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Abstract

Diffusion models have demonstrated remarkable success in various domains, in-
cluding molecular generation. However, conditional molecular generation remains
a fundamental challenge due to an intrinsic trade-off between targeting specific
chemical properties and generating meaningful samples from the data distribu-
tion. In this work, we present Time-Aware Conditional Synthesis (TACS), a novel
approach to conditional generation on diffusion models. It integrates adaptively
controlled plug-and-play "online" guidance into a diffusion model, driving sam-
ples toward the desired properties while maintaining validity and stability. A key
component of our algorithm is our new type of diffusion sampler, Time Correction
Sampler (TCS), which is used to control guidance and ensure that the generated
molecules remain on the correct manifold at each reverse step of the diffusion pro-
cess at the same time. Our proposed method demonstrates significant performance
in conditional 3D molecular generation and offers a promising approach towards
inverse molecular design, potentially facilitating advancements in drug discovery,
materials science, and other related fields.

1 Introduction

Discovering molecules with specific target properties is a fundamental challenge in modern chemistry,
with significant implications for various domains such as drug discovery and materials science [49, 44,
7]. While diffusion models have shown great success in the generation of real-world molecules [55,
31], their primary goal is often simply to generate realistic molecules without considering specific
properties, which can lead to producing molecules with undesirable chemical properties.

Existing works address this issue by leveraging controllable diffusion frameworks to generate
molecules with desired properties [23, 5]. One approach is to use classifier guidance [54], which
utilizes auxiliary trained classifiers to guide the diffusion process [5]. An alternative is to use
classifier-free guidance (CFG) [19], which directly trains the diffusion models on condition-labeled
data. While both approaches can generate stable molecules, they struggle to generate truly desirable
molecules due to the complex structures and the discrete nature of atomic features [24].

On the other hand, recent works [51, 18] have introduced training-free guidance for controllable
generation in a plug-and-play manner, which we hereafter refer to as online guidance (OG). This
approach can directly estimate the conditional score with unconditional diffusion model. However, our
analysis shows that applying online guidance into the molecular generation can result in generating
samples with significantly low molecular stability and validity due to the stepwise enforcement of
specific conditions without considering the original distribution at each timestep.
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Figure 1: (a) Overview of Time-Aware Conditional Synthesis (TACS). TACS helps generate high-
quality samples that match target condition while following basic properties of the molecules. At each
timestep t, online guidance is applied to push xt towards the desired condition. Time Predictor finds
the desired timestep tp for xt after applying the guidance. Using predicted timestep tp, Tweedie’s
formula is used to predict the clean molecule x̂t0. Finally, forward process q(xt−1|x0) is applied to
proceed to the next denoising step of t− 1. (b) Motivation for TACS. Applying online guidance (g⃗,
purple) can shift the generated samples away from the correct data manifold corresponding to the
current timestep. This undesirable deviation (red) can be avoided by using time correction to first
measure the deviated timestep t′, then adjusting the guidance to get corrected guidance vector (g⃗∗,
green), which keeps the generated samples stay on the correct data manifold.

To address this gap, we propose Time-Aware Conditional Synthesis (TACS), a novel framework
for generating 3D molecules. TACS utilizes the online guidance in tandem with a novel diffusion
sampling technique that we call Time Correction Sampler (TCS). TCS explicitly considers the
possibility that online guidance can steer the generated sample away from the desired data manifold
at each step of the diffusion model’s denoising process, resulting in an ‘effective timestep’ that does
not match the correct timestep during the generation. TCS then corrects this mismatch between the
timesteps, thereby effectively preventing samples from deviating from the target distribution while
ensuring they satisfy the desired conditions. By combining online guidance with TCS and integrating
them into a diffusion model, TACS allows generated samples to strike a balance between approaching
the target property and remaining faithful to the target distribution throughout the denoising process.

To the best of our knowledge, TACS is the first diffusion framework that simultaneously addresses
inverse molecular design and data consistency, two critical objectives that often conflict.

We summarize our main contributions as follows:

• We propose Time-Aware Conditional Synthesis (TACS), a new framework for diffusion model
that utilizes adaptively corrected online guidance during the generation.

• We introduce Time Correction Sampler (TCS), a novel diffusion sampling technique that ensures
the generated samples remain faithful to the data distribution. It includes a time predictor, an
equivariant graph neural network that accurately estimates the correct data manifold during
inference by predicting the time information of the generation process.

• Through extensive experiments on a 3D molecule dataset, we demonstrate that TACS outper-
forms previous state-of-the-art methods by producing samples that closely match the desired
quantum chemical properties while maintaining data consistency.

2 Related Works

Diffusion models Diffusion models have achieved great success in a variety of domains, including
generation of images [12, 46], audio generation [30], videos [21, 36, 42], and point clouds [8, 37]. A
particular highlight in the success of diffusion models is their potential to generate molecules that
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can form the basis of new, previously unseen, medical compounds. Multiple approaches have been
explored to achieve this. For instance, graph diffusion such as GeoDiff [57], GDSS [26], and Di-
Gress [54] can generate graph structures that correspond to molecular candidates. Additionally, some
approaches incorporate chemical knowledge tailored to specific applications, such as RFdiffusion for
protein design [55], a method based on the RoseTTAFold structure prediction network [31]. Other
previous literature considers different domain-specific applications, such as diffusion for molecular
docking [11], or molecular conformer generation [25]. Most relevant to our work, diffusion models
have also shown promising results in synthesizing 3D molecules [23, 58, 27], generating stable and
valid 3D structures. Recently, some of the works further advance 3D molecule generation techniques
by making more reliable diffusion process [63] or fast generation [22] of 3D molecules.

Conditional molecular generation Deep generative models [38, 23, 58] have made considerable
progress in synthesizing 3D molecules with specific properties. Specifically, conditional diffusion
models [23, 5, 58, 18] have achieved noticeable improvements in synthesizing realistic molecules.
EDM [23] trains separate conditional diffusion models for each type of chemical condition, while
EEGSDE [5] trains an additional energy-based model to provide conditional guidance during the
inference. GeoLDM [58] utilizes a latent diffusion model [46] to run the diffusion process in the latent
space. MuDM [18] applies online guidance to simultaneously target multiple properties. However,
existing methods either produce unstable and invalid molecular structures or are unable to accurately
meet the target conditions. To overcome these limitations, we propose TACS, a novel framework
which ensures the generative process remains faithful to the learned marginal distributions in each
timestep while effectively guiding the samples to meet the desired quantum chemical properties.

Adaptive inference schedule Recent efforts have explored adaptive inference schedules to enhance
the fidelity of samples generated by diffusion models with timestep information. [59] proposes
adjusting the noise schedule during reverse diffusion, while [60] optimizes input timesteps for a more
accurate reverse trajectory. TS-DPM [34] mitigates exposure bias by adaptively shifting timesteps
during inference to align with the training variance. Similar to our time preidction mechanism,
several works leverage auxilary network to classify time information with different motivation and
purpose. DMCMC [28] introduce noise classifier for accelerating inference during earlier diffusion
steps and MoreRed [61] leverages a timestep prediction network to initialize or adaptively guide
the reverse diffusion process using the adjusted timesteps for molecular relaxation. In contrast, our
TACS is specifically designed for conditional generation, predicts timesteps at each denoising step to
refine clean sample estimates via Tweedie’s formula, ensuring alignment with the data manifold and
adherence to target conditions. Further comparison is provided in Appendix E.

3 Preliminaries

Diffusion models Diffusion models [50, 20, 52] are a type of generative model that learn to reverse
a multi-step forward noising process applied to the given data. In the forward process, noise is
gradually injected into the ground truth data, x0 ∼ q0, until it becomes perturbed into random noise,
xT ∼ N (0, I), where T is the total number of diffusion steps. We follow the Variance Preserving
stochastic differential equation (VP-SDE) [52, 20] where the forward process is modeled by the
following SDE:

dxt = −
1

2
β(t)xt dt+

√
β(t)dwt, (1)

where β(t) is a pre-defined noise schedule and wt is a standard Wiener process. Then, the reverse of
the forward process in Eq. (1) is also a diffusion process that is modeled by the following SDE [2]:

dxt =

[
−1

2
β(t)xt − β(t)∇xt

log pt(xt)

]
dt+

√
β(t)dw̄t, (2)

where pt is the probability density of xt and w̄t is a standard Wiener process with backward time
flows. The reverse process in Eq. (2) can be used as a generative model when the score function
∇x log pt(x) is known. To estimate the score function from given data, a neural network sθ is trained
to minimize the following objective [52]:

L(θ) = Et,x0
λ(t)∥sθ(xt, t)−∇xt

log pt(xt)∥22, (3)
where t∼U [0, T ], x0 is sampled from the data distribution, and λ : [0, T ]→ R+ is a positive weight
function.
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Online guidance Recent works [17, 9, 51] leverage a conditional diffusion process where the
conditional probability pt(xt|c) is modeled without training on labeled pairs (xt, c). To understand
this approach, observe that for the conditional generation, the reverse SDE of Eq. (2) can be rewritten
as follows:

dxt =

[
−1

2
β(t)xt − β(t)∇xt

log pt(xt|c)
]
dt+

√
β(t)dw̄t. (4)

From Bayes’ rule, the conditional score∇x log pt(xt|c) can be decomposed as follows:

∇xt log pt(xt|c) = ∇xt log pt(xt) +∇xt log pt(c|xt). (5)

While unconditional score∇xt
log pt(xt) can be approximated by the unconditional diffusion model

sθ from Eq. (3), online guidance can estimate conditional score part ∇xt log p(c|xt) without any
training. Notably, DPS [9] approximates conditional score as follows:

∇xt
log p(c|xt) ≈ ∇xt

log p(c|x̂0), (6)

where x̂0 is a point estimation of the final clean data using Tweedie’s formula [13]:

x̂0 =
xt + (1− ᾱt)∇xt

log p(xt)√
ᾱt

, ᾱt = e−
1
2

∫ t
0
β(s)ds. (7)

While DPS uses a point estimate of x0, Loss Guided Diffusion (LGD) [51] uses Bayesian assumption
where x0 is a Monte Carlo estimation of q(x0|xt), which is a normal distribution with mean x̂0 and
variance σ2

t which is a hyperparameter.

For a given property estimator A satisfying c = A(x0), Eq. (6) can be written as follows:

∇xt
logEx0∼p(x0|xt)p(c|x̂0) ≈ ∇xt

log

(
1

m

m∑
i=1

exp
(
−L(A(xi

0), c
))

=: g(xt, t), (8)

where L is a differentiable loss function and xi
0 are independent variables sampled from q(x0|xt).

Using this approximation, we can replace ∇xt
log p(c|xt) in Eq. (5) and conditional generation

process now becomes:

dxt =

[
−1

2
β(t)xt − β(t) (∇xt

log pt(xt) + zg(xt, t))

]
dt+

√
β(t)dw̄t, (9)

where z is the hyperparameter for controlling online guidance strength. In this work, we use L2 loss
for the differentiable loss L and set m = 1 following Song et al. [51].

3D representations of molecules In our framework, we follow EDM [23] in modeling the distribu-
tion of atomic coordinates x within a linear subspace X , where the center of mass is constrained to
zero. This allows for translation-invariant modeling of molecular geometries. Further details of the
zero-center-of-mass subspace is provided in Appendix A.3.

4 Time-Aware Conditional Synthesis

In this section, we propose our framework, Time-Aware Conditional Synthesis (TACS). Section 4.1
presents the key component of TACS: the Time Correction Sampler, a novel sampling technique that
leverages corrected time information during the generation process. Section 4.2 introduces the overall
framework of TACS, which accurately integrates online guidance into the diffusion process using our
sampling technique to generate stable and valid molecules that meet the target conditions.

4.1 Time Correction Sampler

Diffusion models are known to have an inherent bias, referred to as exposure bias, where the marginal
distributions of the forward process do not match the learned marginal distributions of the backward
process [40]. To mitigate exposure bias in the diffusion models, we propose the Time Correction
Sampler (TCS), which consists of two parts: time prediction and time correction.
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Algorithm 1 Time-Aware Conditional Synthesis (TACS)
Input: Total number of diffusion timesteps T , online guidance strength z, target condition c, diffusion
model θ, time predictor ϕ, time-clip window size ∆.

1: xT ∼ N (0, Id)
2: for t = T to 1 do
3: if Online guidance then
4: g(xt, t) = −∇xt

L(A(x0), c) ▷ Online guidance from Eq. (8)
5: x′

t ← xt + z · g(xt, t)
6: tpred ← argmax (ϕ(x′

t))
7: tpred ← clip(tpred,∆)
8: x̂′

0 ← Tweedie(x′
t, tpred) ▷ from Eq. (11)

9: xt−1 ← forward(x̂′
0, t− 1) ▷ from Eq. (1)

10: else
11: xt−1 ← reverse(xt, t) ▷ one reverse step by diffusion model
12: end if
13: end for

Time Predictor During conditional generation process of diffusion model, a sample follows the
reverse SDE as in Eq. (4). However, due to error accumulation during the generation process [33, 6],
a sample at timestep t of the reverse process of diffusion may not accurately reflect the true marginal
distribution at timestep t. This discrepancy between forward and reverse process can especially
increased when applying online guidance for every denoising steps and consequently lead to the
generation of molecules with low stability and validity. We aim to mitigate this issue by correcting
the time information based on the sample’s current position.

To achieve this, we train a neural network, a time predictor, to estimate the proper timestep of a
given noised data. Specifically, given a random data point x with unknown timestep, time predictor
models how likely x ∼ pt for each timestep in [0, T ]. For training, we parameterize a time predictor
by equivariant graph neural network (EGNN) ϕ. Then, cross-entropy loss between the one hot
embedding of timestep vector and the logit vector for the model output is used as follows:

Ltp(ϕ) = −Et,x0
[log (p̂ϕ(xt)t)] , (10)

where timestep t is sampled from the uniform distribution U [0, T ], x0 is chosen from the data
distribution, xt is constructed from Eq. (1), and p̂ϕ(xt)t is the t-th component of the model output
p̂ϕ for a given input xt. We empirically evaluate the performance of the time predictor on the QM9
train and test datasets. Forward noise, corresponding to each true timestep, is added to the data, and
the time predictor estimates the true timestep, with accuracy measured accordingly. As shown in 3b,
the predictor struggles in the white noise region, but achieves near-perfect accuracy after timestep
400.

Time correction TCS works by first modifying Tweedie’s formula (Eq. 7) using the estimated
timestep from time predictor to utilize the information of the proper timestep estimated by time
predictor during the denoising diffusion process.

Specifically, for a sample x̃t at time t during the reverse diffusion process, we use the corrected
timestep tpred predicted by time predictor, instead of the current timestep t, to estimate the final
sample x̂0 as follows:

Tweedie(x̃t, tpred) := f(x̃t, tpred) =
x̃t + (1− ᾱtpred)sθ(x̃t, tpred)√

ᾱtpred

. (11)

From the better prediction of the final sample x̂0, we perturb it back to the next timestep t−1 using
the forward process using Eq. (1).

Intuitively, TCS encourages the generated samples to adhere more closely to the proper data manifolds
at each denoising step. The iterative correction of the time through the generative process ensures the
final sample lie on the correct data distribution. Consequently, for 3D molecular generation, TCS
helps synthesizing molecules with higher molecular stability and validity, both of which are crucial
for generating realistic and useful molecules.
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Figure 2: Synthetic experiment on H+
3 dataset. TACS is robust in generating samples that (a) match

the desired condition and (b) stick to the original data distribution.

4.2 Unified guidance with time correction

Finally, we present TACS in Algorithm 1, which is a novel diffusion sampler for conditional gener-
ation that integrates TCS with online guidance. For each timestep of the reverse diffusion process
(Eq. 4), we apply online guidance (Eq. 8) to guide the process toward satisfying the target condition.
Subsequently, TCS is applied to correct the deviation from the proper marginal distribution induced
by online guidance. This ensures the samples follow the correct marginal distribution during the
generative process, as shown in Fig. 1. In Section 5, we experimentally validate that TACS is capable
of generating valid and stable molecules satisfying the target condition.

Time clipping During the generation, we empirically observe that the predicted timestep tpred often
deviates significantly from the current time step t. Naively applying this information to TCS can
be problematic as the dramatic changes in timestep may skip crucial steps, resulting in unstable or
invalid molecules. To prevent large deviation of tpred, we set a time window so that tpred remains in
the time interval [t−∆, t+∆], where ∆ is a hyperparameter for the window size.

5 Experiments

In this section, we present comprehensive experiments to evaluate the performance of TACS and
demonstrate its effectiveness in generating 3D molecular structures with specific properties while
maintaining stability and validity. In Section 5.1, we present synthetic experiment withH+

3 molecules,
where the ground state energies are computed using the variational quantum eigensolver (VQE). In
Section 5.2, we assess our method using QM9, a standard dataset in quantum chemistry that includes
molecular properties and atom coordinates. We compare our approach against several state-of-the-art
baselines and provide a detailed analysis of the results.

5.1 Synthetic experiment with H+
3

Quantum online guidance We present quantum online guidance as a modified version of online
guidance where quantum machine learning algorithm for the property estimation of generating
molecules. Specifically, we use VQE [53] when calculating the ground state energy of generated
molecules. Contrary to prior works [23, 5], which train auxiliary classifiers to estimate each condition,
this quantum computational chemistry-based approach can leverage exact calculation of the condition
for a given estimate. This, in turn, is expected to generate molecules with accurate target ground state
energies. A detailed explanation of this approach is provided in Appendix A.2.

Setup We first construct synthetic H+
3 as follows. For each molecule, a hydrogen atom is placed

uniformly at random within the 3-D unit sphere. We then augment our sample by rotating each
molecule randomly to satisfy the equivariance property [23]. Then the ground state energy of each
molecule is measured with VQE in order to provide conditional labels. Finally, we train unconditional
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Table 1: Conditional generation with target quantum properties on QM9. TACS generate samples
with lowest MAE while maintaining similar level of stability and validity as other baselines. TCS can
generate molecules with high stability and validity. ∗ notation is marked for the values for the best
MAE within methods with molecule stability above 80%.

Cv

( cal
mol K

)
µ (D) α (Bohr3)

Method MAE MS (%) Valid (%) MAE MS (%) Valid (%) MAE MS (%) Valid (%)

U-bound 6.879±0.015 - - 1.613±0.003 - - 8.98±0.020 - -
EDM 1.072±0.005 81.0±0.6 90.4±0.2 1.118±0.006 80.8±0.2 91.2±0.3 2.77±0.050 79.6±0.3 89.9±0.2
EEGSDE 1.044±0.023 81.0±0.5 90.5±0.2 0.854±0.002 79.4±0.1 90.6±0.5 2.62±0.090 79.8±0.3 89.2±0.3
OG 0.184±0.004 30.2±0.4 51.9±6.8 26.654±8.878 6.8±0.5 29.7±0.3 0.55±0.019 21.2±0.2 48.7±0.3
TCS(ours) 0.904±0.011 90.3±0.5 94.9±0.1 0.971±0.005 92.7±0.3 96.6±0.2 1.85±0.006 87.5±0.2 93.8±0.1
TACS(ours) 0.659∗±0.008 83.6±0.2 92.4±0.1 0.387∗±0.006 83.3±0.3 91.3±0.3 1.44∗±0.007 86.0±0.1 92.5±0.1
L-bound 0.040 - - 0.043 - - 0.090 - -

∆ϵ (meV) ϵHOMO (meV) ϵLUMO (meV)

Method MAE MS (%) Valid (%) MAE MS (%) Valid (%) MAE MS (%) Valid (%)

U-bound 1464±4 - - 645±41 - - 1457±5 - -
EDM 673±7 81.8±0.5 90.9±0.3 372±1 79.6±0.1 91.6±0.2 602±4 81.0±0.2 91.4±0.5
EEGSDE 539±5 80.1±0.4 90.5±0.3 300±5 78.7±0.7 91.2±0.2 494±9 81.4±0.6 91.1±0.2
OG 95.2±4 31.3±0.7 61.9±3.4 233±8 11.5±0.4 40.8±2.6 170±1 21.1±0.5 42.3±0.9
TCS(ours) 594±4 91.9±0.4 96.0±0.2 338±5 92.7±0.2 96.6±0.2 493±9 91.7±3.9 96.2±0.4
TACS(ours) 332∗±3 88.8±0.6 93.9±0.3 168∗±2 87.3±0.7 93.0±0.2 289∗±4 82.7±0.7 91.3±0.2
L-bound 65 - - 39 - - 36 - -

diffusion model and CFG-based conditional diffusion model with the constructed data. For evaluation,
we measure the ground state energy and calculate MAE (Mean Absolute Error) with the target energy.
Also, we measure the average L2 distance between position of each atom and its projection to the
unit sphere.

Results The results in Figure 2 indicate that while online guidance correctly guides the samples to
the target condition, it can lead to the samples deviated from the original data distribution. In contrast,
molecules sampled from TACS can satisfy both low MAE and low L2 distance. Further details and
additional discussions are provided in Appendix B.1.

5.2 Conditional generation for target quantum chemical properties

Dataset We evaluate our method on QM9 dataset [45], which contains about 134k molecules with
up to 9 heavy atoms of (C, N, O, F), each labeled with 12 quantum chemical properties. Following
previous works [1, 23], we test on 6 types of quantum chemical properties and split the dataset into
100k/18k/13k molecules for training, validation, and test. The training set is further divided into two
disjoint subsets of 50k molecules each: Da for property predictor training and Db for generative
model training. Further details are provided in Appendix B.2.

Evaluation To evaluate how generate samples meet the desired target condition, a property pre-
diction model ϕp [47] is trained on Da. Then, MAE for K number of samples is calculated as
1
K

∑K
i=1 |ϕp(x(i))− c(i)|, where x(i) represents i-th generated molecule and c(i) is corresponding

target quantum chemical properties. Molecular stability (MS) and validity (Valid) [23] are used to
measure how generated samples satisfy basic chemical properties. Details of the evaluation metrics
are provided in Appendix B.2.

Baselines We use Equivariant Diffusion Models (EDM) [23] and Equivariant Energy Guided SDE
(EEGSDE) [5] for the baselines. Following [23], we put additional baselines including "Naive
Upper-Bound" (randomly shuffled property labels), "#Atoms" (properties predicted by atom count),
and "L-Bound" (lower bound on MAE using a separate prediction model).

Results Table 1 shows the result of conditional generation of TACS and TCS with baselines. We
generate K=104 samples for the evaluation in each experiment and the average values and standard
deviations are reported across 5 runs. For all of the quantum chemical properties, TACS achieves
lower MAE while maintaining comparable or higher molecular stability (MS) and validity compared
to other baselines. Notably, when comparing with the baseline methods that maintains the MS
above 80%, the MAE of TACS is significantly lower than the baselines. The result demonstrates the
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Figure 3: (a) Comparative analysis of molecule stability and MAE across five distinct methods,
highlighting the enhanced stability of our approach at comparable MAE levels. (b) Performance of
the time predictor for train and test set on QM9.

Table 2: Quantitative results showing similarity
and stability of generated molecules compared
to target structures.

QM9
Method Similarity ↑ MS (%)

cG-SchNet 0.499±0.002 -
Conditional EDM 0.671±0.004 -
TCS (Ours) 0.792±0.077 90.42
TACS (Ours) (z = 0.01) 0.694±0.001 90.45
TACS (Ours) (z = 0.05) 0.695±0.003 90.02
TACS (Ours) (z = 0.1) 0.713±0.087 90.28
EEGSDE (s = 0.1) 0.547±0.002 74.07
EEGSDE (s = 0.5) 0.600±0.002 74.67
EEGSDE (s = 1.0) 0.540±0.029 90.44

Table 3: Unconditional generation us-
ing Geom-Drug dataset.

Geom-Drug
Method AS (%) ↑ Valid (%)

Data 86.5 99.9

ENF - -
G-Schnet - -
GDM 75.0 90.8
GDM-AUG 77.7 91.8
EDM 81.3 92.6
EDM-Bridge 82.4 92.8

TCS(Ours) 89.6 97.6

effectiveness of TACS in balancing the objectives of generating molecules with desired properties
and ensuring their structural validity.

TCS achieves high validity and atom stability and molecular stability, surpassing the unconditional
generation performance of the baselines, but with a higher MAE compared to TACS. This highlights
the importance of online guidance for precise property targeting. However, applying only online
guidance yields samples with low MAE but suffers from reduced validity and stability, occasionally
failing to generate valid molecules due to numerical instability. This shows the ability of TACS which
places the samples on the correct data manifold at each denoising step, even if they deviate from the
true time-manifold due to the online guidance. Finally, we put the results of different methods with
9 different runs for each method and plot the MAE and MS in Figure 3a. The result clearly shows
that TACS and TCS reaches closer to the Pareto front of satisfying molecular stability and the target
condition together.

5.3 Target structure generation

We conduct experiments on target structure generation with QM9 as in [5]. For evaluation, we
report Tanimoto similarity score [16] which captures similarity of molecular structures by molecular
fingerprint and molecular stability to check whether basic properties of molecules are satisfied during
the conditional generation process. We put additional details of the experiment in Appendix B.3.2.

Results Table 2 shows that TACS significantly outperforms baseline methods both in Tanimoto
similarity and molecular stability. Interestingly, performance of TACS is robust in the online guidance
strength z. This demonstrates TACS’s ability to generalize on different tasks.
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Table 4: Comparison between performance of TACS when using argmax function and expectation
for correcting timesteps using time predictor.

Cv

( cal
mol K

)
µ (D) α (Bohr3) ∆ϵ (meV) ϵHOMO (meV) ϵLUMO (meV)

Method MAE MS (%) MAE MS (%) MAE MS (%) MAE MS (%) MAE MS (%) MAE MS (%)

Argmax 0.659 83.3 0.387 83.3 1.44 86.0 332 88.8 168 87.3 289 82.7
Expectation 0.703 84.6 0.451 90.2 1.56 87.3 351 90.7 182 89.8 334 90.1

5.4 Unconditional generation on Geom-Drug dataset

To verify the scalability of time correction sampler, we use Geom-Drug [4] as our dataset. Geom-Drug
consists of much larger and complicate molecules compared to the QM9. For fair comparisons, we
follow [23, 5] to split the dataset for training, validation and test set include 554k, 70k, and 70k
samples respectively. We test the performance of TCS on unconditional generation of 3D molecules
when using Geom-Drug. For evaluation, we use atom stability (AS) and validity of generated samples.
The result in Table 3 shows that samples generated by TCS satisfy the highest atom stability and the
validity with high margin compared to the baselines. Details of the experiments are in Appendix B.3.1.

5.5 Ablation Studies

Time prediction function We investigate how the the design of time prediction function affects the
performance of TACS. Specifically, for line 6 in Alg. 1, rather than using argmax function to obtain
corrected timestep tpred, we choose to use expectation value by tpred = E[ϕ(x)]. Table 4 shows the
comparison between two methods in six different types of quantum chemical properties. Expectation
based time prediction results in molecules with higher MAE and higher molecular stability.

Table 5: Ablation study on the OG strength z
with target property ϵLUMO.

Method MAE MS (%) Valid (%)

TCS (z = 0) 493 91.7 96.2
OG 170 21.1 42.3
z = 1.5 311 80.3 90.7
z = 1.0 236 74.9 86.3
z = 0.5 288 82.7 91.3

Online guidance strength z To analyze the effect
of online guidance strength z in Eq. (9), we measure
MAE, molecular stability, and validity of samples
generated by TACS for different z values. Table 5
shows the result with target condition on ϵLUMO val-
ues. One can observe while trade-off occurs for dif-
ferent z values, performance of TACS is robust in
varying z. Interestingly, our experiment shows that
there exists an optimal value of z which generates
samples with the lowest MAE that is even compara-
ble to applying online guidance without time correction (OG). As expected, using z = 0 (TCS)
generates molecules with the highest MS and validity but with the highest MAE.

Table 6: Results of TACS on target
property α when varying the time win-
dow size.

Window size (∆) MAE MS (%)

2 1.481 87.25
4 1.460 86.52
6 1.460 85.73
8 1.448 86.84

10 1.441 86.08
12 1.442 85.17
14 1.459 82.76
16 1.530 79.10

Time window length ∆ We measure how the perfor-
mance of TACS varies with time winodw length ∆. Ta-
ble 6 shows the MAE, molecular stability values for dif-
ferent window sizes when the target property is α. The
result shows that the performance of TACS is robust when
using moderate window size but decreases when window
size becomes larger than certain point. We set ∆ = 10 for
other experiments.

In Appendix C, we provide the results of further ablation
studies including the effect of mc sampling and effective
diffusion steps for TACS. Overall, the results show that
our method is robust in the choice of hyperparameters and
generalizable to different datasets and tasks.

6 Discussion

Exploiting quantum chemistry In Section 5.1, we demonstrate that quantum computing-based
guidance can serve as an accurate property predictor for the online guidance. Currently, in the absence
of a non-noisy quantum computer, scaling up this exact guidance to the QM9 dataset is close to
impossible due to compounding noise [43, 10]. However, future fault-tolerant quantum technology is
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expected to provide quantum advantage in calculating chemical properties. This can be incorporated
into our algorithm when using online guidance and therefore, further improvements of our TACS are
on the horizon.

Connection to other fields Recent works point out the exposure bias exists for diffusion mod-
els [40], where there is a mismatch between forward and reverse process. Our experiments in 5.2
indicate that Time Correction Sampler can provide a solution to the exposure bias problem during
the sampling process in diffusion models. Moreover, since time predictor can gauge this mismatch
during inference, one might leverage this information for future works.

Another direction is applying our algorithm to matching [56, 27, 39] frameworks. Contrary to
diffusion models, these matching models can start with arbitrary distributions and directly learn
vector fields. We expect time predictor to be also effective with these types of algorithms. Investigating
the connection between our algorithm and matching models will be an interesting future direction.

7 Conclusion

In this work, we introduce Time-Aware Conditional Synthesis (TACS), a novel approach for condi-
tional 3D molecular generation using diffusion models. Our algorithm leverages a Time Correction
Sampler (TCS) in combination with online guidance to ensure that generated samples remain on
the correct data manifold during the reverse diffusion process. Our experimental results clearly
demonstrate the advantage of our algorithm, as it can generate molecules that are close to the target
conditions while also being stable and valid. This can be seen as a significant step towards precise
and reliable molecular generation.

Despite multiple advantages, several open questions remain. For example, how can we more efficiently
use the Time Correction Sampler, or more generally, whether this method improves performance in
other domains such as in image generation. We expect that our work will open various opportunities
across different domains, such as quantum chemistry and diffusion models.

Limitation Although we demonstrate the effectiveness of our algorithm on multiple datasets and
tasks, we use a trained neural network to estimate chemical properties of each molecule for main
experiments. Using exact computational chemistry-based methods might improve our algorithm.

Societal impacts We believe that our framework can assist in drug discovery, which requires
synthesizing stable and valid molecules that satisfy target conditions. However, our work could
unfortunately be misused to generate toxic or harmful substances.
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A Method details

A.1 Time Predictor

For model architecture, we use EGNN [47] with L = 7 layers, each with hidden dimension hf = 192.
We use the same split of training / test dataset of QM9.

Time predictor training For completeness, we restate the training of the time predictor (Eq. 10)
here. The time predictor is trained for minimizing the cross-entropy loss between the predicted logits
p̂ and one-hot vector of the forward timestep t:

Ltime-predictor(ϕ) = −Et,x0
[log (p̂ϕ(xt)t)] , (12)

where t is uniformly drawn from the interval [0, T ].

For conditional diffusion model, we train separate time predictor for each of the target property by
concatenating conditional information c to the input xt.

The rationale behind using cross-entropy loss rather than simple regression loss is because p(t|x)
can not be estimated from the point estimate if there exists intersection between support of marginal
distributions pt and ps which is from different timesteps s and t, respectively. In other words, this
implies there exists x ∈ Rd such that pt(x)>0 and ps(x)>0 simultaneously holds.

Finally, we train the time predictor within 24 hours with 4 NVIDIA A6000 GPUs.

A.2 Quantum online guidance

Quantum Machine Learning Quantum computing is expected to become a powerful computa-
tional tool in the future [14]. While at its early stage, various of quantum machine learning algorithms
are proved to have advantage over classical methods [3]. In computational chemistry, these advantages
are indeed expected to have huge potential since classically intractable computations like finding
ground state for big molecules are expected to become feasible with exponential speed-ups [48] of
quantum machines.

Variational Quantum Eigensolver Variational Quantum Eigensolver (VQE) [41] is a near term
quantum machine learning algorithm which leverages variational principle to obtain the lowest energy
of a molecule with given Hamiltonian. For the given Hamiltonian Ĥ , trial wave function |ψ(θ)⟩
which is parameterized by a quantum circuit (θ) is prepared to obtain ground state energy E0 with
following inequality:

E0 ≤
⟨ψ(θ)|Ĥ|ψ(θ)⟩
⟨ψ(θ)|ψ(θ)⟩

. (13)

Specifically, parameters θ in quantum circuit is iteratively optimized to minimize the following
objective:

E(θ) =
⟨ψ(θ)|Ĥ|ψ(θ)⟩
⟨ψ(θ)|ψ(θ)⟩

. (14)

When quantum circuit θ is expressive enough, one can see that |ψ(θ⋆)⟩, where θ⋆ is a minimizer
of Eq. (14), gives the ground state of the given system. For more comprehensive review with its
potential advantages, one may refer to [53].

Quantum online guidance Quantum online guidance is a type of online guidance algorithm where
we use VQE-based algorithm to calculate exact values of quantum chemical properties instead of
using classifier which is usually a neural network.

In each denoising step of diffusion model, we first apply Tweedie’s formula (Eq. 7) to estimate
clean molecule x̂0. Then we use VQE to calculate ground state energy of the estimated molecule by
iteratively updating θ forE(x̂0,θ) = ⟨ψ(θ)|H(x̂0)|ψ(θ)⟩. After obtaining θ⋆(x̂0) which minimizes
E(x̂0,θ), we obtain target property value E0(x̂0). To obtain gradient in Eq. (8), we use zeroth-order
method [35] with respect to the position of atoms to obtain gradient as follows:

∇xt
logEx0∼p(x0|xt)p(c|x̂0) ≈ −∇xt

E0(x̂
i
0) ≈ −

k∑
i=1

E0(x̂
i
0 + hi)− E0(x̂

i
0 − hi)

2hi
, (15)
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where k is a hyperparameter for multipoint estimate when using the zeroth-order optimization.

A.3 Properties of the Zero-Center-of-Mass Subspace

Let X = {x ∈ RM×3 : 1
M

∑M
i=1 xi = 0} be the subspace of RM×3 where the center of mass is

zero. Here we discuss some properties of X that are used in the TACS framework. First, note that X
is a linear subspace of RM×3 with dimension (M − 1)× 3. There exists an isometric isomorphism
ϕ : R(M−1)×3 → X , i.e., a linear bijective map that preserves distances: ∥ϕ(x̂)∥ = ∥x̂∥ for all
x̂ ∈ R(M−1)×3. Intuitively, ϕ allows us to map between the lower-dimensional space R(M−1)×3 and
the constrained subspace X without distortion. If x ∈ X is a random variable with probability density
q(x), then the corresponding density of x̂ = ϕ−1(x) in R(M−1)×3 is given by q̂(x̂) = q(ϕ(x̂)).
Similarly, a conditional density q(x|y) on X can be written as q̂(x̂|ŷ) = q(ϕ(x̂)|ϕ(ŷ)). In practice,
computations involving probability densities on X can be performed in R(M−1)×3 and mapped back
to X using ϕ as needed. This allows TACS to efficiently learn and sample from distributions on
molecular geometries while preserving translation invariance. For further mathematical details on
subspaces defined by center-of-mass constraints, we refer the reader to [29] and [47].

A.4 Classfier-free guidance

For conditional generation, we need conditional score∇x log pt(xt|c) where c is our target condition.
Classifier-free guidance (CFG) [19] replaces conditional score with combination of unconditional
score and conditional score. Here, diffusion model is trained with combination of unlabeled sample
(x0, ∅) and labeled samples (x0, c). The reverse diffusion process (Eq. 2) in CFG changes as follows:

dxt =

[
−1

2
β(t)xt − β(t) (−w∇xt log pt(xt) + (1 + w)∇xt log pt(xt|c))

]
dt+

√
β(t) dw̄t (16)

Here, w is a conditional weight which controls the strength of conditional guidance. When w = −1,
the process converges to the unconditional generation and with larger w, one can put more weights
on conditional score. In the experiments, we use w = 0 following [23, 5].

B Experimental details

B.1 Synthetic experiment with H+
3

Here, we provide experimental results on our synthetic experiment. Our results show that TACS is
robust through different online guidance strength z and outperforms naive mixture of CFG and OG.

Table 7: MAE with target condition

Z CFG+OG TACS

0 0.4823 0.0817
1 0.0961 0.0530
2 0.1069 0.0438
5 0.1107 0.0377
10 0.1430 0.0529
25 0.5427 0.3089

Table 8: L2 distance from data distribution

Z CFG+OG TACS

0 0.0386 0.0294
1 0.0653 0.0305
2 0.1886 0.0339
5 0.6553 0.0383

10 3.5112 0.1820
25 18.8983 8.2466

Geometric Optimization It is known thatH+
3 molecule has a ground state energy around−1.34Ha.

Assuming we don’t have any prior knowledge of this information, we try to generate molecules
with conditioning on the target ground state energy −2.0Ha. Applying TACS proves to be strong in
this case also, which implies that our method can robustly guide the molecule without destroying
distances.
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B.2 Experiments on QM9

Dataset details The QM9 dataset [45] is a widely-used benchmark in computational chemistry and
machine learning. It contains 134k stable small organic molecules with up to 9 heavy atoms (C, O, N,
F) and up to 29 atoms including hydrogen. This size constraint allows the molecules to be exhaustively
enumerated and have their quantum properties calculated accurately using density functional theory
(DFT). Each molecule in QM9 is specified by its Cartesian coordinates (in Angstroms) of all atoms
at equilibrium geometry, along with 12 associated properties calculated from quantum mechanical
simulations.

QM9 molecular properties In Table 9, we describe six quantum chemical properties that are used
for conditional generation in our experiments.

Table 9: Quantum chemical properties

Property Description

Polarizability (α) Measure of a molecule’s ability to form instantaneous dipoles in
an external electric field.

HOMO-LUMO gap (∆ϵ) Energy gap between the HOMO and LUMO orbitals, indicating
electronic excitation energies and chemical reactivity.

HOMO energy (ϵHOMO) Energy of the highest occupied molecular orbital, related to ion-
ization potential and donor reactivity.

LUMO energy (ϵLUMO) Energy of the lowest unoccupied molecular orbital, related to
electron affinity and acceptor reactivity.

Dipole moment (µ) Measure of the separation of positive and negative charges in a
molecule, indicating polarity.

Heat capacity (Cv) Measure of how much the temperature of a molecule changes
when it absorbs or releases heat.

Performance metrics To evaluate the quality of generated molecules, Table 10 shows descriptions
of the metrics that are used in our experiments to check whether generated samples satisfy basic
molecular properties.

Table 10: Performance metrics

Property Description

Validity (Valid)
Proportion of generated molecules that are chemically valid, as
determined by RDKit. A molecule is valid if RDKit can parse it
without encountering invalid valences.

Atom Stability (AS)

Percentage of atoms within generated molecules that possess cor-
rect valencies. Bond types are predicted based on atom distances
and types, and validated against thresholds. An atom is stable if
its total bond count matches the expected valency for its atomic
number.

Molecule Stability (MS) Percentage of generated molecules where all constituent atoms
are stable.

Baselines We compare our method against Equivariant Diffusion Models (EDM) [23] which learn
a rotationally equivariant denoising process for property-conditioned generation and Equivariant
Energy Guided SDE (EEGSDE) [5], which guides generation with a learned time-dependent energy
function.

Additional baselines Two baselines are employed following the approach outlined by [23]. To
measure "Naive (U-Bound)", we disrupt any inherent correlation between molecules and properties
by shuffling the property labels inDb and evaluating ϕc on the modified dataset. "L-Bound" is a lower
bound estimation of the predictive capability. This value is obtained by assessing the loss of ϕc onDb,
providing a reference point for the minimum achievable performance. If a proposed model, denoted
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as, surpasses the performance of Naive (U-Bound), it indicates successful incorporation of conditional
property information into generated molecules. Similarly, outperforming the L-Bound demonstrates
the model’s capacity to incorporate structural features beyond atom count and capture the intricacies
of molecular properties. These baselines establish upper and lower bounds for evaluating mean
absolute error (MAE) metrics in conditional generation tasks.

Diffusion model training For a fair comparison with EDM and EEGSDE [23, 5], we adopt their
training settings, using model checkpoints provided in the EEGSDE code: https://github.com/
gracezhao1997/EEGSDE. The diffusion model is trained for 2000 epochs with a batch size of 64,
learning rate of 0.0001, Adam optimizer, and an exponential moving average (EMA) with a decay
rate of 0.9999. During evaluation, we generate molecules by first sampling the number of atoms
M ∼ p(M) and the property value c ∼ p(c|M). Here p(M) is the distribution of molecule sizes in
the training data, and p(c|M) is the conditional distribution of the property given the molecule size.
Then we generate a molecule conditioned on M and c using the learned reverse process.

Hyperparameters for TACS We analyze different hyperparameter settings for all six quan-
tum chemical properties (α, ∆ϵ, ϵHOMO, ϵLUMO, µ, Cv) for the result in the Table 1. We
vary the TCS starting timestep tTCS ∈ {200, 400, 600, 800}, online guidance starting timestep
tOG ∈ {200, 400, 600, 800}, online guidance ending timestep t̃OG ∈ {10, 20, 30}, gradient clipping
threshold κ ∈ {∞, 1, 0.1} for Eq. (8), and guidance strength z ∈ {1.5, 1.0, 0.5} in Eq. (9). Except
for ϵLUMO (optimal with z = 0.5, t̃OG = 0), we find tTCS = 600, tOG = 600, t̃OG = 20, z = 1, and
κ = 1 consistently achieve low MAE with molecular stability above 80%.

B.3 Additional Experiment Details

B.3.1 Experiments on Geom-Drug

Dataset Details Geom-Drug dataset [4] contains approximately 450K molecules with up to 181
atoms and an average of 44.4 atoms per molecule. Following [5], we split the dataset into train-
ing/validation/test sets of 554k/70k/70k samples respectively.

Performance Metrics For each experiment, we generate 10,000 molecular samples for evaluation.
As in QM9 experiments, we measure atom stability (AS) and validity (Valid) using RdKit [32].

Time Predictor Training For Geom-Drug, we employ TCS with 4 EGNN layers and 256 hidden
features. The time predictor ϕ is trained unconditionally with the same EGNN architecture as QM9
for 10 epochs. During generation, TCS starts from timestep 600 and utilizes a window size of 10 for
time correction.

B.3.2 Experiments on Target Structure Generation

Training Details For molecular fingerprint-based structure generation, we follow the evaluation
protocol in [5]. The diffusion model architecture remains consistent with our QM9 experiments,
using EGNN with 256 hidden features and 4 layers, trained for 10 epochs.

Performance Metrics For evaluation, we use Tanimoto similarity score [16] which measures the
structural similarity between generated molecules and target structures through molecular fingerprint
comparison. Specifically, let Sg and St be the sets of bits that are set to 1 in the fingerprints of
generated and target molecules respectively. The Tanimoto similarity is defined as |Sg∩St|/|Sg∪St|,
where | · | denotes the number of elements in a set. We evaluate the similarity on 10,000 generated
samples.

Baselines For both experiments, we directly compare with baseline results reported in [22]. For
Geom-Drug unconditional generation, these include ENF [47], G-Schnet [15], GDM variants [57],
EDM [23], and EDM-Bridge [56]. For target structure generation, we compare against G-SchNet [15],
GDM, GDM-AUG [57], Conditional EDM [23], and EEGSDE [5] with various guidance scales.
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C Additional experiments

C.1 When to apply TCS and OG

We ablate when to start the time-corrected sampling (TCS) and online guidance (OG) during the
reverse diffusion process. The notation tTCS and tOG indicates we apply TCS after timestep tTCS and
OG after the timestep tOG in the reverse diffusion process. We report results for property ϵLUMO in
Table 11. The result shows that applying TACS from early steps (t = 600, 800) generates samples
best satisfying the target condition but with less molecular stability and validity. In contrast, when we
start applying TACS after later step t = 400, generated samples have higher MAE, MS, and Validity.
Interstingly, if we apply TACS only in the later part (after t = 200), MAE, MS, and validity decreases
again. We leave further investigation on this phenomenon and explanation for future works.

In our experiments, we use tTCS = tOG = 600 as our default setting.

Table 11: Ablation study on when to start time-corrected sampling (TCS) and online guidance (OG)
during the reverse diffusion process for the target property ϵLUMO. We use z = 1 for the experiment.
The best value in each column is bolded.

[tTCS, tOG] MAE MS (%) Valid (%)

[800, 800] 236 74.9 86.3
[600, 600] 236 74.9 86.2
[400, 400] 360 86.6 93.3
[200, 200] 248 72.1 84.5

C.2 Number of MC samples

Additional experiments are conducted on the effect of number of MC samplesm in Eq. (8). LGD [51]
estimates x0 assuming q(x0|xt) is a normal distribution with mean x̂0 (Eq. 7) and variance σ2 which
is a hyperparameter.

First, we investigate the effect of varying the variance σ in MC sampling. Table 12 shows that the
result is robust in the small values of σ but when σ is larger than some point, quality of generated
samples decreases (higher MAE and lower MS).

Next, we test how the performance of TACS is affected by number of MC samples m. Table 13
shows that performance of TACS is robust in number of MC samples but we did not observe any
performance increase with the number of MC samples as in [18].

Table 12: MC effect with varying σ. 5 MC samples are used and the target property is α.

σ MAE MS (%)
0.0001 1.506 86.06
0.0005 1.390 84.33
0.001 1.501 86.92
0.005 1.395 86.35
0.01 1.464 85.10
0.05 1.801 85.04
0.1 2.186 82.69
0.3 2.936 75.67

Table 13: Varying number of MC samples with σ = 0.005. Target property is α.

# Samples MAE MS (%)

1 1.440 86.10
5 1.395 86.35

10 1.505 82.21
15 1.545 83.04
20 1.468 86.76
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C.3 Results on Novelty, Uniqueness

We report additional metrics on the novelty, uniqueness of generated molecules in Table 14 following
previous literature [5, 23, 58]. Novelty measures the percentage of generated molecules not seen
in the training set. Uniqueness measures the proportion of non-isomorphic graphs within valid
molecules. Higher values indicate better quality for both metrics. The result shows that TACS
generates molecules with decreased novelty. This shows that TACS is effective in making generated
molecules that stick to the original data distribution while satisfying to meet the target condition.

Table 14: Novelty and uniqueness of generated sample for the target property ϵLUMO.

Method Novelty (%) Uniqueness (%)

EDM 84.5 99.9
EEGSDE 84.8 84.8
TACS 71.6 99.8

D Mathematical Derivations

In our derivation of equivariance properties of the time predictor, we closely adhere to the formal
procedures outlined in [23, 57, 47].
Definition 1 (E(3) Equivariance). A function f : RN×3 → RN×d is E(3)-equivariant if for any
orthogonal matrix R ∈ R3×3 and translation vector v ∈ R3,

f(RX+ v1⊤) = R · f(X), (17)

where X ∈ RN×3 and 1 ∈ RN is the all-ones vector.
Definition 2 (Permutation Invariance). A function g : RN×d → Rd is permutation-invariant if for
any permutation matrix P ∈ {0, 1}N×N ,

g(PH) = g(H), (18)

where H ∈ RN×d.
Proposition 1. Let f : RN×3 → RN×d be an E(3)-equivariant function and g : RN×d → Rd be a
permutation-invariant function. Then, the composition h = g ◦ f : RN×3 → Rd is invariant to E(3)
transformations, i.e.,

h(RX+ v1⊤) = h(X). (19)

Proof. For any orthogonal matrix R ∈ R3×3 and translation vector v ∈ R3,

h(RX+ v1⊤) = g(f(RX+ v1⊤))

= g(R · f(X)) (E(3) equivariance of f )
= g(f(X)) (Permutation invariance of g)
= h(X). (20)

Theorem 1 (Time Predictor Equivariance). Let G = (V, E) be a graph representing a molecule,
where V = {1, . . . , N} is the set of nodes (atoms) and E ⊆ V × V is the set of edges (bonds). Let
Xt ∈ RN×3 denote the atomic coordinates and c ∈ Rd be a condition vector at diffusion timestep t.
Consider a time predictor pϕ(t|Xt, c) = softmax(fϕ(Xt, c)) parameterized by a composition of an
E(3)-equivariant graph neural network EGNNϕ : RN×3 × RN×dh × Rd → RN×d′

, a permutation-
invariant readout function ρ : RN×d′ → Rd′

, and a multilayer perceptron ψ : Rd′ → RT , i.e.,

fϕ(Xt, c) = ψ(ρ(EGNNϕ(Xt,Ht, c))), (21)

where Ht ∈ RN×dh are node features and T is the total number of diffusion timesteps. Then, the time
predictor pϕ(t|Xt, c) is invariant to E(3) transformations, i.e., for any orthogonal matrix R ∈ R3×3

and translation vector v ∈ R3,

pϕ(t|RXt + v1⊤, c) = pϕ(t|Xt, c), ∀t ∈ {1, . . . , T}. (22)
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Proof. The E(3)-equivariant graph neural network EGNNϕ satisfies [47]:

EGNNϕ(RXt + v1⊤,Ht, c) = R · EGNNϕ(Xt,Ht, c). (23)

By the permutation invariance of ρ and the invariance of ψ to orthogonal transformations, we have:

fϕ(RXt + v1⊤, c) = ψ(ρ(EGNNϕ(RXt + v1⊤,Ht, c)))

= ψ(ρ(R · EGNNϕ(Xt,Ht, c)))

= ψ(ρ(EGNNϕ(Xt,Ht, c)))

= fϕ(Xt, c). (24)

Consequently,

pϕ(t|RXt + v1⊤, c) = softmax(fϕ(RXt + v1⊤, c))

= softmax(fϕ(Xt, c))

= pϕ(t|Xt, c). (25)

E Comparison with other related works

While with different motivations and methods, here, we list some of the relevant works and compare
their algorithms with ours.

Comparison with DMCMC DMCMC [28] trains a classifier to predict noise levels of the given
data during the reverse diffusion process which is similar to our time predictor. However, they use the
classifier to estimate the current noise state when conducting MCMC on the product space of the data
and the noise. In contrast, our time predictor directly predicts timesteps for correction in diffusion
sampling itself. Moreover, while the purpose of noise prediction in DMCMC is for fast sampling, our
work use time predictor to accurately produce samples from the desired data distribution.

Comparison with TS-DPM Time-Shift Sampler [34] targets to reduce exposure bias targets similar
approach of fixing timesteps during the inference as our time correction method. However, while our
method directly selects timesteps based on the time predictor, which has demonstrated robustness
in our experiments [34] selects timesteps by calculating variance of image pixels at each step and
matching the noise level from the predefined noise schedule which is often inaccurate and expensive.
Moreover corrected timestep in [34] is used directly for the start of the next step, while our approach
maintains the predefined timestep after accurately estimate clean sample by corrected time step (line
9 in Algorithm 1). By taking every single diffusion step while carefully using predicted time, TACS /
TCS can generate samples closer to the target distribution.

To further validate our approach, we provide additional experimental results comparing TS-
DDPM [34] and TACS on the QM9 dataset with step size 10. The result in Table 15 shows consistent
improvements across various quantum properties which shows the robustness of our approach.

Table 15: Comparison between TACS and Time shift sampler on conditional molecular generation.

TS-DDPM TACS (ours)

Method MAE MS (%) MAE MS (%)

Cv 1.066 74.89 0.659 83.6
µ 1.166 73.55 0.387 83.3
α 2.777 75.20 1.44 86.0
∆(ϵ) 665.3 82.72 332 88.8
HOMO 371.8 72.74 168 87.3
LUMO 607.6 74.98 289 82.7
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F Visualization of generated molecules

Conditional generation with target quantum chemical property

Figure 4: Conditional generation of target property α on QM9. Visualization of molecules generated
by TCS (top), online guidance (middle), and TACS (bottom).

Conditional generation with target structure

Figure 5: Visualization of how generated molecules align with target structures.

Unconditional generation on Geom-Drug

Figure 6: Selection of samples generated by the denoising process of EDM and TCS in Geom-Drug.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the experiments with QM9 datset, we demonstrate our algorithm has superior
performance compared to other baselines.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We put limitations of our work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Appendix B, we provide experimental details for all of our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We provide experimental details and will provide code after it is polished.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 5 and Appendix B, we provide details of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We verified our algorithm with enough number of iterations and with different
types of chemical properties.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computer resources used in the Appendix A and relevant
references for the model checkpoints in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow Code of Ethics during the research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a Societal Impact statement in Section 7. We note that de novo
molecular generation can be of great importance for the discovery of new drug compounds as
well as new materials. Naturally, there is a small risk of potentially malicious or unintended
use (i.e. generating harmful compounds).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Molecular generation has less risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit the original owners of assets used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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