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ABSTRACT

We consider representation learning of 3D molecular graphs in which each atom
is associated with a spatial position in 3D. This is an under-explored area of
research, and a principled message passing framework is currently lacking. In
this work, we conduct analyses in the spherical coordinate system (SCS) for the
complete identification of 3D graph structures. Based on such observations, we
propose the spherical message passing (SMP) as a novel and powerful scheme for
3D molecular learning. SMP dramatically reduces training complexity, enabling
it to perform efficiently on large-scale molecules. In addition, SMP is capable
of distinguishing almost all molecular structures, and the uncovered cases may
not exist in practice. Based on meaningful physically-based representations of
3D information, we further propose the SphereNet for 3D molecular learning.
Experimental results demonstrate that the use of meaningful 3D information in
SphereNet leads to significant performance improvements in prediction tasks.
Our results also demonstrate the advantages of SphereNet in terms of capability,
efficiency, and scalability. Our code is publicly available as part of the DIG library
(https://github.com/divelab/DIG).

1 INTRODUCTION

In many real-world studies, structured objects such as molecules are naturally modeled as graphs (Gori
et al., 2005; Wu et al., 2018; Shervashidze et al., 2011; Fout et al., 2017; Liu et al., 2020; Wang et al.,
2020). With the advances of deep learning, graph neural networks (GNNs) have been developed
for learning from graph data (Kipf & Welling, 2017; Defferrard et al., 2016; Veličković et al., 2018;
Zhang et al., 2018; Xu et al., 2019; Gao & Ji, 2019; Gao et al., 2018; 2020). Currently, the message
passing scheme (Gilmer et al., 2017; Sanchez-Gonzalez et al., 2020; Vignac et al., 2020; Battaglia
et al., 2018) is one of the commonly used architectures for realizing GNNs. In this work, we aim at
developing a novel message passing method for 3D graphs. Generally, a 3D molecular graph contains
3D coordinates for each atom given in the Cartesian system along with the graph structure (Liu et al.,
2019; Townshend et al., 2019; Axelrod & Gomez-Bombarelli, 2020). Different types of relative
3D information can be derived from 3D molecular graphs, and they can be important in molecular
learning, such as bond lengths, angles between bonds (Schütt et al., 2017; Klicpera et al., 2020b).

We first investigate complete representations of 3D molecules. This requires the graph structure
to be uniquely defined by relative 3D information. To this end, we conduct formal analyses in the
spherical coordinate system (SCS) (Chen et al., 2019), and show that relative location of each atom
in a 3D graph is uniquely determined by three geometries, including distance, angle, and torsion.
However, such completeness needs to involve edge-based 2-hop information, leading to excessively
high computational complexity. To circumvent the computational cost, we propose a novel message
passing scheme, known as the spherical message passing (SMP), for fast and accurate 3D molecular
learning. Our SMP is efficient and approximately complete in representing 3D molecules. First, we
design a novel strategy to compute torsion, which only considers edge-based 1-hop information, thus
substantially reducing training complexity. This enables the generalization of SMP to large-scale
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molecules. In addition, we show that our SMP can distinguish almost all 3D graph structures. The
uncovered cases seem rarely appear in practice. By naturally using relative 3D information and a
novel torsion, SMP yields predictions that are invariant to translation and rotation of input graphs.

We apply the SMP to real-world molecular learning, where meaningful physical representations are
needed. Geometries (d, θ, φ) specified by SMP are then physically represented by Ψ(d, θ, φ), which
can be a solution to the Schrödinger equation, as described in Sec. 4. Based on this, we develop the
spherical message passing neural networks, known as the SphereNet, for 3D molecular learning. We
conduct experiments on various types of datasets including OC20, QM9, and MD17. Results show
that, compared with baseline methods, SphereNet achieves the best performance without increasing
the computing budget. Ablation study reveals contributions and necessity of different types of
3D information, including distance, angle, and torsion. Particularly, we compare with a complete
message passing scheme that can distinguish all 3D graph structures but involves edge-based 2-hop
information. Experimental results show that SphereNet achieves comparable performance but reduces
running time by 4 times. This suggests the use of SphereNet in practice rather than the complete
message passing scheme, whose computational complexity prevents its use on large molecules.

2 COMPLETE REPRESENTATIONS OF MOLECULES

Equivariant graph neural networks (EGNNs) represent one research area for 3D molecular graphs, as
introduced in Sec. 5.1. These methods usually take coordinates in the Cartesian coordinate system
(CCS) for all atoms as the raw input. Hence, all the network layers need to be carefully designed to be
equivariant. The computing of some equivariant components is expensive, like spherical harmonics
and Clebsh-Gordan coefficients (Thomas et al., 2018; Fuchs et al., 2020). In addition, the complicated
SE(3) group representations may not be necessary for molecular learning where final representations
are generally required to be invariant. In this work, we focus on the other category of methods that
take relative position information purely as input to graph learning models. Relative 3D information
could be distance or angle, which is inherently invariant to translation and rotation of input molecules.
It is natural to consider such information in the spherical coordinate system (SCS). We start by
investigating the structure identification of 3D molecules in the SCS. For any point in the SCS, its
location is specified by a 3-tuple (d, θ, φ), where d, θ, and φ denote the radial distance, polar angle,
and the azimuthal angle, respectively. When modeling 3D molecular graphs in the SCS, any atom i
can be the origin of a local SCS, and d, θ, and φ naturally become the bond length, the angle between
bonds, and the torsion angle, respectively. Thus, the relative location of each neighboring atom
of atom i can be specified by the corresponding tuple (d, θ, φ). Similarly, the relative location of
each atom in the 3D molecular graph can be determined, leading to the identified structure, which is
naturally invariant to translation and rotation of the input graph. The SCS can be easily converted
from the Cartesian coordinate system, thus, the tuple (d, θ, φ) can be easily obtained.
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Figure 1: The chemical structure of the H2O2.

As in Fig. 1, we use the chemical structure of the
hydrogen peroxide (H2O2) to show how d, θ, and
φ are vital for the molecular structure identification.
It is obvious that the structure is uniquely defined
by the three bond lengths d1, d2, d3, the two bond
angles θ1, θ2, and the torsion angle φ. Note that
the input may not contain all pairwise distances (all
possible bond lengths). This is because the atomic
connectivity is usually based on real chemical bonds
and cut-off distances. The cut-off distance is usually set as a hyperparameter. It is hard to guarantee
that the cut-off is larger than any pairwise distance in a molecule. Hence, in this example, H-H bond
length may not be considered as input if the cut-off is small. Setting a proper cut-off is even harder
for other complicated and large molecules where a distance between two atoms could be large. In
addition, considering all pairwise distances will cause severe redundancies, dramatically increasing
the computational complexity. The model also easily gets confused by excessive noise, leading
to unsatisfactory performance. From the perspective of completeness, using all pairwise distance
is not capable of recognizing the chirality property. To overcome the above challenges, we use a
combination of distance, angle, and torsion for rigorous design and accurate learning. Apparently,
the two O-H bonds can rotate around the O-O bond without changing any of the bond lengths and
bond angles. In this situation, however, the torsion angle φ changes and the structure of the H2O2

2



Published as a conference paper at ICLR 2022

reference 

plane

(a) (b)
Figure 2: (a). The message aggregation scheme for the spherical message passing. (b). An illustration
for computing torsion angles in the spherical message passing architecture.

varies accordingly. The importance of torsion angle has also been demonstrated in related research
domains. Garg et al. (2020) formally shows that the torsion along with the port numbering can
improve the expressive power of GNNs in distinguishing geometric graph properties, such as girth
and circumference, etc. Other studies (Ingraham et al., 2019; Simm et al., 2020) reveal that protein
sequences and molecules can be accurately generated by considering the torsion in the given 3D
structures. In this work, we propose SMP to systematically consider distance, angle, and torsion for
approximately complete representation learning of 3D molecular graphs. Note that by using angle
and torsion, SMP can easily recognize the chirality property.

3 SPHERICAL MESSAGE PASSING

3.1 MESSAGE PASSING SCHEME

Currently, the class of message passing neural networks (MPNNs) (Gilmer et al., 2017) are one of
the most widely used architectures for GNNs. Based upon the completeness analyses in Sec. 2, we
propose to perform message passing in the spherical coordinate system (SCS), resulting in a novel
and efficient scheme known as spherical message passing (SMP). We show that message passing
schemes used in existing methods, such as SchNet and DimeNet, are special cases of SMP.

We first formally define a 3D molecular graph, which is usually represented as a 4-tuple G =
(u, V, E, P ). The u ∈ Rdu is a global feature vector for the molecular graph G. V = {vi}i=1:n

is the set of atom features, where each vi ∈ Rdv is the feature vector for the atom i. E =
{(ek, rk, sk)}k=1:m is the set of edges, where each ek ∈ Rde is the feature vector, rk is the index
of the receiver atom, and sk is the index of the sender atom for the edge k. P = {rh}h=1:n is the
set of 3D Cartesian coordinates that contains 3D spatial information for each atom. In addition, we
let Ei = {(ek, rk, sk)}rk=i,k=1:m denote the set of edges that point to the atom i, and Ni denote
the indices of incoming nodes of atom i. The outputs after a message passing process include the
updated global feature vector u′ ∈ Rdu , the updated atom features V ′ = {v′

i}i=1:n, and the updated
edges E′ = {(e′k, rk, sk)}k=1:m.

An illustration of the message aggregation scheme for SMP is provided in Fig. 2 (a). Apparently, the
embedding of the atom rk is obtained by aggregating each incoming message ek. The message ek is
updated based on Esk , the set of incoming messages pointing to the atom sk. Let q denote the sender
atom of any message in Esk . Hence, we can define a local SCS, where sk serves as the origin, and the
direction of the message ek naturally serves as the z-axis. We define a neighboring atom o of sk as
the reference atom. Thus, the reference plane is formed by three atoms sk, rk, and o. For atom q, its
location is uniquely defined by the tuple (d, θ, φ), as shown in Fig. 2 (a). Specifically, d determines
its distance to the atom sk, θ specifies its direction to update the message ek. The torsion angle φ
is formed by the defined reference plane and the plane spanned by sk, rk, and q. Intuitively, as an
advanced message passing architecture in spherical coordinates for 3D graphs, SMP specifies relative
location for any neighboring atom q by considering all the distance, angle, and torsion information,
leading to more comprehensive representations for 3D molecular graphs.

Generally, the atom sk may have several neighboring atoms, which we denote as q1, ..., qt. It is easy
to compute the corresponding bond lengths and bond angles for these t atoms. The SMP computes
torsion angles by projecting all the t atoms to the plane that is perpendicular to ek and intersect
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with sk. Then on this plane, the torsion angles are formed in a predefined direction, such as the
anticlockwise direction. By doing this, any atom naturally becomes the reference atom for its next
atom in the anticlockwise direction. Notably, the sum of these t torsion angles is 2π. A simplified
case is illustrated in Fig. 2 (b). The atom sk has three neighboring atoms q1, q2, and q3; q3 is the
reference atom for q1, and they form φ1; q1 is the reference atom for q2, and they form φ2; similarly,
q2 is the reference atom for q3, and they form φ3. It is obvious that the sum of φ1, φ2, and φ3 is 2π.
As the torsion is defined relatively, q1 can be picked arbitrarily, which will not affect the output of
the message passing scheme, as we perform summation when aggregating information to sk from
its neighbors q1, q2, and q3. Notably, by designing each atom to be the reference atom of the next
one in the predefined direction, invariance is effectively achieved because reference atom is naturally
relative. In addition, our method computes torsion within edge-based 1-hop neighborhood. Even
though a torsion angle involves four atoms, our design avoids the number of torsion angles to be
exponential, but makes it the same as the number of neighboring atoms. Hence, it is efficient and will
not cause time or memory issues. Formally, the proposed SMP can be defined in the SCS as

e′k = ϕe
(
ek,vrk ,vsk , Esk , ρ

p→e
(
{rh}h=rk∪sk∪Nsk

))
,

v′
i = ϕv (vi, ρ

e→v (E′
i)) ,u

′ = ϕu (u, ρv→u (V ′)) ,
(1)

where ϕe, ϕv, and ϕu are three information update functions on edges, atoms, and the whole graph,
respectively. ρe→v and ρv→u aggregate information between different types of geometries. Especially,
in SMP, the 3D information in P is converted and incorporated to update each message ek. Hence,
SMP employs another position aggregation function ρp→e for message update. Notably, the main
difference between our SMP scheme defined in Eq. 1 and the GN framework in Battaglia et al. (2018)
is the inclusion of 3D information P . In line with the research area described in Sec. 5.1.2, we focus
on such 3D information and develop a systematic solution to incorporate it completely and efficiently.
Detailed description of these functions is given in Appendix A.

3.2 COMPLETENESS VERSUS EFFICIENCY

Figure 3: An illustration of cases that SMP can and cannot distinguish.
All the neighboring nodes of sk are projected to the plate perpendicular
to the message of interest. We assume all the distances and angles
are fixed (the molecules can be more easily distinguished otherwise).
Hence, all the angle shown are torsion angles and they are formed in the
anticlockwise direction. (a) and (b) are chiral and SMP can distinguish
them. This is because in (a), q′1(90

◦), q′2(60
◦), q′3(120

◦), q′4(90
◦); in

(b), q′1(60
◦), q′2(120

◦), q′3(90
◦), q′4(90

◦). SMP cannot distinguish (b)
and (c) but this scenario may not exist in nature. ∠q′1skq

′
2 in (b) and

∠q′1skq
′
3 in (c) usually are different as q′2 and q′3 are different atoms

and the corresponding distances and angles are the same.

The identification criteria
described in Sec. 2 can fully
determine the structure of a
3D molecule, but involves
edge-based 2-hop informa-
tion. Hence, the computa-
tional complexity is as size-
able as O(nk3), where n is
the number of atoms, and
k denotes the average num-
ber of neighboring atoms
for each center atom. Un-
fortunately, such design can
hardly generalize to large
molecular graphs. To this
end, we propose SMP as
an efficient and scalable
scheme to realize message
passing in SCS. Our SMP
only involves edge-based 1-
hop information, thus the
time complexity is reduced to O(nk2). This enables the application of SMP to large molecules, like
the newly released OC20 data (Chanussot et al., 2020). We rigorously investigate the completeness
of SMP and show that it can distinguish even complex geometric properties such as chirality, as
indicated by Fig. 3 (a) and Fig. 3 (b). As SMP uses the last atom as the reference atom (like q2 is
the reference atom for q3 in Fig. 2 (b)) in a predefined direction, the relative order between adjacent
atoms is considered while the absolute order is neglected. Hence, SMP can not distinguish the two
molecules illustrated by Fig. 3 (b) and Fig. 3 (c). However, this scenario may not exist in nature.
This is also demonstrated in experiments that our SMP achieves comparable performance with the
complete representations, while the latter induces huge time complexity and severe memory issues.
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3.3 RELATIONS WITH PRIOR MESSAGE PASSING METHODS

When developing message passing methods for 3D graphs, sphere message passing is an advanced
scheme where the relative location of each atom is more specified. The development for 3D graphs
with relative information is still in early stage. To our best knowledge, there exist several notable
methods in literature, and they can be viewed as special cases of the SMP, as they capture partial
3D position information. For example, the SchNet and PhysNet consider distance, and the DimeNet
encodes directional information. Formally, these methods can be perfectly fit the Spherical scheme
defined in Eq. 1. We describe the details of these methods in Appendix C. Notably, compared with
prior models, SMP provides a rigorous justification on its completeness with failure cases clearly
described. Importantly, SMP is developed based on the identification analyses of 3D molecular
graphs. Hence, it aims at learning complete data representations for 3D molecular graphs, rather than
simply including extra 3D information (like angle or torsion).

4 SPHERENET

The obtained 3-tuple (d, θ, φ) indicates the relative location of any atom in a 3D molecular graph.
However, it cannot serve as the direct input to neural networks as it lacks meaningful representations.
Essentially, molecules are quantum systems thus the representation design needs to follow physics
laws. An important aspect is to choose appropriate basis functions that transform the 3-tuple (d, θ, φ)
into physically-based representations. Several basis functions have been explored in Hu et al. (2021);
Klicpera et al. (2020b), including MLP, Gaussian and sine functions, spherical Bessel basis, and
spherical harmonics. Especially, spherical Bessel is shown to be the best basis for encoding distance,
and spherical harmonics is the most appropriate one for encoding angle (Hu et al., 2021; Klicpera
et al., 2020b). We denote the final representation as Ψ(d, θ, φ). Referring to theories in Griffiths &
Schroeter (2018); Cohen et al. (2019); Klicpera et al. (2020b), one form of the representation can be
expressed as Ψ(d, θ, φ) = jℓ

(
βℓn

c d
)
Y m
ℓ (θ, φ), where jℓ(·) is a spherical Bessel function of order

ℓ, Y m
ℓ is a spherical harmonic function of degree m and order ℓ, c denotes the cutoff, βℓn is the

n-th root of the Bessel function of order ℓ. We also have ℓ ∈ [0, · · · , L− 1], m ∈ [−ℓ, · · · , ℓ] and
n ∈ [1, · · · , N ]. L and N denote the highest orders for the spherical harmonics and spherical Bessel
functions, respectively. They are hyperparameters in experimental settings. In addition, we can derive
two simplified representations Ψ(d) and Ψ(d, θ) from Ψ(d, θ, φ).

Based upon the spherical message passing scheme described in Sec. 3 and physical representations, we
build the SphereNet for molecular learning. Apparently, SphereNet can produce data representations
that are both accurate and physically meaningful. By incorporating the position information in
spherical coordinates, SphereNet also generates predictions invariant to translation and rotation of
input molecules. Following the architecture design in the research line stated in Sec. 5.1.2, our
network is composed of an input block, several interaction blocks, and an output block. For clear
description, we assume the message ek for the edge k in Fig. 2 and Eq. (1) is the message for update.
The update process and detailed architecture for the SphereNet are provided in Appendix B.

5 RELATED WORK

5.1 METHODS FOR 3D MOLECULAR GRAPHS

5.1.1 EQUIVARIANT GRAPH NEURAL NETWORKS

One research line for 3D molecular graphs is equivariant graph neural networks (EGNNs) includ-
ing tensor field networks (TFNs) (Thomas et al., 2018), SE(3)-transformers (Fuchs et al., 2020),
PaiNN (Schütt et al., 2021), NequIP (Batzner et al., 2021), Noisy Nodes (Godwin et al., 2022), etc.
The raw input of these methods usually contains the absolute information, such as coordinates in
the Cartesian coordinate system. In intermediate layers, absolute information could be decomposed
into partial absolute information and partial relative information as needed. A simple example is
that a vector can be decomposed into its orientation (absolute) and length (relative) (Thomas et al.,
2018; Schütt et al., 2021). Apparently, network components of these methods should be carefully
designed to be equivariant. The preliminary work like TFNs were developed for 3D point clouds.
However, it is demonstrated that for molecules whose downstream tasks usually require the systems
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to be invariant, the complicated SE(3) group representations are not necessary but S2 representations
are enough (Klicpera et al., 2021). Moreover, their performance on molecular tasks is not satisfactory.

5.1.2 INVARIANT GRAPH NEURAL NETWORKS

Another category of methods purely take relative 3D information as input, such as distances between
atoms, angles between bonds, angles between planes, etc. Hence, the network is naturally invariant.
The development of these methods is in early stage, and existing studies focus on leveraging different
geometries. The SchNet (Schütt et al., 2017) incorporates the distance information during the
information aggregation stage by using continuous-filter convolutional layers. The PhysNet (Unke &
Meuwly, 2019) integrates both the atom features and distance information in the proposed interaction
block. The DimeNet (Klicpera et al., 2020b) is developed based on the PhysNet and moves a step
forward by considering directional information in the interaction block. The GemNet (Klicpera
et al., 2021) is proposed recently for universal molecular representations. The OrbNet (Qiao et al.,
2020) combines distance information with the atomic orbital theory to design important SAAO
features as inputs to GNNs. Generally, the use of 3D position information usually results in improved
performance. However, existing methods simply include additional geometries such as distance
and angle, and there lacks a rigorous justification on how different geometries contribute to the
information aggregation process. We conduct formal analysis and show that all the distance, angle,
and torsion are necessary for 3D molecular identification, based on which we propose SphereNet to
generate more powerful molecular representations.

5.2 METHODS FOR OTHER OBJECTS MODELED AS GRAPHS

Besides molecules, many other data objects are also represented as graphs, such as 3D point
clouds (Guo et al., 2020; Simonovsky & Komodakis, 2017; Shen et al., 2018; Landrieu & Si-
monovsky, 2018) and meshes (Bronstein et al., 2021; De Haan et al., 2020; Perraudin et al., 2019).
When modeling 3D point clouds as 3D graphs, points are represented as nodes and connections
between points are directed edges. Existing methods mainly capture distance information from local
neighborhood in 3D space. In DGCNN (Wang et al., 2019b), a novel layer namely EdgeConv is
proposed to aggregate distance-based edges features for node learning. In Landrieu & Boussaha
(2019), neighborhood radius along with spatial orientation is incorporated in local point embedding.
The work Wang et al. (2019a) proposes a graph attention convolution for 3D point clouds. Generally,
these methods can be fit into our message passing scheme defined in Eq. 1. The work De Haan
et al. (2020) is an exemplary study that formulates meshes as graphs with considering geometrical
information. The used convolutional kernel depends on the angle between a predefined reference
edge and any other edge projected to the tangent plane for each vertex. It focuses on the design of
gauge equivariance rather than the learning of complete geometry information. In this work, we study
the complete learning of 3D molecules and leave extensive studies on other data types as future work.

6 EXPERIMENTAL STUDIES

6.1 EXPERIMENTAL SETUP

We apply our SphereNet to three benchmark datasets, including Open Catalyst 2020 (OC20) (Chanus-
sot et al., 2020), QM9 (Ramakrishnan et al., 2014), and MD17 (Chmiela et al., 2017). Baseline
methods include PPGN (Maron et al., 2019), SchNet (Schütt et al., 2017), PhysNet (Unke & Meuwly,
2019), Cormorant (Anderson et al., 2019), PaiNN (Schütt et al., 2021), NequIP (Batzner et al., 2021),
MGCN (Lu et al., 2019), DimeNet (Klicpera et al., 2020b), DimeNet++ (Klicpera et al., 2020a),
GemNet (Klicpera et al., 2021), CGCNN (Xie & Grossman, 2018), and sGDML (Chmiela et al.,
2018). Detailed configurations of all the models used in the following sections are provided in the
supplementary material. Unless otherwise specified, for all the baseline methods, we report the results
taken from the referred papers or provided by the original authors. For the SphereNet, all models are
trained using the Adam optimizer (Kingma & Ba, 2014). The optimal hyperparameters are obtained
by grid search. Network configurations and search space for all models are provided in Appendix D.
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Table 1: Comparisons between SphereNet and other models on IS2RE in terms of energy MAE and
the percentage of EwT of the ground truth energy. Results reported for models trained on the All
training dataset. The best results are shown in bold.

Energy MAE [eV] ↓ EwT ↑
Model ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

CGCNN 0.6203 0.7426 0.6001 0.6708 0.6585 3.36% 2.11% 3.53% 2.29% 2.82%
SchNet 0.6465 0.7074 0.6475 0.6626 0.6660 2.96% 2.22% 3.03% 2.38% 2.65%
DimeNet++ 0.5636 0.7127 0.5612 0.6492 0.6217 4.25% 2.48% 4.40% 2.56% 3.42%
GemNet-T 0.5561 0.7342 0.5659 0.6964 0.6382 4.51% 2.24% 4.37% 2.38% 3.38%
SphereNet 0.5632 0.6682 0.5590 0.6190 0.6024 4.56% 2.70% 4.59% 2.70% 3.64%

6.2 OC20

The Open Catalyst 2020 (OC20) dataset is a newly released large-scale dataset for catalyst discovery
and optimization (Chanussot et al., 2020). It comprises millions of DFT relaxations across huge
chemical structure space such that machine learning models can be fully trained. We focus on the
IS2RE task in this work, and description of the data is provided in Appendix E. Results for CGCNN,
SchNet, and DimeNet++ are provided in Chanussot et al. (2020). The original GemNet paper does
not contain results on the OC20 dataset, We use the publicly available code from the OC Project
website1 to produce results for GemNet-T. We report evaluation results of fixed epochs for SphereNet.
Following a setting in Chanussot et al. (2020), we use the direct approach and all the training data
for training models. The used metrics are the energy MAE and the percentage of Energies within
a Threshold (EwT) of the ground truth energy. Table 1 shows that the SphereNet achieves the best
performance on 3 out of 4 splits and the average in terms of energy MAE. For EwT, SphereNet is the
best on all the 4 splits. Specifically, it reduces the average energy MAE by 0.019, which is 3.10% of
the second best model. In addition, it improves the average EwT from 3.42% to 3.64%, which is a
large margin considering the inherently low EwT values.

Notably, ForceNet (Hu et al., 2021) and GemNet (Klicpera et al., 2021) are recently proposed for
quantum system learning. A prominent advantage for ForceNet is its high efficiency and scalability
to large molecules. ForceNet focuses on S2EF thus there are no original results for the IS2RE task.
However, DimeNet++ is slightly better than ForceNet in terms of performance, and our SphereNet
outperforms DimeNet++ significantly. GemNet has two variants GemNet-T and GemNet-Q. GemNet-
T considers distance and angle information as input, and contains an effective architecture with
novel network components, such as bilinear layers and scaling factors. We can see GemNet-T is
similar as DimeNet++ in terms of performance. GemNet-Q is claimed to be able to capture universal
representations of molecules. However, it considers edge-base 2-hop information and the time
complexity is extremely high. It may not be configured properly on the large catalyst molecules.

6.3 QM9

We apply the SphereNet to the QM9 dataset, which is widely used for predicting various properties
of molecules. It consists organic molecules composed of up to 9 heavy atoms. Thus, this test can
examine the power of the SphereNet for similar quantum chemistry systems. The dataset is original
split into three sets, where the training set contains 110,000, the validation set contains 10,000, and
the test set contains 10,831 molecules. For energy-related properties, the training processes use the
unit eV. All hyperparameters are tuned on the validation set and applied to the test set. We compare
our SphereNet with baselines using mean absolute error (MAE) for each property and the overall
mean standarized MAE (std. MAE) for all the 12 properties. The comparison results are summarized
in Table 2. SphereNets achieves best performance on 5 properties and the second best performance
on 3 properties. It also improves the overall mean std. MAE of the QM9 dataset from 0.98 to 0.91
and sets the new state of the art. Notably, the most recent method PaiNN uses the same data splits
as SphereNet in terms of sample numbers. Its final performance is the average of three different
runs on three random splits. We follow such settings and run SphereNet on four properties including
ϵHOMO, ϵLUMO, U0, and µ. The corresponding results are 22.9 ± 0.2, 18.8 ± 0.2, 6.28 ± 0.05, and
0.0243± 0.00, respectively. It is obvious that these results are highly close to those in Table 2, thus,
we can draw consistent conclusions.

1https://github.com/Open-Catalyst-Project/ocp
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Table 2: Comparisons between SphereNet and other models in terms of MAE and the overall mean
std. MAE on QM9. ‘-’ denotes no results are reported in the referred papers for the corresponding
properties. The best results are shown in bold and the second best results are shown with underlines.

Property Unit PPGN SchNet PhysNet Cormorant MGCN DimeNet DimeNet++ PaiNN SphereNet
µ D 0.047 0.033 0.0529 0.13 0.0560 0.0286 0.0297 0.012 0.0245
α a0

3 0.131 0.235 0.0615 0.092 0.0300 0.0469 0.0435 0.045 0.0449
ϵHOMO meV 40.3 41 32.9 36 42.1 27.8 24.6 27.6 22.8
ϵLUMO meV 32.7 34 24.7 36 57.4 19.7 19.5 20.4 18.9
∆ϵ meV 60.0 63 42.5 60 64.2 34.8 32.6 45.7 31.1〈
R2

〉
a0

2 0.592 0.073 0.765 0.673 0.110 0.331 0.331 0.066 0.268
ZPVE meV 3.12 1.7 1.39 1.98 1.12 1.29 1.21 1.28 1.12
U0 meV 36.8 14 8.15 28 12.9 8.02 6.32 5.85 6.26
U meV 36.8 19 8.34 - 14.4 7.89 6.28 5.83 6.36
H meV 36.3 14 8.42 - 14.6 8.11 6.53 5.98 6.33
G meV 36.4 14 9.40 - 16.2 8.98 7.56 7.35 7.78
cv

cal
mol K 0.055 0.033 0.0280 0.031 0.0380 0.0249 0.0230 0.024 0.0215

std. MAE % 1.84 1.76 1.37 2.14 1.86 1.05 0.98 1.01 0.91

Table 3: Comparisons between SphereNets and other models in terms MAE of forces on MD17.
WoFE indicates weight of force over energy in loss functions. Results of all baseline models are
directed taken or adapted (if the unit varies) from the original papers, and SphereNet uses two WoFEs
in line with the original papers of different baselines for fair comparisons. The best results are shown
in bold and the second best results are shown with underlines.

WoFE = 100 WoFE = 1000

Molecule sGDML SchNet DimeNet SphereNet NequIP GemNet-T GemNet-Q SphereNet

Aspirin 0.68 1.35 0.499 0.430 0.353 0.220 0.217 0.209
Benzene 0.20 0.31 0.187 0.178 0.186 0.145 0.145 0.147
Ethanol 0.33 0.39 0.230 0.208 0.204 0.086 0.088 0.091
Malonaldehyde 0.41 0.66 0.383 0.340 0.328 0.155 0.160 0.172
Naphthalene 0.11 0.58 0.215 0.178 0.105 0.055 0.051 0.048
Salicylic acid 0.28 0.85 0.374 0.360 0.242 0.127 0.125 0.113
Toluene 0.14 0.57 0.216 0.155 0.102 0.060 0.060 0.054
Uracil 0.24 0.56 0.301 0.267 0.173 0.097 0.104 0.106
std. MAE 1.11 2.38 1.10 0.97 0.79 0.45 0.45 0.44

6.4 MD17

The MD17 dataset is used to examine the expressive power of SphereNet for molecular dynamics
simulations. Following the settings in Schütt et al. (2017); Klicpera et al. (2020b), we train a separate
model for each molecule to predict atomic forces. We use 1000 samples for training, and each of
the eight molecules has both the validation and test sets. Note that all the baseline models employ a
joint loss of forces and conserved energy during training. In the original SchNet (Schütt et al., 2017)
and DimeNet (Klicpera et al., 2020b) papers, the authors set the weight of force over energy (WoFE)
to 100, while the NequIP (Batzner et al., 2021) and GemNet (Klicpera et al., 2021) papers use a
weight of 1000. As the WoFE tends to affect the force prediction significantly, we perform SphereNet
with both WoFE values for fair comparisons. PaiNN (Schütt et al., 2021) uses neither 100 nor 1000
as WoFE, so we do not compare with it on MD17. The results for forces are reported in Table 3.
Note that for Benzene, all models are evaluated on Benzene17, thus, the result for sGDML is 0.20
rather than 0.06 (Benzene18). We can observe from the table that when WoFE is 100 for all models,
SphereNet consistently outperforms SchNet and DimeNet by largin margins. Notably, sGDML is
one of the original work that created the MD17 dataset with carefully-designed features. Compared
with sGDML, SphereNet performs better on four and worse on the other four molecules, which is
similar to DimeNet. One reason is sGDML incorporates molecular symmetries to boost precision,
and different molecules have different symmetries. However, sGDML has poorer generalization
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power to larger datasets without hand-engineered features. In addition, SphereNet achieves much
better overall std. MAE than sGDML. When using the same WoFE that is 1000, SphereNet achieves
similar results with GemNet in spite of that GemNet-T is of high complexity and contains carefully
designed network components for performance boost.

6.5 COMPLETENESS VERSUS EFFICIENCY
Table 4: Comparisons bewtween SMP and Q-MP on MD17
using two backbone networks.

SphereNet Backbone GemNet Backbone

Molecule SMP Q-MP SMP Q-MP

Aspirin 0.209 0.247 0.225 0.231
Benzene 0.147 0.153 0.144 0.149
Ethanol 0.091 0.102 0.089 0.083
Malonaldehyde 0.172 0.168 0.169 0.176
Naphthalene 0.048 0.057 0.063 0.062
Salicylic acid 0.113 0.125 0.111 0.114
Toluene 0.054 0.043 0.052 0.063
Uracil 0.106 0.106 0.098 0.113
Time/Epoch (s) 324 1270 295 1185

The message passing scheme Q-MP
in GemNet represents the edge-based
2-hop geometric message passing and
can generate complete representations
of 3D molecular graphs. We study the
capability and efficiency of the pro-
posed SMP by comparing with Q-MP.
Specifically, We use the same back-
bone network for these two MP meth-
ods for fair comparisons. We exten-
sively use two backbones, which are
the SphereNet backbone introduced in
Sec. 4 and the GemNet backbone pro-
posed in Klicpera et al. (2021). We
conduct experiments on MD17, re-
porting performance and average running time for all the 8 molecules per epoch using the same
computing infrastructure (Nvidia GeForce RTX 2080 TI 11GB). Results are shown in Table 4, from
which we can observe that on either backbone network, SMP achieves very similar results with Q-MP.
However, the time cost is much less than SMP, which indicates it is much more efficient than Q-MP.
Based on analyses in Sec. 3.2, SMP can distinguish almost all molecular structures, and the failure
cases may not exist in nature. Hence, SMP performs similarly with Q-MP even though the latter
is complete theoretically but not scalable in practice. We further compare the efficiency between
SphereNet and other models in terms of parameters and time cost in Appendix F. SphereNet uses
similar computing budget with others but achieves the best performance.

6.6 ABLATION STUDY

Table 5: Comparisons among three message passing strate-
gies on the same SphereNet architecture on the partial MD17
dataset.

Molecule SMP w/o (θ, φ) SMP w/o φ SMP
Ethanol 0.249 0.22 0.208
Malonaldehyde 0.550 0.360 0.340
Naphthalene 0.372 0.205 0.178
Toluene 0.446 0.182 0.155

The proposed SMP considers all the
distance, angle, and torsion, leading
to more powerful data representations.
We investigate contributions of differ-
ent geometries to demonstrate the ad-
vances of our SMP. We remove tor-
sion information from SMP which we
denote as “SMP w/o φ”; we further
remove angle information which we
denote as “SMP w/o (θ, φ)”. The three message passing strategies are integrated to the same architec-
ture with other network parts remaining the same. We evaluate these models on four molecules of
MD17. Table 5 shows that SMP outperforms SMP w/o φ, and SMP w/o φ outperforms “SMP w/o (θ,
φ)”. These results demonstrate the effectiveness of angle and torsion information used in the SMP.
The best performance of SMP further reveals that SMP represents an accurate scheme for 3D graphs.
In addition, we provide visualization results for SphereNet filters in Appendix G to further show that
all the distance, angle, and torsion information determine the structural semantics of filters.

7 CONCLUSIONS

3D information is important for molecules but there lacks a principled message passing framework to
consider it. We first propose the spherical message passing as a unifying and efficient scheme that can
achieve approximately complete representations of molecules without increasing computing budget.
Based on SMP and meaningful physical representations, SphereNet is presented, and experiments on
various types of datasets demonstrates its capability, efficiency, and scalibility.
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REPRODUCIBILITY STATEMENT

Detailed experimental setup is provided in Appendix D. Implementation hyper-parameters of
SphereNet on all the three datasets OC20, QM9, and MD17 are given in Table 6, Table 7, and
Table 8, respectively. Code is integrated in the DIG library (Liu et al., 2021) and available at
https://github.com/divelab/DIG.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation grant IIS-1908198 and National
Institutes of Health grant 1R21NS102828. We thank Hannes Stärk for his valuable suggestions and
discussions when developing the methods.

REFERENCES

Brandon Anderson, Truong-Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. In Proceedings of the 33st International Conference on Neural Information Processing
Systems, pp. 14537–14546, 2019.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom: Energy-annotated molecular conformations
for property prediction and molecular generation. arXiv preprint arXiv:2006.05531, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Simon Batzner, Tess E Smidt, Lixin Sun, Jonathan P Mailoa, Mordechai Kornbluth, Nicola Molinari,
and Boris Kozinsky. Se (3)-equivariant graph neural networks for data-efficient and accurate
interatomic potentials. arXiv preprint arXiv:2101.03164, 2021.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with message-passing. arXiv preprint arXiv:2006.15107, 2020.

Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. Graph attention convolution
for point cloud semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10296–10305, 2019a.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12,
2019b.

Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei Wang, Lei Cai, and
Shuiwang Ji. Advanced graph and sequence neural networks for molecular property prediction
and drug discovery. arXiv preprint arXiv:2012.01981, 2020.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning archi-
tecture for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

13



Published as a conference paper at ICLR 2022

Spherical Message Passing for 3D Molecular Graphs: Appendix
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Figure 4: Architecture of SphereNet. LB2 denotes a linear block with two linear layers, σ(LB)
denotes a linear layer followed by an activation function, ∥ denotes concatenation, and ⊙ denotes
element-wise multiplication. Each LB2 aims at canceling bottlenecks by performing downprojection,
followed by upprojection. Hence, it is related to three hyperparameters; these are, input embedding
size, intermediate size, and output embedding size. Each linear block LB is related to hyperparameters
including input embedding size and output embedding size. Description of each block is in Sec. B.

A UPDATE FUNCTIONS IN SMP
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Figure 5: Illustrations of the functions ϕe (a) and
ϕv (b).

The function ϕe is applied to each edge k and
outputs the updated edge vector e′k. The indices
of the input geometries to ϕe are illustrated in
Fig. 5 (a). Correspondingly, the inputs include
the old edge vector ek, the receiver node vector
vrk , the sender node vector vsk , the set of edges
Esk that point to the node sk , and the 3D posi-
tion information for all the nodes connected by
the edge k and edges in Esk with the index set
as rk ∪sk ∪Nsk . The function ρp→e aggregates
3D information from these nodes to update the
edge k. The function ϕv is used for per-node
update and generates the new node vector v′

i for
each node i. An illustration of the indices of the
inputs to ϕv is provided in Fig. 5 (b). The inputs include the old node vector vi, the set of edges E′

i
that point to the node i, and 3D information for all the related nodes (the index set is i ∪ Ni). The
functions ρe→v is applied to aggregate the input edge features for updating the node i. The function
ϕu is used to update the global graph feature, while the function ρv→u aggregates information from
all the edge features.

The three information update functions ϕe, ϕv , and ϕu can be implemented in different ways, such as
using neural networks and mathematical operations. In SMP, the 3D information in P is converted and
incorporated to update each message ek. Hence, SMP uses ρp→e compute position representations
for edges. Note that as absolute Cartesian coordinates stored in P are not invariant to translation and
rotation, they are not used as immediate inputs to machine learning models. The position aggregation
function can be flexibly adapted to generate invariant representations. For example, ρp→e in Eq. (1)
can be adapted to a spherical Bessel basis function.

1



Published as a conference paper at ICLR 2022

B INFORMATION UPDATE AND ARCHITECTURE OF SPHERENET

we assume the message ek for the edge k is the center message for update. The input block generates
the initial message for the edge k, and takes only the distance representation Ψ(d) as the input.
Each interaction block updates the message for the edge k. The inputs include messages for all the
neighboring edges, and all three representations, including Ψ(d, θ, φ), Ψ(d, θ), and Ψ(d) based on
the edge k and its neighboring edges. The output block first takes both the distance representation
and the current message for k as inputs. Then the feature vector of the receiver atom for the edge k
(atom rk in Fig. 2 and Eq. (1)) is obtained by aggregating all the messages pointing to it, where other
messages have a similar update process as ek.

Detailed architecture of SphereNet is provided in Fig. 4. Specifically, SphereNet is composed of an
input block, followed by multiple interaction blocks and output blocks. For the purpose of simplicity,
the architecture is explained by updating the receiver note rk of the message ek, as described in
Eq. (1) and Sec. 4 in main paper.
Input Block aims at constructing initial message ek for the edge k. Inputs include the distance
representation Ψ(d) for edge k, initial node embeddings vsk , vrk for the sender node sk, and the
receiver node rk. The distance information is encoded by using a LB2 block.
Interaction Block updates the message ek with incorporating all the three physical representations.
Input 3D information includes the distance embedding Ψ(d), the angle Ψ(d, θ), and the torsion
Ψ(d, θ, φ). The initial embedding sizes for them are L, N × L, and N2 × L, respectively. Other
inputs are old message ek and the set of messages Esk that point to the sender node sk. Similar to
the input block, each type of 3D information is encoded by using a block LB2. Note that each ⊙
indicates the element-wise multiplication between the corresponding 3D information represented
as a vector and each message in the set Esk . Thus, each neighboring message of ek is gated by the
encoded 3D information. The

∑
aggregates all the gated messages in Esk to a vector, which is added

to the transformation of the old message ek as the updated message e′k. The transformation branch
for old message ek is composed of several nonlinear layers and residual blocks, as shown in Fig. 4.
Output Block aggregates all the incoming messages to update the feature for node rk. Each incoming
message has the same update process as ek by interaction blocks. For the purpose of clear illustration,
we use e′k to represent each updated incoming message, which is further gated by the distance
representation vector Ψ(d).

C RELATIONS WITH PRIOR MESSAGE PASSING METHODS

Our SMP is a specific architecture for 3D graphs and is formally defined in Eq. (1). Especially, the
message passing schemes used in some existing models can be viewed as special cases of SMP as
they only encode partial 3D information. In this section, we clearly give the used functions as well as
their inputs for each existing method. Basically, we describe how each method realizes Eq. (1).

C.1 SCHNET, SCHÜTT ET AL. (2017)

In SchNet, the used aggregation function to encode 3D position information is ρp→e ({rh}h=rk∪sk) =
Ψ (∥rrk − rsk∥), which converts the position information to an embedding of distance
with radial basis functions. In addition to the ρp→e function, the ϕe function used is
NN (NN (vrk)⊙ NN (Ψ (∥rrk − rsk∥))), where NN denotes a neural network and ⊙ denotes
the element-wise multiplication. The ρe→v function is

∑
(e′

k,rk,sk)∈E′
i
e′k. The ϕv function is

vi +
∑

(e′
k,rk,sk)∈E′

i
e′k. The global feature u is updated based on the final node features V T and the
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function is ϕu =
∑

i=1:n NN
(
vT
i

)
. Formally, the update process is expressed as

e′k =ϕe (vrk , ρ
p→e ({rh}h=rk∪sk))

=ϕe (vrk ,Ψ(∥rsk − rrk∥))
=NN (NN (vrk)⊙ NN (Ψ (∥rrk − rsk∥))) ,

v′
i =ϕv (vi, ρ

e→v (E′
i))

=ϕv

vi,
∑

(e′
k,rk,sk)∈E′

i

e′k


=vi +

∑
(e′

k,rk,sk)∈E′
i

e′k,

u =ϕu
(
ρv→u

(
V T

))
=

∑
i=1:n

NN
(
vT
i

)
.

(2)

C.2 PHYSNET, UNKE & MEUWLY (2019)

PhysNet uses distance between atoms as an important feature and proposes more powerful neural net-
works for chemical applications. The position aggregation function is ρp→e ({rh}h=rk∪sk) =
Ψ (∥rrk − rsk∥), where Ψ is any radial basis function with a smooth cutoff. For the in-
formation update functions, the ϕe function is σ (W1)σ (vsk) ⊙ W2Ψ(∥rrk − rsk∥), the ϕv

function is NN
(
W3 ⊙ vi + NN

(
σ (W4)σ (vi) +

∑
(e′

k,rk,sk)∈E′
i
e′k

))
and the ϕu function is

u+
∑

i=1:n NN (v′
i). Here NN denotes a neural network, W1,W2,W3,W4 are learnable weight

matrices, σ is an activate function, and ⊙ denotes the element-wise multiplication. PhysNet is
expressed as

e′k =ϕe (vsk , ρ
p→e ({rh}h=rk∪sk))

=ϕe (vsk ,Ψ(∥rrk − rsk∥))
=σ (W1)σ (vsk)⊙W2Ψ(∥rrk − rsk∥) ,

v′
i =ϕv (vi, ρ

e→v (E′
i))

=ϕv

vi,
∑

(e′
k,rk,sk)∈E′

i

e′k


=NN

W3 ⊙ vi + NN

σ (W4)σ (vi) +
∑

(e′
k,rk,sk)∈E′

i

e′k


 ,

u′ =ϕu (ρv→u (V ′) ,u)

=u+
∑
i=1:n

NN (v′
i) .

(3)

C.3 DIMENET, KLICPERA ET AL. (2020B)

DimeNet explicitly considers distances between atoms and directions of directed edges. The ag-
gregation functions on the position information is ρp→e = (Ψ (d) ∥Ψ(d, θ)), where ∥ denotes
concatenation, Ψ(d) and Ψ(d, θ) are the same basis functions used in SphereNet as introduced
in Sec. 4. Specifically, Ψ(d) denotes the representation of the distance based on spherical Bessel
function, and Ψ(d, θ) denotes the representation of distance and angle based on spherical Bessel
function and spherical harmonics. For other functions, the ϕe function used is e′k =

(
e′k,1∥e′k,2

)
with

e′k,1 = NN
(
ek,1 + NN

(
σW1ek,1 +

∑
(ej ,rj ,sj)∈Esk

W2Ψ(dj , θjk) (W3Ψ(dj)⊙ σW4ej,1)
))
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and e′k,2 = W5Ψ(dj) ⊙ e′k,1, where NN denotes a neural network, W1,W2,W3,W4,W5 are
different weight matrices, and σ is an activation function. The ρe→v function is

∑
(e′

k,rk,sk)∈E′
i
e′k,2

and the ϕv is NN
(∑

(e′
k,rk,sk)∈E′

i
e′k,2

)
. The ρv→u is

∑
i=1:n v

′
i and the ϕu is u+

∑
i=1:n v

′
i. Note

that ρp→v , ρp→u, ρe→u functions are not required in DimeNet. The whole model is expressed as

ek =(ek,1∥ek,2) ,
ρp→e =(Ψ (d) ∥Ψ(d, θ)) ,

e′k,1 =ϕe
(
ek, Esk , ρ

p→e
(
{rh}h=rk∪sk∪Nsk

))
=NN

ek,1 + NN

σW1ek,1 +
∑

(ej ,rj ,sj)∈Esk

W2Ψ(dj , θjk) (W3Ψ(dj)⊙ σW4ej,1)

 ,

e′k,2 =W5Ψ(dj)⊙ e′k,1,

v′
i =ϕv (ρe→v (E′

i))

=NN

 ∑
(e′

k,rk,sk)∈E′
i

e′k,2

 ,

u′ =ϕu (u, ρv→u (V ′))

=u+
∑
i=1:n

v′
i.

(4)

D EXPERIMENTAL SETUP

For all the models used in three datasets, we set input embedding size = 256 and output embedding
size = 64 for both LB2 and LB blocks. For each separate model, we first perform warmup on initial
learning rate. Then two learning rate strategies, including ReduceLROnPlateau and StepLR, are used
for training. For StepLR, the learning rate is decayed by the decay ratio every fixed epochs represented
as step size. We do not use weight decay or dropout for all models. Some hyperparameters are fixed
values, and some are tuned by grid search. Values/search space of hyperparameters for OC20, QM9,
and MD17 are provided in Table 6, Table 7, and Table 8, respectively. Optimized hyperparameters
are tuned on validation sets and applied to test sets for QM9 and MD17. For OC20, optimized
hyperparameters are obtained on the ID split within max epochs, and then applied to the other three
splits. Pytorch is used to implement all methods. For QM9 and MD17 datasets, all models are trained
using one NVIDIA GeForce RTX 2080 Ti 11GB GPU. For the OC20 dataset, all models are trained
using four NVIDIA RTX A6000 48GB GPUs.

E OC20 DATA DESCRIPTION

There exist three tasks including S2EF, IS2RS, and IS2RE. In this work, we focus on IS2RE
that predicts structure’s energy in the relaxed state. It is the most common task in catalysis as
relaxed energies usually influence the catalyst activity. The dataset for IS2RE is originally split into
training/validation/test sets. There are 460,318 structures in the training dataset in total. The test
label is not publicly available. Performance is evaluated on the validation set, which has four splits
including In Domain (ID), Out of Domain Adsorbates (OOD Ads), Out of Domain catalysts (OOD
cat), and Out of Domain Adsorbates and catalysts (OOD Both), where numbers of structures are
24,943, 24,961, 24,963, 24,987, respectively. The average number of atoms per structure is 77.75.

F EFFICIENCY STUDY OF SPHERENET

We study the efficiency of SphereNet by comparing with other models regarding number of parameters
and time cost per epoch using the same computing infrastructure (Nvidia GeForce RTX 2080 TI
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Table 6: Values/search space for hyperparameters on OC20.

Hyperparameters Values/search space
Interaction block - distance LB2 intermediate size 8
Interaction block - angle LB2 intermediate size 8
Interaction block - torsion LB2 intermediate size 8
# of interaction blocks 3, 4
# of RBFs N 6
# of spherical harmonics L 3, 5, 7
Cutoff distance 5, 6
Batch size 16, 32
Initial learning rate 1e-4, 5e-4, 1e-3
Learning rate strategy ReduceLROnPlateau, StepLR
Learning rate decay ratio (for StepLR) 0.4, 0.5, 0.6
Learning rate milestones (for StepLR) 4, 7, 10, 12, 14
Learning rate warmup epochs 2
Learning rate warmup factor 0.2
Max # of Epochs 20

Table 7: Values/search space for hyperparameters on QM9.

Hyperparameters Values/search space
Interaction block - distance LB2 intermediate size 4, 8, 16
Interaction block - angle LB2 intermediate size 4, 8, 16
Interaction block - torsion LB2 intermediate size 4, 8, 16
# of interaction blocks 3, 4, 5
# of RBFs N 6
# of spherical harmonics L 3, 5, 7
Cutoff distance 4, 5, 6
Batch size 32, 64
Initial learning rate 1e-4, 5e-4, 1e-3
Learning rate strategy StepLR
Learning rate decay ratio 0.4, 0.5, 0.6
Learning rate step size 50, 100, 150
Max # of Epochs 500, 1000

11GB). Experiments are conducted on the property U0 of QM9 and results are shown in Table 9.
It is obvious that SphereNet uses similar computational resources as DimeNet++ and GemNet-T,
and is much more efficient than DimeNet. The main reason could be we develop an efficient way to
compute torsion, as introduced in Sec. 3 and Fig. 2 (b). Moreover, GemNet-Q cannot run on QM9
using the infrastructure as mentioned above.
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Table 8: Values/search space for hyperparameters on MD17.

Hyperparameters Values/search space
Interaction block - distance LB2 intermediate size 4, 8, 16
Interaction block - angle LB2 intermediate size 4, 8, 16
Interaction block - torsion LB2 intermediate size 4, 8, 16
# of interaction blocks 2, 3, 4, 5
# of RBFs N 6
# of spherical harmonics L 3, 5, 7
Cutoff distance 4, 5, 6
Batch size 1, 2, 4, 16, 32
Initial learning rate 1e-4, 5e-4, 1e-3
Learning rate strategy StepLR
Learning rate decay ratio 0.4, 0.5, 0.6
Learning rate step size 50, 100, 200
Max # of Epochs 500, 1000, 2000

Table 9: Efficiency comparisons between SphereNet and other models in terms of number of
parameters and time cost per epoch using the same infrastructure.

SchNet DimeNet DimeNet++ GemNet-T SphereNet
#Param. 185,153 2100,070 1887,110 2040,194 1898,566
Time (s) 100 840 240 290 340

G SPHERENET FILTER VISUALIZATION

We visualize SphereNet filters from a learned SphereNet model. Specifically, we port learned weights
for the block LB2 after the torsion embedding Ψ(d, θ, φ) in Fig. 4. For each location represented
by a tuple (d, θ, φ), the initial embedding size is N2 × L. The computation for the above LB2 is
W1 (W2Ψ(d, θ, φ)), which results in the new embedding size of 64 for each location (d, θ, φ). We
then perform sampling on locations in 3D space for visualizing weights as SphereNet filters. The
visualization results are provided in Fig. 6. We set sampling rate in the torsion direction to be π/4,
thus, there are eight samples in the torsion direction. There are totally 64 elements for each location,
and we randomly pick 6 elements. Apparently, among the distance, angle and torsion, considering
any one when fixing the other two, the structural value of filters will be different when the one of
interest changes. It essentially shows that all the distance, angle, and torsion information determine
the structural semantics of filters. This further demonstrates that SMP enables the learning of different
3D information for improved representations.
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Figure 6: Visualization of six SphereNet filters. Each row corresponds to a filter with torsion angles
0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, and 7π/4 from left to right.
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