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ABSTRACT

Effective exploration remains a central challenge in model-based reinforce-
ment learning (MBRL), particularly in high-dimensional continuous control tasks
where sample efficiency is crucial. A prominent line of recent work lever-
ages learned policies as proposal distributions for Model-Predictive Path Integral
(MPPI) planning. Initial approaches update the sampling policy independently of
the planner distribution, typically maximizing a learned value function with deter-
ministic policy gradient and entropy regularization. However, because the states
encountered during training depend on the MPPI planner, aligning the sampling
policy with the planner improves the accuracy of value estimation and long-term
performance. To this end, recent methods update the sampling policy by minimiz-
ing KL divergence to the planner distribution or by introducing planner-guided
regularization into the policy update. In this work, we unify these MPPI-based
reinforcement learning methods under a single framework by introducing Policy
Optimization-Model Predictive Control (PO-MPC), a family of KL-regularized
MBRL methods that integrate the planner’s action distribution as a prior in policy
optimization. By aligning the learned policy with the planner’s behavior, PO-MPC
allows more flexibility in the policy updates to trade off Return maximization and
KL divergence minimization. We clarify how prior approaches emerge as special
cases of this family, and we explore previously unstudied variations. Our ex-
periments show that these extended configurations yield significant performance
improvements, advancing the state of the art in MPPI-based RL.

1 INTRODUCTION

Recent approaches to planning-enhanced MBRL such as TD-MPC (Hansen et al., 2022) have shown
that effective planning can significantly improve performance in MBRL by refining a learned policy
through trajectory optimization. In these methods, a learned policy and its associated (action) value
function are used for trajectory sampling and evaluation in a planning process (i.e. sampling policy
and bootstrap value function). Then, the sampling policy is updated off-policy, relying on promis-
ing transitions provided by planning. This paradigm ensures that the planning policy continuously
benefits from improvements in the learned sampling policy and bootstrap action value function,
which supply increasingly promising samples and accurate evaluations to the planner.

A key limitation emerges when trajectories are evaluated under a bootstrap value function condi-
tioned on states and actions unlikely to be visited by the planner. This distribution mismatch between
the sampling and planning policies leads to unreliable bootstrap estimates and poor value function
learning, especially for short horizons. Recent work addresses this by aligning the sampling policy
with the planner via reverse KL minimization (Wang et al., 2025), but is hindered by its reliance on
partially outdated planning samples, which introduce variance into policy updates.

Despite differing formulations, emerging MPPI-based methods implicitly follow the same princi-
ple for interacting with the environment and updating the policy, revealing a growing but frag-
mented landscape. This motivates a unifying framework that clarifies commonalities, organizes
design choices, and enables systematic extensions to push forward the state of the art.

The main contribution of this work is Policy Optimization–Model Predictive Control (PO-MPC), a
general MBRL framework for MPPI-based approaches. PO-MPC builds on the TD-MPC2 world
model by casting the sampling policy learning step as an instance of KL-regularized RL, where the
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Figure 1: Overview of the PO-MPC framework. 1) Sampling-policy learning is formulated as a KL-
regularized reinforcement-learning problem, controlled by the hyperparameter λ, where the learned
sampling policy πθs is regularized toward the action distribution computed by MPPI. 2) Since query-
ing the MPPI policy is computationally expensive, we either reuse previously stored samples πt

P or,
as proposed in this work, learn an approximation of it (i.e., πrkl

p or πfkl
p ). 3) Using different losses

to learn this policy prior, as a proxy for the planner’s policy, allows embedding distinct inductive
properties into the resulting sampling policy πθs .

learned sampling policy πθs is regularized against an MPPI-induced prior πp with strength deter-
mined by a hyperparameter λ. In particular, our formulation enables:

• Novel configurations. We explore new algorithmic variants by tuning the KL-
regularization strength λ.

• Intermediate prior. We introduce a learned prior that shields πθs from outdated planner
samples stored in the replay buffer.

• Flexible objectives for training the prior. We demonstrate how alternative losses for
training the MPPI-induced prior embed distinct properties in πθs , yielding superior perfor-
mance.

We validate PO-MPC on challenging high-dimensional continuous control benchmarks, showing
substantial gains in both sample efficiency and final performance over state-of-the-art baselines.
These results highlight that a principled unification of MPPI-based approaches not only clarifies
their design space but also drives concrete improvements in practice.

2 RELATED WORK

Model-based RL. Model-based reinforcement learning (MBRL) (Moerland et al., 2023) studies the
combination of model and policy learning in sequential decision-making problems. On the one hand,
a learned model offers both extra data (Sutton, 1991) and/or allows planning and obtaining more
informed actions (Silver et al., 2017) or value estimates (Feinberg et al., 2018). Conversely, learning
offers an (approximate) solution over the entire input space that generalizes to unvisited state-actions
(Ackley & Littman, 1989), which is indispensable to overcome the curse of dimensionality (Poggio
et al., 2017).

Planning and RL. Our work builds on advancements in planning-based (and model-based) re-
inforcement learning (MBRL), particularly methods that leverage online planning to guide policy
learning. In many such approaches, like TD-MPC and subsequent works Hansen et al. (2022; 2024),
a learned policy provides initial actions for a trajectory optimizer or planner, which then refines these
actions using a learned model. The optimized trajectories subsequently provide data for policy and
value function updates. However, the policy update often relies only on the single best actions or
resulting trajectories from the planner, discarding potentially valuable information about the broader
action distribution explored during planning. Alternatively, Zhou et al. (2024) proposes using dif-
fusion generative models to create policy and dynamic model proposals, and use them to solve an
MPC problem.
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Other examples of RL enhanced planning include Silver et al. (2017); Wang et al. (2025), where a
policy is learned by imitating a powerful planner (e.g., MCTS, MPPI). Other methods exploit other
sources of demonstrations to bias RL policies towards more informed distributions (Bhaskar et al.,
2024; Hu et al., 2023; Yin et al., 2022). While effective, these imitation or cloning approaches
may constrain the learned policy to the planner’s immediate behavioral vicinity, potentially limiting
its ability to directly optimize the long-term task objective (action value function) beyond what
the planner currently achieves. On the other end, recent planning algorithms make use of expert
knowledge or pre-trained policies to better inform the planning action search, robustly adapting
to changes in the reward/cost function (Trevisan & Alonso-Mora, 2024; Wang et al., 2024a). In
contrast, PO-MPC differentiates itself by proposing to utilize the entire action distribution generated
by the planner, not just sampled actions or trajectories, as a guiding prior for the RL algorithm to
exploit synergies between RL policy synthesis and planning-based action improvement.

RL as probabilistic inference. The idea of using priors to guide exploration in RL has been con-
sidered in many forms, albeit largely in the model-free setting (Tirumala et al., 2022). Priors can be
used to guide learning by creating a trust region to constrain the optimization procedure (Schulman
et al., 2015; 2017; Wang et al., 2017; Abdolmaleki et al., 2018); as an expectation-maximization
(EM) update (Peters et al., 2010; Toussaint & Storkey, 2006; Rawlik et al., 2013; Levine & Koltun,
2013; Abdolmaleki et al., 2018) or to constrain learning in the offline or batch-RL setting (Siegel
et al., 2020; Wu et al., 2019; Jaques et al., 2019; Laroche et al., 2017; Wang et al., 2020; Peng et al.,
2020). A fundamental idea behind these works is to consider RL as a form of probabilistic inference
where the policy being learned can be viewed as a posterior distribution over a prior and an objective
(typically the exponentiated action value or advantage function) as in Levine (2018). In this work,
we leverage this idea to reuse the model-based planning policy to guide learning its own sampling
policy.

3 PRELIMINARIES

We consider a discrete-time sequential decision-making problem over a horizon T , modeled as a
Markov Decision Process (MDP) (S,A, p, r, γ), where S is the state space, A the action space,
p(s′ | s, a) the transition probability (or deterministic mapping) from state s to s′ under action a,
r(s, a) the immediate reward for taking action a in state s, and γ ∈ [0, 1) the discount factor. A
policy π(a | s) defines a distribution over actions given the current state, and the objective is to find
π maximizing the expected discounted return

J(π) = Es0∼ρ0,at∼π(·|st),
st+1∼p(·|st,at)

[T−1∑
t=0

γt r(st, at)
]
, (1)

where ρ0 is the initial state distribution.

Reinforcement Learning (RL). does not assume direct knowledge of p or r; instead, an RL agent
collects trajectories τ = (s0, a0, s1, a1, . . .) through interaction and uses methods such as policy
gradients, actor–critic, or value-based updates to learn a parametric policy πθ(a | s) that maximizes
J(πθ) via trial-and-error.

Model Predictive Control (MPC). assumes access to a (possibly learned) model p(st+1 | st, at)
and cost c(s, a) = −r(s, a). At each time step t, MPC solves a finite-horizon optimization

min
at:t+H−1

E
[H−1∑
k=0

c(st+k, at+k)
]

s.t. st+k+1 = p(st+k, at+k), (2)

over horizon H < T , applies the first action at, and then “recedes the horizon” by re-solving at
t + 1 with the updated state. This online re-planning allows MPC to correct for model errors and
disturbances. Both RL and MPC are methods to solve sequential decision-making optimisation
problems: RL hinges on learning a global policy from experience, while MPC focuses on online
optimization using an explicit model. In the next section, we show how Model Predictive Path
Integral (MPPI) planning unifies these perspectives and can be further improved by incorporating
learned policy priors via RL.

Model Predictive Path Integral Control. is a sample-based approach to solving planning methods
that makes use of the fact that optimal stochastic control problems can be solved with path inte-
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grals to iteratively refine the optimal action distribution. At each step, it samples trajectories under
a stochastic control law, weights them by cumulative cost, and refines its control sequence—all
without requiring gradients of either dynamics or cost. Let c(st, at) be a running cost (or re-
ward r = −c) and H a finite planning horizon. Denote a nominal open-loop control sequence
by ā0:H−1 = (ā0, . . . , āH−1).

In MPPI, we sample M noisy trajectories a(i)t = āt+ ϵ
(i)
t , ϵ

(i)
t ∼ N (0, σtI), and simulate s(i)t+1 ∼

p
(
st+1 | s(i)t , a

(i)
t

)
. Each trajectory τi has an associated cost

S(τi) =

H−1∑
t=0

c
(
s
(i)
t , a

(i)
t

)
. (3)

After selecting the K-top performing samples, the MPPI update follows from a path-integral (desir-
ability) transform:

wi =
exp
(
− 1

λS(τi)
)∑K

j=1 exp
(
− 1

λS(τj)
) , āt ← āt +

K∑
i=1

wi ϵ
(i)
t , σt =

√√√√√∑K
i=1 wi

(
ϵ
(i)
t

)2
∑K

i=1 w
i

(4)

where λ > 0 is the temperature parameter, and controls how much the importance sampling scheme
weights the optimal cost trajectory versus the others. After a fixed number of iterations, the planning
procedure is terminated and a trajectory is sampled from the final return-normalized distribution
over action sequences. Planning is done at each decision step and only the first action is executed
to produce a feedback policy. To warm-start optimization and speed convergence, the mean control
sequence is initialized with the 1-step shifted āinit = āt+1 from the previous decision step. We will
denote the resulting planning policy obtained after a fixed number of MPPI iterations byN (ā0, σ0I)
and πP interchangeably.

MPPI-based Reinforcement Learning. Prior work in Model-based RL (Bhardwaj et al., 2021;
Hansen et al., 2022) has successfully applied MPPI to high-dimensional control tasks (i.e. Deep-
Mind Control Suite (Tassa et al., 2018), Humanoid Benchmark (Sferrazza et al., 2024)) by planning
in a learned a model of the MDP (Ŝ,A, p̂, r̂, γ), that differs from the original by using a learned
latent representation of the state space z = hθh(s) ∈ Ŝ, an approximate reward r̂(z, a) = rθr and
transition dynamics p̂ = pθd (Bhardwaj et al., 2021).

In MPPI, trajectories are usually sampled from a Gaussian policy often initialized with zero mean
and pre-set maximum variance to cover the action space almost uniformly, which is updated through
multiple iterations of MPPI. Recent work (Hansen et al., 2024; Wang et al., 2025) biases this sam-
pling distribution, augmenting it with trajectory samples produced with a learned sampling policy:
πθs . Since planning is done over a finite horizon, the learned sampling policy is also used for learn-
ing a bootstrap action value function Q

πθs

θQ
evaluated on the last state of every sampled trajectory,

leading to the H-step estimate: Q(z0, a
(i)
0:H) =

∑H−1
t=0 γtrθr (zt, a

(i)
t ) + γHQ

πθs

θQ
(zH , a

(i)
H ).

Note that, since samples come from two distributions that are initially distinct, one learned and
another initialized with high variance to enhance exploration. Then, the trajectory distribution is
bi-modal. MPPI approximates a softmax posterior of the bi-modal distribution modulated by the
normalized exponential of the estimated H-step value function returns. This process is reminiscent
of epsilon-greedy policies, where high-return actions are taken with high probability, leaving some
probability mass for exploration.

4 METHOD

4.1 POLICY UPDATE VARIANTS IN MPPI-BASED RL.

Initially, MPPI-based RL methods typically learned a sampling policy independently of the plan-
ner’s action distribution. However, it is still influenced by the planner since it is used to collect
the transition data used to update the sampling policy and the action value function. This de-
coupling creates a distribution mismatch: the value function is trained under states and actions
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induced by the planner, but the policy update optimizes a different objective (e.g. deterministic
policy gradients with entropy regularization Hansen et al. (2024)1.). For short horizons H , where
trajectory scoring is dominated by the terminal bootstrap Q

πθs

θQ
(zH , aH), this mismatch amplifies

error. If πθs is not aligned with MPPI, the states that Q implicitly predicts will not be reliably
visited, degrading its estimates (Wang et al., 2025). Recent work addresses this by pulling the pol-
icy toward the planner by directly cloning the planning distribution via reverse KL minimization
KL(πθs(·|zt) ∥πP (·|zt)) (Wang et al., 2025)2.However, this approach still suffers from:

• Fixed KL penalty: cloning the planning policy may collapse the sampling policy towards
a local minima prematurely.

• High-variance targets: even when alleviated through lazy reanalyze (Wang et al., 2025),
cloning uses stale planner statistics stored in the replay buffer that mix many planner ver-
sions, effectively turning a unimodal MPPI posterior into a time-varying Gaussian mixture.

We propose then to unify prior approaches under a single perspective: sampling policy learning as
KL-regularized RL toward a planner-induced prior. This view makes explicit how design choices
(trade-off between action-value maximization and KL minimization, Planning policy representation)
map to previous methods, establish a generalised framework, and expose new, previously unexplored
configurations.

4.2 POLICY OPTIMIZATION - MODEL PREDICTIVE CONTROL

Given these considerations, we propose PO-MPC: a MBRL generalizing RL framework based on
MPPI. The general algorithm pseudocode for PO-MPC training is presented in Algorithm 1. Fol-
lowing TD-MPC2’s world model, previous approaches share a learned neural network sampling
policy, πθs , and the bootstrap action value function Q

πθs

θQ
, which are respectively used for biasing

trajectory sampling and estimating the return of the trajectory beyond the horizon 3. However, they
all differ in how the learned sampling policy is updated. KL-regularized RL is a field of study that
trains a policy to maximize its action-value function while regularizing the policy by minimizing the
reverse KL-divergence to a second policy prior πp. This regularization effect is modulated through
a hyperparameter λ. In the following, we explain the main features of PO-MPC, being summarized
as: 1) Learning the sampling policy via KL-regularized RL, 2) using a learned intermediate prior to
represent the planning policy, which 3) can be trained through different losses.

Sampling policy learning via KL-regularized RL. Given a state encoder z = hθh(s) and a policy
prior πp, KL-regularized Reinforcement Learning considers the following goal in our framework:

J(πθs) = Es0∼ρ0,at∼πθs (·|zt)
st+1∼p(·|st,at)

[T−1∑
t=0

γt
[
r(zt, at)− λKL[πθs(· | zt) ∥ πp(· | zt)]

]]
, (5)

where KL represents the Kullback-Liebler (KL) divergence between the policy and a prior distribu-
tion. The overall goal is to approximate, through the learned policy πθs(· | zt), the distribution of
trajectories generated by the prior policy πp(· | zt) reweighted by their exponential expected return.
This is especially useful when prior policies are known that are likely to come across high-return
regions in the state space, thus providing a promising trust region to explore around. As detailed
in (Levine, 2018) for uniform policy priors, the objective in Equation 5 turns into the following
step-wise objective:

J(π) = Ea∼πθs
[Q

πθs ,λ

θ̃Q
(zt, at)]− λKL[πθs(· | zt) ∥ πp(· | zt)], (6)

1Although Hansen et al. (2024) reports using SAC for updating the sampling policy, their public code omits
the entropy term in action value function estimation.

2Although Wang et al. (2025) reports minimizing the forward KL divergence, their public code minimizes
the reverse KL, which leads to notable performance differences as discussed in this paper.

3Details on the implementation of MPPI and training of the bootstrapping action-value function can be
found in Appendix B.
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where dπ is the normalized state frequency visitation under the policy πθs , and Qπ,λ

θ̃Q
is the KL-

regularized action value function, which accounts for the expected return and the reverse KL diver-
gence between the learned and the prior policy accumulated until the end of the episode. Then, the
recursive Bellman equation for Qπ,λ

θ̃Q
is:

Q
πθs ,λ

θ̃Q
(zt, at) = Est+1∼p(·|st,at),

a∼πθs (·|zt+1)

[
r(zt, at) + γ

(
Q

πθs ,λ

θ̃Q
(zt+1, a)− λ log

(
πθs(a | zt+1)

πp(a | zt+1)

))]
(7)

Note that λ controls how close to the prior policy we want the sampling policy to be, which is
enforced through Equations 6 and 7.

In this work, we focus on learning the sampling policy πθs , and using the planning policy πP for
obtaining an adaptive prior πp. We will also consider the case where we will maximize an en-
tropy regularized objective J ′(π) = J(π) + αH(π), a term often included in KL-regularized RL
to enhance exploration, as seen in Tirumala et al. (2022). We point the reader to Appendix E for
additional proof on KL-regularized policy evaluation and improvement.

Prior policy design Setting λ = 0 updates the policy exclusively through action value function
maximization and entropy regularization, recovering the cost function of TD-MPC2 (Hansen et al.,
2024). Meanwhile, maximizing only the reverse KL-divergence of the policy and the past planning
policy distributions stored in the replay buffer (i.e. λ =∞) recovers the BMPC cost function (Wang
et al., 2025).

We remark that this latter use of the planning policy samples as the prior introduces variance in the
policy updates. The planning policy statistics (mean and variance) sampled from the replay buffer
depend on old, less trained versions of the sampling policy. Therefore, for a given state, all sampled
planning distributions have different modes, unlike the unimodal distribution that would result from
MPPI under the current sampling policy and bootstrap action value function. This challenge is
already recognized in Wang et al. (2025), and partially alleviated by periodically updating a small
subset of the planning statistics sampled from the replay buffer.

We propose further decreasing the variance in the policy update by introducing an intermediate
policy, an adaptive prior πθp , that approximates the planning policy πP . The benefits of this choice
are twofold: 1) it shields the sampling policy updates from the variance introduced by old planning
policy samples (see Appendix G), and 2) It can be trained with losses beyond reverse KL divergence,
providing flexibility in how the planning policy πP is represented and, in turn, how the sampling
policy is guided.

As in prior methods, we can train this adaptive prior by either minimizing the reverse KL-divergence:

J(θp) = E(s,πP )∼D

[
KL[πθp(· | zt) ∥ πP (· | zt)]

]
, (8)

or, as a straightforward alternative, the forward KL divergence:

J(θp) = E(s,πP )∼D

[
KL[πP (· | zt) ∥ πθp(· | zt)]

]
. (9)

Note that this choice comes with no loss of generality when the adaptive prior results from mini-
mizing 8 (see Appendix G). Exclusively minimizing the reverse KL divergence between the learned
sampling policy and the adaptive prior policy still recovers the policy update from Wang et al. (2025)
since both sampling and adaptive prior policies are unimodal Gaussian distributions, and minimizing
the reverse KL divergence imitates the latter exactly. Also note that choosing a prior that minimizes
the reverse KL-divergence (Equation 8) will bias the sampling policy towards distributions that
match one of the modes of the planning policy distribution, accelerating convergence but hurting ex-
ploration. Meanwhile, choosing priors that minimize the forward KL-divergence (Equation 9) will
bias the policy towards a Gaussian distribution that encompasses the support of all sampled planning
distributions, thereby enhancing exploration but delaying convergence. Further details on how the
adaptive prior policy is trained are included in Appendix B.

Method Summary. PO-MPC provides a common view over previous methods while addressing two
core challenges of MPPI-based RL: policy/planner mismatch and high-variance in stored planning
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Algorithm 1 PO-MPC (Main): Plan→ Infer→ Regularize
Inputs: world modelM, simulated world model M̃, MPPI planner, sampler policy πθs , value QθQ , bufferD,
KL weight λ, (optional) entropy α

1: for t = 0, . . . do
2: Plan (policy-as-prior):

• āt:t+H , σt:t+H ← MPPIM̃(zt|πθs , Q
πθs
θQ

, āinit)

• at ∼ πP (· | zt) := N (āt, σ
2
t I); step env to get (rt, st+1);

• Push (st, at, rt, st+1, āt, σt) to D
3: Update model M̃ and Distill (adaptive prior): sample B ⊂ D; update θp.
4: Regularize & Improve (RL):

1. Update QθQ and with TD targets underM using πθs .
2. Update Qλ

θ̃Q
and with KL regularized TD targets underM using πθs .

3. Update πθs by maximizing Es∼B, a∼πθs

[
Qλ

θ̃Q
(z, a)

]
− λKL

(
πθs∥πθp

)
+ αH(πθs) .

5: end for

samples. We do this by casting policy learning as KL-regularized RL toward a distilled, adaptive
planner prior. Concretely, MPPI produces a planning policy, which we distill into πθp (via reverse
or forward KL) to remove replay-induced variance; we then update the sampling policy πθs with
the KL-regularized objective in Eqs. 6–7, balancing return maximization, proximity to the planner
(through λ), and entropy for exploration. This Plan→Infer→Regularize loop aligns the value func-
tion’s rollout distribution with both the learned policy and the planner, improving stability and sam-
ple efficiency. The framework subsumes prior methods as special cases (λ=0 recovers TD-MPC2;
λ→∞ with reverse-KL distillation recovers Variant 34 of Wang et al. (2025)) while enabling prin-
cipled choice between fast mode-seeking convergence and broader support-covering exploration.

5 EXPERIMENTS

We evaluate different configurations of the proposed framework (PO-MPC) on 7 challenging and
high-dimensional continuous control tasks from DeepMind Control Suite (Tassa et al., 2018) (Hu-
manoid and Dog) and 14 tasks from HumanoidBench locomotion suite (Sferrazza et al., 2024).
These tasks cover a diverse range of continuous control challenges, including sparse reward, lo-
comotion with high-dimensional state and action space (A ∈ R21, A ∈ R38, and A ∈ R61 re-
spectively). Each experiment is run on a single NVIDIA A100 GPU, taking from 7h to 15h to
train a policy for 1e6 time-steps. For reproducibility, our implementation is available at https:
//anonymous.4open.science/r/pompc-71E7.

Baselines. We empirically support the claims in this work by comparing design choices al-
ready taken under this framework in the literature, namely TD-MPC2 (Hansen et al., 2024) and
BMPC (Wang et al., 2025).We also explore simple variations in this framework by studying the
effect of different values of λ, the inclusion of the intermediate policy πθp , and how it is trained.
Table 2 provides an overview of the tested configurations, including published works. Since BMPC
learns the value rather than the action-value function, setting λ = ∞ (minimizing only the KL-
divergence in 6) recovers Variant 3 of Wang et al. (2025). This detail does not affect our policy
update analysis. We evaluate each baseline with the updated hyperparameters from its repository.
We evaluate PO-MPC under the same hyperparameters of TD-MPC2, with the exception of those
related to PO-MPC (see Appendix A).

5.1 RESULTS

The objective of this section is to test PO-MPC from three angles. First, we make an empirical study
of the effects of prioritizing return maximization over KL divergence minimization by choosing
different values for λ. Second, we verify that employing an intermediate policy prior does not hurt
the performance of PO-MPC. Finally, we show an example of how different policy priors may serve
to embed different properties in the sampling policy.

4Variant 3 inWang et al. (2025) is identical to BMPC except for the fact that it learns the bootstrap action
value function Qπθs of the sampling policy instead of the value function V πθs .
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Figure 2: Performance comparison in 14 state-based high-dimensional control tasks from Hu-
manoidBench (Sferrazza et al., 2024). Mean of 3 runs; shaded areas are 95% confidence intervals.
In the top left, we visualize results averaged across all tasks except for Reach due to different range.

Table 1: Final performance across 7 high-dimensional control tasks from DMControl Suite (Tassa
et al., 2018). Mean of 3 runs and 95% CI. Learning curves are reported in Appendix D

Dog Humanoid
Stand Trot Walk Run Stand Walk Run

TD-MPC2 978±6 738±488 957±9 611±76 915±33 910±34 480±60
BMPC 992±8 931±11 964±11 740±107 950±34 946±4 529±90

Ours (λ=0.1) 993±4 959±12 976±12 709±66 958±10 948±17 581±90
Ours (λ=1) 993±4 946±11 966±14 720±132 959±14 948±3 554±101
Ours (λ=9) 990±2 959±18 974±27 703±166 958±10 948±19 548±22

Trading off return and KL divergence optimization. The parameter λ regulates the trade-off be-
tween two competing objectives in the policy updates: maximizing episode returns and minimizing
the KL divergence from the adaptive policy prior. Table 1 and Figure 2 show PO-MPC evaluations
with a policy prior learned according to Equation 8, under different values of λ. Specifically, we
consider λ = 0.1, 1, and 9.0, which correspond to approximate prioritization of KL divergence
minimization of 10%, 50%, and 90%, respectively. Our results demonstrate that regulating the
proximity between the sampling and planning policies matches the performance of the baselines
in the lower-dimensional tasks from DMControl Suite while significantly boosting performance in
the higher-dimensional tasks from HumanoidBench. In particular, in the latter tasks, intermediate
values of λ never perform worse than the baselines and often clearly outperform them (i.e., Balance
S., Crawl, Pole, Run, Slide, Stair, and Walk). Overall, when averaged across tasks, PO-MPC with
intermediate λ values is on par in low-dimensional tasks (DMControl), but achieves clear superior
results with respect to the state-of-the-art in higher-dimensional ones (HumanoidBench), especially
when λ is carefully tuned.

Policy prior: Learned Intermediate policy vs. Planning replay data. Continuing our experi-
ments in HumanoidBench, Figure 3 shows that, on average across tasks, using a learned intermediate
policy instead of using the Planning policy samples from the replay buffer matches the performance
of the latter and, in some cases, surpasses it. We hypothesize this is due to the reduction in variance
that results from the intermediate policy prior being able to be approximated exactly by the sampling
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Table 2: Method characteristics and empirical trends under the PO-MPC view. Arrows denote trends
observed in our experiments; details in Figs. 2–4 and Table 1. Performance and Sample efficiency
are taken w.r.t. TD-MPC2. Note that λ→∞ means only the KL divergence in Eq. 6 is optimized.

Method Uses planning KL-reg. Fwd/Rev Sample eff. Final perf.
policy prior objective KL (Eq. 8, 9)

TD-MPC2 ✗(λ = 0) ✗ – baseline baseline
BMPC ✓(λ→∞) ✓ (πP ) Fwd ↑ ↑ / ≈
PO-MPC (Ours) ✓(λ var.) ✓ (πθp ) Fwd / Rev ↑ ↑↑

policy, instead of the ensemble of, partially outdated, unimodal Gaussian Planning policy samples
from the replay buffer.

Figure 3: Effects of using a learned intermedi-
ate prior, πθp , instead of the Planning samples,
πP , from the replay buffer. Mean of 3 runs;
shaded areas are 95% CI. We report the aver-
age across tasks (Top) and in the Balance Sim-
ple task (Bottom). See Appendix D for results
on all tasks.

Figure 4: Effects of approximating the Planning
policy with the intermediate prior through dif-
ferent cost functions. Mean of 3 runs; shaded
areas are 95% CI. We report the average across
tasks, and environments showing a clear effect
of training with loss in Eq. 9 instead of Eq. 8.
See Appendix D for results on all tasks.

Policy prior Training. Figure 4 exemplifies how depending on the environment, choosing an al-
ternative policy prior will change the effect of our chosen value for λ, improving or deteriorating
the performance. For example, choosing priors minimizing the forward KL-divergence (Equation 9)
will bias the policy towards a Gaussian distribution that includes the support of all sampled plan-
ning distributions, instead of matching the most frequent mode in the batch. This enhances explo-
ration but delays convergence. This is why it is beneficial in environments where exploration is
key, converging to a more stable solution faster at low values of λ (i.e., in Stair); but detrimental in
environments where deterministic behavior is crucial to obtain high rewards (i.e. Balance Simple).

6 DISCUSSION AND CONCLUSION

Summary of Findings Across 7 DMControl (Humanoid/Dog) and 14 HumanoidBench tasks, PO-
MPC consistently improves over TD-MPC2 and is competitive with or exceeds BMPC. Figures 5–2
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show that even modest KL regularization (e.g., λ = 0.1) yields sizable gains over TD-MPC2, with
larger λ often dominating in high-dimensional settings. Replacing on-replay planner samples with
a learned adaptive prior matches or surpasses cloning-from-replay (Fig. 3), suggesting reduced
update variance and smoother training (see Appendix G). The choice of prior fitting objective is
task-dependent: forward KL tends to help exploration-heavy tasks (e.g., Stair) at low λ, whereas
reverse KL accelerates convergence on precision-dominated tasks (e.g., Balance Simple) (Fig. 4).
These results support the main claims of the work: closing the loop so that planning informs policy
updates (and vice-versa) yields guided exploration and better sample efficiency in MPPI-based RL.

Limitations. Tuning hyperparameter λ is essential for the performance of PO-MPC. As a rule of
thumb, we keep it to λ = 1, to equally weight return maximization and KL minimization. However,
its optimal value depends both on the complexity of the environment and the training of the policy
prior. A similar approach might be taken as in SAC (Haarnoja et al., 2018), where the appropriate
value of λ would be learned during training.

Also, information obtained during planning is not fully exploited. Many trajectories are simulated
during planning that, although used for computing an action sequence, are not leveraged for learning
the action value function, thus being computationally inefficient. Additionally, such trajectories
are constrained to short horizons. The model loses accuracy at long horizons, which reduces the
accuracy of the estimated scores for each sampled trajectory as well.

Finally, we assume both learned sampling policy and policy prior to be Gaussian distributions.
This approximation is very restrictive since the Planning policy, which consists of a Gaussian prior
reweighted by an exponential distribution of the trajectory costs, is not necessarily Gaussian.

Conclusion. This paper introduced Policy Optimization – Model Predictive Control (PO-MPC), a
family of model-based reinforcement learning methods for continuous action spaces. In particular,
PO-MPC extends MPPI-based RL by finding a common formulation that includes previously pub-
lished approaches in the state-of-the-art, and exploits previously unexplored design choices. Our
experiments show that PO-MPC leveraging these choices often learn faster and more stably than the
other baselines, serving as a new state-of-the-art for model-based RL in continuous action spaces.
Future work could focus on 1) extending the distribution of the policies used to more expressive
classes than Gaussian, 2) automatically tuning the trade-off between Return maximization and KL
minimization, and 3) increasing the computational efficiency by leveraging the simulated transition
data generated during planning for action value learning.
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A HYPERPARAMETERS

In table 3 we share the hyperparameters employed for both our method (PO-MPC) and the baseline
TD-MPC. Both methods share all parameters except for the ones exclusive to PO-MPC.

Table 3: Hyperparameter configuration.

Hyperparameters Values
General
Num. steps 1 000 000
Replay buffer 1 000 000
Learning rate 3e-4
Max. Gradient norm 20
Optimizer Adam(β1 = 0.9,β2 = 0.999)

World model
Encoder dim. 256
Num. Encoder layers 2
Learning rate 3e-4
Latent dim 512
Dropout 0.01
Num. Value Nets 5
Num. bins 101
Symlog min,max -10, 10
Simnorm dim 8

TD-MPC2
Horizon 3
MPPI iterations 8
Population size 512
Policy prior samples 24
Num. elites 64
Min. plan std (σmin) 0.05
Max. plan std (σmax) 2
Temperature 1.0
Batch size (nr) 256
Discount (γ) 0.99
Time discount (ρ) 0.5
Consistency coef. 20
Reward model coef. 0.1
Value function coef. 0.1
Entropy coef. (α) 1e-4
Target update coef. (τ ) 0.01

PO-MPC
Biased value function coef. 0.1
KL Reg. strength λ {0.1, 1.0, 9.0}
Learned intermediate prior policy {Yes, No}
Prior policy learning loss {Fwd KL, Rev KL}
Reanalyzed batch (nr

b) 20
Reanalyzed interval (k) 10
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B IMPLEMENTATION DETAILS

In this appendix, we give a thorough explanation of the procedure followed to implement PO-MPC.
For the sake of completeness, we also include the explanation of MPPI for obtaining the Planning
policy.

B.1 PLANNING POLICY.

In this paper, we follow the same iterative planning process explained in Section 3 for MPPI-based
Reinforcement Learning, where the Planning policy is iteratively refined with the help of a learned
sampling policy and its associated Bootstrap action-value function. We maintain the same world
model loss for the environment state encoder hθh(s), dynamics model pθd(z), and reward function
model rθr (z,a) over latent representations from Hansen et al. (2024).

At each time step t, we start planning by encoding the current state of the environment zt = hθ(st).
Then we sample simulated trajectories of horizon H, sampling nπsθ

times actions from the learned
sampling policy πsθ and M − nπθ

times from the Planning policy. The Planning policy is a Gaus-
sian open-loop control sequence with mean: ā0:H−1 = (ā0, . . . , āH−1), and every sample being
computed by a

(i)
t = āt + ϵ

(i)
t , ϵ

(i)
t ∼ N (0, σtI). The sequence is always initialized with variance

σ2
max, and the mean āt with the 1-step shifted mean except for the start of the episode where zero-

mean is used. M noisy trajectories are simulated z
(i)
t+1 ∼ p

(
zt+1 | z(i)t , a

(i)
t

)
and evaluated according

to its H-step estimated return:

Q̂(z0, a
(i)
0:H) =

H−1∑
t=0

γtrθr (zt, a
(i)
t ) + γHQ

πθs

θQ
(zH , a

(i)
H ) (10)

After selecting the K-top performing samples, the MPPI update follows from a path-integral (desir-
ability) transform:

āt ← āt +

K∑
i=1

wi ϵ
(i)
t , σt =

√√√√√∑K
i=1 wi

(
ϵ
(i)
t

)2
∑K

i=1 w
i

(11)

wi =
exp
(
− 1

β (Q(z0, a
(i)
0:H)−maxi′ Q(z0, a

(i′)
0:H))

)∑K
j=1 exp

(
− 1

β (Q(z0, a
(j)
0:H)−maxi′ Q(z0, a

(i′)
0:H))

) ,
where β > 0 is the temperature parameter, and controls how much the importance sampling scheme
weights the optimal cost trajectory versus the others. After a fixed number of iterations, the planning
procedure is terminated and a trajectory is sampled from the final return-normalized distribution over
action sequences. Planning is done at each decision step, and only the first action of the sampled
trajectory, a0, is executed to produce a feedback policy. We denote the resulting Planning policy
over the first step, obtained after a fixed number of MPPI iterations, by: πP = N (ā0, σ0I), with
p being the transition model, and āinit the initialization mean control sequence. After interacting
with the environment, the transition information and Planning policy are added to a replay buffer,
i.e. (s, a0, s′, r, ā0, σ0) −→ D.

B.2 ADAPTIVE PRIOR POLICY UPDATES.

To improve the sampling policy using KL-regularized RL, we need a policy prior πp representing
the current Planning policy to act as a reference. To represent the current Planning policy we can
straightforwardly use the Planning policy samples stored in the replay buffer or, as shown in Sec-
tion 4, an intermediate policy πθp . We train this intermediary policy by either minimizing the reverse
KL divergence:

J(θp) =

H−1∑
t′=t

ρt
′−t

H

KL[πθp(· | zt′) ∥ πP (· | zt′)]
max(1, Sp)

, (12)
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or, as an example of a straightforward alternative, the forward KL divergence:

J(θp) =

H−1∑
t′=t

ρt
′−t

H

KL[πP (· | zt′) ∥ πθp(· | zt′)]
max(1, Sp)

, (13)

where Sp is an adaptive scale parameter that tracks the difference between the 5th and 95th per-
centiles of the KL divergence. This is often use

B.3 ACTION VALUE FUNCTION AND POLICY UPDATES.

Planning policy improvement relies on improving the sampling policy, πθs , and updating its associ-
ated bootstrap action value function, Qπθs

θQ
. Every nd time steps, a batch of nb trajectories of horizon

H is drawn from the replay buffer D. The action value function Q
πθs

θQ
is updated by minimizing its

TD-error at each time step over the horizon H, with a decaying parameter ρ to account for prediction
error over the latent space predictions. In the following, we denote by πθs(z) the learned sampling
policy probability distribution over actions u conditional on the latent representation z = hθh(s),
leaving πθs(u|z) to denote the probability of sampling u under the learned sampling policy.

J(θQ) =

H−1∑
t′=t

ρt
′−t

H
CE(Qπθs

θQ
(zt′ , at′), Q̂

πθs (zt′ , at′)) (14)

Q̂πθs (zt′ , at′) = rt + γQ
πθs

θ−
Q

(zt′+1, ã)|ã∼πθs (a|zt′+1)
(15)

Where θQ and θ−Q are the parameters of the action value function and the target action value func-
tion. As explained in Hansen et al. (2024), the TD-error is tracked by the cross-entropy error between
action-value logit representations and the two-hot vector encoding of the target. Under the assump-
tion that the action-value function is correctly approximated, the planning policy is a maximum a
posteriori estimate over the learned sampling distribution πθs . Therefore, the planning policy can be
intuitively interpreted as a policy improvement step over the current learned policy Sutton & Barto
(2018).

The learned sampling policy update is designed to move the policy towards maximizing the expected
return while ensuring its associated trajectory distribution remains close to the prior trajectory distri-
bution, which is induced by the planning policy. This leads to the following KL-regularized action
value function loss:

J(θ̃Q) =

H−1∑
t′=t

ρt
′−t

H
CE(Qπθs ,λ

θ̃Q
(zt′ , at′), Q̂

πθs ,λ(zt′ , at′)) (16)

Q̂πθs ,λ(zt′ , at′) = rt + γ

(
Q

πθs ,λ

θ̃−
Q

(zt′+1, ã)|ã∼πθs (zt′+1)
− λ

KL[πθs(·|zt′+1) ∥ πθp(·|zt′+1)]

max(1, SKL)

)
(17)

and the following policy loss:

J(θs) =

H−1∑
t′=t

ρt
′−t

H

λ
KL[πθs(zt′) ∥ πθp(zt′)]

max(1, SKL)
−

Q
πθs ,λ

θ̃Q
(zt′ , ã)|ã∼πϕπ (zt′ )

max(1, SQ)
− αH(πθs(zt))

 ,

(18)

where Si, i ∈ {KL,Q}, is an adaptive scale parameter that tracks the difference between the 5th

and 95th percentiles of each loss term. Since the values of both terms differ by multiple degrees
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of magnitude, scaling them enables more robust control, through the hyperparameter λ, over the
trade-off between expected return maximization and mimicking the policy prior distribution.

It is important to note that, due to its potential to reach very high values, which may negatively affect
action value learning and, consequently, exploration, the KL term, both in action value target and
sampling policy update, is often scaled by SKL in practice.

B.4 CO-DEPENDENCE BETWEEN THE LEARNED POLICY AND THE PLANNING POLICY.

During the first steps of training, the replay buffer needs to be filled, and the planning policy suffers
from low quality since both Q

πθs

θQ
, πθs are untrained. This is why it is important to make sure the

bootstrap action value function is properly trained before updating all the other components. There-
fore, we follow a pretraining phase during the first Ns steps, where only the untrained sampling
policy πθs interacts with the environment with no parameter updates. Then, before proceeding to
update all parameters as explained in Section 4, we update all model parameters and the bootstrap-
ping action value function (Qπθs

θQ
) Ns times. To prevent unnecessary exploration bias, the planning

policy samples stored during this phase are zero-mean diagonal Gaussians with maximum standard
deviation σmax. This ties with another relevant implementation detail. Due to the planning pol-
icy depending on an ever-evolving policy distribution, planning policy samples saved in the replay
buffer eventually become outdated. To alleviate this problem, we employ lazy reanalyze (Wang
et al., 2025), which takes inspiration from the Wang et al. (2024b); Schrittwieser et al. (2021) to
periodically update partially a subset of the planning distributions sampled from the replay buffer.

B.5 ARCHITECTURE AND FRAMEWORK

In this work, we build upon the partial implementation of TD-MPC2 in JAX (Bradbury et al., 2018)
by Flandermeyer (2024a). We inherit all architectural choices from TD-MPC2. The architecture of
Q

πθs ,λ

θ̂Q
follows the same design of its counterpart Qπθs

θQ
. Despite updating an additional policy and

action value function, training times do not differ significantly from the baselines.

B.6 BASELINES.

For our experiments, we employ the implementations in JAX (Flandermeyer, 2024a;b), developed
with the collaboration of the original authors, since they reproduce the results from the original
paper while increasing the computation speed.
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C PO-MPC ALGORITHM

Algorithm 2 PO-MPC

Require: Replay buffer B, Data-to-update ratio nd2u, and Reanalyze interval k.
Initialize: πθs , Qπ

θQ
, Qπθs ,λ

θ̃Q
.

Initialize MDP model: M̃ := (hθh , pθd , rθr ).
Initialize planning priors: ainit, σmax

1: n updates = 0
2: for t=1,2,...,T do
3: // Environment interaction
4: zt ← hθh(st)
5: // Planning Policy (Section B.1)
6: at, āt:t+H , σt:t+H ← MPPIM̃(zt|πθs , Q

πθs

θQ
, āinit)

7: st+1, rt ← environment step(st, at)
8: B ∪ {st, at, rt, st+1, āt, σt}
9: // Gradient updates.

10: if t (mod nd2u) == 0 then
11: n updates← n updates + 1
12: Dnb

:= {st′ , at′ , rt′ , st′+1, āt′ , σt′}1:nb

t′:t′+H ∼ D
13: zt′:t′+H ← hθh(st′:t′+H)
14: // Update Planning samples via Lazy reanalyze as in Wang et al. (2025).
15: if n updates (mod k) == 0 then
16: Dnr

b
∼ Dnb

, nr
b ≤ nb

17: at′ , āt′:t′+H , σt′:t′+H ← MPPIM̃(zt′ |πθs , Q
πθs

θQ
,0)

18: Dnr
b
← {st′ , ut′ , rt′ , at′+1, āt′ , σt′}

19: end if
20: πP (at′ |zt′)← N (āt′ , σ

2
t′I)

21: Update MDP model: hθh , dθd , rθr as in Hansen et al. (2024).
22: Update Bootstrap action value function: Qπθs

θQ
(Equation 14)

23: Update Policy prior: πθp (Equation 8 or Equation 9
24: Update KL regularized action value function: Qπθs ,λ

θ̃Q
(Equation 16)

25: Update Sampling Policy πθs (Equation 18)
26: θ−Q ← τθQ + (1− τ)θ−Q
27: θ̃−Q ← τ θ̃Q + (1− τ)θ̃−Q
28: end if
29: end for
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D ADDITIONAL RESULTS

D.1 RESULTS IN DMCONTROL SUITE

Figure 5: Performance comparison of PO-MPC and the baselines on 7 state-based high-dimensional
control tasks from DMControl Suite (Tassa et al., 2018). Mean of 3 runs; shaded areas are 95%
confidence intervals. In the top left, we visualize results averaged across all 7 tasks.

D.2 INTERMEDIATE POLICY PRIOR PERFORMANCE

Figure 6: Performance comparison in 14 state-based high-dimensional control tasks from Hu-
manoidBench (Sferrazza et al., 2024). Mean of 3 runs; shaded areas are 95% confidence intervals.
In the top left, we visualize results averaged across all tasks except for Reach, which has a different
return range. We observe that using the intermediate policy not only does not harm the performance
but also enhances it in some tasks.
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D.2.1 SHIELDING EFFECT OF THE POLICY PRIOR

Figure 7: Top: Mean and, Bottom:Standard deviation of the KL divergence term in Equation 18
for both PO-MPC using an intermediate policy prior and the Planning policy. Experiments are
done in the HumanoidBench Locomotion suite (Sferrazza et al., 2024). Mean of 3 runs. We show
empirical evidence on how the mean and standard deviation of the KL term are significantly larger
when the Planning policy samples are used instead of the intermediate policy prior. This shows
that the intermediate policy prior effectively shields the sampling policy updates from high variance
being introduced by outdated Planning policy samples stored in the replay buffer. Similar results are
obtained across different values of λ, and we present results for λ = 1 for the sake of clarity.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.2.2 TRAINING POLICY PRIOR WITH REVERSE KL VS FORWARD KL LOSS

Figure 8: Performance comparison in 14 state-based high-dimensional control tasks from Hu-
manoidBench Locomotion suite (Sferrazza et al., 2024). Mean of 3 runs; shaded areas are 95%
confidence intervals. In the top left, we visualize results averaged across all tasks except for Reach,
which has a different return range. We observe that training the policy prior with the Forward KL
divergence instead of the Reverse KL divergence can help in finding a solution faster in some tasks
but may be detrimental in others requiring more precision such as Balance Simple.
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E PROOFS

We present proof of convergence of both the KL-regularized Policy Evaluation step and policy
improvement. We follow closely the same proofs for Max. Entropy RL from Haarnoja et al. (2018)
since it is a particular case of KL-regularized RL. Substituting πp by the uniform distribution over
the action space A recovers the proof from Haarnoja et al. (2018). Note that the only additional
requirement needed for the KL-regularized version is π(at|st)

πp(at|st) being determined almost everywhere.

Lemma E.1. (KL-regularized Policy Evaluation). Given a policy and policy prior π, πp ∈ Π. Let
the KL-regularized Bellman backup operator:

T πQπ,λ(st, at) := r(st, at) + γEst+1∼p(·|st,at)[V
π,λ(st+1)] (19)

where
V π,λ(st) = Eat∼π(·|st)[Q

π,λ(st, at)− λ[log π(at|st)− log πp(at|st)]], (20)

and a mapping Q0 : S ×A −→ R, where A is bounded and π(at|st)
πp(at|st) is determined almost every-

where, we define Qπ,λ
k+1 = T πQπ,λ

k . Then the sequence Qπ,λ
k will converge to the KL regularized

action-value of π as k →∞.

Proof. Define the KL augmented reward as:

rπ := r(st, at)− γλEst+1∼p(·|st,at)[KL[π(· | st+1) ∥ πp(· | st+1)]] (21)

and rewrite the update as:

Qπ,λ(st, at)← rπ(st, at) + γEst+1∼p(·|st,at),
a∼π(·|st+1)

[Qπ,λ(st+1, at+1)] (22)

Then we can apply the standard convergence results for policy evaluation from Sutton & Barto
(2018). A bounded action spaceA and KL-divergence between π and πp are necessary assumptions
to guarantee that the augmented reward rπ is bounded.

Lemma E.2. (KL-regularized Policy Improvement) Let πold ∈ Π and let πnew be the optimizer of
the minimization problem defined as:

πnew = arg min
π′∈Π

KL[π′(·|st) ∥
exp( 1λQ

πold,λ(st, ·))
Zπold(st)

πp(·|st)] = arg min
π′∈Π

Jπold
(π′(·|st)) (23)

Then Qπnew,λ(st, at) ≥ Qπold,λ(st, at),∀(st, at) ∈ S ×A with |A| <∞ being bounded.

Proof. Let πold ∈ Π, and Qπold,λ, V πold,λ, its respective KL-regularized action-value and value
function. Then we define:

πnew = arg min
π′∈Π

Jπold
(π′(·|st))

= arg min
π′∈Π

KL[π′(·|st) ∥ exp(λ−1Qπold,λ(st, ·)− logZπold(st) + log πp(·|st))] (24)

It must be the case that Jπold
(πnew(·|st)) ≤ Jπold

(πold(·|st)), since we can always choose πnew =
πold ∈ Π. Hence,

Eat∼πnew

[
log πnew(at|st)− λ−1Qπold,λ(st, at) + logZπold(st)− log πp(at|st)

]
≤

Eat∼πold

[
log πold(at|st)− λ−1Qπold,λ(st, at) + logZπold(st)− log πp(at|st)

]
. (25)

Since Zπold

does not depend on at, equation 25 reduces to:

Eat∼πnew

[
Qπold,λ(st, at)− λ log

πnew(at|st)
πp(at|st)

]
≥

Eat∼πold

[
Qπold,λ(st, at)− λ log

πold(at|st)
πp(at|st)

]
= V πold,λ(st). (26)
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Then, unrolling Qπold,λ(st, at) and applying the bound in equation 26 results in:

Qπold,λ(st, at) = r(st, at) + γEst+1∼p(·|st,at)[V
πold,λ(st+1)]

≤ r(st, at) + γE st+1∼p(·|st,at)
at+1∼πnew(·|st+1)

[
Qπold,λ(st+1, at+1)− λ log

πnew(at+1|st+1)

πp(at+1|st+1)

]
= r(st, at) + γE st+1∼p(·|st,at)

at+1∼πnew(·|st+1)

[
r(st+1, at+1)− λ log

πnew(at+1|st+1)

πp(at+1|st+1)

+ γEst+2∼p(·|st+1,at+1)[V
πold,λ(st+2)]

]
...

≤ Qπnew,λ(st, at) (27)

Convergence to Qπnew,λ follows from Lemma E.1

Theorem E.3. (KL-regularized policy iteration). Repeated application of KL-regularized policy
evaluation and KL-regularized policy improvement to any π ∈ Π converges to a policy π∗ such that
Qπ∗,λ(st, at) ≥ Qπ,λ(st, at) for all π ∈ Π and (st, at) ∈ S ×A, assuming |A| <∞.

Proof. The proof follows the same reasoning from Theorem 1 in Haarnoja et al. (2018). Let policy
πi be the policy at iteration i. By Lemma E.2, the sequence Qπi,λ is monotonically increasing.
Since Qπ,λ is bounded above for π ∈ Π, since both reward and KL-divergence are bounded, the
sequence converges to some π∗. To show that π∗ is optimal, it must be the case that, at convergence,
Jπ∗(π∗(·|st)) < Jπ∗(π(·|st)),∀π ∈ Π, π ̸= π∗. Using the same iterative argument as in the proof
of Lemma E.2, we get Qπ∗,λ(st, at) > Qπ,λ(st, at),∀(st, at) ∈ S×A, meaning the KL-regularized
value of any other policy in Π is lower than that of the converged policy. Hence π∗ is optimal in
Π.
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F BACKGROUND AND CONNECTION TO RECENT WORK

There is some recent work that, while also within MPPI-based RL, cannot be unified within the
proposed framework as seamlessly since they constitute an approximation of our theoretical frame-
work(Lin et al., 2025), forgoing the monotonic improvement guarantees shown in Appendix E, or
optimize a different cost function (Zhuang et al., 2025). We will start this section by briefly review-
ing the background of RL cast as a probabilistic inference problem, which ultimately boils down to
the KL-regularized RL formulation, since then the main differences with respect to these works will
become clearer.

F.1 RL CAST AS PROBABILISTIC INFERENCE

We follow the same reasoning as in Levine (2018). Let τ := (s0, a0, s1, a1, ..., sT ) a trajectory
across the joint state-action space S ×A, the probability of a trajectory τ given a parametric policy
πθ:

p(τ ;πθ) = ρ0(s0)

T∏
t=0

p(st+1|st, at)πθ(at|st) (28)

Next, we assume that the probability of (s, a) being part of an optimal trajectory is proportional to
exp( 1λr(st, at)). Then, it follows that the joint probability of a trajectory given a prior policy πp and
that trajectory being optimal is given by:

p(τ,O0:T ;πp) = ρ0(s0)
1

Zt
exp(

1

λ
Rt)

T∏
t=0

p(st+1|st, at)πp(at|st) (29)

Where ρ0(s0) is the probability of starting at state s0, p(st+1|st, at) is the transition probability, and
λ is the inverse temperature. Note that λ trades off the effect of the policy prior and the trajectory’s
return in the joint probability distribution. The event of τ being an optimal trajectory is represented
by O0:T (Levine, 2018), and Rt =

∑T
t=0 r(st, at). Then, the KL-regularized RL formulation pre-

sented in Equation 5 stems from minimizing the reverse KL-divergence between p(τ ;πθ) and
p(τ,O0:T ;πp):

θ∗ = argmin
θ

KL[p(τ ;πθ) ∥ p(τ,O0:T ;πp)] (30)

= argmin
θ

Es0∼ρ0,at∼πθ(·|st),
st+1∼p(·|st,at)

[
log

p(τ ;πθ)

p(τ,O0:T ;πp)

]
(31)

= argmax
θ

Es0∼ρ0,at∼πθ(·|st),
st+1∼p(·|st,at)

[T−1∑
t=0

[
r(st, at)− λ log

πθ(at | st)
πp(at | st)

]]
(32)

= argmax
θ

Es0∼ρ0,at∼πθ(·|st),
st+1∼p(·|st,at)

[T−1∑
t=0

[
r(st, at)− λKL[πθ(· | st) ∥ πp(· | st)]

]]
, (33)

Which results in the step-wise objective described in Equation 6 with the KL-regularized action-
value function Qπθ,λ defined in Equation 7.

F.2 TD-M(PC)2 (LIN ET AL., 2025)

The previous policy update is core to the PO-MPC framework and is guaranteed to monotonically
improve under the assumptions given in Appendix E. It also includes existing methods in the litera-
ture (i.e. TD-MPC2 (Hansen et al., 2024), BMPC (Wang et al., 2025)) when learning the sampling
policy πθs under different values of the hyperparameter λ and a policy prior that represents the plan-
ner policy, either from data stored in the replay buffer πp = πP or a proxy distribution πp = πθp .
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However, it adds further complexity since it requires learning an additional action value function
Qπθ,λ. Therefore, recent methods such as TD-M(PC)2, choose to forgo theoretical guarantees in
favor of simplicity by using the unregularized Qπ , which is still bound to perform well as long as
the policy remains close to the planner. This is enforced by maximizing:

Ea∼πθs
[Qπθs (zt, at)− α log π(· | zt) + β log πp(· | zt)] (34)

Where α is the hyperparameter regulating entropy maximization and β modulates the cross-entropy
These hyperparameters are often tuned so that α ≪ β, which allows to further develop this expres-
sion into:

Eat∼πθs

[
Qπθs (zt, at)−α log πθs(at | zt)+β log πp(at | zt)] = Eat∼πθs

[Qπθs (zt, at)+(β−α) log πθs(at | zt)−β log
πθs(at | zt)
πp(at | zt)

]
(35)

Which can be seen as learning a policy that maximizes the action value function Qπθs while mini-
mizing both KL-divergence with respect to πp, and entropy, since β − α is positive under α≪ β.

F.3 TD-MPBC (ZHUANG ET AL., 2025)

Other recent works in MPPI-based RL cannot be included within our formulation because the start-
ing loss function being minimized is different. The policy update from TD-MPBC (Zhuang et al.,
2025) comes from minimizing the forward KL-divergence between p(τ ;πθ) and p(τ,O0:T ;πp):

θ∗ = argmin
θ

KL[p(τ,O0:T ;πp) ∥ p(τ ;πθ)] (36)

= argmin
θ

E(st,at)∼p(τ,O0:T ;πp)

[
log

p(τ,O0:T ;πp)

p(τ ;πθ)

]
(37)

= argmax
θ

E(st,at)∼p(τ,O0:T ;πp)

[
log p(τ ;πθ)

]
(38)

= argmax
θ

E(st,at)∼p(τ,O0:T ;πp)

[T−1∑
t=0

log πθ(at | st)
]

(39)

= argmax
θ

E(st,at)∼p(τ ;πp)

[T−1∑
t=0

1

Zt
exp(

1

λ
Rt) log πθ(at | st)

]
(40)

= argmax
θ

E(st,at)∼p(τ ;πp)

[T−1∑
t=0

exp(
1

λ
Rt − logZt) log πθ(at | st)

]
(41)

(42)

Since in this case πp can be an arbitrary policy, we can estimate E(st,at)∼p(τ ;πp) through Monte
Carlo estimation. Choosing λ = G and logZt = 1, we recover the Behavior cloning regularization
term from TD-MPBC:

argmax
θ

∑
(st,at,Rt)∼D

exp
(Rt −G

G

)
log πθ(at | st) (43)

This term has high variance, since it depends on the returns Rt from the full trajectory. It is also
potentially sparse, as it depends on the version of the planner available when sampling the trajectory
and selecting high-return trajectory samples from the replay buffer. This is possibly why the main
learning signal in TD-MPBC originates from using the policy updates from TD-MPC2 (equivalent
to PO-MPC with λ = 0), with the term in Equation 43 serving as a regularization term.
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G THEORETICAL JUSTIFICATION OVER THE ADAPTIVE PRIOR

This section yields a theoretical justification for why using a learned policy prior that minimizes the
KL divergence with the previously stored planner policy samples from the replay buffer, instead of
using these directly, may decrease gradient variance from the sampling policy updates. First, we
introduce the formal definition for the gradient related to the regularization term that results from
using each representation of the planner policy. Then we compute the variance of each and compare
them.

Let us sample transitions from 1 to K, K being the current time step, and let K := {1, 2, ...,K}
the set of previous time steps. Let (sk, ak, sk+1, rk, µk, σk) be the transition stored at time step k,
where µk, σk are the mean and standard deviation of the planner policy computed at time step k:
πk := N (µk, σ

2
kI).

Assume that we can isolate N << K samples that share the same state s and compute the mean
KL-divergence between the parametric sampling policy we want to update, πθ (where θ = θs for
simplicity), and some generic prior policy, πp, that represents the planner. Then the regularization
term in the loss function is:

J(θ) =
1

N

N∑
i=0

Ea∼πθ(·|s)[log πθ(a|s)− log πp(a|s)], (44)

with its gradient being:

∇J(θ) = ∇ 1

N

N∑
i=0

Ea∼πθ(·|s)[log πθ(a|s)− log πp(a|s)] (45)

=
1

N

N∑
i=0

∇Ea∼πθ(·|s)[log πθ(a|s)]−
1

N

N∑
i=0

∇Ea∼πθ(·|s)[log πp(a|s)]

We isolate and focus on the cross-entropy term since it is the only one that depends on πp:

g(θ) =
1

N

N∑
i=0

∇Ea∼πθ(·|s)[log πp(a|s)] =
1

N

N∑
i=0

Ea∼πθ(·|s)[∇ log πθ(a|s) log πp(a|s)] (46)

G.1 EXPECTED VALUE

Previously stored planner policies. Let πki be policy planner stored at time step ki ∈ K where
i = 1, ..., N , and let ki be sampled uniformly from K. Substituting πp in Equation 46 yields:

g1(θ) = Ea∼πθ(·|s)[∇θ log πθ(a|s)(
1

N

N∑
i=1

log πki(a|s))] (47)

Next, the expected value of the gradient is:

Ek[g1(θ)] = Ea∼πθ(·|s)[∇θ log πθ(a|s)Ek[log π
k(a|s)]] (48)

Learned policy prior. Now let us develop the effect of learning first a prior from these samples,
using it as an alternative to regularize the sampling policy πθ. Let πθp be learned policy prior that
iteratively minimizes the reverse KL divergence between itself and the sequence of previously stored
planner policies πk:

πθp := argmin
π

1

K

K∑
k=0

Ea∼πθp
[log πθp(a|s)− log πk(a|s)] = Ek[log π

k(a|s)]. (49)

Then it follows that log πθp = Ek[log π
k(a|s)]. This is the first important result since substituting

πp in Equation 46 now yields,

g2(θ) = Ea∼πθ(·|s)[∇θ log πθ(a|s) log πθp(a|s)] = Ea∼πθ(·|s)[∇θ log πθ(a|s)Ek[log π
k(a|s)]],

(50)
Therefore, when using the learned policy prior, the mean of the gradient term that depends on πp is
theoretically equivalent to using previously stored samples: Ek[g1] = Ek[g2].
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G.2 VARIANCE

Previously stored planner policies. The source of randomness for g1 comes both from the sam-
pled actions and the sampled planner policies. Thus, using the previous result, we can make the
following decomposition:

1

N

N∑
i=1

log πki(a|s) = Ek[log π
k(a|s)] + ϵN (a), (51)

where Ek[ϵN (a)] = 0 and Vark(ϵN (a)) = 1
NVark(log π

k(a|s))

Then g1(θ) = Ea∼πθ(·|s)[∇θ log πθ(a|s)Ek[log π
k(a|s)]]+Ea∼πθ(·|s)[∇θ log πθ(a|s)ϵN (a)]. Using

the law of total variance and that ϵN (a) has zero mean we obtain:

Var k
a∼πθ

(g1(a)) = Vara∼πθ
(Ek[g1|a]) + Ea∼πθ

[Vark(g1|a)] (52)

= Vara∼πθ
(∇θ log πθ(a|s)Ek[log π

k(a|s)])

+ Ea∼πθ

[
(∇θ log πθ(a|s))(∇θ log πθ(a|s))T

Vark(log π
k(a|s))

N

]

Learned policy prior. Assuming πθp to be exact, the only source of randomness in g2 is the
sampling of actions a: Vara∼πθ

(g2) = Vara∼πθ
(∇θ log πθ(a|s)Ek[log π

k(a|s)]).
Which is identical to the first term in Var k

a∼πθ

(g1(a)). Then it follows that, under the condition that

N ≪ K and that πk are not all identical, the variance of gradient g2 will be strictly lower than g1.
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