
An Interpretability-augmented Genetic Expert for
Deep Molecular Optimization

Pierre Wüthrich
Elix, Inc.

Tokyo, Japan
pierre.wuthrich@elix-inc.com

Jun Jin Choong
Elix, Inc.

Tokyo, Japan
junjin.choong@elix-inc.com

Shinya Yuki
Elix, Inc.

Tokyo, Japan
shinya.yuki@elix-inc.com

Abstract

The recently proposed Genetic expert guided learning (GEGL) framework has
demonstrated impressive performances on several de novo molecular design tasks.
Despite the displayed state-of-the art results, the proposed system relies on an
expert-designed Genetic expert. Although hand-crafted experts allow to navigate
the chemical space efficiently, designing such experts requires a significant amount
of effort and might contain inherent biases which can potentially slow down conver-
gence or even lead to sub-optimal solutions. In this research, we propose a novel
genetic expert named InFrag which is free of design rules and can generate new
molecules by combining promising molecular fragments. Fragments are obtained
by using an additional graph convolutional neural network which computes attribu-
tions for each atom for a given molecule. Molecular substructures which contribute
positively to the task score are kept and combined to propose novel molecules.
We experimentally demonstrate that, within the GEGL framework, our proposed
attribution-based genetic expert is either competitive or outperforms the original
expert-designed genetic expert on goal-directed optimization tasks. When limiting
the number of optimization rounds to one and three rounds, a performance increase
of approximately 43% and 20% respectively is observed compared to the baseline
genetic expert.

1 Introduction

The ability to discover and design de novo molecules with desired properties is of great interest in
a multiple applications areas ranging from drug discovery [1] to materials engineering [2, 3]. This
high-dimensional optimization task can be addressed via the inverse molecular design paradigm [2]
which tries to find suitable candidate compounds given some target properties. This task is non-
trivial considering the size of the molecular space; the drug-like chemical space alone is estimated
to be about 1060 [4]. To tackle this challenge, one has to design an optimization system that is
computationally tractable and feasible. At a higher level of abstraction, this optimization problem can
be cast as a search/discovery problem. Discoveries in the chemical sciences can be broadly divided
into three classes according to Coley et al. [5]. The first class of discoveries is related to physical
matter, which encompasses most drug discovery or material engineering efforts where the final
objective is to identify molecules with desired target properties. In the case of drug discovery, such
compounds are potentially used as part of a therapeutic. The second class represents the discovery
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Figure 1: Complete depiction of the eGEGL framework. The original framework is enhanced with a
fragment-based genetic expert denoted as InFrag (depicted in green dotted box). InFrag consists of
a GCN model which creates attribution for queried molecules from which fragments are extracted.
These fragments are then randomly recombined to obtain novel candidate molecules. In addition, we
include the possibility to leverage several experts via a chosen sampling strategy R which determines
how the allocate the sampling budget amongst all experts.

of better processes such as chemical reactions or conditions. Improvements in this area are seen as
an important step to transition from an in silico to a real-world experimental phase. The final class
contains the generative or predictive models which are the core engines driving the design choices
behind the generation of de novo molecules.

We focus our efforts towards modeling de novo molecules. The process of seeking a de novo design
can be broken into three distinct parts: (1) generating molecules, (2) scoring these molecules with a
black-box fitness function, and (3) optimizing the generative model with respect to the computed
scores [6]. Each one of these parts has its own set of challenges and pitfalls. For instance, the process
of generating de novo molecules requires models that are capable of ensuring structural fidelity (i.e.,
generated molecules should be sensible) and structural validity (i.e., molecules are stable). The
scoring function plays an important role in guiding the model during the optimization process. A
trivial scoring function might explore undesired or obvious parts of the chemical space. In contrast,
an over-complicated scoring function, in terms of imposed constraints, could cause instability during
optimization as the model might not be able find suitable solutions. Finally, the optimization process
should inherently reduce the training complexity from an enormous search space to circumvent the
difficulty of an intractable computation problem.

2 Enhanced Genetic Expert Guided Learning

Ahn et al. [7] recently introduced a novel framework called Genetic Expert Guided Learning (GEGL)
which combines meta-heuristic optimization with reinforcement learning-like optimization. GEGL
has demonstrated strong capabilities and is at the time of writing the state-of-the-art in deep molecular
optimization. The framework is composed of 4 distinct components: a neural apprentice, two reward
priority queues and a genetic expert. We refer readers to the original work by Ahn et al. [7] for more
details.

Building upon the existing GEGL framework, we propose an expert-free genetic expert called
InFrag which is able to replace the original hand-crafted graph-based genetic expert[8]. InFrag first
extracts fragments from arbitrary molecules based on the computed attribution for each involved
atom. Fragments from high-scoring molecules contributing positively to the corresponding molecular
scores are kept in memory and randomly recombined to propose novel candidate molecules. We
note that the expert can be integrated into the GEGL framework by either replacing or, alternatively,
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Figure 2: Generation of fragments using interpretability methods. A molecule is first processed to
extract the adjacency matrix and node features. A graph convolutional network is used to calculate the
last latent node embedding and final dense layer weights to compute the atom-wise class activation
maps. The molecule is then fragmented along bonds where the sign of the attributions are opposite to
each other. Only fragments contributing positively to the score, as determined by taking the sum over
all involved atoms, are kept (depicted by the green arrow) and considered in further steps.

combined with other genetic experts. We denote the complete framework as eGEGL for enhanced
GEGL. The extended framework is depicted in Figure 1.

2.1 Molecular Representation

Molecules are represented as undirected graphs G = (V, E) with a total number of N nodes vi ∈ V
representing the atoms and edges between nodes denoted as ei,j ∈ E representing the bonds.
Furthermore, we extract the binary Adjacency matrix A ∈ RN×N from the edges. Each node is
represented as a 74-dimensional vector ni ∈ R74 containing multiple distinct features.

2.2 Attribution-based Fragment Generation

Understanding which substructures of a molecule contributes positively towards its property score
is crucial to guide design choices. Motivated by this insight, we propose to leverage an attribution-
based model to reason between model input features and predicted scores to extract high-rewarding
molecular substructures. However, it is generally impossible to compute the attributions from the
scoring functions used to evaluate the fitness of molecules due to their black-box nature. To overcome
this issue, we train a pseudo-scoring function model that is encouraged to imitate the original black-
box scoring function of the optimization task, allowing us to obtain the desired attributions through
this surrogate model. We implement a Graph Convolutional Network (GCN) [9] that takes the
above-mentioned node features and adjacency matrix as inputs and is trained to predict task scores.
The model is made of 5 blocks each with a graph convolutional layer, layer-normalization layer and a
rectified linear unit (ReLU) activation layer. The loss is calculated as the mean squared error (MSE)
between the ‘true‘ task score as computed by the scoring function and the predicted score by our
model. We pretrain the model on the same dataset as the neural apprentice in the original GEGL
work.

To generate attributions, we use the Class Activation Maps (CAM) [10] method due to its simplicity
and performance. More precisely, we compute the atom-wise attribution via

attribution(atomi) = wT
out · hi, (1)

where wout corresponds to the weights of the final dense layer of the GCN after the average pooling
layer and hi represents the latent node features of the node corresponding to atom i just before the
pooling layer. Sanchez-Lengeling et al. [11] demonstrated that CAM is able to perform relatively
well, especially when combined with GCN, compared to other interpretability methods in the
context of graph neural networks [11]. We note that although we did not experiment with other
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Figure 3: Recombination method for high-rewarding fragments. Fragments are sampled from the
fragment library which contains high-rewarding fragments only. The fragments are first translated
into their respective SELFIES representation, randomly shuffled and recombined. The final SELFIES
token string is translated back to a SMILES representation. The resulting string is the new candidate
child molecule resulting from the crossover operation. Please note that the proposed crossover rule is
highly general and unbiased as it makes no assumptions about the used molecular representation.

attribution methods and graph neural networks, other methods and models can be used to generate
the attributions.

Fragments of interest are identified by comparing the sign of the attribution for each atom involved in
a given bond. In the case where the signs are found to be opposite, we fragment the molecule along
that bond. To preserve complex substructures, we only consider and fragment single bonds and bonds
which are not aromatic (as determined by RDKIT [12]). We then proceed to sum up the individual
attributions of all the atoms in the fragment. If the sum is greater than 0.0, we consider the fragment
to contribute positively to the predicted score and keep that fragment. Otherwise, the fragment is
discarded.

Our objective is to utilize and recombine fragments from high-rewarding molecules only. After
processing all of the queried molecules as described above, we end up with fragments contributing
positively to the predicted score regardless of its value. In order to sort and only consider high-
rewarding fragments, we associate each fragment with the true task score from the black-box scoring
function of the molecule it originated from. All fragments are added to a data-structure called the
fragment library. The fragment library allows to memorize the best scoring fragments and we impose
that fragments in the library to be unique. When a new fragment is being added, we first check
whether the fragment is already present in memory. We set the score associated with the fragment
to the maximum score between the original in-memory fragment and the new duplicate fragment
should it already be present. We apply selection pressure on the fragment library by limiting it’s
memory size to 1, 000 fragments. This operation allows to remove low-rewarding fragments and
therefore ensures that only high-rewarding fragments are used during future optimization rounds.
The complete process of fragment generation is graphically depicted in Figure 2.

Like the neural apprentice, the GCN model is trained every epoch such that it can reason over newly
discovered and potentially better molecules.

2.3 Fragment recombination

To generate novel candidate molecules with InFrag, we first collect all fragments of the fragment
library which are stored in SMILES format. New molecules are generated by randomly sampling 2
to 5 fragments and translating the sampled fragments into a SELFIES representation [13]. SELFIES
representations posses the convenient property to always be valid, making their use very convenient
for the fragment-crossover operation. The sampled fragments are randomly shuffled and combined
to obtain a novel candidate SELFIES string from this fragment-crossover procedure. With some
predefined probability, we furthermore apply a mutation operation on the obtained string in order to
increase exploration and diversity of the generated molecules. Mutations include deletion, insertion
or exchange of one of the SELFIES token on the currently operated string. Each type of mutation has
the same probability of occurrence. This generative process is repeated until the number of desired
molecules is reached. We note that the SELFIES representation makes use of an internal state when
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translating from the conventional SMILES representation. This implies that one might require a
more complex recombination strategy compared to the one described above to obtain better crossover
molecules from the sampled fragments. We empirically found that the simple recombination strategy
as described above performs competitively, regardless of the fact that the number of atoms might not
necessarily be preserved during the crossover operation as illustrated in Figure 3. This representation-
agnostic recombination strategy could be used in other problem settings since no assumptions are
made about the task or the underlying representation. In addition, it does not require us to define
any recombination rules and include expert knowledge on how fragments should relate to each other.
This minimizes the potential for biases introduced by such expert rules.

3 Results and Discussion

3.1 Baselines and benchmarks

In this section, we report performances of the enhanced framework against the original framework.
We also include comparisons to a baseline consisting of a simplified version of the STONED genetic
operators proposed by Nigam et al. [14] which we will denote as simplified-STONED henceforth.
More precisely, we limited the number of sampled chemical paths between any two parent molecules
to a single one for this genetic expert. For other tasks, we include and compare against results
obtained for selected baselines as reported in the original GEGL paper unless noted otherwise.

As for benchmarks, we follow the original GEGL work and compare the trained models on the
penalized logp task and a subset goal-directed Guacamol benchmarks which we will describe in more
details below. Furthermore, we used the same pretrained neural apprentice LSTM model as described
in the original work.

Penalized LogP is a standard benchmark to evaluate de novo generative methods. The objective is to
maximize the penalized octanol-water partition coefficient score defined as:

PenalizedLogP (x) = LogP (x)− SyntheticAccessibility(x)−RingPenalty(x) (2)

where LogP is the unpenalized octanol-water partition coefficient[15], SyntheticAccessibility is a
penalty term accounting for synthesizability [16] and RingPenalty is a penalty for rings with a size
larger than 6. We further impose a constraint onto the generative model by limiting the number of
SMILES characters to 81 following previous work.

Goal-directed Guacamol benchmarks are a set of 20 benchmarks proposed by Brown et al. [17]
which were specifically designed for comparing generative models. The benchmarks evaluate a set of
molecules to account for molecular diversity. More specifically and following the notation in Ahn
et al.[7], the final benchmark score for a given molecule set X is computed as

Guacamol(X) :=
∑
S∈Q

S∑
s=1

r(xΠ(s))

S|Q|
for s = 1, ..., |X| − 1 (3)

where Q is a list of integers and Π is a permutation function which ensures that the molecules x ∈ X
are sorted in descending order with respect to the evaluated property scores. The goal-directed
benchmarks contain a variety of tasks such as rediscovery, similarity or multi property optimization.
We refer readers to either the original Guacamol or GEGL papers for a more detailed description of
each task type [17, 7]. For the tested tasks, we limit the number of characters to 100 for all generated
SMILES strings.

3.2 Penalized logP task

Table 1 summarizes the mean and standard deviation comparison between several reported baselines
and the enhanced GEGL framework we propose. We ran 5 independent experimental runs for each
of our models where each round consists of 200 optimization rounds following previous work. The
results demonstrate that there is no gain or decrease in performance by swapping out the genetic
expert. This is remarkable because it indicates that expert-designed genetic experts can potentially be
replaced with simpler and bias-free genetic-experts without loss in performance.
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Table 1: PenalizedLogP results. Results are displayed as mean and standard deviation.
Algorithm Objective

JT-VAE[18] 4.90± 0.33
ChemTS[19] 5.60± 0.50
GCPN[20] 7.86± 0.07
GB-GA[8] 15.76± 5.76
DA-GA[21] 20.72± 3.14

GEGL (GB-GA expert)[7] 31.40± 0.00

GEGL (simplified-STONED expert) 31.40± 0.00
GEGL (InFrag expert) 31.40± 0.00

We furthermore note that the InFrag genetic expert is able to extract useful information from the
pretraining phase of the GCN which can be leveraged from the start of the optimization process.
To demonstrate this, we additionally compared the different genetic experts in the setting where
evaluating candidate molecules is assumed to be undesirable due to the required additional efforts.
Concretely, we limit the optimization process to a single and three optimization rounds respectively
and evaluate the generated molecules. As can be seen in Table 2, our InFrag genetic expert is able
to generate higher-rewarding molecules in this setting, even surpassing the JT-VAE and ChemTS
baselines as can be seen from Table 1 and achieving similar results to the reinforcement learning
based GCPN method. These results indicate that our genetic expert is appropriate in settings where
obtaining additional labels for novel candidate molecules is expensive or difficult, as is usually
the case in real-world applications. The obtained results are to be expected as the GCN is able to
leverage the learned representations from the pretraining phase and therefore can reason and propose
high-rewarding novel molecular candidates from the beginning of the optimization process.

Table 2: One- and Three-round PenalizedLogP results. Entries are displayed as mean and standard
deviation.

Algorithm 1-round optimization 3-round optimization

GEGL (GB-GA expert)[7] 5.44± 0.17 7.92± 0.42

GEGL (simplified-STONED expert) 4.29± 0.14 6.82± 0.25
GEGL (InFrag expert) 7.81± 0.61 9.50± 0.24

Improvement over baseline 43.6% 19.9%

3.3 Goal-directed guacamol benchmarks

Finally, we evaluated the proposed enhancements and genetic expert on a subset of the goal-directed
benchmark tasks proposed in the Guacamol benchmark. More precisely, we excluded all Rediscovery
and all Similarity tasks for which multiple baselines have been shown to achieve a perfect score of
1.0. Table 3 summarizes the obtained experimental results.

We observe that the genetic experts can be exchanged with each other without significant loss or
increase in performance. Furthermore, our empirical results show that no expert dominates across all
of the tested tasks. This indicates that combining and sampling from several experts in parallel, with
the objective to leverage the best expert amongst all experts, could potentially lead to better overall
results.

4 Conclusions

We have shown in this work that it is possible to pretrain and utilize an attribution-based genetic
expert to propose novel molecules. The expert we called InFrag is able to leverage a pretraining
phase to reason over the potential score of candidate molecules and produces atom-wise attributions
to generate high-rewarding fragments. Our genetic expert which is capable of expert- and bias-free
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Table 3: Results for the goal-directed Guacamol benchmarks for different genetic experts leveraging
the GEGL framework. We show selected baselines for comparison as reported by the original GEGL
work[7].

Baselines GEGL-based models

Task GB-GA[8] MSO[22] CReM[23] GB-GA[7] simplified-STONED InFrag

C11H24 0.971 0.997 0.966 1.000 1.000 1.000
C9H10N2O2PF2Cl 0.982 1.000 0.940 1.000 1.000 1.000
Median molecules 1 0.406 0.437 0.371 0.455 0.455 0.455
Median molecules 2 0.432 0.395 0.434 0.437 0.419 0.427
Osimertinib MPO 0.953 0.966 0.995 1.000 1.000 1.000
Fexofenadine MPO 0.998 1.000 1.000 1.000 1.000 1.000
Ranolazine MPO 0.920 0.931 0.969 0.958 0.981 0.959
Perindopril MPO 0.792 0.834 0.815 0.882 0.886 0.882
Amlodipine MPO 0.894 0.900 0.902 0.924 0.905 0.905
Sitagliptin MPO 0.891 0.868 0.763 0.922 0.958 0.952
Zaleplon MPO 0.754 0.764 0.770 0.834 0.840 0.840
Valsartan SMARTS 0.990 0.994 0.994 1.000 1.000 1.000
Deco Hop 1.000 1.000 1.000 1.000 1.000 1.000
Scaffold Hop 1.000 1.000 1.000 1.000 1.000 1.000

fragment-level crossover operations is able to produce high-rewarding molecules and performs
comparable to other genetic experts when embedded into the GEGL framework. Furthermore,
we demonstrated that InFrag significantly outperforms other genetic experts when the number of
optimization rounds is limited. This implies that InFrag is a good choice for real-world optimization
cases were evaluation of novel generated molecules might be difficult or expensive. We have not yet
experimented with different genetic experts, attribution methods, graph neural network architectures
or sampling strategies, leaving a potentially large room for improvement. We leave this area of
research for future work.
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