Under review as a conference paper at ICLR 2024

REPLAN: ROBOTIC REPLANNING WITH PERCEPTION
AND LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Advancements in large language models (LLMs) have demonstrated their poten-
tial in facilitating high-level reasoning, logical reasoning and robotics planning.
Recently, LLMs have also been able to generate reward functions for low-level
robot actions, effectively bridging the interface between high-level planning and
low-level robot control. However, the challenge remains that even with syntac-
tically correct plans, robots can still fail to achieve their intended goals. This
failure can be attributed to imperfect plans proposed by LLMs or to unforeseeable
environmental circumstances that hinder the execution of planned subtasks due
to erroneous assumptions about the state of objects. One way to prevent these
challenges is to rely on human-provided step-by-step instructions, limiting the
autonomy of robotic systems. Vision Language Models (VLMs) have shown re-
markable success in tasks such as visual question answering and image caption-
ing. Leveraging the capabilities of VLMs, we present a novel framework called
Robotic Replanning with Perception and Language Models that enables real-time
replanning capabilities for long-horizon tasks. This framework utilizes the phys-
ical grounding provided by a VLM’s understanding of the world’s state to adapt
robot actions when the initial plan fails to achieve the desired goal. We test our
approach within four environments containing seven long-horizion tasks. We find
that REPLAN enables a robot to successfully adapt to unforeseen obstacles while
accomplishing open-ended, long-horizon goals, where baseline models cannot.
Find more information at https://sites.google.com/view/replan-iclr/home

1 INTRODUCTION

Designing embodied agents to execute multi-stage, long-horizon tasks is challenging. Firstly,
agents need manipulation skills for physical engagement with their environment. They also need
to be adept at perceiving their surrounding environment and reasoning on cause-and-effect rela-
tionships of their actions on the environment. Moreover, these agents should be able to plan and
carry out a series of actions that are in line with the main goals they are tasked to accomplish (Wu
et al., [2023)), with minimal human intervention.

Methods based on rule-driven frameworks like Task and Motion Planning (TAMP) (Garrett et al.,
2021)) and learning approaches, such as Hierarchical Reinforcement Learning (HRL) and Imitation
Learning (IL), have advanced the field of long-horizon planning. Yet, these methods often require
extensive domain knowledge, intricate reward engineering, and time-consuming dataset creation
efforts (Hussein et al.| [2017; |[Brohan et al., 2022)). In contrast, the rise of Large Language Models
(LLMs) has shown considerable promise in robot planning (Driess et al.,|2023;|Brohan et al.,[2023a)).
However, applying LLMs in this area is complex, mainly because LLMs are used for generating
open-ended text while robots require constrained code (Singh et al., 2022} [Wang et al.,[2023a).

Long-horizon, multi-stage task planning requires reasoning over extended periods, which is a chal-
lenge for LLMs Wang et al.| (2023c). In the context of LLMs, tackling large-scale problems often
leads to issues like hallucination or failing to consider important details, rendering their plans inef-
fective or error-ridden (Bang et al.| 2023; Wang et al.| 2023b). To address this, prompting schemes
like ReAct and Chain-of-Thoughts distil complex problems into intermediate reasoning steps with
the aid of exemplars, facilitating effective reasoning (Yao et al.| [2023; [Wei et al., 2022)). However,
these efforts are still constrained by the number of stages the robot can handle. Another strategy to
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enhance LLM outputs involves verifying their results, employing techniques such as syntax check-
ing (Skreta et al., |2023; [Wang et al., |2023a) and semantics (Rana et al., [2023)) verification, as well
as simulating task execution (Liu et al.| |2022)) to provide success/failure feedback to the LLM. In
those works, verification enables the ability to plan over multiple steps in complex domains.

Working with multi-step tasks in robotics also involves dealing with uncertainties and changes in
the environment. Effectively handling these tasks requires combining task instructions with sensory
data, which helps the robot adapt to the changing surroundings. Recent research has shown that
combining textual and visual information in RL or IL can improve task performance (Ha et al.,2023;
Brohan et al.|[2022;/2023b). It allows for ongoing updates based on what the robot observes. Vision-
Language Models (VLMs) have been shown to guide robots in interpreting their environment more
accurately and generalizing to unseen scenarios. By integrating visual cues with linguistic context,
VLMs enable robots to better interpret their surrounding environment (Brohan et al., 2023al).

Furthermore, for achieving generalization and scaling in the deployment of robots across diverse en-
vironments, the acquisition of rich low-level skills is essential. Many works have utilized pre-trained
and encoded skills, supplying a skill list to LLMs for skill selection (Lin et al.,2023)). Recently, there
has been a shift towards directly setting up rewards generated by LLMs (Yu et al., |2023; [Kwon
et al.| [2023; Xie et al.| [2023). This approach, employed in both RL for policy learning (Kwon et al.,
2023} Xie et al.|[2023)) and Model Predictive Control (MPC) (Garcia et al.,[1989; Rawlings, [2000) to
enhance data efficiency (Miyaoka et al., [2023} |Yu et al., [2023)), enabling users to more easily guide
robot behavior by creating and combining rewards.

This paper aims to address the challenge of multi-stage long-horizon tasks, inheriting key ideas from
recent progress in foundation models. We introduce REPLAN, an innovative zero-shot approach that
harnesses LLMs at multiple levels by iterative re-prompting to serve as a reward generator for robot
MPC. Differently from (Yu et al.,|2023)), our approach is augmented by high-level replanning based
on contextual feedback from VLMs and motor control observations. Our approach can solve open-
ended problems, such as searching tasks. REPLAN is hierarchical, composed of two planners, one
high-level and one low-level. The output of each level is passed through a verifier. Our system
operates by taking a natural language goal from the user, which is used to generate high-level plans,
followed by the creation of low-level plans to define reward functions for the controller. By utilizing
inputs from robot motor signals and raw visual scene feedback, a Perceiver model offers online
feedback to the LLM Planner, facilitating plan progress monitoring and replanning.

Our main contribution in handling long-term, multi-stage tasks involves four key aspects: using per-
ceiver models for high-level replanning, creating hierarchical plans with language models, verifying
outputs from these language models, and robot behavior through reward generation. By combining
these elements, our approach can create effective multi-step plans with significantly less need for
human involvement. To test these abilities, we develop new multi-stage planning domains. Across
seven long-horizon tasks requiring up to 11 steps on average, our method was able to succeed almost
4x as often as the current leading method.

2 RELATED WORK

Long-horizon Robot Planning. Addressing long-horizon planning in robotics has been a persistent
challenge. Rule-based methods (Mehr et al.| 2020} Baier et al.,|2009)), such as Planning Domain Def-
inition Language (PDDL) (Aeronautiques et al.,|1998)), attempted to solve task and motion planning
sequentially, however, the planned task may not feasible when the domain knowledge is incomplete.
The task and motion planning (TAMP) approach (Garrett et al., 2021)), addresses this by simulta-
neously determining symbolic actions and low-level motions. For example, PDDLStream (Garrett
et al.,|2020), introduces streams to streamline continuous robot planning into a finite PDDL problem
while ensuring action feasibility during planning. While these methods excel in verifying task and
motion plans during planning, their generalization to new environments is constrained, particularly
when tackling intricate tasks, and they necessitate substantial domain description engineering. In ad-
dressing multi-stage planning challenges, many works focus on learning task plans from input task
specifications, leveraging reinforcement learning (RL) and imitation learning (IL) techniques. For
example, Behavior-1K (Li et al.l 2023) employs RL to acquire semantics and physical manipulation
skills, often benefiting from classical motion planners and simplifying assumptions. However, it’s
important to note that these learning-based techniques demand significant domain expertise for re-
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ward engineering and rely on large datasets for task learning (Heo et al.,|2023). While they adeptly
react to environmental uncertainties by iteratively updating policies based on observations, their
zero-shot generalization across multi-stage tasks remains a persistent challenge.

Robot Control with Physically Grounded Language Models. Recent advancements in LLMs
have resulted in their adoption in robot planning, leveraging their natural language capabilities and
common-sense reasoning for generating robot task and motion plans(Wang et al., |2023b; [Xi et al.,
2023)). Notably, LLMs have been applied to planning multi-stage tasks (Singh et al.| 2022} Driess
et al.l 2023), by utilizing LLMs to improve sample efficiency in reinforcement learning. The Prog-
Prompt and Code-As-Policies approaches use code-writing LLMs to generate code for robot poli-
cies (Singh et al., 2022} [Liang et al., [2022). Language models with a verifier have been used for
generating long-horizon tasks in an iterative prompting technique with lower error rates (Skreta
et al [2023), however there is no guarantee that the output task plan can be executed. SayPlan
used LLMs to reason over scene graphs and generate plans across large environments, using iter-
ative replanning to ensure scene graph constraints were not violated (Rana et al.| [2023). Toward
grounding the language belief with visual and motor control feedback, (Ha et al.,|2023) employed
language guidance for skill learning, using LLMs alongside sampling-based planning and visuomo-
tor policy learning. (Brohan et al., [2023a) proposed a vision-language-action model, co-training it
on internet-scale data with other image-related tasks to enhance generalization. Additionally, (Stone
et al.| 2023)) interfaced robot policies with pre-trained vision-language models, enabling interaction
with unseen object categories based on language descriptions and localization data. SayCan uses
affordances based on surrounding observations to constrain LLM plans to be more feasible given
the environment Brohan et al.| (2023b). Inner Monologue extends this line of work by incorporat-
ing feedback from other sensors while generating plans, including passive scene descriptions, active
human feedback to guide the robot, and success detection, enabling it to retry low-level policies
if actions failed [Huang et al.| (2022b) and therefore execute longer-horizon tasks than SayCan. It
has observed in other works that binary success indicators are usually not enough to long-horizon
correct plans Wang et al| (2023c); [Skreta et al| (2023), although the tasks in Inner Monologue fo-
cused on retrying low-level policies instead of overcoming environment obstacles. Finally, LLMs
have been used to enable open-ended world exploration of embodied agents. In Voyager, an agent
is encouraged to explore the world of Minecraft and build a skill library Wang et al.| (2023a)). Voy-
ager demonstrates that receiving environment feedback from a chat bot as to why tasks cannot be
completed improves the likelihood of task completion.

Language to Reward Shaping. In contrast to approaches that map natural task descriptions to
robot actions and subsequently to rewards, an alternative approach seeks to directly infer rewards
from natural language inputs, addressing the challenge of reward engineering (Lin et al., [2022).
This language-driven reward-shaping approach has demonstrated utility in various domains, includ-
ing negotiation (Kwon et al., 2023) and gaming (Goyal et al., 2019), facilitating desired behavior
learning through RL. (Mahmoudieh et al., 2022)) introduce a visuo-language model that generates
robot motion policy reward on goal text and raw pixel observations, in a manner similar to (Rad-
ford et al., [2021]), enabling zero-shot prompting for unseen scenarios. (Yu et al., [2023)) employs an
iterative prompting method using a LLM to link user task specifications and robot motion through
reward functions. While excelling in motion generation with minimal data, their approach falls short
in handling long-horizon multistage tasks and lacks real-time environment feedback, necessitating
user intervention for adaptation. (Xie et al., [2023) extended the previous work for robot reward
policy refinement by requiring substantial human involvement and Pythonic observation from the
environment. Both of these methods struggle with open-ended problems and multi-stage tasks. To
mitigate these limitations, our work autonomously performs long-horizon tasks and adapts to exe-
cution outcomes by leveraging motor control and raw visual feedback.

3 REPLAN: MODEL STRUCTURE AND DETAILS

We present an overview of our method in Figure[I] The input to our system is a goal described in
natural language. The goal can be specific (e.g. place kettle on stove) or open-ended (e.g. search
for the banana). REPLAN has five modules, which are described below. All prompts used for the
modules can be found in Appendix B}

1. a High-Level LLM Planner used for planning, replanning, and reasoning
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Figure 1: REPLAN overview. It con-
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a VLM Perceiver used for physically-grounded reasoning
a Low-Level LLM Planner used for converting high-level tasks to low-level rewards

a Motion Controller to instruct the robot on low-level actions

A

a LLM Verifier to check that the Planner/Perceiver is correct and fixes them if applicable

3.1 HIGH-LEVEL LLM PLANNER

Inspired the ability of LLMs to generate actionable steps from high-level tasks (Huang et al},[2022a)),
we employ a High-Level Planner to take in as input a user-specified task and return a list of subtasks
on how a robot should accomplish the task. We use a prompting scheme similar to ReAct
(2023) for generating subtasks. The benefit of using a High-Level Planner is that there are
no restrictions on the abstraction level of the user input. The user input can be a specific task (e.g.
“Place my keys on the counter”), or an open-ended task where the procedure requires exploration
(e.g. “Find my keys”). This is because the Planner can propose a procedure, even if it doesn’t know
the exact answer a priori. If the robot completes the sequence of actions proposed by the Planner and
the overall goal is still not accomplished, the High-Level Planner can propose a new procedure. The
High-Level Planner can also utilize the past recommended procedures to prevent the redundancy of
having the agent perform the same tasks repetitively (Skreta et al.,[2023)). The High-Level Planner is
also used to incorporate feedback from perception models when generating high-level plans. This is
important because the Planner should not generate plans that are not aligned with the physical state
of the world, or should be able to replan if there are any obstacles.

3.2 VLM PERCEIVER

While LLMs have demonstrated powerful reasoning skills over text, they lack grounding in the phys-
ical world [2022). This means that while LLMs can generate plans that sound reasonable,
they may fail to account for any obstacles or uncertainties that are present because they cannot per-
ceive the environment. At the same time, while VLMs offer physical grounding to text queries, their
language generation capabilities are not as strong as those of LLMs. Considering this, we use the
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High-Level Planner to decide what it wants to query from the Perceiver, and then the Planner incor-
porates feedback from the Perceiver when it needs to know about the object states or replan because
the robot failed to do an action. The High-Level Planner decides on specific, simple questions to ask
the Perceiver (see Figures [B.T14}{B.T6) and samples multiple answers before consolidating them into
a summary observation that is consistent with the state of the environment (see Figures [B.9}B.12).

3.3 Low-LEVEL LLM PLANNER

Recently, it has been demonstrated that LLMs are capable of producing low-level plans that enable
robot motion control(Yu et al., 2023} Xie et al.l [2023). This is exciting because it bridges the gap
between high-level, human-specified goals and robot actions in a zero-shot manner (without the
need for extensive training datasets). However, while previous works are able to generate low-
level robot actions for a concrete task (e.g. “Open the drawer”), we find that they fail when asked
to generate plans for long-horizon, open-ended tasks. Thus, we utilize the High-Level Planner to
generate concrete subtasks from a high-level goal, which is then passed to the Low-Level Planner
to generate the corresponding low-level actions. Our Low-Level Planner uses the same Reward
Translator as in (Yu et al.,|2023)) which we have found works well. The Low-Level Planner works in
two stages. First, it generates a motion plan from a user-specified input. The motion plan is a natural
language description of the actions a robot should do to achieve the goal. Then, the motion plan
is then translated to reward functions, which serve as a representation of the desired robot motion.
These reward functions are then passed to the Motion Controller.

3.4 MoTION CONTROLLER

The Motion Controller receives reward functions and instructs the robot on what actions to do in
order to satisfy those functions. For motion control, we use MuJoCo MPC (MJPC), an open-source
real-time predictive controller, implemented on MuJoCo physics (Howell et al., [2022)). Given the
initial condition z(, the control problem is defined as:

T

minimize Zc(xt,ut), subjectto  xp1 = f(@, up),
Z1:T,U1:T —0

where x; and wu; are the state and control signals at time step ¢, and the mapping f is the transition
dynamics. The goal is to minimize the cost function ¢(.) along the trajectory from the current
time step to the horizon 7. We define the M output rewards provided by the low-level planner

M
as the negative of the cost function, i.e., c(x¢, up) = — Y. w; ri(xs, us, ¢;), where ¢; and w; are
i=1
the 7’th reward parameters and weight. To solve the optimization problem, the predictive sampling
implementation is used in our work (Howell et al., [2022).

A subtask can have more than one reward function, the Low-Level Planner also reasons about which
reward function actually determines the success state of the action. For example, for the subtask:
Move the kettle away from the microwave, the Planner generates:

minimize_12_distance_reward ("palm", "kettle")
maximize_12_distance_reward("kettle", "microwave_handle")

The Planner is able to reason that once the function maximize_12_distance_reward
("kettle", "microwave_handle") has been satisfied, the kettle has been moved from the
microwave. Thus, the Planner correctly labels this as the primary reward function.

3.5 LLM VERIFIER

LLM outputs can contain errors and are sometimes nondeterministic. One way to increase con-
sistency and reliable is to verify the outputs. We do that by taking plans produced by both the
High-Level and Low-Level Planners and asking the Verifier to verify that every step proposed is
necessary to achieve the goal. For the Low-Level Planner, the Verifier is used to determine whether
each step in the generated motion plan is useful for completing the subtask. This eliminates any
unrelated actions that the Low-Level Planner. Motion control is a hard problem, eliminating any
unnecessary actions increases the chances of the subtask being completed.
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VLMs are prone to hallucination (Dai et all) [2023), and so they are used in a very constrained
manner, and so the Verifier is also used to correct any observations made by the Perceiver based
on objects that it knows exist in the environment. For example, VLMs can identify an object using
different synonyms, which is easy for humans to understand. However robots require instructions
that adhere to strict syntax rules. Thus, the Verifier is useful in making sure that plans generated
using perceived objects are in line with the object names that the robot can interact with.

Algorithm [I] describes our
model. A user inputs a goal,
which is fed into the High-
Level Planner along with the
scene state from the Perceiver.

Algorithm 1 REPLAN

Input: user goal prompt g, scene image observation 0;yy, g

Output: motion controller rewards and their weights » = {r1,.
cess/failure of planner done

: memory = (), done = False

ey TM W1,y .., W}, SUC-

1
2: Sscene = PERCEIVERSCAN(Oimg) > scene state, Prompt|B.1] The Planner generates sub-
3: while ¢ < num_retries do . :
4 subtasks = HIGHLEVELPLANNER(g, Sscene, Memory) > Pmmpt tasks, which are then either
5 for all subtask, action_type € subtasks do fielded to the Low-Lever Plan-
6: if action_type = MPC then ner to generate MPC reward
7: r = LOWLEVELPLANNER (subtask) > Prompts[B.4B-8] functions or the Perceiver to
8: €,0img = MOTIONCONTROLLER(robot, ) > motor control error get information about the state
9: if e # () then . . ’
10: cause = PERCEIVERDIAGNOSE(0;mg, €, subtask) > Prompts[B.9|B.12] If MPC is 'requ'lred, the success
11: if cause # () then of the action is returned from
12: Subtasksmpl,an = HIGHLEVELPLANNER(SubtaSkﬁr the Motion Controller. If an er-
Sscene, cause) > PromptB.13] 11 i< returned, the Perceiver is
13: subtasks = subtasksrepian ked if th £
14: RESTART(subtasks, line:6) asked 1 't ere was a cause. I
15: else if action_type = VLM then a cause is returned, the Planner
16: ¢ = HIGHLEVELPLANNER (subtask) > Prompts[B.14]-[B-15] is asked to replan to overcome
17: Ssceme < Sscene U PERCEIVERACT(0img, q, subtask) > Prompt|B.16|  the obstacles. If the cause is
18: . RESTART(sgbtask, line:6) > Prompt|[B.17| unknown or the robot does not
e if‘zinoile_ﬂf;sl( OMPLETION(g) achieve the goal after having
21 break done the subtasks, the Planner
22: memory < memory U subtasks > Prompt generates a new procedure.

4 EXPERIMENTS

4.1 ENVIRONMENTS AND TASKS

In order to assess the long-term planning, as well as the logical and low-level planning capabilities
of our system, we devised four distinct environments with seven total tasks for testing. The readers
can refer to Figure or our website for visualizations.

4.1.1 WOODEN CABINET SCENE

A room where there is a yellow cube placed on the floor beside a wooden cabinet. There is a red
bar holding the handles of the wooden cabinet closed. The doors of the cabinet cannot be opened
without removing the bar. We implemented three tasks in this scene:

Task 1: Place the yellow cube in the wooden cabinet (easy mode). The robot must pick up the
yellow cube and place it in the cabinet, which is open. This is a simple 1-step task that evaluates the
Low-Level Planner for single motion planning.

Task 2: Place the yellow cube in the wooden cabinet (hard mode). This task is the same as
the previous task, but now the wooden cabinet doors are closed. This task requires two steps: 1)
opening the door and 2) placing the cube inside the cabinet. The High-Level Planner is assessed to
plan a sequence of actions and pass them to the Low-Level Planner for motion generation.

Task 3: Place the yellow cube inside the wooden cabinet (expert mode). The challenge with
this task is that the robot must identify that it cannot open the wooden cabinet because there is a
bar across the handles of the door. After removing the bar, the robot can open the cabinet door and
finish the task. This task is challenging because it requires vision to identify that the door cannot be
opened, followed by replanning to remove the item blocking the door.
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4.1.2 KITCHEN ENVIRONMENT SCENE

A kitchen that contains a cabinet with two doors, a microwave, a kettle, and a green apple.

Task 4: Find the green apple. A green apple was hidden in the microwave is not visible to the
robot at the start of the scene. The robot must search for the apple in the kitchen. There is an
additional challenge where the kettle is blocking the microwave door from being opened, and so to
open the door, the robot must first remove the kettle. Same as Task 3, Task 4 also requires both
vision and replanning to solve the task, but it has an additional challenge because the goal requires
open-ended exploration (it is unclear where the apple is), which requires replanning at a high level.

4.1.3 WOODEN CABINET AND LEVER SCENE

A room containing a wooden cabinet, a blue block, and a lever that controls whether the cabinet
door is locked or unlocked.

Task 5: Remove the blue cube from the cabinet. Just as with tasks 1-3, this task requires the
robot to open a cabinet. There is no physical obstruction preventing the cabinet from being opened;
however, the cabinet is locked. The cabinet becomes unlocked once a lever close to the cabinet is
pulled. Thus, after (unsuccessfully) trying to open the cabinet door, the robot must reason that it
should pull the lever first and then open the door.

4.1.4 COLOURED CUBES SCENE

A room containing a small red crate and two cubes (one is yellow and the other is red).

Task 6: Place the cube with the same colour as the crate on the crate. In this task, the robot
has to identify the cube with the same colour as the crate and place it on the crate.

Task 7: Blocking cube. The robot is given the colour of a cube it must put on the crate. However,
there is already a cube on the crate with a different colour and the crate can only hold one cube at a
time. The robot must remove the cube that is already on the crate before placing the target one.

These environments were implemented in MuJoCo (Todorov et al., 2012). We used furniture,simﬂ
for the assets. We used the MuJoCo MPC (Howell et al., 2022) to generate the motion control.

4.2 EXPERIMENT SETUP

We evaluate our framework using a dexterous robot manipulator simulated using MuJoCo MPC
(MJPC) (Howell et al.} 2022). Asin (Yu et al.,[2023), we use a 7 DoF Franka Emika arm.

For the LLM modules in REPLAN, we use OpenAl GPT gpt—4ﬂ For the VLM Perceiver, we
used Qwen-VL-Chat-7B (Bai et al} 2023) (except for Task 7, where we used GPT-4V due to
hardware constraints). We show the performance of state-of-the-art VLMs on Perceiver tasks in
Appendix We found that from the open-source models we tested, Qwen has the best object
reasoning skills; however, its object recognition capabilities improve when we first segment the
scene using a segmentation model (we use Segment Anything [Kirillov et al.[(2023)). GPT-4V had
the best performance overall across object recognition and object reasoning, but there is a strict rate
limit on its APIL.

4.3 BASELINES AND ABLATIONS

We compare our method to the Language to Rewards (Yu et al.l [2023)) framework, a one-shot, in-
context learning agent. Language to Rewards uses a Reward Translator to translate a high-level goal
(such as“open the drawer”) to low-level reward functions that are used by a Motion Controller to
instruct a robot on what to do. While Language to Rewards does not utilize a VLM to perceive the
scene, we give it access to the same objects as our model identifies at the start of the scene. We also

"https://github.com/vikashplus/furniture_sim/
*https://openai.com/research/gpt-4
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Table 1: Number of times that the models completed Tasks 1-7 out of 10 runs. Average completion rates across
7 tasks are listed in the last column.

Model Task 1 Task2 Task3 Task4 Task5 Task6 Task7 Average
REPLAN [full] 100% 100% 60% 80% 100% 90% 90%  88.6%
REPLAN [no Verifier] 80% 80% 20% 60% 100% 100% 80%  74.3%
REPLAN [no Perceiver] 90% 90% 30% 20% 50% @ 20% 0%  42.9%
REPLAN [no Replan] 80%  T0% 0% 0% 0% 80% 10% 34.3%

Language to Rewards (Yu et al.|2023) 90% 20% 0% 0% 0%  50% 10%  24.3%

show sample plans using PDDL and PDDLStream in Appendix |E| for Tasks 1-3 and GPT-4V for
Tasks 3 and 6 in Appendix

Finally, to demonstrate the importance of all the modules in our pipeline, we do an ablation study
on how well the robot can perform each task without each module. We systematically remove the
following modules: VLM Perceiver, LLM Verifier, and replanning of High-Level Planner.

4.4 RESULTS

We report the success rates of all models on their ability to complete Tasks 1-7 in Table |[I} We
report the percentage of successful runs (ten runs were done for each task). The number of actions
performed by the robot in each task is shown in Figure[C.I] On average, most tasks require 7 to 11
steps, with some runs using up to 17 (all without human intervention). We point out that across the
seven tasks with ten trials, we run a total of 401 MPC actions and 101 VLM actions, exceeding the
evaluations in previous methods such as Language to Rewards, which has 170 MPC actions.

Overall, REPLAN achieves a 3.6 x improvement over Language to Rewards. From the seven tasks,
Language to Rewards only shows non-negligible success rates in Task 1, which is a single-motion
task, and Task 6, where the algorithm can guess the correct cube to move, resulting in a 50% success
rate. Meanwhile, REPLAN achieves at least 60% completion rate in all tested tasks, with a close
to 90% average completion rate. REPLAN performs the worst in Task 3, which we conjecture to
be a result of both the difficulty of removing the bar from the handles and that in certain situations
the target block can get stuck in irrecoverable positions. We include some additional error cases in
Appendix [C.3] Furthermore, we find that PDDL and naive GPT-4V are unable to solve these tasks
out-of-the-box. PDDL requires human-provided ground truth information (for example, that the
door is blocked) |E} PDDLStream is able to solve the problem eventually, but in general, it requires
much longer to solve the problem. When we prompt GPT-4V naively to create a plan for solving
some tasks, it is unable to naturally identify obstacles or object states in the scene [D]| This indicates
that constrained prompting is required for VLMs to provide useful feedback.

To evaluate the significance of the Verifier, Perceiver, and Replan modules, we notice that REPLAN
achieves +14.3%, +45.7%, and +54.3% improvement compared with removing the three modules
respectively. We also notice that removing each of the modules impact the performance more in
more complex tasks.

Noticeably, even in simpler tasks such as Task 1 and 2, REPLAN still demonstrates superior per-
formances compared to other tested variants even though replanning is not necessary in the ideal
scenario. This shows REPLAN’s ability to act as a safe-net mechanism in case of unexpected errors
through using a Verifier, improving the overall consistency.

We show a roll-out of the robot completing Tasks 3 and 4 in Figure[2] For Task 4, the High-Level
Planner first instructs the robot to look inside the cabinet. The Perceiver informs the Planner that
the apple is not in the cabinet. The Planner then instructs the robots to look inside the microwave.
However, the motion control fails. The Perceiver is again called and informs the Planner that there is
a kettle in front of the microwave. The Planner replans the task, instructing the robot to first move the
kettle out of the way. The robot then resumes with the remaining subtasks. It opens the microwave
and the Perceiver informs the Planner that the green apple is there and the task is complete.
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[start plan]

(a) >Pick up the yellow_cube
>0Open the wooden_cabinet
>Place the yellow_cube inside
the wooden_cabinet

[start plan]
>Move the red_block out of the way
>0Open the wooden_cabinet
>Put the yellow_cube inside the wooden_cabinet

[end plan] [end plan]
>Pick up the cube || >Open the cabinet ELTD (e e >Open the cabinet >Put yellow cube in
of the way
min_12_dist("paln", | | min_12_dist("palm", || min_12_dist("palm”, min_12_dist("palm", min_12_dist("paln”,
"yellow_cube") "mv") "block_r_side") "cabinet") "yellow_cube")
joint_fraction("mv, | [ max_12_dist( joint_fraction("cabinet”, min_12_dist(
1.0) "block_r_side", 1.0) "cabinet",
"cabinet_handle" "yellow_cube")
FAILED ) -
VLM Perceiver:
Block in the way

[start plan]
start plan start plan S
(b) [ >0penpthe]cabinet EOpen t:e m]v >Move the kettle out of the way of the microwave
>Look inside the cabinet >Look in m.v ;g::: ?::.z:c:::a;?"o 0
>Grab the green_apple >Grab grn_apl ) :helgreen ap:'l.e wavi
end plan end plan =
e plan] t plan] [end plan]
>0Open the cabinet | | >Look in cabinet >Open the m.v. || >Move the kettle >Open the m.v. ||>Look in the m.v.||>Grab the grn_apple
FAILED
min_12_dist("palm”, | | VLM Perceiver: min_12_dist("paln", | | min_12_dist("palm”, | min_12_dist("palm”, || vy perceiver: min_12_dist("palm",
“cabinet") "mv") "kettle") "my") "green_apple”)
Foanth: e etion( Green apple is joint_fraction( max_12_dist( join_fraction( Green_apple
"cabinet”, 1.0) not there! "mv", 1.0) "kettle", "mv", 1.0) found!
ATLED "microwave")
VLM Perceiver:
Kettle in the way

Figure 2: Roll-out of robot solving (a) Task 3 and (b) Task 4. The high-level plan is shown in the top row. The
second row shows each subtask and the corresponding reward functions generated by the Low-Level Planner,
as well as Perceiver feedback. If the subtask fails, its box is colored in red. If the plan is completed and the
goal is achieved, its box is green.

5 DISCUSSION, LIMITATIONS, AND CONCLUSIONS

One limitation of our method is its reliance on VLM’s understanding and interpretation of spatial
states. If the VLM cannot accurately recognize an object or interpret the reason why a task is incom-
plete, it may lead to the inaccurate processing of the robotic task. However, we find that by using an
LLM to probe specific questions, sampling multiple answers, and generating a summary consistent
with the LLM’s knowledge of the scene, REPLAN is able to utilize the VLM to accurately reason
about the scene state. Moreover, there sometimes exists a communication disconnect between LLM
and MPC. Currently, the LLM receives task failure feedback as a floating point number, without the
ability to discern the specific reasons behind the failure (e.g. the cube was pushed to irretrievable
places). Consequently, a failure attributed to the controller could be incorrectly interpreted as the
task being undoable. This misinterpretation can lead to unnecessary task abandonment or repeated
attempts, resulting in a waste of time and resources. However, we also find that we were able to
make MPC reward generation more robust by using a Verifier to eliminate any reward functions that
were not essential to completing the task. In essence, we found that using a Verifier at multiple
stages in our workflow was essential in improving the success rate of long-horizon task exection.

In summary, our paper introduces REPLAN, a robust solution for multi-stage planning, utilizing
the power of LLMs for plan generation and VLMs for insightful feedback. Our multi-level plan-
ning approach, coupled with step-wise verification and replanning demonstrates promising results
in addressing multi-stage tasks.
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Figure A.1: Initial and final scenes of the tested environments.
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Figure A.1: Initial and final scenes of the tested environments.

The instructions we use for each task are listed below:

Environment

Instruction

Cabinet (Task 1-3)

Kitchen (Task 4)
Lever (Task 5)
Color (Task 6)

Block (Task 7)
Sensor (Task 8)

move the yellow_cube to target_position inside
the wooden_cabinet

find the green_cube

find the blue_cube

place the cube with the same color as the crate
on the crate

place the red cube on the crate

open the stone_cabinet. The weight sensor lock
can be unlocked by putting the red.cube on it.

B PROMPTS

Below we show all the prompts we use for the Planners, Perceiver, and Verifier. We show the
prompts as the robot would receive them while excuting a task. The prompts are coloured according

to the module it comes from — LLM Planners: blue, VLM Perceiver: pink, Verifier: gray.

Do you see a(n) {0}?

Figure B.1: VLM prompt for perceiving objects in the environment. {0} is an object that the robot knows how
to interact with. The VLM is prompted with the list of objects the robot knows how to interact with. If the

VLM replies with "yes”, that object is added to a list of observed objects.
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Figure B.2: LLM prompt for generating high-level task plans. {0} is the list of objects the robot can see (for
example: [cabinet, blue kettle, microwave], {1} is the overall task goal (for example: find the green apple), {2}
are previous plans that were attempted but failed (see [B-T8).

Figure B.3: LLM prompt to determine whether the action that the Planner asked the robot to do involves vision
or not. If no, then the Planner is called to generate MPC reward functions (see[B-4}[B-13). If yes, the Perceiver
is called (see . Examples for {0}: “Compare the color of the left cube with the crate”, “Open the
microwave”.
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We have a stationary robot arm and we want you to help plan how it should move to
perform tasks using the following template:

[start of description]

The manipulator’s palm should move close to {{CHOICE: {O0}}}.{1}{2}

[end of description]

Rules:

0. You cannot use one line twice!!!!

1. If you see phrases like [NUM: default_value], replace the entire phrase with a
numerical value.

2. If you see phrases like {{CHOICE: choicel, choice2, ...}}, it means you should
replace the entire phrase with one of the choices listed.

3. If you see [optional], it means you only add that line if necessary for the task,
otherwise remove that line.

4. The environment contains {0}. Do not invent new objects not listed here.

5. I will tell you a behavior/skill/task that I want the manipulator to perform and you
will provide the full plan, even if you may only need to change a few lines. Always
start the description with [start of description] and end it with [end of description].
6. You can assume that the robot is capable of doing anything, even for the most
challenging task.

7. Your plan should be as close to the provided template as possible. Do not include
additional details.

8. Your plan should be as concise as possible. Do not include or make up unncessary
tasks.

9. Each object can only be close to or far from one thing.

This is the entire procedure:

{4}

These are the observations we have made so far:

{5}

Create a plan for the following action:
> {6}

Figure B.4: LLM prompt to determine the low-level motion plan for the robot. {0} is the list of objects the
robot can interact with. {1} and {2} are modifiers, depending on what type of motion is involved. The Planner
is asked to determine whether motion is involved (see[B.3] If yes, then {1} becomes: object 1={{CHOICE:
{0}}} should be {{CHOICE: close to, far from}} object2={{CHOICE: {0}}}.

If no, then {1} becomes [optional] objectl={{CHOICE: {0}}} should be close to
object2={{CHOICE: {0}}}. [optional] objectl={{CHOICE: {0}}} should be far
from object2={{CHOICE: {0}}}. The modifier {2} is added if there are any joints in the scene that
are involved with objects the robot can interact with: [optional] joint={{CHOICE: {3}}} needs
to be {{CHOICE: open, closed}}. (where {3} is the list of joints) (adapted from (Yu et al.,[2023))
{4} is the entire plan the robot was given to execute the goal. {5} includes any observations made by the
Perceiver (see [B.I6) using the following format: Q: <question to Perceiver>, A: <answer
from Perceiver>. {6} is the action the motion plan should be made for.

A robot arm has to do this action:

> {0}
Does this action necessarily involve relocating an object to a different location that
does not involve the robot arm? Answer with yes or no.

Figure B.5: LLM prompt to determine if relocation is needed in order to determine the motion plan modifier

(see
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Figure B.6: LLM prompt to generate MPC reward functions. {0} is the list of objects the robot can interact
with, to which we also append the word “palm” to represent the robot hand. {1} is the list of objeit'oints. {2}
B4

is the high-level action the robot needs to perform and {3} is the motion plan generated from

from (Y tal} 2023).

Adapted
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This is a motion plan generated for a robot:

{0}

This is a reward function generated to complete one step in the motion plan:

{1}

The function minimize_12_distance_reward() refers to bringing two objects close together

The function maximize_12_distance_reward() refers to moving two objects further apart.
The function set_joint_fraction_reward() refers to opening or closing an object (0 for
closed, 1 for open)

The function set_obj_z_position_reward() specifies the target height of an object.

The function set_obj_orientation_reward() specifies the target rotation of an object.

Which step in the motion plan is the function referring to? Return the step using <step
></step> tags. If it does not refer to any of them, return <step>-1</step>

Figure B.7: The Verifier checks that every reward function generated corresponds to a step in the motion plan.
If it does not, the function is removed. {0} is the motion plan generated from Figure[B.4Jand {1} is one of the

generated reward functions (they are looped over individually).
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A stationary robot arm was asked to do the following motion plan to complete the task
{0}

{1}

After which step in the motion plan will the task ’ {0}’ be satisfied? First, explain
your thought then answer the step number enclosed with the tag <step> and </step>.
Opening a joint can also mean activating it depending on the context. You must select
one. If you think none of the steps does, select the closest one.

Figure B.8: The verifier selects which step in the motion plan is considered to be the most important. The
reward function generated for that step in the motion plan becomes labelled as the primary reward function.
{0} is the action the robot is currently doing and {1} is the motion plan.

A robot is in a simulation environment where it can interact with any object like in the
real world. The robot would like to {0} but it cannot. Is there something in this scene
preventing that, other than the robot? Assume the robot can interact with anything.

These are the names of the objects in our scene: {1}

In a simulation, a robot wants to {0} but can’t. Is anything else, besides the robot,

blocking it? Check the objects in the scene: {1}.

Robot in a simulation wants to {0}, can’t. Something else stopping it? Objects in scene:
{1}.

A robot can engage with any item. It wants to {0} but can’t. Is an object in this scene,
apart from the robot, hindering it? Objects present: {1}

I would like to {0} but I cannot. Is there something in this scene preventing that,

other than the robot? These are the objects in the scene: {1}

I would like to {0} but I am unable to. Is there something in this scene preventing me

from doing that? Ignore the robot. These are the names of the objects: {1}

Figure B.9: If the robot is unable to satisfy the primary reward function, the Perceiver is queried on whether
there are any obstacles in the scene. The Perceiver is called once for each question (total of 6). Questions 2-4
and 6 were variations generated for Q1 and QS, respectively, using ChatGPT.

We have access to the following objects in our scene: {0}

You are given a sentence describing an image of the scene, but it may have gotten the
names of the objects wrong. Does this sentence contain objects that are not in our scene
or get the names of the objects wrong? Start your answer with yes or no.

{1}

Figure B.10: For every explanation from the Perceiver, the Verifier is called to determine whether the explana-
tion lists objects that do not exist in the scene. {0} is the list of objects in the scene and {1} is the explanation
from the Perceiver. If the Verifier answers with ’yes’, the explanation is passed to@fer object remapping.

We have access to the following objects in our scene: {0}

You are given a sentence describing an image of the scene, but got the names of the
objects wrong. Rewrite this sentence using the closest object(s) in our environment:

{1}
Rules:

You can only use objects in the scene. Use your best judgement.

Figure B.11: If the Verifier identifies that the Perceiver explanation contains objects that are not listed in the
scene, the Verifier rewrites the explanation ({1}) using the closest objects in our scene ({0}).
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The stationary robot arm would like to {0} but it cannot. Here are possible reasons why
based on images of the scene:

{1}
Based on the above explanations, what are the top reason(s) why the robot cannot {0}?
List each reason on a separate line, enclosed with the tag <reason> </reason>. Provide

up to two reasons. Be as succinct as possible. You must not include any reasons related
to the robot, only reasons related to objects in the scene.

Figure B.12: The Planner receives all explanations from the Perceiver ({1}, see B.11)) and summarizes
them into key reasons explaining why the robot could not do the action {0}.

<Prompt from

One or more previous attempts failed. Below are the details.

7777777777777777777777777777777777 AEEEMIE il =—=——==—=c=====s=—=o==o=—=======—o==
This attempt failed when executing ’\{0\}’.The plan failed because the robot was not
able to execute this action: ’\{1\}’. This was identified as a possible reason the

action failed: " {2}’.

————————————————————————————————— BREEHIRE (R s

———————————————————————————— end of failed attempts ———--—---——--———————————————
Reminder to propose a different plan than the above failed attempts.

Figure B.13: If the robot does not succeed in performing an action, the Planner is able to replan how the robot
does the action by providing the failure reason(s) from the Perceiver from the R failures reasons. Example for
{0}: ’Place the red_cube on the crate’. Example for {1}: ’Place the red_cube on the crate (incidentally the
action is the same as the overall goal, but it doesn’t have to be)’. Example for {2}: *The most probable reason
why the robot cannot place the red_cube on top of the crate is that the yellow cube is currently on top of the
crate, which would prevent the robot from doing so.’

You are a robot in the process of executing this plan, with the overall goal to ’{0}’:
{1}

You are currently performing this action: ’{2}’. You have access to a perception model
that can answer your questions related to vision.

{3}

What question do you want to ask the perception model in order to get the answer to

’{2}’? You can ask up to two questions. You don’t have to ask if the information is

already sufficient. Avoid asking the vision model to compare things. Enclose each of
your questions with the tag <question> </question>.

Figure B.14: If the action requires calling the Perceiver, this prompt is used to determine what questions the
Planner wants to ask the Perceiver. {0} is the overall goal, {1} is the high-level plan, {2} is the action the robot
is currecntly performing, {3} are the observed objects in the scene.

What type of question is this asking perception model: ’{0}’? Choose your answer from [
OBJECT_PRESENCE, OBJECT_ATTRIBUTE, NEITHER]

Figure B.15: Prompt to field what category of question the Planner wants to ask the Perceiver model. {0} is

the output from [B.T4]
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<Output from . The names of the objects in our scene are: {0}. {1}

Figure B.16: Perceiver query on information about the state of objects in the scene from States are related
to object presence or object attributes. Examples of queries: ‘Look for the apple in the cabinet’, ‘Check the
color of the crate’.

A robot was tasked to do this plan:
{0}
The robot is currently doing this action: " {1}’.

To do the action, the robot asked a perception model the following questions (Q) and got
the answers (A):

{2}

After receiving this answer, has the robot completed the action ’{1}’? Begin your
answer with yes or no. If your answer begins with no, write the remaining action that
needs to be completed using <Action></Action> tags.

Figure B.17: After the Perceiver has provided information, the Planner is asked to determine whether the action
is completed. If not, it generates MPC reward functions to finish the action (see [B.4}{B.T8).

<Prompt from

One or more previous attempts failed. Below are the details.
—————————————————————————————————— AEEEmMPE il ==================================
The proposed plan was:

<thought>{0}</thought>

[start plan]

{1}

[end plan]

The plan failed because {2}.

7777777777777777777777777777777777 EEEEPE P ==———————=c=ess=osesososcoosasasss
———————————————————————————— end of failed attempts ——————---———-———————————————

Reminder to propose a different plan than the above failed attempts.

Figure B.18: If by executing the plan or the replan and the goal is still not accomplished, the Planner is prompted
to generate a new plan using the prompt in Figure[B.2] The Planner is allowed to generate a new plan P times.
before the task is considered undoable.

C ADDITIONAL EXPERIMENTS

C.1 MoTION CONTROLLER

We run additional experiments to test the consistency of our motion controller. Specifically, we pick
4 important motions in our main experiments and run the motion controller 20 times each. The
picked motions are:

* Opening door. A common motion that opens the cabinet door. This specific tested one is
picked from Task 2.

* Removing bar. Picked from Task 3, where the robot needs to remove the bar between the
door handles.

* Removing kettle. Picked from Task 4, where the robot needs to remove the kettle that is
obstructing the microwave door.

e Pulling lever. Picked from Task 5, where the robot needs to pull the lever switch to unlock
the cabinet door.
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Figure C.1: Number of actions the robot executed in each task averaged over ten runs. Actions requiring the
Perceiver are shown in pink while those executed using MPC are shown in purple. Standard deviations are
shown using gray bars while the minimum and maximum number of actions are shown using gray dots.

Motion Success rate %
Opening door 100%
Removing bar 100%

Removing kettle 80%
Pulling lever 100%

We would like to comment that these tests are carried out in an ideal setting. During actual planning,
multiple facts can affect the motion success rate. For example, the motion planner could generate
unnecessary reward functions; and previous steps could change the locations or poses of the objects
to interact.

C.2 VLM ABLATION

We conduct a VLM ablation study for Tasks 3-4 using two open-source models (Qwen-VL-
Chat7B (Bai et al.| [2023)) and Llava-1.5-7B (Liu et al., |2023))) and GPT—4VEI The results are shown
in Table 2] We measure (a) their ability to recognize objects, reported as a percentage of the number
of object successfully detected in the scene (column 2), (b) their ability to reason about obstacles in
the scene, reported as a percentage of times the correct reason was identified out of all the prompts it
was given in Figure[B.9] and (c) the ability for the LLM to consilidate the outputs in (b) into a single
summary reason of why the robot cannot perform an action given its knowledge about the scene. We
found that Qwen somtimes struggled with object detection of smaller objects, and so we coupled
it with Segment Anything Model (SAM) [Kirillov et al.| (2023) to first segment the objects in the
scene. We found that all models did well with object recognition (except for Qwen when not used
with SAM). For object reasoning, Qwen + SAM was able to get the correct scene error in 50-67%
of the prompts it was given, and then the LLM was able to summarize the prompts to generate the
correct error reason overall. The reason the LLM was able to do this despite the VLM not giving
perfect answers was that the remaining VLM answers pertained where the robot was located or a
general comment about the objects in the scene. Llava tended to reply that it was unable to reason
because the scene was a simulation and not real life. GPT-4V had the best overall performance in
all categories, but API calls to it are still restricted. All ablations were repeated over 5 runs.

C.3 ERROR CASES

Here we provide three error cases of REPLAN and their analyses.

Case 1 (from Task 3, Figure The robot tried to open the cabinet door but failed and the
Perceiver gave a correct diagnosis to remove the bar from the handle. However, when generating
the reward functions to remove the bar, the LLM selected the wrong primary reward function, as
demonstrated below:

3https://openai.com/research/gpt-4
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Models
Scenarios Qwen+ SAM  Qwen Llava GPT-4V
VLM object detection 100% 66% 100%  100%
VLM Reasoning 67% 0%  23% 100%
LLM summarization and consistency step 100% 0%  100%  100%
(a) Task 3
Models
Scenarios Qwen + SAM  Qwen Llava GPT-4V
VLM object detection 100% 100% 100%  100%
VLM Reasoning 50% 66%  40% 83%
LLM summarization and consistency step 100% 100%  20% 100%
(b) Task 4

Table 2: VLM ablation study.

(c) Case 3 (d) Case 4

Figure C.2: Error case images.

reset_reward()
minimize_12_distance_reward("palm", "red_block_right_side", primary_reward=True)
maximize_12_distance_reward("red_block_right_side", "target_position_in_cabinet")
execute_plan()

The correct primary function should be the second one. As a result, MPC ended prematurely before
the robot could remove the bar. The robot was not able to remove the bar in the following steps.
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Case 2 (from Task 4, Figure[C.2b) The robot tried to open the microwave door but failed due to a
kettle obstructing the path. The Perceiver gave five diagnoses, of which three claimed that the kettle
was blocking the way, one claimed the cabinet door was blocking the way, and one did not give any
conclusive diagnosis. The summary LLM concluded that it was the cabinet door that blocked the
action. The robot went on to interact with the cabinet and never removed the kettle.

Case 3 (from Task 6, Figure The high-level planner proposed a plan where the first step
was “Identify the cube with the same colour as the crate”. This was a VLM action. However,
the LLM proposed to ask the VLM “Which cube has the same colour?”, which was a bit vague,
resulting in the VLM answering “The same color cube is the yellow cube and the yellow cube in the
middle of the blue cube group.”. This answer did not provide the necessary information to solve the
task. Eventually, the robot put the wrong cube on the crate.

Case 4 (from Task 7) After the robot was not able to execute the task “Place the red cube on the
crate”, the Perceiver was called to help identify any issues. The Perceiver’s diagnoses all mentioned
that the robot was holding the red cube but did not identify the yellow cube as blocking the crate,
and so the Planner’s summary of the VLMs diagnoses was: “Based on the given information, the
most probable reason why the robot cannot place the red_cube on the crate is because it is currently
holding the red cube.” However, it’s also important to note that Task 7 used GPT-4V which severly
limits the number of ouput tokens from the model, and so a lot of explanations were cut off (for
example: “In the image provided, the robot is holding the red cube, which is currently”).

C.4 LLM DIAGNOSIS WITH GROUND-TRUTH DATA

An alternative way to diagnose errors is to input the simulator ground-truth state of the objects to an
LLM and ask the LLM to infer a possible reason. We show a scenario here where the cabinet door
is locked by a red bar (from Task 3) and test the capability of LLM in this regard. The prompt we
use is:

A robot is in a simulation environment where it can interact with any object like in the
real world. The robot would like to open the wooden cabinet but it cannot. Is there
something in this scene preventing that, other than the robot? Assume the robot can
interact with anything. These are the names of the objects in our scene: wooden cabinet,
red block, yellow cube.

The data of the objects are:
{
"Joints": {
"wooden_cabinet": 0.16235716765387215
b
"objects": {
"wooden_cabinet_handle": [0.08292539, 0.50163332, 0.21],
"target_position_in_wooden_cabinet": [0.2, 0.85, 0.07757,
"red_block_right_side": [0.2158331, 0.55110136, 0.15143364],
"yellow_cube": [-0.24545329, 0.01631876, 0.03599184],
"palm": [0.2231031, -0.00875834, 0.76900653]

}

And the response from GPT-4 is:

The data does not indicate any object that would prevent the robot from opening the
cabinet. There’s no information about any object blocking the cabinet or its handle. The
problem could be due to the robot itself as it might not possess the necessary
functionality to interact with the objects as intended. The cabinet’s joint also has a
non-zero value, which might mean it’s not locked or stuck. Hence, there is likely a
mechanical limitation with the robot or an issue with its programming.

This example demonstrates that LLM is not capable of directly inferring spatial relations of objects
through ground-truth data.

D GPT-4V EXPERIMENTS

We run the initial High-Level Planner prompt (Prompt|B.2) using GPT—4VE] on initial task scenes to
investigate the ability of GPT-4V to find the correct solution in a single step.

*https://openai.com/research/gpt-4v-system-card
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A stationary robot arm is in a location where it sees the following list of objects:

[wooden cabinet, red block, yellow cube]

The robot has the following goal: move the yellow cube to target position inside the wooden
cabinet

Propose high-level, abstract subtasks of what the robot needs to do to move the yellow cube to
target position inside the wooden cabinet. The plan can only use one object.

For example, if the goal is to find a fork, one plan might be:

<thought>To find the fork, | will start by looking inside the drawer.</th
[start plan]

>Open the drawer

>Look inside the drawer

>Grab the fork
[end plan]

Rules:

1. You have access to the following objects: [wooden cabinet, red block, yellow cube]. Do not
create new objects.

2. Generate a plan that interacts with only one object from the list at a time. Keep it as short as
possible. Most plans should be under 5 steps.

3. Assume that every action is completed successfully.

4. Assume the first thing you try works.

5. Your plan should only propose one way of accomplishing the task.

6. The robot only has one arm and it cannot hold two things at a time. Remember that when you
are deciding on the order of actions.

7. Enclose your thought process with a single pair of tag <thought> and </thought>

8. Enclose your plan with the a single pair of tag [start plan] and [end plan]

(a) Prompt[B.2]to GPT-4V.

ChatGPT

<thought>To move the yellow cube to the target position inside the wooden cabinet, | need to
consider the simplest and most direct method that involves minimal interaction with other
objects. Since the robot has only one arm and cannot hold two things at once, the plan should
avoid unnecessary handling of the red block, focusing solely on the yellow cube and the
cabinet.</thought>

[start plan]

>Approach the wooden cabinet.

>Open the cabinet door.

>Pick up the yellow cube.

>Place the yellow cube inside the cabinet at the target position.

>Close the cabinet door.

[end plan]

(b) GPT-4V output.

Figure D.1: GPT-4V high-level plan for moving the yellow cube inside the wooden cabinet (Task 3 in Section

ELD.
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You
Uploaded image
A stationary robot arm is in a location where it sees the following list of objects:

[crate, left cube, right cube]

The robot has the following goal: place the cube with the same color as the crate on the crate

Propose high-level, abstract subtasks of what the robot needs to do to place the cube with the
same color as the crate on the crate. The plan can only use one object.

For example, if the goal is to find a fork, one plan might be:

<thought>To find the fork, | will start by looking inside the drawer.</th
[start plan]

>Open the drawer

>Look inside the drawer

>Grab the fork
[end plan]

Rules:

1. You have access to the following objects: [crate, left cube, right cubel. Do not create new
objects.

2. Generate a plan that interacts with only one object from the list at a time. Keep it as short as
possible. Most plans should be under 5 steps.

3. Assume that every action is completed successfully.

4. Assume the first thing you try works.

5. Your plan should only propose one way of accomplishing the task.

6. The robot only has one arm and it cannot hold two things at a time. Remember that when you
are deciding on the order of actions.

7. Enclose your thought process with a single pair of tag <thought> and </thought>

8. Enclose your plan with the a single pair of tag [start plan] and [end plan]

(a) Promptto GPT-4V.

ChatGPT

<thought>To achieve the goal of placing the cube with the same color as the crate on the crate,
| need to identify which cube matches the crate's color. Once identified, | will use the robot arm
to pick up the correct cube and place it on the crate.</thought>

[start plan]

>|dentify the cube with the same color as the crate
>Move the robot arm towards the identified cube
>Lower the robot arm to reach the cube

>Grasp the cube securely
>Lift the cube

>Move the robot arm over the crate

>Lower the cube onto the crate

>Release the cube

[end plan]

(b) GPT-4V output.

Figure D.2: GPT-4V high-level plan for placing the cube with the same color as the crate on the crate (Task 6

in Section@).
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E TAMP EXPERIMENTS

To compare the REPLAN with a TAMP framework, we use Planning Domain Definition Language
(PDDL) (McDermott et al,[T998) to define the domain of Cabinet Tasks 1-3 in Table[Alin Section[A]
as follows:

(define (domain pick-place-domain)
(:requirements :strips :typing :negative-preconditions :conditional-effects)

;; Define the object and its possible locations
(:types

object

location

conf

robot

door cabinet cube block - object

area

remove_area cabinet_area - area

)
;; define constants
(:constants
cube_loc cabinet_loc block_loc remove_loc init_loc door_loc open_door_loc -
location

init_conf robot_conf_cube robot_conf_block robot_conf_ cabinet robot_conf_remove
robot_conf_door open_door_conf - conf

robot - robot

door - door

cabinet - cabinet

cube - cube
block - block
remove_area - remove_area
cabinet_area - cabinet_area
)
;7 Define predicates
(:predicates
(at ?0bj - object ?loc - location) ; the Object at location loc
(grasped ?0obj -object) ; the object is grasped
(at_conf ?conf -conf) ; the robot is at conf configuration
(rob_at_loc ?loc -location) ; the robot is location loc
(is_free ?rob - robot) ; the robot hand is free
(in ?loc -location ?area -area) ; sampling and certifying the loc location is
inside an area type
(is_closed ?door - door) ; the door is closed
(is_blocked ?door) ; the door is blocked

(is_moveable ?init_conf —-conf ?final_loc -location ?final_conf - conf)
; certifying the robot can move from the initial condition to the goal location/pose
with the sampled final configuration

)

;; Define actions
(:action remove
:parameters (?block - block ?door - door ?rob - robot ?init_conf ?final_conf -
conf ?init_loc ?final_loc -location)

:precondition (and
(is_blocked ?door)
(grasped ?block)
(not (is_free ?rob))
(at_conf ?init_conf
(at ?block ?init_loc)
(rob_at_loc ?init_loc)
(in ?final_loc remove_area)
(is_moveable ?init_conf ?final_loc ?final_conf )

)

ceffect (and
(rob_at_loc ?final_loc
(not (rob_at_loc ?init_loc))
(at ?block ?final_loc)
(at_conf ?final_conf )
(is_free ?rob)
(not (grasped ?block))
(not (is_blocked ?door)
(not (at_conf ?init_conf ))

(:action place
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69 :parameters (?cube - cube ?door - door ?rob - robot ?init_conf 2?final_conf - conf
?init_loc ?final_loc -location)

70 :precondition (and

71 (not (is_closed ?door))

72 (not (is_blocked ?door))

73 (grasped ?cube)

74 (not (is_free ?rob))

75 (at_conf ?init_conf )

76 (at ?cube ?init_loc)

77 (rob_at_loc ?init_loc)

78 (in ?final_loc cabinet_area)

79 (is_moveable ?init_conf ?final_loc ?final_conf )

80 )

81 ceffect (and

82 (rob_at_loc ?final_loc )

83 at ?cube ?final_loc)

84 at_conf ?final_conf )

(
(
85 (not (at_conf ?init_conf ))
(
(

86 is_free ?rob)

87 not (grasped 2?cube))

38 )

89 )

90

91

92 (raction pick

93 :parameters (?init_conf ?final_conf -conf ?obj - object ?loc - location ?rob -robot)
94 :precondition (and

95 (at_conf ?init_conf )

96 (at 2obj 2loc)

97 (is_free ?rob )

98 (is_moveable ?init_conf ?loc ?final_conf )
99 )
100 reffect (and
101 (at_conf ?final_conf)
102 (not (at_conf ?init_conf))
103 (rob_at_loc ?loc)
104 (not (is_free ?rob))
105 (grasped ?2obj)
106 )
107 )
108
109 (:action open
110 :parameters (?init_conf -conf ?door -door ?rob -robot )
111 :precondition (and
112 (is_closed ?door)
113 (not (is_blocked ?door))
114 (grasped ?door)
115 (not (is_free ?rob))
116 (at_conf ?init_conf )
117 (is_moveable ?init_conf open_door_loc open_door_conf )
118 )
119 ceffect (and
120 (not (is_closed ?door))
121 (not (grasped ?door))
122 (is_free ?rob)
123 (not (at_conf ?init_conf ))
124 (at_conf open_door_conf)
125 (rob_at_loc open_door_loc)
126 (at door open_door_loc)
127 )
128 )
129
130 (:action is_moveable_cube
131 :parameters ()
132 :precondition (and
133 (not (is_closed door))
134 (not (is blocked door))
135 )
136 :effect (is_moveable robot_conf _cube cabinet_loc robot_conf _cabinet)
137 )
138
139 )

Snippet 1: PDDL domain definition for Tasks 1-3.
Tasks 1-3 problem definition are written as follows:

1

2 (define (problem pick-place-problem)

3 (:domain pick-place-domain)
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;; Define objects
(:objects

)

;; Define initial state

(:init
(at cube cube_loc)
(at door door_loc)
(at block block_loc)
(at_conf init_conf)
(rob_at_loc init_loc)
(in remove_loc remove_area)
(in cabinet_loc cabinet_area)
(is_free robot)
(is_moveable init_conf cube_loc robot_conf_cube)
(is_moveable open_door_conf cube_loc robot_conf_cube)
(is_moveable robot_conf block remove_loc robot_conf_remove)
(is.moveable robot_conf_remove door_loc robot_conf_door)
(is.moveable init_conf block_loc robot_conf block)
(is_moveable init_conf door_loc robot_conf _door)
(is_moveable robot_conf_door open.door_loc open_door_conf)

;; commenting the following two initial conditions can change the robot behavior
greatly in terms of task plan

;; easy mode (Task 1): comment both of the following lines [comment (is_closed door)
and (is_blocked door)

;; hard mode (Task 2): comment the second condition [ (is_blocked door)

;7 expert mode (Task 3): keep both of the following conditions uncommented.

; door is closed at the begining
(is_closed door)

; door is blocked at the begining
(is_blocked door)

;7 Define goal
(:goal
(and
;7 only picking the cube
; (grasped block)

;7 picking and placing the cube inside the cabinet
(at cube cabinet_loc)

; (at block remove_loc)

; (grasped door)

Snippet 2: PDDL problem definition for Cabinet Tasks 1-3.

The cabinet task problem is solved using the Ipg-td (Gerevini et al.},[2006) solver from the planutils
librar

As seen in Snippets[I]and[2] even for three cabinet tasks 1-3, domain and problem definitions require
careful and laborious attention. Task-solving details are outlined in Snippets with blue and olive
colours. While our method discovers information through interaction and reasoning over perceiver’s
feedback, the PDDL solver relies on ground truth (highlighted in blue) and rules (example in olive)
provided by the user for problem resolution.

For the same task, PDDLStream (Garrett et al., [2020) offers an alternative using a Task and Motion
Planning (TAMP) framework. Rather than human-grounded truth information, a motion planning
framework certifies predicates through streams. However, this requires user-defined rules for success
or failure and a motion planner. Solving long-horizon problems with PDDLStream may become

computationally expensive (Khodeir et al., [2023).

*https://github.com/AI-Planning/planutils
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REPLAN can robustly solve long-horizon multi-stage problems through interaction with the en-
vironment and reasoning based on the perceiver’s feedback. This capability enables REPLAN to
uncover underlying rules without the need for an additional domain description and ground truth
information.
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