1£0.5 88.4+0.1 87.9+0.4 82.7+£0.7 84.9+04 3.2

PN learning 97.7£0.1 97.7£0.1 91.9+£0.1 91.9+0.1 86.0+0.6 86.0+0.6 -

3.4 Proposed GPU Framework

By integrating SAPU with pseudo-labeling, we suggest an efficient PU learning framework GPU. Its
generic objective is given as follows:

~ . a & 1
EGPU(g) = R:)_(g) + Eu(Qv@/;Du) + ;q 21£CE E Z g(XZ‘j),ﬂ' ) (12)
j=

X;; €S
where « is a coefficient parameter.

We can interpret GPU as a regularized pseudo-labeling method of PU learning, where the set-aware
term is treated as a regularization term. Based on the previous evaluations, we find that pseudo-
labeling methods depend on high quality of pseudo-labels in the early training stage because they are
in a self-training manner. Accordingly, we suggest a warm-up stage by minimizing the objective
of SAPU. In addition, we can specify the pseudo-labeling techniques and thresholding strategies
according to our empirical observations.

Results and analysis To evaluate the efficacy of our proposed GPU framework compared to existing
PU learning methods, we conduct experiments on F-MNIST, CIFAR-10, and STL-10 datasets to
assess its general performance across varying scenarios. For comprehensive comparison, we also
include PN learning (i.e., supervised learning) as an upper bound baseline. Our GPU implementation
uses a subset size S = 256 with the sigmoid loss function and employs soft pseudo-labeling with
class-adaptive thresholding based on our empirical observations. For the warm-up stage, we train
using only SAPU for 20 epochs before introducing the pseudo-labeling component.

As evident from Table[6] our proposed GPU framework demonstrates competitive performance across
all benchmark datasets, ranking 3.2 overall, tied with HolisticPU and slightly behind LaGAM (2.8),
while remaining competitive with the leading PUL-CPBF. For example, GPU achieves accuracy
scores of 96.4% and 96.1% on F-MNIST-1 and F-MNIST-2 respectively, which are comparable to
the best-performing PUL-CPBF (96.7% and 96.5%). For CIFAR-10, GPU obtains 88.4% and 87.6%,
positioning it among the top-tier methods but slightly below HolisticPU and PUL-CPBEFE. Similar
competitive performance is also demonstrated on the STL-10 dataset. The performance gap between
GPU and the best-performing methods reflects our focus on exploring fundamental techniques and
integrating them with our novel set-aware empirical risk SAPU, rather than employing sophisticated
techniques like ensemble methods in PUL-CPBF, trend detection in HolisticPU, or meta-learning in



LaGAM. GPU provides a general framework that can integrate future advances, while specialized
methods may not generalize well. Notably, GPU significantly outperforms traditional PU learning
methods across all datasets, demonstrating that combining set-aware empirical risk estimation with
pseudo-labeling strategies effectively enhances the discriminative capability of the model.

4 Discussion and Future Works

In this paper, we comprehensively review the current families of PU learning and investigate their
basic characteristics. We review the existing disambiguation-free empirical risks and suggest a novel
set-aware empirical risk SAPU from the perspective of aggregate supervision, which is risk-consistent
for the expected risk of supervised learning. We empirically evaluate them with various commonly
applied loss functions. In addition, we review the basic techniques and widely applied generic tricks,
i.e. mixup and moving average, in the existing pseudo-labeling methods. To empirically evaluate
them, we formulate a set of base methods specified by hard and soft pseudo-labeling techniques
with thresholding strategies for selecting high-confident pseudo-labels such as fixed, adaptive, and
class-specific adaptive thresholding strategies. Finally, we propose an efficient PU learning framework
GPU by integrating SAPU with pseudo-labeling. GPU involves a warm-up stage by minimizing
SAPU and specify the framework according to our empirical observations. We compare GPU with
the existing PU learning methods, and the empirical results demonstrate that GPU can be a practical
benchmark in PU learning, and is scalable for future pseudo-labeling techniques.

In the future, there are two potential problems that require more attention. One basic problem is how
to estimate more accurate pseudo-labels [32,[33] 34] since we only investigate the straightforward
pseudo-labeling techniques. Some advanced techniques such as ensemble learning [35] demonstrate
strong potential. Another problem is whether the existing PU learning can be effective for the
scenarios with scarce positive labeled instances and how to deal with such scenarios, which can
appear in many real-world applications.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have succinctly outlined the contributions of this paper in both the abstract
and introduction sections, and the results presented in the experiments section robustly
substantiate the effectiveness of our proposed method.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have created a separate "Limitations" section in our paper, the details can
be found in Appendix[C.1]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We analyze the estimation error of SAPU in Theorem [3.2] All theoretical
results are clearly supported by rigorous mathematical derivations in Appendix[A]and [B]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have elaborated on the implementation principles and details of the
method to facilitate the reproduction of the main experimental results presented in our paper.
Additionally, we have submitted our code and datasets in the Supplementary Material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have submitted our code and datasets in the Supplementary Material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed descriptions of all necessary training and testing proce-
dures in Section[3.1] Furthermore, all experimental setup details can be readily found in the
submitted code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the results regarding the standard errors of the mean in our experi-
ments and ensure that our paper contains the calculation method for standard errors along
with other essential information related to them.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources needed to
reproduce our experiments in Section [3.1]

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensure that our research adheres to the NeurIPS Code of Ethics in all
aspects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have created a separate "Broader Impacts" section in our paper, the details
can be found in Appendix [C.2]

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper pose no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided proper citations for all models, code, and datasets utilized in
our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have submitted the proposed new assets in the Supplementary Material.
And the submitted files include structured explanatory documents regarding these new
assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Lemma 3.1]

The boundary of the bag deviation Under the SCAR assumption [21], each sample in the
unlabeled dataset has an independent probability 7 of being positive. Given a bag j containing s
samples, since the variance of a Bernoulli random variable is w(1 — ), we can obtain a tighter bound
using Bernstein’s inequality [36] for any € > 0:

Se?
2rr(1 — ) + 2¢/3

P(j#t; — | > €) < 2exp(— )<§ (13)

Then,

3r(l—m)

S >
- 2¢2

log(2/6) (14)

The variance of 7; The variance of 7; can be given by the mean of S independent Bernoulli
random variables:

m(l—m)

Var(#;) = 5

15)

B Proof of Theorem 3.2

We decompose the excess risk as:

R(QSAPU) - R(g*) <
‘R(QSAPU) — Rsaru @SAPU)| + |RSAPU(gSAPU) — Rsaru (g*)| + |RSAPU (g*) - R(g*)‘

Term 1 <0 Term 2

(16)

For Term 1, using the uniform convergence theory and the fact that the deviation in bag proportions
is bounded by ¢, we have:

dlog(ny) +los(1/6) , \/ dlog(n,) +1og(1/3) -

Np Ng

‘R(QSAPU) - RSAPU(gbag>| S Cl\/
(17)

where Ly is the Lipschitz constant of the cross-entropy loss; C; and C» are universal constants; d is
the pseudo-dimension of the function class.

According to Hoeffding’s inequality, for any § > 0, |7; — 7| < 4/ % holds with probability at
least 1 — 4. Then, we have:

dlog(ny) +108(1/5) , \/dlog(ns)+log(1/6) o1, [la@/9)

Tp

§ - foag)| <
|R(Gsapu) — Rsapu (Joag)| < 01\/ s 57

(18)

For Term 2, the deviation comes from the difference between the true positive class prior 7 and the
bag proportions ;. Using the variance bound from Lemma and applying Jensen’s inequality:

m(l—m)

5 (19)

|Raapu(9") — R(g")| < Loy/El(#; — m)2] = Ley/Var(zy) = Ly
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Then,

R(gSAPU) - R(Q*) <C; \/dlog(np) i log(1/5) + Cz\/dlog(nS) ki 10g(1/5)

iy Wog@/a) 5 \/m )

25 S
e \/dlog(nn; log(1/9) \/dlogms): log(1/5)
P s

*J”<¢b%g®'%¢ﬁugﬂu

:0( mgy&>+0 log(1/6) +LWO<¢ﬂ1_mmgu®)

Ny N S

(20)

C Limitations and Broader Impacts

C.1 Limitations

Despite our comprehensive empirical study, accurately estimating pseudo-labels remains challenging,
especially with limited positive samples. Our methods could be further improved by incorporating
advanced techniques such as ensemble learning to generate more reliable pseudo-labels. Additionally,
the set-aware empirical risk method may face challenges with extremely imbalanced datasets where
the positive class prior becomes difficult to estimate accurately.

C.2 Broader Impacts

Our GPU framework introduces a novel perspective by integrating empirical risk with pseudo-labeling
methods, enhancing PU learning applicability in real-world scenarios such as medical diagnoses
and fraud detection. The proposed set-aware empirical risk extends the theoretical foundation of
PU learning through aggregate supervision, which could inspire further weakly-supervised learning
research. By making PU learning more reliable with limited labeled data, our work contributes
to reduced annotation costs and broader accessibility of machine learning in resource-constrained
environments.
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