

000 001 002 003 004 005 006 007 008 009 010 A KL-REGULARIZATION FRAMEWORK FOR LEARNING TO PLAN WITH ADAPTIVE PRIORS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Effective exploration remains a central challenge in model-based reinforcement learning (MBRL), particularly in high-dimensional continuous control tasks
012 where sample efficiency is crucial. A prominent line of recent work leverages learned policies as proposal distributions for Model-Predictive Path Integral
013 (MPPI) planning. Initial approaches update the sampling policy independently of
014 the planner distribution, typically maximizing a learned value function with deter-
015 ministic policy gradient and entropy regularization. However, because the states
016 encountered during training depend on the MPPI planner, aligning the sampling
017 policy with the planner improves the accuracy of value estimation and long-term
018 performance. To this end, recent methods update the sampling policy by minimiz-
019 ing KL divergence to the planner distribution or by introducing planner-guided
020 regularization into the policy update. In this work, we unify these MPPI-based
021 reinforcement learning methods under a single framework by introducing Policy
022 Optimization-Model Predictive Control (PO-MPC), a family of KL-regularized
023 MBRL methods that integrate the planner’s action distribution as a prior in policy
024 optimization. By aligning the learned policy with the planner’s behavior, PO-MPC
025 allows more flexibility in the policy updates to trade off Return maximization and
026 KL divergence minimization. We clarify how prior approaches emerge as special
027 cases of this family, and we explore previously unstudied variations. Our ex-
028 periments show that these extended configurations yield significant performance
029 improvements, advancing the state of the art in MPPI-based RL.
030

031 1 INTRODUCTION

032 Recent approaches to planning-enhanced MBRL such as TD-MPC (Hansen et al., 2022) have shown
033 that effective planning can significantly improve performance in MBRL by refining a learned policy
034 through trajectory optimization. In these methods, a learned policy and its associated (action) value
035 function are used for trajectory sampling and evaluation in a planning process (i.e. **sampling policy**
036 and **bootstrap value function**). Then, the sampling policy is updated off-policy, relying on promis-
037 ing transitions provided by planning. This paradigm ensures that the planning policy continuously
038 benefits from improvements in the learned sampling policy and bootstrap action value function,
039 which supply increasingly promising samples and accurate evaluations to the planner.
040

041 A key limitation emerges when trajectories are evaluated under a bootstrap value function condi-
042 tioned on states and actions unlikely to be visited by the planner. This distribution mismatch between
043 the sampling and planning policies leads to unreliable bootstrap estimates and poor value function
044 learning, especially for short horizons. Recent work addresses this by aligning the sampling policy
045 with the planner via reverse KL minimization (Wang et al., 2025), but is hindered by its reliance on
046 partially outdated planning samples, which introduce variance into policy updates.
047

048 Despite differing formulations, emerging MPPI-based methods implicitly follow the same prin-
049 ciple for interacting with the environment and updating the policy, revealing a growing but frag-
050 mented landscape. This motivates a unifying framework that clarifies commonalities, organizes
051 design choices, and enables systematic extensions to push forward the state of the art.
052

053 The main contribution of this work is Policy Optimization–Model Predictive Control (PO-MPC), a
054 general MBRL framework for MPPI-based approaches. PO-MPC builds on the TD-MPC2 world
055 model by casting the sampling policy learning step as an instance of KL-regularized RL, where the
056

Figure 1: Overview of the PO-MPC framework. **1)** Sampling-policy learning is formulated as a KL-regularized reinforcement-learning problem, controlled by the hyperparameter λ , where the learned sampling policy π_{θ_s} is regularized toward the action distribution computed by MPPI. **2)** Since querying the MPPI policy is computationally expensive, we either reuse previously stored samples π_p^t or, as proposed in this work, learn an approximation of it (i.e., π_p^{rkl} or π_p^{fkl}). **3)** Using different losses to learn this policy prior, as a proxy for the planner’s policy, allows embedding distinct inductive properties into the resulting sampling policy π_{θ_s} .

learned sampling policy π_{θ_s} is regularized against an MPPI-induced prior π_p with strength determined by a hyperparameter λ . In particular, our formulation enables:

- **Novel configurations.** We explore new algorithmic variants by tuning the KL-regularization strength λ .
- **Intermediate prior.** We introduce a learned prior that shields π_{θ_s} from outdated planner samples stored in the replay buffer.
- **Flexible objectives for training the prior.** We demonstrate how alternative losses for training the MPPI-induced prior embed distinct properties in π_{θ_s} , yielding superior performance.

We validate PO-MPC on challenging high-dimensional continuous control benchmarks, showing substantial gains in both sample efficiency and final performance over state-of-the-art baselines. These results highlight that a principled unification of MPPI-based approaches not only clarifies their design space but also drives concrete improvements in practice.

2 RELATED WORK

Model-based RL. Model-based reinforcement learning (MBRL) (Moerland et al., 2023) studies the combination of model and policy learning in sequential decision-making problems. On the one hand, a learned model offers both extra data (Sutton, 1991) and/or allows planning and obtaining more informed actions (Silver et al., 2017) or value estimates (Feinberg et al., 2018). Conversely, learning offers an (approximate) solution over the entire input space that generalizes to unvisited state-actions (Ackley & Littman, 1989), which is indispensable to overcome the curse of dimensionality (Poggio et al., 2017).

Planning and RL. Our work builds on advancements in planning-based (and model-based) reinforcement learning (MBRL), particularly methods that leverage online planning to guide policy learning. In many such approaches, like TD-MPC and subsequent works Hansen et al. (2022; 2024), a learned policy provides initial actions for a trajectory optimizer or planner, which then refines these actions using a learned model. The optimized trajectories subsequently provide data for policy and value function updates. However, the policy update often relies only on the single best actions or resulting trajectories from the planner, discarding potentially valuable information about the broader action distribution explored during planning. Alternatively, Zhou et al. (2024) proposes using diffusion generative models to create policy and dynamic model proposals, and use them to solve an MPC problem.

108 Other examples of RL enhanced planning include Silver et al. (2017); Wang et al. (2025), where a
 109 policy is learned by imitating a powerful planner (e.g., MCTS, MPPI). Other methods exploit other
 110 sources of demonstrations to bias RL policies towards more informed distributions (Bhaskar et al.,
 111 2024; Hu et al., 2023; Yin et al., 2022). While effective, these imitation or cloning approaches
 112 may constrain the learned policy to the planner’s immediate behavioral vicinity, potentially limiting
 113 its ability to directly optimize the long-term task objective (action value function) beyond what
 114 the planner currently achieves. On the other end, recent planning algorithms make use of expert
 115 knowledge or pre-trained policies to better inform the planning action search, robustly adapting
 116 to changes in the reward/cost function (Trevisan & Alonso-Mora, 2024; Wang et al., 2024a). In
 117 contrast, PO-MPC differentiates itself by proposing to utilize the entire action distribution generated
 118 by the planner, not just sampled actions or trajectories, as a guiding prior for the RL algorithm to
 119 exploit synergies between RL policy synthesis and planning-based action improvement.
 120

121 **RL as probabilistic inference.** The idea of using priors to guide exploration in RL has been con-
 122 sidered in many forms, albeit largely in the model-free setting (Tirumala et al., 2022). Priors can be
 123 used to guide learning by creating a trust region to constrain the optimization procedure (Schulman
 124 et al., 2015; 2017; Wang et al., 2017; Abdolmaleki et al., 2018); as an expectation-maximization
 125 (EM) update (Peters et al., 2010; Toussaint & Storkey, 2006; Rawlik et al., 2013; Levine & Koltun,
 126 2013; Abdolmaleki et al., 2018) or to constrain learning in the offline or batch-RL setting (Siegel
 127 et al., 2020; Wu et al., 2019; Jaques et al., 2019; Laroche et al., 2017; Wang et al., 2020; Peng et al.,
 128 2020). A fundamental idea behind these works is to consider RL as a form of probabilistic inference
 129 where the policy being learned can be viewed as a posterior distribution over a prior and an objective
 130 (typically the exponentiated action value or advantage function) as in Levine (2018). In this work,
 131 we leverage this idea to reuse the model-based planning policy to guide learning its own sampling
 132 policy.
 133

3 PRELIMINARIES

134 We consider a discrete-time sequential decision-making problem over a horizon T , modeled as a
 135 Markov Decision Process (MDP) $(\mathcal{S}, \mathcal{A}, p, r, \gamma)$, where \mathcal{S} is the state space, \mathcal{A} the action space,
 136 $p(s' | s, a)$ the transition probability (or deterministic mapping) from state s to s' under action a ,
 137 $r(s, a)$ the immediate reward for taking action a in state s , and $\gamma \in [0, 1)$ the discount factor. A
 138 policy $\pi(a | s)$ defines a distribution over actions given the current state, and the objective is to find
 139 π maximizing the expected discounted return

$$140 \quad J(\pi) = \mathbb{E}_{\substack{s_0 \sim \rho_0, a_t \sim \pi(\cdot | s_t), \\ s_{t+1} \sim p(\cdot | s_t, a_t)}} \left[\sum_{t=0}^{T-1} \gamma^t r(s_t, a_t) \right], \quad (1)$$

143 where ρ_0 is the initial state distribution.

144 **Reinforcement Learning (RL).** does not assume direct knowledge of p or r ; instead, an RL agent
 145 collects trajectories $\tau = (s_0, a_0, s_1, a_1, \dots)$ through interaction and uses methods such as policy
 146 gradients, actor-critic, or value-based updates to learn a parametric policy $\pi_\theta(a | s)$ that maximizes
 147 $J(\pi_\theta)$ via trial-and-error.

148 **Model Predictive Control (MPC).** assumes access to a (possibly learned) model $p(s_{t+1} | s_t, a_t)$
 149 and cost $c(s, a) = -r(s, a)$. At each time step t , MPC solves a finite-horizon optimization

$$151 \quad \min_{a_{t:t+H-1}} \mathbb{E} \left[\sum_{k=0}^{H-1} c(s_{t+k}, a_{t+k}) \right] \quad \text{s.t.} \quad s_{t+k+1} = p(s_{t+k}, a_{t+k}), \quad (2)$$

154 over horizon $H < T$, applies the first action a_t , and then “recedes the horizon” by re-solving at
 155 $t + 1$ with the updated state. This online re-planning allows MPC to correct for model errors and
 156 disturbances. Both RL and MPC are methods to solve sequential decision-making optimisation
 157 problems: RL hinges on *learning* a global policy from experience, while MPC focuses on *online*
 158 *optimization* using an explicit model. In the next section, we show how Model Predictive Path
 159 Integral (MPPI) planning unifies these perspectives and can be further improved by incorporating
 160 learned policy priors via RL.

161 **Model Predictive Path Integral Control.** is a sample-based approach to solving planning methods
 162 that makes use of the fact that optimal stochastic control problems can be solved with path inte-

162 grals to iteratively refine the optimal action distribution. At each step, it samples trajectories under
 163 a stochastic control law, weights them by cumulative cost, and refines its control sequence—all
 164 without requiring gradients of either dynamics or cost. Let $c(s_t, a_t)$ be a running cost (or re-
 165 ward $r = -c$) and H a finite planning horizon. Denote a nominal open-loop control sequence
 166 by $\bar{a}_{0:H-1} = (\bar{a}_0, \dots, \bar{a}_{H-1})$.

167 In MPPI, we sample M noisy trajectories $a_t^{(i)} = \bar{a}_t + \epsilon_t^{(i)}$, $\epsilon_t^{(i)} \sim \mathcal{N}(0, \sigma_t I)$, and simulate $s_{t+1}^{(i)} \sim$
 168 $p(s_{t+1} \mid s_t^{(i)}, a_t^{(i)})$. Each trajectory τ_i has an associated cost
 169

$$170 \quad 171 \quad 172 \quad 173 \quad S(\tau_i) = \sum_{t=0}^{H-1} c(s_t^{(i)}, a_t^{(i)}). \quad (3)$$

174 After selecting the K-top performing samples, the MPPI update follows from a path-integral (desir-
 175 ability) transform:

$$176 \quad 177 \quad 178 \quad 179 \quad w_i = \frac{\exp(-\frac{1}{\lambda} S(\tau_i))}{\sum_{j=1}^K \exp(-\frac{1}{\lambda} S(\tau_j))}, \quad \bar{a}_t \leftarrow \bar{a}_t + \sum_{i=1}^K w_i \epsilon_t^{(i)}, \quad \sigma_t = \sqrt{\frac{\sum_{i=1}^K w_i (\epsilon_t^{(i)})^2}{\sum_{i=1}^K w_i}} \quad (4)$$

180 where $\lambda > 0$ is the temperature parameter, and controls how much the importance sampling scheme
 181 weights the optimal cost trajectory versus the others. After a fixed number of iterations, the planning
 182 procedure is terminated and a trajectory is sampled from the final return-normalized distribution
 183 over action sequences. Planning is done at each decision step and only the first action is executed
 184 to produce a feedback policy. To warm-start optimization and speed convergence, the mean control
 185 sequence is initialized with the 1-step shifted $\bar{a}_{init} = \bar{a}_{t+1}$ from the previous decision step. We will
 186 denote the resulting **planning policy** obtained after a fixed number of MPPI iterations by $\mathcal{N}(\bar{a}_0, \sigma_0 I)$
 187 and π_P interchangeably.

188 **MPPI-based Reinforcement Learning.** Prior work in Model-based RL (Bhardwaj et al., 2021;
 189 Hansen et al., 2022) has successfully applied MPPI to high-dimensional control tasks (i.e. Deep-
 190 Mind Control Suite (Tassa et al., 2018), Humanoid Benchmark (Sferrazza et al., 2024)) by planning
 191 in a learned a model of the MDP $(\hat{\mathcal{S}}, \mathcal{A}, \hat{p}, \hat{r}, \gamma)$, that differs from the original by using a learned
 192 latent representation of the state space $z = h_{\theta_h}(s) \in \hat{\mathcal{S}}$, an approximate reward $\hat{r}(z, a) = r_{\theta_r}$ and
 193 transition dynamics $\hat{p} = p_{\theta_d}$ (Bhardwaj et al., 2021).

194 In MPPI, trajectories are usually sampled from a Gaussian policy often initialized with zero mean
 195 and pre-set maximum variance to cover the action space almost uniformly, which is updated through
 196 multiple iterations of MPPI. Recent work (Hansen et al., 2024; Wang et al., 2025) biases this sam-
 197 pling distribution, augmenting it with trajectory samples produced with a **learned sampling policy**:
 198 π_{θ_s} . Since planning is done over a finite horizon, the learned sampling policy is also used for learn-
 199 ing a **bootstrap action value function** $Q_{\theta_Q}^{\pi_{\theta_s}}$ evaluated on the last state of every sampled trajectory,
 200 leading to the H-step estimate: $Q(z_0, a_{0:H}^{(i)}) = \sum_{t=0}^{H-1} \gamma^t r_{\theta_r}(z_t, a_t^{(i)}) + \gamma^H Q_{\theta_Q}^{\pi_{\theta_s}}(z_H, a_H^{(i)})$.

201 Note that, since samples come from two distributions that are initially distinct, one learned and
 202 another initialized with high variance to enhance exploration. Then, the trajectory distribution is
 203 bi-modal. MPPI approximates a softmax posterior of the bi-modal distribution modulated by the
 204 normalized exponential of the estimated H-step value function returns. This process is reminiscent
 205 of epsilon-greedy policies, where high-return actions are taken with high probability, leaving some
 206 probability mass for exploration.

208 4 METHOD

211 4.1 POLICY UPDATE VARIANTS IN MPPI-BASED RL.

212 Initially, MPPI-based RL methods typically learned a *sampling policy* independently of the plan-
 213 ner’s action distribution. However, it is still influenced by the planner since it is used to collect
 214 the transition data used to update the sampling policy and the action value function. This de-
 215 coupling creates a distribution mismatch: the value function is trained under states and actions

induced by the planner, but the policy update optimizes a different objective (e.g. deterministic policy gradients with entropy regularization Hansen et al. (2024)¹). For short horizons H , where trajectory scoring is dominated by the terminal bootstrap $Q_{\theta_Q}^{\pi_{\theta_s}}(z_H, a_H)$, this mismatch amplifies error. If π_{θ_s} is not aligned with MPPI, the states that Q implicitly predicts will not be reliably visited, degrading its estimates (Wang et al., 2025). Recent work addresses this by pulling the policy toward the planner by directly cloning the planning distribution via reverse KL minimization $\text{KL}(\pi_{\theta_s}(\cdot | z_t) \| \pi_P(\cdot | z_t))$ (Wang et al., 2025)². However, this approach still suffers from:

- **Fixed KL penalty:** cloning the planning policy may collapse the sampling policy towards a local minima prematurely.
- **High-variance targets:** even when alleviated through *lazy reanalyze* (Wang et al., 2025), cloning uses stale planner statistics stored in the replay buffer that mix many planner versions, effectively turning a unimodal MPPI posterior into a time-varying Gaussian mixture.

We propose then to unify prior approaches under a single perspective: sampling policy learning as KL-regularized RL toward a *planner-induced prior*. This view makes explicit how design choices (trade-off between action-value maximization and KL minimization, Planning policy representation) map to previous methods, establish a generalised framework, and expose new, previously unexplored configurations.

4.2 POLICY OPTIMIZATION - MODEL PREDICTIVE CONTROL

Given these considerations, we propose PO-MPC: a MBRL generalizing RL framework based on MPPI. The general algorithm pseudocode for PO-MPC training is presented in Algorithm 1. Following TD-MPC2’s world model, previous approaches share a learned neural network **sampling policy**, π_{θ_s} , and the **bootstrap action value function** $Q_{\theta_Q}^{\pi_{\theta_s}}$, which are respectively used for biasing trajectory sampling and estimating the return of the trajectory beyond the horizon³. However, they all differ in how the learned sampling policy is updated. KL-regularized RL is a field of study that trains a policy to maximize its action-value function while regularizing the policy by minimizing the reverse KL-divergence to a second policy prior π_p . This regularization effect is modulated through a hyperparameter λ . In the following, we explain the main features of PO-MPC, being summarized as: **1)** Learning the sampling policy via KL-regularized RL, **2)** using a learned intermediate prior to represent the planning policy, which **3)** can be trained through different losses.

Sampling policy learning via KL-regularized RL. Given a state encoder $z = h_{\theta_h}(s)$ and a policy prior π_p , KL-regularized Reinforcement Learning considers the following goal in our framework:

$$J(\pi_{\theta_s}) = \mathbb{E}_{\substack{s_0 \sim \rho_0, a_t \sim \pi_{\theta_s}(\cdot | z_t) \\ s_{t+1} \sim p(\cdot | s_t, a_t)}} \left[\sum_{t=0}^{T-1} \gamma^t [r(z_t, a_t) - \lambda \text{KL}[\pi_{\theta_s}(\cdot | z_t) \| \pi_p(\cdot | z_t)]] \right], \quad (5)$$

where KL represents the Kullback-Liebler (KL) divergence between the policy and a prior distribution. The overall goal is to approximate, through the learned policy $\pi_{\theta_s}(\cdot | z_t)$, the distribution of trajectories generated by the prior policy $\pi_p(\cdot | z_t)$ reweighted by their exponential expected return. This is especially useful when prior policies are known that are likely to come across high-return regions in the state space, thus providing a promising trust region to explore around. As detailed in (Levine, 2018) for uniform policy priors, the objective in Equation 5 turns into the following step-wise objective:

$$J(\pi) = \mathbb{E}_{a \sim \pi_{\theta_s}} [Q_{\theta_Q}^{\pi_{\theta_s}, \lambda}(z_t, a_t)] - \lambda \text{KL}[\pi_{\theta_s}(\cdot | z_t) \| \pi_p(\cdot | z_t)], \quad (6)$$

¹Although Hansen et al. (2024) reports using SAC for updating the sampling policy, their public code omits the entropy term in action value function estimation.

²Although Wang et al. (2025) reports minimizing the forward KL divergence, their public code minimizes the reverse KL, which leads to notable performance differences as discussed in this paper.

³Details on the implementation of MPPI and training of the bootstrapping action-value function can be found in Appendix B.

270 where d^π is the normalized state frequency visitation under the policy π_{θ_s} , and $Q_{\tilde{\theta}_Q}^{\pi, \lambda}$ is the KL-
 271 regularized action value function, which accounts for the expected return and the reverse KL divergence
 272 between the learned and the prior policy accumulated until the end of the episode. Then, the
 273 recursive Bellman equation for $Q_{\tilde{\theta}_Q}^{\pi, \lambda}$ is:
 274

$$275 \quad Q_{\tilde{\theta}_Q}^{\pi_{\theta_s}, \lambda}(z_t, a_t) = \mathbb{E}_{\substack{s_{t+1} \sim p(\cdot | s_t, a_t), \\ a \sim \pi_{\theta_s}(\cdot | z_{t+1})}} \left[r(z_t, a_t) + \gamma \left(Q_{\tilde{\theta}_Q}^{\pi_{\theta_s}, \lambda}(z_{t+1}, a) - \lambda \log \left(\frac{\pi_{\theta_s}(a | z_{t+1})}{\pi_p(a | z_{t+1})} \right) \right) \right] \quad (7)$$

275 Note that λ controls how close to the prior policy we want the sampling policy to be, which is
 276 enforced through Equations 6 and 7.
 277

278 In this work, we focus on learning the sampling policy π_{θ_s} , and using the planning policy π_P for
 279 obtaining an adaptive prior π_p . We will also consider the case where we will maximize an en-
 280 tropy regularized objective $J'(\pi) = J(\pi) + \alpha \mathcal{H}(\pi)$, a term often included in KL-regularized RL
 281 to enhance exploration, as seen in Tirumala et al. (2022). We point the reader to Appendix E for
 282 additional proof on KL-regularized policy evaluation and improvement.
 283

284 **Prior policy design** Setting $\lambda = 0$ updates the policy exclusively through action value function
 285 maximization and entropy regularization, recovering the cost function of TD-MPC2 (Hansen et al.,
 286 2024). Meanwhile, maximizing only the reverse KL-divergence of the policy and the past planning
 287 policy distributions stored in the replay buffer (i.e. $\lambda = \infty$) recovers the BMPC cost function (Wang
 288 et al., 2025).
 289

290 We remark that this latter use of the planning policy samples as the prior introduces variance in the
 291 policy updates. The planning policy statistics (mean and variance) sampled from the replay buffer
 292 depend on old, less trained versions of the sampling policy. Therefore, for a given state, all sampled
 293 planning distributions have different modes, unlike the unimodal distribution that would result from
 294 MPPI under the current sampling policy and bootstrap action value function. This challenge is
 295 already recognized in Wang et al. (2025), and partially alleviated by periodically updating a small
 296 subset of the planning statistics sampled from the replay buffer.
 297

298 We propose further decreasing the variance in the policy update by introducing an intermediate
 299 policy, an **adaptive prior** π_{θ_p} , that approximates the planning policy π_P . The benefits of this choice
 300 are twofold: **1)** it shields the sampling policy updates from the variance introduced by old planning
 301 policy samples (see Appendix G), and **2)** It can be trained with losses beyond reverse KL divergence,
 302 providing flexibility in how the planning policy π_P is represented and, in turn, how the sampling
 303 policy is guided.
 304

305 As in prior methods, we can train this adaptive prior by either minimizing the reverse KL-divergence:
 306

$$307 \quad J(\theta_p) = \mathbb{E}_{(s, \pi_P) \sim D} \left[\text{KL}[\pi_{\theta_p}(\cdot | z_t) \parallel \pi_P(\cdot | z_t)] \right], \quad (8)$$

308 or, as a straightforward alternative, the forward KL divergence:
 309

$$310 \quad J(\theta_p) = \mathbb{E}_{(s, \pi_P) \sim D} \left[\text{KL}[\pi_P(\cdot | z_t) \parallel \pi_{\theta_p}(\cdot | z_t)] \right]. \quad (9)$$

312 Note that this choice comes with no loss of generality when the adaptive prior results from mini-
 313 mizing 8 (see Appendix G). Exclusively minimizing the reverse KL divergence between the learned
 314 sampling policy and the adaptive prior policy still recovers the policy update from Wang et al. (2025)
 315 since both sampling and adaptive prior policies are unimodal Gaussian distributions, and minimizing
 316 the reverse KL divergence imitates the latter exactly. Also note that choosing a prior that minimizes
 317 the reverse KL-divergence (Equation 8) will bias the sampling policy towards distributions that
 318 match one of the modes of the planning policy distribution, accelerating convergence but hurting ex-
 319 ploration. Meanwhile, choosing priors that minimize the forward KL-divergence (Equation 9) will
 320 bias the policy towards a Gaussian distribution that encompasses the support of all sampled planning
 321 distributions, thereby enhancing exploration but delaying convergence. Further details on how the
 322 adaptive prior policy is trained are included in Appendix B.
 323

Method Summary. PO-MPC provides a common view over previous methods while addressing two
 core challenges of MPPI-based RL: policy/planner mismatch and high-variance in stored planning

324 **Algorithm 1** PO-MPC (Main): Plan → Infer → Regularize

325

326 **Inputs:** world model \mathcal{M} , simulated world model $\tilde{\mathcal{M}}$, MPPI planner, sampler policy π_{θ_s} , value Q_{θ_Q} , buffer \mathcal{D} ,
KL weight λ , (optional) entropy α

327

328 1: **for** $t = 0, \dots$ **do**

329 2: **Plan (policy-as-prior):**

330 • $\bar{a}_{t:t+H}, \sigma_{t:t+H} \leftarrow \text{MPPI}_{\tilde{\mathcal{M}}}(z_t | \pi_{\theta_s}, Q_{\theta_Q}^{\pi_{\theta_s}}, \bar{a}_{init})$

331 • $a_t \sim \pi_P(\cdot | z_t) := \mathcal{N}(\bar{a}_t, \sigma_t^2 \mathbf{I})$; step env to get (r_t, s_{t+1}) ;

332 • Push $(s_t, a_t, r_t, s_{t+1}, \bar{a}_t, \sigma_t)$ to \mathcal{D}

333 3: **Update model $\tilde{\mathcal{M}}$ and Distill (adaptive prior):** sample $\mathcal{B} \subset \mathcal{D}$; update θ_p .

334 4: **Regularize & Improve (RL):**

335 1. Update Q_{θ_Q} and with TD targets under \mathcal{M} using π_{θ_s} .

336 2. Update $Q_{\theta_Q}^{\lambda}$ and with KL regularized TD targets under \mathcal{M} using π_{θ_s} .

337 3. Update π_{θ_s} by maximizing $\mathbb{E}_{s \sim \mathcal{B}, a \sim \pi_{\theta_s}} [Q_{\theta_Q}^{\lambda}(z, a)] - \lambda \text{KL}(\pi_{\theta_s} \| \pi_{\theta_p}) + \alpha \mathcal{H}(\pi_{\theta_s})$.

338 5: **end for**

339

340 samples. We do this by casting policy learning as KL-regularized RL toward a distilled, *adaptive*
341 planner prior. Concretely, MPPI produces a planning policy, which we distill into π_{θ_p} (via reverse
342 or forward KL) to remove replay-induced variance; we then update the sampling policy π_{θ_s} with
343 the KL-regularized objective in Eqs. 6–7, balancing return maximization, proximity to the planner
344 (through λ), and entropy for exploration. This Plan→Infer→Regularize loop aligns the value func-
345 tion’s rollout distribution with both the learned policy and the planner, improving stability and sam-
346 ple efficiency. The framework subsumes prior methods as special cases ($\lambda=0$ recovers TD-MPC2;
347 $\lambda \rightarrow \infty$ with reverse-KL distillation recovers Variant 3⁴ of Wang et al. (2025)) while enabling prin-
348 cipled choice between fast mode-seeking convergence and broader support-covering exploration.

349 5 EXPERIMENTS

350

351 We evaluate different configurations of the proposed framework (PO-MPC) on 7 challenging and
352 high-dimensional continuous control tasks from DeepMind Control Suite (Tassa et al., 2018) (Hu-
353 manoid and Dog) and 14 tasks from HumanoidBench locomotion suite (Sferrazza et al., 2024).
354 These tasks cover a diverse range of continuous control challenges, including sparse reward, lo-
355 comotion with high-dimensional state and action space ($\mathcal{A} \in \mathbb{R}^{21}$, $\mathcal{A} \in \mathbb{R}^{38}$, and $\mathcal{A} \in \mathbb{R}^{61}$ re-
356 spectively). Each experiment is run on a single NVIDIA A100 GPU, taking from 7h to 15h to
357 train a policy for 1e6 time-steps. For reproducibility, our implementation is available at <https://anonymous.4open.science/r/pompc-71E7>.

358

359 **Baselines.** We empirically support the claims in this work by comparing design choices al-
360 ready taken under this framework in the literature, namely TD-MPC2 (Hansen et al., 2024) and
361 BMPC (Wang et al., 2025). We also explore simple variations in this framework by studying the
362 effect of different values of λ , the inclusion of the intermediate policy π_{θ_p} , and how it is trained.
363 Table 2 provides an overview of the tested configurations, including published works. Since BMPC
364 learns the value rather than the action-value function, setting $\lambda = \infty$ (minimizing only the KL-
365 divergence in 6) recovers Variant 3 of Wang et al. (2025). This detail does not affect our policy
366 update analysis. We evaluate each baseline with the updated hyperparameters from its repository.
367 We evaluate PO-MPC under the same hyperparameters of TD-MPC2, with the exception of those
368 related to PO-MPC (see Appendix A).

369 5.1 RESULTS

370

371 The objective of this section is to test PO-MPC from three angles. First, we make an empirical study
372 of the effects of prioritizing return maximization over KL divergence minimization by choosing
373 different values for λ . Second, we verify that employing an intermediate policy prior does not hurt
374 the performance of PO-MPC. Finally, we show an example of how different policy priors may serve
375 to embed different properties in the sampling policy.

376

377 ⁴Variant 3 in Wang et al. (2025) is identical to BMPC except for the fact that it learns the bootstrap action
378 value function $Q^{\pi_{\theta_s}}$ of the sampling policy instead of the value function $V^{\pi_{\theta_s}}$.

Figure 2: Performance comparison in 14 state-based high-dimensional control tasks from HumanoidBench (Sferrazza et al., 2024). Mean of 3 runs; shaded areas are 95% confidence intervals. In the top left, we visualize results averaged across all tasks except for *Reach* due to different range.

Table 1: Final performance across 7 high-dimensional control tasks from DMControl Suite (Tassa et al., 2018). Mean of 3 runs and 95% CI. Learning curves are reported in Appendix D

	Dog				Humanoid		
	Stand	Trot	Walk	Run	Stand	Walk	Run
TD-MPC2	978±6	738±488	957±9	611±76	915±33	910±34	480±60
BMPC	992±8	931±11	964±11	740±107	950±34	946±4	529±90
Ours ($\lambda=0.1$)	993±4	959±12	976±12	709±66	958±10	948±17	581±90
Ours ($\lambda=1$)	993±4	946±11	966±14	720±132	959±14	948±3	554±101
Ours ($\lambda=9$)	990±2	959±18	974±27	703±166	958±10	948±19	548±22

Trading off return and KL divergence optimization. The parameter λ regulates the trade-off between two competing objectives in the policy updates: maximizing episode returns and minimizing the KL divergence from the adaptive policy prior. Table 1 and Figure 2 show PO-MPC evaluations with a policy prior learned according to Equation 8, under different values of λ . Specifically, we consider $\lambda = 0.1, 1$, and 9.0 , which correspond to approximate prioritization of KL divergence minimization of 10%, 50%, and 90%, respectively. Our results demonstrate that regulating the proximity between the sampling and planning policies matches the performance of the baselines in the lower-dimensional tasks from DMControl Suite while significantly boosting performance in the higher-dimensional tasks from HumanoidBench. In particular, in the latter tasks, intermediate values of λ never perform worse than the baselines and often clearly outperform them (i.e., Balance S., Crawl, Pole, Run, Slide, Stair, and Walk). Overall, when averaged across tasks, PO-MPC with intermediate λ values is on par in low-dimensional tasks (DMControl), but achieves clear superior results with respect to the state-of-the-art in higher-dimensional ones (HumanoidBench), especially when λ is carefully tuned.

Policy prior: Learned Intermediate policy vs. Planning replay data. Continuing our experiments in HumanoidBench, Figure 3 shows that, on average across tasks, using a learned intermediate policy instead of using the Planning policy samples from the replay buffer matches the performance of the latter and, in some cases, surpasses it. We hypothesize this is due to the reduction in variance that results from the intermediate policy prior being able to be approximated exactly by the sampling

432 Table 2: Method characteristics and empirical trends under the PO-MPC view. Arrows denote trends
 433 observed in our experiments; details in Figs. 2–4 and Table 1. Performance and Sample efficiency
 434 are taken w.r.t. TD-MPC2. Note that $\lambda \rightarrow \infty$ means only the KL divergence in Eq. 6 is optimized.
 435

Method	Uses planning policy prior	KL-reg. objective	Fwd/Rev	Sample eff.	Final perf.
TD-MPC2	$\times(\lambda = 0)$	\times	–	baseline	baseline
BMPC	$\checkmark(\lambda \rightarrow \infty)$	$\checkmark(\pi_P)$	Fwd	\uparrow	\uparrow / \approx
PO-MPC (Ours)	$\checkmark(\lambda \text{ var.})$	$\checkmark(\pi_{\theta_p})$	Fwd / Rev	\uparrow	$\uparrow\uparrow$

442 policy, instead of the ensemble of, partially outdated, unimodal Gaussian Planning policy samples
 443 from the replay buffer.
 444

466 Figure 3: Effects of using a learned intermediate
 467 prior, π_{θ_p} , instead of the Planning samples,
 468 π_P , from the replay buffer. Mean of 3 runs;
 469 shaded areas are 95% CI. We report the
 470 average across tasks (**Top**) and in the Balance Simple
 471 task (**Bottom**). See Appendix D for results
 472 on all tasks.
 473

474 **Policy prior Training.** Figure 4 exemplifies how depending on the environment, choosing an al-
 475 ternative policy prior will change the effect of our chosen value for λ , improving or deteriorating
 476 the performance. For example, choosing priors minimizing the forward KL-divergence (Equation 9)
 477 will bias the policy towards a Gaussian distribution that includes the support of all sampled plan-
 478 ning distributions, instead of matching the most frequent mode in the batch. This enhances explo-
 479 ration but delays convergence. This is why it is beneficial in environments where exploration is
 480 key, converging to a more stable solution faster at low values of λ (i.e., in Stair); but detrimental in
 481 environments where deterministic behavior is crucial to obtain high rewards (i.e. Balance Simple).

6 DISCUSSION AND CONCLUSION

482 **Summary of Findings** Across 7 DMControl (Humanoid/Dog) and 14 HumanoidBench tasks, PO-
 483 MPC consistently improves over TD-MPC2 and is competitive with or exceeds BMPC. Figures 5–2

486 show that even modest KL regularization (e.g., $\lambda = 0.1$) yields sizable gains over TD-MPC2, with
 487 larger λ often dominating in high-dimensional settings. Replacing on-replay planner samples with
 488 a learned *adaptive prior* matches or surpasses cloning-from-replay (Fig. 3), suggesting reduced
 489 update variance and smoother training (see Appendix G). The choice of prior fitting objective is
 490 task-dependent: forward KL tends to help exploration-heavy tasks (e.g., Stair) at low λ , whereas
 491 reverse KL accelerates convergence on precision-dominated tasks (e.g., Balance Simple) (Fig. 4).
 492 These results support the main claims of the work: closing the loop so that planning informs policy
 493 updates (and vice-versa) yields guided exploration and better sample efficiency in MPPI-based RL.

494 **Limitations.** Tuning hyperparameter λ is essential for the performance of PO-MPC. As a rule of
 495 thumb, we keep it to $\lambda = 1$, to equally weight return maximization and KL minimization. However,
 496 its optimal value depends both on the complexity of the environment and the training of the policy
 497 prior. A similar approach might be taken as in SAC (Haarnoja et al., 2018), where the appropriate
 498 value of λ would be learned during training.

499 Also, information obtained during planning is not fully exploited. Many trajectories are simulated
 500 during planning that, although used for computing an action sequence, are not leveraged for learning
 501 the action value function, thus being computationally inefficient. Additionally, such trajectories
 502 are constrained to short horizons. The model loses accuracy at long horizons, which reduces the
 503 accuracy of the estimated scores for each sampled trajectory as well.

504 Finally, we assume both learned sampling policy and policy prior to be Gaussian distributions.
 505 This approximation is very restrictive since the Planning policy, which consists of a Gaussian prior
 506 reweighted by an exponential distribution of the trajectory costs, is not necessarily Gaussian.

507 **Conclusion.** This paper introduced *Policy Optimization – Model Predictive Control* (PO-MPC), a
 508 family of model-based reinforcement learning methods for continuous action spaces. In particular,
 509 PO-MPC extends MPPI-based RL by finding a common formulation that includes previously pub-
 510 lished approaches in the state-of-the-art, and exploits previously unexplored design choices. Our
 511 experiments show that PO-MPC leveraging these choices often learn faster and more stably than the
 512 other baselines, serving as a new state-of-the-art for model-based RL in continuous action spaces.
 513 Future work could focus on **1**) extending the distribution of the policies used to more expressive
 514 classes than Gaussian, **2**) automatically tuning the trade-off between Return maximization and KL
 515 minimization, and **3**) increasing the computational efficiency by leveraging the simulated transition
 516 data generated during planning for action value learning.

518 REFERENCES

520 Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
 521 tin Riedmiller. Maximum a posteriori policy optimisation. In *International Conference on Learn-
 522 ing Representations*, 2018. URL <https://openreview.net/forum?id=S1ANxQW0b>.

523 David Ackley and Michael Littman. Generalization and scaling in reinforcement learning. *Advances
 524 in neural information processing systems*, 2, 1989.

525 Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. Blending {mpc} & value function ap-
 526 proximation for efficient reinforcement learning. In *International Conference on Learning Rep-
 527 resentations*, 2021. URL https://openreview.net/forum?id=RqCC_00Bg7V.

528 Amisha Bhaskar, Zahiruddin Mohammad, Sachin R Jadhav, and Pratap Tokek. Planrl: A motion
 529 planning and imitation learning framework to bootstrap reinforcement learning. *arXiv preprint
 530 arXiv:2408.04054*, 2024.

531 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
 532 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
 533 Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

534 Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
 535 Model-based value estimation for efficient model-free reinforcement learning. *arXiv preprint
 536 arXiv:1803.00101*, 2018.

540 Shane Flandermeier. `tdmpc2-jax`: Jax/flax implementation of TD-MPC2. <https://github.com/ShaneFlandermeier/tdmpc2-jax>, 2024a. Accessed: 2025-08-28.

541

542

543 Shane Flandermeier. `bmpc-jax`: Jax/flax implementation of BMPC. <https://github.com/ShaneFlandermeier/bmpc-jax>, 2024b. Accessed: 2025-08-28.

544

545 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
546 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, pp. 1861–1870. Pmlr, 2018.

547

548 Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
549 uous control. In *International Conference on Learning Representations (ICLR)*, 2024.

550

551 Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
552 control. *International Conference on Machine Learning*, pp. 8387–8406, 2022.

553

554 Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learn-
555 ing. *arXiv preprint arXiv:2311.02198*, 2023.

556

557 Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
558 Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
559 implicit human preferences in dialog, 2019.

560

561 Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe policy improvement with
562 baseline bootstrapping, 2017.

563

564 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
565 *arXiv preprint arXiv:1805.00909*, 2018.

566

567 Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimization. In *Ad-
568 vances in Neural Information Processing Systems*, pp. 207–215, 2013.

569

570 Haotian Lin, Pengcheng Wang, Jeff Schneider, and Guanya Shi. Td-m(PC)²: Improving temporal
571 difference mpc through policy constraint. *arXiv preprint arXiv:2502.03550*, 2025.

572

573 Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
574 forcement learning: A survey. *Foundations and Trends® in Machine Learning*, 16(1):1–118,
575 2023.

576

577 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage weighted regression:
578 Simple and scalable off-policy reinforcement learning, 2020. URL <https://openreview.net/forum?id=H1gdF34FvS>.

579

580 Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In *Proceedings of
581 the Twenty-Fourth AAAI Conference on Artificial Intelligence*, AAAI’10, pp. 1607–1612. AAAI
582 Press, 2010.

583

584 Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why
585 and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. *Inter-
586 national Journal of Automation and Computing*, 14(5):503–519, 2017.

587

588 Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
589 forcement learning by approximate inference (extended abstract). In *Proceedings of the Twenty-
590 Third International Joint Conference on Artificial Intelligence*, IJCAI ’13, pp. 3052–3056. AAAI
591 Press, 2013. ISBN 9781577356332.

592

593 Julian Schrittwieser, Thomas K Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
594 Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
595 learned model. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Ad-
596 vances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=HKtsGW-1Nbw>.

597

598 John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region
599 policy optimization. In *Proceedings of the 32nd International Conference on Machine Learning*,
600 2015.

594 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 595 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

596

597 Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Hu-
 598 manoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipula-
 599 tion. In *Proceedings of Robotics: Science and Systems*, Delft, Netherlands, July 2024. doi:
 600 10.15607/RSS.2024.XX.061.

601 Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
 602 unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what
 603 worked: Behavior modelling priors for offline reinforcement learning. In *International Confer-
 604 ence on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rke7geHtwH>.

605

606 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 607 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
 608 without human knowledge. *nature*, 550(7676):354–359, 2017.

609

610 Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. *ACM Sigart
 Bulletin*, 2(4):160–163, 1991.

611

612 Richard S. Sutton and Andrew G. Barto. *Generalized Policy Iteration*, chapter 4, pp. 76–80. MIT
 613 Press, Cambridge, MA, 2nd edition, 2018. Section 4.2.

614

615 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
 616 den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
 617 Riedmiller. DeepMind Control Suite. Technical report, DeepMind, 2018.

618

619 Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu,
 620 Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye
 621 Teh, and Nicolas Heess. Behavior priors for efficient reinforcement learning. *Journal of Ma-
 622 chine Learning Research*, 23(221):1–68, 2022. URL <http://jmlr.org/papers/v23/20-1038.html>.

623

624 Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous state
 625 markov decision processes. In *Proceedings of the 23rd International Conference on Machine
 626 Learning*, ICML ’06, pp. 945–952, New York, NY, USA, 2006. Association for Computing Ma-
 627 chinery. ISBN 1595933832. doi: 10.1145/1143844.1143963. URL <https://doi.org/10.1145/1143844.1143963>.

628

629 Elia Trevisan and Javier Alonso-Mora. Biased-mppi: Informing sampling-based model predictive
 630 control by fusing ancillary controllers. *IEEE Robotics and Automation Letters*, 2024.

631

632 Pengcheng Wang, Chenran Li, Catherine Weaver, Kenta Kawamoto, Masayoshi Tomizuka, Chen
 633 Tang, and Wei Zhan. Residual-mppi: Online policy customization for continuous control. *arXiv
 preprint arXiv:2407.00898*, 2024a.

634

635 Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero v2: Mastering
 636 discrete and continuous control with limited data. In *Forty-first International Conference on
 637 Machine Learning*, 2024b. URL <https://openreview.net/forum?id=LHGMXcr6zx>.

638

639 Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, and Xuguang Lan. Bootstrapped model
 640 predictive control. *arXiv preprint arXiv:2503.18871*, 2025.

641

642 Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
 643 and Nando de Freitas. Sample efficient actor-critic with experience replay. In *International
 644 Conference on Learning Representations*, 2017.

645

646 Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed, Bobak
 647 Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas. Critic
 648 regularized regression, 2020.

649

650 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
 651 2019.

648 Zhao-Heng Yin, Weirui Ye, Qifeng Chen, and Yang Gao. Planning for sample efficient imitation
649 learning. *Advances in Neural Information Processing Systems*, 35:2577–2589, 2022.
650

651 Guangyao Zhou, Sivaramakrishnan Swaminathan, Rajkumar Vasudeva Raju, J Swaroop Guntupalli,
652 Wolfgang Lehrach, Joseph Ortiz, Antoine Dedieu, Miguel Lázaro-Gredilla, and Kevin Murphy.
653 Diffusion model predictive control. *arXiv preprint arXiv:2410.05364*, 2024.

654 Zifeng Zhuang, Diyuan Shi, Runze Suo, Xiao He, Hongyin Zhang, Ting Wang, Shangke Lyu, and
655 Donglin Wang. Tdmpbc: Self-imitative reinforcement learning for humanoid robot control. *arXiv*
656 *preprint arXiv:2502.17322*, 2025.

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A HYPERPARAMETERS**
703704 In table 3 we share the hyperparameters employed for both our method (PO-MPC) and the baseline
705 TD-MPC. Both methods share all parameters except for the ones exclusive to PO-MPC.
706707 Table 3: Hyperparameter configuration.
708

709 Hyperparameters	710 Values
General	
711 Num. steps	1 000 000
712 Replay buffer	1 000 000
713 Learning_rate	3e-4
714 Max. Gradient norm	20
715 Optimizer	Adam($\beta_1 = 0.9, \beta_2 = 0.999$)
World model	
717 Encoder dim.	256
718 Num. Encoder layers	2
719 Learning_rate	3e-4
720 Latent_dim	512
721 Dropout	0.01
722 Num. Value Nets	5
723 Num. bins	101
724 Symlog min,max	-10, 10
725 Simnorm dim	8
TD-MPC2	
727 Horizon	3
728 MPPI iterations	8
729 Population size	512
730 Policy prior samples	24
731 Num. elites	64
732 Min. plan std (σ_{min})	0.05
733 Max. plan std (σ_{max})	2
734 Temperature	1.0
735 Batch size (n_r)	256
736 Discount (γ)	0.99
737 Time discount (ρ)	0.5
738 Consistency coef.	20
739 Reward model coef.	0.1
740 Value function coef.	0.1
741 Entropy coef. (α)	1e-4
741 Target update coef. (τ)	0.01
PO-MPC	
743 Biased value function coef.	0.1
744 KL Reg. strength λ	{0.1, 1.0, 9.0}
745 Learned intermediate prior policy	{Yes, No}
746 Prior policy learning loss	{Fwd KL, Rev KL}
747 Reanalyzed batch (n_b^r)	20
748 Reanalyzed interval (k)	10

749
750
751
752
753
754
755

756 **B IMPLEMENTATION DETAILS**
 757

758 In this appendix, we give a thorough explanation of the procedure followed to implement PO-MPC.
 759 For the sake of completeness, we also include the explanation of MPPI for obtaining the Planning
 760 policy.

761 **B.1 PLANNING POLICY.**

764 In this paper, we follow the same iterative planning process explained in Section 3 for **MPPI-based**
 765 **Reinforcement Learning**, where the Planning policy is iteratively refined with the help of a learned
 766 sampling policy and its associated Bootstrap action-value function. We maintain the same world
 767 model loss for the environment state encoder $h_{\theta_h}(s)$, dynamics model $p_{\theta_d}(z)$, and reward function
 768 model $r_{\theta_r}(z, a)$ over latent representations from Hansen et al. (2024).

769 At each time step t , we start planning by encoding the current state of the environment $z_t = h_{\theta}(s_t)$.
 770 Then we sample simulated trajectories of horizon H , sampling $n_{\pi_{s_\theta}}$ times actions from the learned
 771 sampling policy π_{s_θ} and $M - n_{\pi_\theta}$ times from the Planning policy. The Planning policy is a Gaus-
 772 sian open-loop control sequence with mean: $\bar{a}_{0:H-1} = (\bar{a}_0, \dots, \bar{a}_{H-1})$, and every sample being
 773 computed by $a_t^{(i)} = \bar{a}_t + \epsilon_t^{(i)}$, $\epsilon_t^{(i)} \sim \mathcal{N}(0, \sigma_t I)$. The sequence is always initialized with variance
 774 σ_{max}^2 , and the mean \bar{a}_t with the 1-step shifted mean except for the start of the episode where zero-
 775 mean is used. M noisy trajectories are simulated $z_{t+1}^{(i)} \sim p(z_{t+1} | z_t^{(i)}, a_t^{(i)})$ and evaluated according
 776 to its H -step estimated return:

$$778 \hat{Q}(z_0, a_{0:H}^{(i)}) = \sum_{t=0}^{H-1} \gamma^t r_{\theta_r}(z_t, a_t^{(i)}) + \gamma^H Q_{\theta_Q}^{\pi_{\theta_s}}(z_H, a_H^{(i)}) \quad (10)$$

781 After selecting the K-top performing samples, the MPPI update follows from a path-integral (desir-
 782 ability) transform:

$$783 \bar{a}_t \leftarrow \bar{a}_t + \sum_{i=1}^K w_i \epsilon_t^{(i)}, \quad \sigma_t = \sqrt{\frac{\sum_{i=1}^K w_i (\epsilon_t^{(i)})^2}{\sum_{i=1}^K w_i}} \quad (11)$$

$$788 w_i = \frac{\exp(-\frac{1}{\beta}(Q(z_0, a_{0:H}^{(i)}) - \max_{i'} Q(z_0, a_{0:H}^{(i')})))}{\sum_{j=1}^K \exp(-\frac{1}{\beta}(Q(z_0, a_{0:H}^{(j)}) - \max_{i'} Q(z_0, a_{0:H}^{(i')})))},$$

791 where $\beta > 0$ is the temperature parameter, and controls how much the importance sampling scheme
 792 weights the optimal cost trajectory versus the others. After a fixed number of iterations, the planning
 793 procedure is terminated and a trajectory is sampled from the final return-normalized distribution over
 794 action sequences. Planning is done at each decision step, and only the first action of the sampled
 795 trajectory, a_0 , is executed to produce a feedback policy. We denote the resulting Planning policy
 796 over the first step, obtained after a fixed number of MPPI iterations, by: $\pi_P = \mathcal{N}(\bar{a}_0, \sigma_0 I)$, with
 797 p being the transition model, and \bar{a}_{init} the initialization mean control sequence. After interacting
 798 with the environment, the transition information and Planning policy are added to a replay buffer,
 799 i.e. $(s, a_0, s', r, \bar{a}_0, \sigma_0) \rightarrow \mathcal{D}$.

800 **B.2 ADAPTIVE PRIOR POLICY UPDATES.**

802 To improve the sampling policy using KL-regularized RL, we need a policy prior π_p representing
 803 the current Planning policy to act as a reference. To represent the current Planning policy we can
 804 straightforwardly use the Planning policy samples stored in the replay buffer or, as shown in Sec-
 805 tion 4, an intermediate policy π_{θ_p} . We train this intermediary policy by either minimizing the reverse
 806 KL divergence:

$$808 J(\theta_p) = \sum_{t'=t}^{H-1} \frac{\rho^{t'-t}}{H} \frac{\text{KL}[\pi_{\theta_p}(\cdot | z_{t'}) \parallel \pi_P(\cdot | z_{t'})]}{\max(1, S_p)}, \quad (12)$$

810 or, as an example of a straightforward alternative, the forward KL divergence:
 811

$$812 \quad 813 \quad 814 \quad 815 \quad J(\theta_p) = \sum_{t'=t}^{H-1} \frac{\rho^{t'-t}}{H} \frac{\text{KL}[\pi_P(\cdot | z_{t'}) \| \pi_{\theta_p}(\cdot | z_{t'})]}{\max(1, S_p)}, \quad (13)$$

816 where S_p is an adaptive scale parameter that tracks the difference between the 5th and 95th per-
 817 centiles of the KL divergence. This is often use
 818

819 B.3 ACTION VALUE FUNCTION AND POLICY UPDATES.

820 Planning policy improvement relies on improving the sampling policy, π_{θ_s} , and updating its associ-
 821 ated bootstrap action value function, $Q_{\theta_Q}^{\pi_{\theta_s}}$. Every n_d time steps, a batch of n_b trajectories of horizon
 822 H is drawn from the replay buffer \mathcal{D} . The action value function $Q_{\theta_Q}^{\pi_{\theta_s}}$ is updated by minimizing its
 823 TD-error at each time step over the horizon H , with a decaying parameter ρ to account for prediction
 824 error over the latent space predictions. In the following, we denote by $\pi_{\theta_s}(z)$ the learned sampling
 825 policy probability distribution over actions u conditional on the latent representation $z = h_{\theta_h}(s)$,
 826 leaving $\pi_{\theta_s}(u|z)$ to denote the probability of sampling u under the learned sampling policy.
 827

$$828 \quad 829 \quad 830 \quad 831 \quad 832 \quad J(\theta_Q) = \sum_{t'=t}^{H-1} \frac{\rho^{t'-t}}{H} \text{CE}(Q_{\theta_Q}^{\pi_{\theta_s}}(z_{t'}, a_{t'}), \hat{Q}^{\pi_{\theta_s}}(z_{t'}, a_{t'})) \quad (14)$$

$$833 \quad 834 \quad \hat{Q}^{\pi_{\theta_s}}(z_{t'}, a_{t'}) = r_t + \gamma Q_{\theta_Q}^{\pi_{\theta_s}}(z_{t'+1}, \tilde{a})|_{\tilde{a} \sim \pi_{\theta_s}(a|z_{t'+1})} \quad (15)$$

835 Where θ_Q and θ_Q^- are the parameters of the action value function and the target action value func-
 836 tion. As explained in Hansen et al. (2024), the TD-error is tracked by the cross-entropy error between
 837 action-value logit representations and the two-hot vector encoding of the target. Under the assump-
 838 tion that the action-value function is correctly approximated, the planning policy is a maximum a
 839 posteriori estimate over the learned sampling distribution π_{θ_s} . Therefore, the planning policy can be
 840 intuitively interpreted as a policy improvement step over the current learned policy Sutton & Barto
 841 (2018).
 842

843 The learned sampling policy update is designed to move the policy towards maximizing the expected
 844 return while ensuring its associated trajectory distribution remains close to the prior trajectory distri-
 845 bution, which is induced by the planning policy. This leads to the following KL-regularized action
 846 value function loss:
 847

$$848 \quad 849 \quad J(\tilde{\theta}_Q) = \sum_{t'=t}^{H-1} \frac{\rho^{t'-t}}{H} \text{CE}(Q_{\tilde{\theta}_Q}^{\pi_{\theta_s}, \lambda}(z_{t'}, a_{t'}), \hat{Q}^{\pi_{\theta_s}, \lambda}(z_{t'}, a_{t'})) \quad (16)$$

$$850 \quad 851 \quad 852 \quad 853 \quad \hat{Q}^{\pi_{\theta_s}, \lambda}(z_{t'}, a_{t'}) = r_t + \gamma \left(Q_{\tilde{\theta}_Q}^{\pi_{\theta_s}, \lambda}(z_{t'+1}, \tilde{a})|_{\tilde{a} \sim \pi_{\theta_s}(z_{t'+1})} - \lambda \frac{\text{KL}[\pi_{\theta_s}(\cdot | z_{t'+1}) \| \pi_{\theta_p}(\cdot | z_{t'+1})]}{\max(1, S_{KL})} \right) \quad (17)$$

854 and the following policy loss:
 855

$$856 \quad 857 \quad 858 \quad 859 \quad 860 \quad J(\theta_s) = \sum_{t'=t}^{H-1} \frac{\rho^{t'-t}}{H} \left(\lambda \frac{\text{KL}[\pi_{\theta_s}(z_{t'}) \| \pi_{\theta_p}(z_{t'})]}{\max(1, S_{KL})} - \frac{Q_{\tilde{\theta}_Q}^{\pi_{\theta_s}, \lambda}(z_{t'}, \tilde{a})|_{\tilde{a} \sim \pi_{\phi\pi}(z_{t'})}}{\max(1, S_Q)} - \alpha \mathcal{H}(\pi_{\theta_s}(z_t)) \right), \quad (18)$$

862 where S_i , $i \in \{KL, Q\}$, is an adaptive scale parameter that tracks the difference between the 5th
 863 and 95th percentiles of each loss term. Since the values of both terms differ by multiple degrees

864 of magnitude, scaling them enables more robust control, through the hyperparameter λ , over the
 865 trade-off between expected return maximization and mimicking the policy prior distribution.
 866

867 It is important to note that, due to its potential to reach very high values, which may negatively affect
 868 action value learning and, consequently, exploration, the KL term, both in action value target and
 869 sampling policy update, is often scaled by S_{KL} in practice.

870 **B.4 CO-DEPENDENCE BETWEEN THE LEARNED POLICY AND THE PLANNING POLICY.**

871

872 During the first steps of training, the replay buffer needs to be filled, and the planning policy suffers
 873 from low quality since both $Q_{\theta_Q}^{\pi_{\theta_s}}$, π_{θ_s} are untrained. This is why it is important to make sure the
 874 bootstrap action value function is properly trained before updating all the other components. There-
 875 fore, we follow a pretraining phase during the first N_s steps, where only the untrained sampling
 876 policy π_{θ_s} interacts with the environment with no parameter updates. Then, before proceeding to
 877 update all parameters as explained in Section 4, we update all model parameters and the bootstrap-
 878 ping action value function ($Q_{\theta_Q}^{\pi_{\theta_s}}$) N_s times. To prevent unnecessary exploration bias, the planning
 879 policy samples stored during this phase are zero-mean diagonal Gaussians with maximum standard
 880 deviation σ_{max} . This ties with another relevant implementation detail. Due to the planning pol-
 881 icy depending on an ever-evolving policy distribution, planning policy samples saved in the replay
 882 buffer eventually become outdated. To alleviate this problem, we employ *lazy reanalyze* (Wang
 883 et al., 2025), which takes inspiration from the Wang et al. (2024b); Schrittwieser et al. (2021) to
 884 periodically update partially a subset of the planning distributions sampled from the replay buffer.

885 **B.5 ARCHITECTURE AND FRAMEWORK**

886

887 In this work, we build upon the partial implementation of TD-MPC2 in JAX (Bradbury et al., 2018)
 888 by Flandermeyer (2024a). We inherit all architectural choices from TD-MPC2. The architecture of
 889 $Q_{\theta_Q}^{\pi_{\theta_s}, \lambda}$ follows the same design of its counterpart $Q_{\theta_Q}^{\pi_{\theta_s}}$. Despite updating an additional policy and
 890 action value function, training times do not differ significantly from the baselines.

891 **B.6 BASELINES.**

892

893 For our experiments, we employ the implementations in JAX (Flandermeyer, 2024a;b), developed
 894 with the collaboration of the original authors, since they reproduce the results from the original
 895 paper while increasing the computation speed.

896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 C PO-MPC ALGORITHM
919

920

921 **Algorithm 2** PO-MPC

922

Require: Replay buffer \mathcal{B} , Data-to-update ratio n_{d2u} , and Reanalyze interval k .

923

Initialize: $\pi_{\theta_s}, Q_{\theta_Q}^{\pi_{\theta_s}}, Q_{\tilde{\theta}_Q}^{\pi_{\theta_s}, \lambda}$.

924

925

Initialize MDP model: $\tilde{\mathcal{M}} := (h_{\theta_h}, p_{\theta_d}, r_{\theta_r})$.

926

Initialize planning priors: a_{init}, σ_{max}

927

1: n_updates = 0

928

2: **for** $t=1,2,\dots,T$ **do**

929

3: // Environment interaction

930

4: $z_t \leftarrow h_{\theta_h}(s_t)$

931

5: // Planning Policy (Section B.1)

932

6: $a_t, \bar{a}_{t:t+H}, \sigma_{t:t+H} \leftarrow \text{MPPI}_{\tilde{\mathcal{M}}}(z_t | \pi_{\theta_s}, Q_{\theta_Q}^{\pi_{\theta_s}}, \bar{a}_{init})$

933

7: $s_{t+1}, r_t \leftarrow \text{environment.step}(s_t, a_t)$

934

8: $\mathcal{B} \cup \{s_t, a_t, r_t, s_{t+1}, \bar{a}_t, \sigma_t\}$

9:

// Gradient updates.

935

10: **if** $t \pmod{n_{d2u}} == 0$ **then**

936

11: n_updates \leftarrow n_updates + 1

937

12: $\mathcal{D}_{n_b} := \{s_{t'}, a_{t'}, r_{t'}, s_{t'+1}, \bar{a}_{t'}, \sigma_{t'}\}_{t':t'+H}^{1:n_b} \sim \mathcal{D}$

938

13: $z_{t':t'+H} \leftarrow h_{\theta_h}(s_{t':t'+H})$

939

14: // Update Planning samples via Lazy reanalyze as in Wang et al. (2025).

940

15: **if** n_updates $\pmod{k} == 0$ **then**

941

16: $\mathcal{D}_{n_b^r} \sim \mathcal{D}_{n_b}, n_b^r \leq n_b$

942

17: $a_{t'}, \bar{a}_{t':t'+H}, \sigma_{t':t'+H} \leftarrow \text{MPPI}_{\tilde{\mathcal{M}}}(z_{t'} | \pi_{\theta_s}, Q_{\theta_Q}^{\pi_{\theta_s}}, \mathbf{0})$

943

18: $\mathcal{D}_{n_b^r} \leftarrow \{s_{t'}, a_{t'}, r_{t'}, a_{t'+1}, \bar{a}_{t'}, \sigma_{t'}\}$

944

19: **end if**

945

20: $\pi_P(a_{t'} | z_{t'}) \leftarrow \mathcal{N}(\bar{a}_{t'}, \sigma_{t'}^2 I)$

946

21: Update MDP model: $h_{\theta_h}, d_{\theta_d}, r_{\theta_r}$ as in Hansen et al. (2024).

947

22: Update Bootstrap action value function: $Q_{\theta_Q}^{\pi_{\theta_s}}$ (Equation 14)

948

23: Update Policy prior: π_{θ_p} (Equation 8 or Equation 9)

949

24: Update KL regularized action value function: $Q_{\tilde{\theta}_Q}^{\pi_{\theta_s}, \lambda}$ (Equation 16)

950

25: Update Sampling Policy π_{θ_s} (Equation 18)

951

26: $\theta_Q^- \leftarrow \tau \theta_Q + (1 - \tau) \theta_Q^-$

952

27: $\tilde{\theta}_Q^- \leftarrow \tau \tilde{\theta}_Q + (1 - \tau) \tilde{\theta}_Q^-$

953

28: **end if**

954

29: **end for**

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972
973 D ADDITIONAL RESULTS
974
975976 D.1 RESULTS IN DMCONTROL SUITE
977
978

994 Figure 5: Performance comparison of PO-MPC and the baselines on 7 state-based high-dimensional
995 control tasks from DMControl Suite (Tassa et al., 2018). Mean of 3 runs; shaded areas are 95%
996 confidence intervals. In the top left, we visualize results averaged across all 7 tasks.
997

998 D.2 INTERMEDIATE POLICY PRIOR PERFORMANCE
999

1019 Figure 6: Performance comparison in 14 state-based high-dimensional control tasks from
1020 HumanoidBench (Sferrazza et al., 2024). Mean of 3 runs; shaded areas are 95% confidence intervals.
1021 In the top left, we visualize results averaged across all tasks except for *Reach*, which has a different
1022 return range. We observe that using the intermediate policy not only does not harm the performance
1023 but also enhances it in some tasks.
1024
1025

1026
1027

D.2.1 SHIELDING EFFECT OF THE POLICY PRIOR

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 7: **Top:** Mean and, **Bottom:** Standard deviation of the KL divergence term in Equation 18 for both PO-MPC using an intermediate policy prior and the Planning policy. Experiments are done in the HumanoidBench Locomotion suite (Sferrazza et al., 2024). Mean of 3 runs. We show empirical evidence on how the mean and standard deviation of the KL term are significantly larger when the Planning policy samples are used instead of the intermediate policy prior. This shows that the intermediate policy prior effectively shields the sampling policy updates from high variance being introduced by outdated Planning policy samples stored in the replay buffer. Similar results are obtained across different values of λ , and we present results for $\lambda = 1$ for the sake of clarity.

1080
1081 D.2.2 TRAINING POLICY PRIOR WITH REVERSE KL VS FORWARD KL LOSS
1082

1101 Figure 8: Performance comparison in 14 state-based high-dimensional control tasks from Hu-
1102 manoidBench Locomotion suite (Sferrazza et al., 2024). Mean of 3 runs; shaded areas are 95%
1103 confidence intervals. In the top left, we visualize results averaged across all tasks except for *Reach*,
1104 which has a different return range. We observe that training the policy prior with the Forward KL
1105 divergence instead of the Reverse KL divergence can help in finding a solution faster in some tasks
1106 but may be detrimental in others requiring more precision such as *Balance Simple*.
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **E PROOFS**
 1135

1136 We present proof of convergence of both the KL-regularized Policy Evaluation step and policy
 1137 improvement. We follow closely the same proofs for Max. Entropy RL from Haarnoja et al. (2018)
 1138 since it is a particular case of KL-regularized RL. Substituting π_p by the uniform distribution over
 1139 the action space \mathcal{A} recovers the proof from Haarnoja et al. (2018). Note that the only additional
 1140 requirement needed for the KL-regularized version is $\frac{\pi(a_t|s_t)}{\pi_p(a_t|s_t)}$ being determined almost everywhere.
 1141

1142 **Lemma E.1.** (*KL-regularized Policy Evaluation*). *Given a policy and policy prior $\pi, \pi_p \in \Pi$. Let*
 1143 *the KL-regularized Bellman backup operator:*

$$1144 \quad \mathcal{T}^\pi Q^{\pi, \lambda}(s_t, a_t) := r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p(\cdot|s_t, a_t)} [V^{\pi, \lambda}(s_{t+1})] \quad (19)$$

1145 where

$$1146 \quad V^{\pi, \lambda}(s_t) = \mathbb{E}_{a_t \sim \pi(\cdot|s_t)} [Q^{\pi, \lambda}(s_t, a_t) - \lambda [\log \pi(a_t|s_t) - \log \pi_p(a_t|s_t)]], \quad (20)$$

1147 and a mapping $Q_0 : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, where \mathcal{A} is bounded and $\frac{\pi(a_t|s_t)}{\pi_p(a_t|s_t)}$ is determined almost every-
 1148 where, we define $Q_{k+1}^{\pi, \lambda} = \mathcal{T}^\pi Q_k^{\pi, \lambda}$. Then the sequence $Q_k^{\pi, \lambda}$ will converge to the KL regularized
 1149 action-value of π as $k \rightarrow \infty$.
 1150

1151 *Proof.* Define the KL augmented reward as:

$$1152 \quad r_\pi := r(s_t, a_t) - \gamma \lambda \mathbb{E}_{s_{t+1} \sim p(\cdot|s_t, a_t)} [\text{KL}[\pi(\cdot|s_{t+1}) \parallel \pi_p(\cdot|s_{t+1})]] \quad (21)$$

1153 and rewrite the update as:

$$1154 \quad Q^{\pi, \lambda}(s_t, a_t) \leftarrow r_\pi(s_t, a_t) + \gamma \mathbb{E}_{\substack{s_{t+1} \sim p(\cdot|s_t, a_t), \\ a \sim \pi(\cdot|s_{t+1})}} [Q^{\pi, \lambda}(s_{t+1}, a_{t+1})] \quad (22)$$

1155 Then we can apply the standard convergence results for policy evaluation from Sutton & Barto
 1156 (2018). A bounded action space \mathcal{A} and KL-divergence between π and π_p are necessary assumptions
 1157 to guarantee that the augmented reward r_π is bounded. \square
 1158

1159 **Lemma E.2.** (*KL-regularized Policy Improvement*) *Let $\pi_{old} \in \Pi$ and let π_{new} be the optimizer of*
 1160 *the minimization problem defined as:*

$$1161 \quad \pi_{new} = \arg \min_{\pi' \in \Pi} \text{KL}[\pi'(\cdot|s_t) \parallel \frac{\exp(\frac{1}{\lambda} Q^{\pi_{old}, \lambda}(s_t, \cdot))}{Z^{\pi_{old}}(s_t)} \pi_p(\cdot|s_t)] = \arg \min_{\pi' \in \Pi} \mathcal{J}_{\pi_{old}}(\pi'(\cdot|s_t)) \quad (23)$$

1162 Then $Q^{\pi_{new}, \lambda}(s_t, a_t) \geq Q^{\pi_{old}, \lambda}(s_t, a_t), \forall (s_t, a_t) \in \mathcal{S} \times \mathcal{A}$ with $|\mathcal{A}| < \infty$ being bounded.

1163 *Proof.* Let $\pi_{old} \in \Pi$, and $Q^{\pi_{old}, \lambda}, V^{\pi_{old}, \lambda}$, its respective KL-regularized action-value and value
 1164 function. Then we define:

$$1165 \quad \pi_{new} = \arg \min_{\pi' \in \Pi} \mathcal{J}_{\pi_{old}}(\pi'(\cdot|s_t))$$

$$1166 \quad = \arg \min_{\pi' \in \Pi} \text{KL}[\pi'(\cdot|s_t) \parallel \exp(\lambda^{-1} Q^{\pi_{old}, \lambda}(s_t, \cdot) - \log Z^{\pi_{old}}(s_t) + \log \pi_p(\cdot|s_t))] \quad (24)$$

1167 It must be the case that $\mathcal{J}_{\pi_{old}}(\pi_{new}(\cdot|s_t)) \leq \mathcal{J}_{\pi_{old}}(\pi_{old}(\cdot|s_t))$, since we can always choose $\pi_{new} =$
 1168 $\pi_{old} \in \Pi$. Hence,

$$1169 \quad \mathbb{E}_{a_t \sim \pi_{new}} [\log \pi_{new}(a_t|s_t) - \lambda^{-1} Q^{\pi_{old}, \lambda}(s_t, a_t) + \log Z^{\pi_{old}}(s_t) - \log \pi_p(a_t|s_t)] \leq$$

$$1170 \quad \mathbb{E}_{a_t \sim \pi_{old}} [\log \pi_{old}(a_t|s_t) - \lambda^{-1} Q^{\pi_{old}, \lambda}(s_t, a_t) + \log Z^{\pi_{old}}(s_t) - \log \pi_p(a_t|s_t)]. \quad (25)$$

1171 Since $Z^{\pi_{old}}$ does not depend on a_t , equation 25 reduces to:

$$1172 \quad \mathbb{E}_{a_t \sim \pi_{new}} \left[Q^{\pi_{old}, \lambda}(s_t, a_t) - \lambda \log \frac{\pi_{new}(a_t|s_t)}{\pi_p(a_t|s_t)} \right] \geq$$

$$1173 \quad \mathbb{E}_{a_t \sim \pi_{old}} \left[Q^{\pi_{old}, \lambda}(s_t, a_t) - \lambda \log \frac{\pi_{old}(a_t|s_t)}{\pi_p(a_t|s_t)} \right] = V^{\pi_{old}, \lambda}(s_t). \quad (26)$$

1188 Then, unrolling $Q^{\pi_{old}, \lambda}(s_t, a_t)$ and applying the bound in equation 26 results in:
1189

$$\begin{aligned}
1190 \quad Q^{\pi_{old}, \lambda}(s_t, a_t) &= r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p(\cdot | s_t, a_t)} [V^{\pi_{old}, \lambda}(s_{t+1})] \\
1191 &\leq r(s_t, a_t) + \gamma \mathbb{E}_{\substack{s_{t+1} \sim p(\cdot | s_t, a_t) \\ a_{t+1} \sim \pi_{new}(\cdot | s_{t+1})}} \left[Q^{\pi_{old}, \lambda}(s_{t+1}, a_{t+1}) - \lambda \log \frac{\pi_{new}^{new}(a_{t+1} | s_{t+1})}{\pi_p(a_{t+1} | s_{t+1})} \right] \\
1192 &= r(s_t, a_t) + \gamma \mathbb{E}_{\substack{s_{t+1} \sim p(\cdot | s_t, a_t) \\ a_{t+1} \sim \pi_{new}(\cdot | s_{t+1})}} \left[r(s_{t+1}, a_{t+1}) - \lambda \log \frac{\pi_{new}^{new}(a_{t+1} | s_{t+1})}{\pi_p(a_{t+1} | s_{t+1})} \right. \\
1193 &\quad \left. + \gamma \mathbb{E}_{s_{t+2} \sim p(\cdot | s_{t+1}, a_{t+1})} [V^{\pi_{old}, \lambda}(s_{t+2})] \right] \\
1194 &\quad \vdots \\
1195 &\leq Q^{\pi_{new}, \lambda}(s_t, a_t)
\end{aligned} \tag{27}$$

1202 Convergence to $Q^{\pi_{new}, \lambda}$ follows from Lemma E.1
1203

□

1204
1205 **Theorem E.3.** (KL-regularized policy iteration). *Repeated application of KL-regularized policy*
1206 *evaluation and KL-regularized policy improvement to any $\pi \in \Pi$ converges to a policy π^* such that*
1207 *$Q^{\pi^*, \lambda}(s_t, a_t) \geq Q^{\pi, \lambda}(s_t, a_t)$ for all $\pi \in \Pi$ and $(s_t, a_t) \in \mathcal{S} \times \mathcal{A}$, assuming $|\mathcal{A}| < \infty$.*
1208

1209 *Proof.* The proof follows the same reasoning from Theorem 1 in Haarnoja et al. (2018). Let policy
1210 π_i be the policy at iteration i . By Lemma E.2, the sequence $Q^{\pi_i, \lambda}$ is monotonically increasing.
1211 Since $Q^{\pi, \lambda}$ is bounded above for $\pi \in \Pi$, since both reward and KL-divergence are bounded, the
1212 sequence converges to some π^* . To show that π^* is optimal, it must be the case that, at convergence,
1213 $J_{\pi^*}(\pi^*(\cdot | s_t)) < J_{\pi^*}(\pi(\cdot | s_t))$, $\forall \pi \in \Pi, \pi \neq \pi^*$. Using the same iterative argument as in the proof
1214 of Lemma E.2, we get $Q^{\pi^*, \lambda}(s_t, a_t) > Q^{\pi, \lambda}(s_t, a_t), \forall (s_t, a_t) \in \mathcal{S} \times \mathcal{A}$, meaning the KL-regularized
1215 value of any other policy in Π is lower than that of the converged policy. Hence π^* is optimal in
1216 Π . □

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **F BACKGROUND AND CONNECTION TO RECENT WORK**
 1243

1244 There is some recent work that, while also within MPPI-based RL, cannot be unified within the
 1245 proposed framework as seamlessly since they constitute an approximation of our theoretical frame-
 1246 work (Lin et al., 2025), forgoing the monotonic improvement guarantees shown in Appendix E, or
 1247 optimize a different cost function (Zhuang et al., 2025). We will start this section by briefly review-
 1248 ing the background of RL cast as a probabilistic inference problem, which ultimately boils down to
 1249 the KL-regularized RL formulation, since then the main differences with respect to these works will
 1250 become clearer.

1251 **F.1 RL CAST AS PROBABILISTIC INFERENCE**
 1252

1253 We follow the same reasoning as in Levine (2018). Let $\tau := (s_0, a_0, s_1, a_1, \dots, s_T)$ a trajectory
 1254 across the joint state-action space $\mathcal{S} \times \mathcal{A}$, the probability of a trajectory τ given a parametric policy
 1255 π_θ :

$$p(\tau; \pi_\theta) = \rho_0(s_0) \prod_{t=0}^T p(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t) \quad (28)$$

1261 Next, we assume that the probability of (s, a) being part of an optimal trajectory is proportional to
 1262 $\exp(\frac{1}{\lambda} r(s_t, a_t))$. Then, it follows that the joint probability of a trajectory given a prior policy π_p and
 1263 that trajectory being optimal is given by:

$$p(\tau, O_{0:T}; \pi_p) = \rho_0(s_0) \frac{1}{Z_t} \exp\left(\frac{1}{\lambda} R_t\right) \prod_{t=0}^T p(s_{t+1}|s_t, a_t) \pi_p(a_t|s_t) \quad (29)$$

1268 Where $\rho_0(s_0)$ is the probability of starting at state s_0 , $p(s_{t+1}|s_t, a_t)$ is the transition probability, and
 1269 λ is the inverse temperature. Note that λ trades off the effect of the policy prior and the trajectory's
 1270 return in the joint probability distribution. The event of τ being an optimal trajectory is represented
 1271 by $O_{0:T}$ (Levine, 2018), and $R_t = \sum_{t=0}^T r(s_t, a_t)$. Then, the KL-regularized RL formulation pre-
 1272 sented in Equation 5 stems from minimizing the **reverse KL-divergence between** $p(\tau; \pi_\theta)$ **and**
 1273 $p(\tau, O_{0:T}; \pi_p)$:

$$\theta^* = \arg \min_{\theta} \text{KL}[p(\tau; \pi_\theta) \parallel p(\tau, O_{0:T}; \pi_p)] \quad (30)$$

$$= \arg \min_{\theta} \mathbb{E}_{\substack{s_0 \sim \rho_0, a_t \sim \pi_\theta(\cdot|s_t), \\ s_{t+1} \sim p(\cdot|s_t, a_t)}} \left[\log \frac{p(\tau; \pi_\theta)}{p(\tau, O_{0:T}; \pi_p)} \right] \quad (31)$$

$$= \arg \max_{\theta} \mathbb{E}_{\substack{s_0 \sim \rho_0, a_t \sim \pi_\theta(\cdot|s_t), \\ s_{t+1} \sim p(\cdot|s_t, a_t)}} \left[\sum_{t=0}^{T-1} \left[r(s_t, a_t) - \lambda \log \frac{\pi_\theta(a_t | s_t)}{\pi_p(a_t | s_t)} \right] \right] \quad (32)$$

$$= \arg \max_{\theta} \mathbb{E}_{\substack{s_0 \sim \rho_0, a_t \sim \pi_\theta(\cdot|s_t), \\ s_{t+1} \sim p(\cdot|s_t, a_t)}} \left[\sum_{t=0}^{T-1} \left[r(s_t, a_t) - \lambda \text{KL}[\pi_\theta(\cdot | s_t) \parallel \pi_p(\cdot | s_t)] \right] \right], \quad (33)$$

1286 Which results in the step-wise objective described in Equation 6 with the KL-regularized action-
 1287 value function $Q^{\pi_\theta, \lambda}$ defined in Equation 7.

1288 **F.2 TD-M(PC)² (LIN ET AL., 2025)**
 1289

1290 The previous policy update is core to the PO-MPC framework and is guaranteed to monotonically
 1291 improve under the assumptions given in Appendix E. It also includes existing methods in the litera-
 1292 ture (i.e. TD-MPC2 (Hansen et al., 2024), BMPC (Wang et al., 2025)) when learning the sampling
 1293 policy π_{θ_s} under different values of the hyperparameter λ and a policy prior that represents the plan-
 1294 ner policy, either from data stored in the replay buffer $\pi_p = \pi_P$ or a proxy distribution $\pi_p = \pi_{\theta_p}$.

1296 However, it adds further complexity since it requires learning an additional action value function
 1297 $Q^{\pi_{\theta}, \lambda}$. Therefore, **recent methods such as TD-M(PC)²**, choose to forgo theoretical guarantees in
 1298 favor of simplicity by using the unregularized Q^{π} , which is still bound to perform well as long as
 1299 the policy remains close to the planner. This is enforced by maximizing:
 1300

$$\mathbb{E}_{a \sim \pi_{\theta_s}} [Q^{\pi_{\theta_s}}(z_t, a_t) - \alpha \log \pi(\cdot | z_t) + \beta \log \pi_p(\cdot | z_t)] \quad (34)$$

1301 Where α is the hyperparameter regulating entropy maximization and β modulates the cross-entropy
 1302 These hyperparameters are often tuned so that $\alpha \ll \beta$, which allows to further develop this expres-
 1303 sion into:
 1304

$$\mathbb{E}_{a_t \sim \pi_{\theta_s}} [Q^{\pi_{\theta_s}}(z_t, a_t) - \alpha \log \pi_{\theta_s}(a_t | z_t) + \beta \log \pi_p(a_t | z_t)] = \mathbb{E}_{a_t \sim \pi_{\theta_s}} [Q^{\pi_{\theta_s}}(z_t, a_t) + (\beta - \alpha) \log \pi_{\theta_s}(a_t | z_t) - \beta \log \frac{\pi_{\theta_s}(a_t | z_t)}{\pi_p(a_t | z_t)}] \quad (35)$$

1305 Which can be seen as learning a policy that maximizes the action value function $Q^{\pi_{\theta_s}}$ while mini-
 1306 mizing both KL-divergence with respect to π_p , and entropy, since $\beta - \alpha$ is positive under $\alpha \ll \beta$.
 1307

1312 F.3 TD-MPBC (ZHUANG ET AL., 2025)

1313 Other recent works in MPPI-based RL cannot be included within our formulation because the start-
 1314 ing loss function being minimized is different. The policy update from TD-MPBC (Zhuang et al.,
 1315 2025) comes from minimizing **the forward KL-divergence between $p(\tau; \pi_{\theta})$ and $p(\tau, O_{0:T}; \pi_p)$** :
 1316

$$\theta^* = \arg \min_{\theta} \text{KL}[p(\tau, O_{0:T}; \pi_p) \parallel p(\tau; \pi_{\theta})] \quad (36)$$

$$= \arg \min_{\theta} \mathbb{E}_{(s_t, a_t) \sim p(\tau, O_{0:T}; \pi_p)} \left[\log \frac{p(\tau, O_{0:T}; \pi_p)}{p(\tau; \pi_{\theta})} \right] \quad (37)$$

$$= \arg \max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p(\tau, O_{0:T}; \pi_p)} \left[\log p(\tau; \pi_{\theta}) \right] \quad (38)$$

$$= \arg \max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p(\tau, O_{0:T}; \pi_p)} \left[\sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) \right] \quad (39)$$

$$= \arg \max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p(\tau; \pi_{\theta})} \left[\sum_{t=0}^{T-1} \frac{1}{Z_t} \exp\left(\frac{1}{\lambda} R_t\right) \log \pi_{\theta}(a_t | s_t) \right] \quad (40)$$

$$= \arg \max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p(\tau; \pi_p)} \left[\sum_{t=0}^{T-1} \exp\left(\frac{1}{\lambda} R_t - \log Z_t\right) \log \pi_{\theta}(a_t | s_t) \right] \quad (41)$$

1334 (42)

1335 Since in this case π_p can be an arbitrary policy, we can estimate $\mathbb{E}_{(s_t, a_t) \sim p(\tau; \pi_p)}$ through Monte
 1336 Carlo estimation. Choosing $\lambda = G$ and $\log Z_t = 1$, we recover the Behavior cloning regularization
 1337 term from TD-MPBC:
 1338

$$\arg \max_{\theta} \sum_{(s_t, a_t, R_t) \sim \mathcal{D}} \exp\left(\frac{R_t - G}{G}\right) \log \pi_{\theta}(a_t | s_t) \quad (43)$$

1342 This term has high variance, since it depends on the returns R_t from the full trajectory. It is also
 1343 potentially sparse, as it depends on the version of the planner available when sampling the trajectory
 1344 and selecting high-return trajectory samples from the replay buffer. This is possibly why the main
 1345 learning signal in TD-MPBC originates from using the policy updates from TD-MPC2 (equivalent
 1346 to PO-MPC with $\lambda = 0$), with the term in Equation 43 serving as a regularization term.
 1347

1348
 1349

1350 G THEORETICAL JUSTIFICATION OVER THE ADAPTIVE PRIOR

1352 This section yields a theoretical justification for why using a learned policy prior that minimizes the
 1353 KL divergence with the previously stored planner policy samples from the replay buffer, instead of
 1354 using these directly, may decrease gradient variance from the sampling policy updates. First, we
 1355 introduce the formal definition for the gradient related to the regularization term that results from
 1356 using each representation of the planner policy. Then we compute the variance of each and compare
 1357 them.

1358 Let us sample transitions from 1 to K , K being the current time step, and let $\mathcal{K} := \{1, 2, \dots, K\}$
 1359 the set of previous time steps. Let $(s_k, a_k, s_{k+1}, r_k, \mu_k, \sigma_k)$ be the transition stored at time step k ,
 1360 where μ_k, σ_k are the mean and standard deviation of the planner policy computed at time step k :
 1361 $\pi^k := \mathcal{N}(\mu_k, \sigma_k^2 I)$.

1362 Assume that we can isolate $N \ll K$ samples that share the same state s and compute the mean
 1363 KL-divergence between the parametric sampling policy we want to update, π_θ (where $\theta = \theta_s$ for
 1364 simplicity), and some generic prior policy, π_p , that represents the planner. Then the regularization
 1365 term in the loss function is:

$$1366 \quad J(\theta) = \frac{1}{N} \sum_{i=0}^N \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\log \pi_\theta(a|s) - \log \pi_p(a|s)], \quad (44)$$

1369 with its gradient being:

$$1370 \quad \nabla J(\theta) = \nabla \frac{1}{N} \sum_{i=0}^N \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\log \pi_\theta(a|s) - \log \pi_p(a|s)] \quad (45)$$

$$1374 \quad = \frac{1}{N} \sum_{i=0}^N \nabla \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\log \pi_\theta(a|s)] - \frac{1}{N} \sum_{i=0}^N \nabla \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\log \pi_p(a|s)]$$

1377 We isolate and focus on the cross-entropy term since it is the only one that depends on π_p :

$$1378 \quad g(\theta) = \frac{1}{N} \sum_{i=0}^N \nabla \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\log \pi_p(a|s)] = \frac{1}{N} \sum_{i=0}^N \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\nabla \log \pi_\theta(a|s) \log \pi_p(a|s)] \quad (46)$$

1381 G.1 EXPECTED VALUE

1383 **Previously stored planner policies.** Let π^{k_i} be policy planner stored at time step $k_i \in \mathcal{K}$ where
 1384 $i = 1, \dots, N$, and let k_i be sampled uniformly from \mathcal{K} . Substituting π_p in Equation 46 yields:

$$1386 \quad g_1(\theta) = \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\nabla_\theta \log \pi_\theta(a|s) \left(\frac{1}{N} \sum_{i=1}^N \log \pi^{k_i}(a|s) \right)] \quad (47)$$

1388 Next, the expected value of the gradient is:

$$1390 \quad \mathbb{E}_k [g_1(\theta)] = \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\nabla_\theta \log \pi_\theta(a|s) \mathbb{E}_k [\log \pi^k(a|s)]] \quad (48)$$

1391 **Learned policy prior.** Now let us develop the effect of learning first a prior from these samples,
 1392 using it as an alternative to regularize the sampling policy π_θ . Let π_{θ_p} be learned policy prior that
 1393 iteratively minimizes the reverse KL divergence between itself and the sequence of previously stored
 1394 planner policies π^k :

$$1396 \quad \pi_{\theta_p} := \arg \min_{\pi} \frac{1}{K} \sum_{k=0}^K \mathbb{E}_{a \sim \pi_{\theta_p}} [\log \pi_{\theta_p}(a|s) - \log \pi^k(a|s)] = \mathbb{E}_k [\log \pi^k(a|s)]. \quad (49)$$

1398 Then it follows that $\log \pi_{\theta_p} = \mathbb{E}_k [\log \pi^k(a|s)]$. This is the first important result since substituting
 1399 π_p in Equation 46 now yields,

$$1401 \quad g_2(\theta) = \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\nabla_\theta \log \pi_\theta(a|s) \log \pi_{\theta_p}(a|s)] = \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\nabla_\theta \log \pi_\theta(a|s) \mathbb{E}_k [\log \pi^k(a|s)]], \quad (50)$$

1403 Therefore, when using the learned policy prior, the mean of the gradient term that depends on π_p is
 1404 theoretically equivalent to using previously stored samples: $\mathbb{E}_k [g_1] = \mathbb{E}_k [g_2]$.

1404
1405

G.2 VARIANCE

1406
1407
1408

Previously stored planner policies. The source of randomness for g_1 comes both from the sampled actions and the sampled planner policies. Thus, using the previous result, we can make the following decomposition:

1409
1410
1411

$$\frac{1}{N} \sum_{i=1}^N \log \pi^{k_i}(a|s) = \mathbb{E}_k[\log \pi^k(a|s)] + \epsilon_N(a), \quad (51)$$

1412

where $\mathbb{E}_k[\epsilon_N(a)] = 0$ and $\text{Var}_k(\epsilon_N(a)) = \frac{1}{N} \text{Var}_k(\log \pi^k(a|s))$

1414
1415
1416

Then $g_1(\theta) = \mathbb{E}_{a \sim \pi_\theta(\cdot|s)}[\nabla_\theta \log \pi_\theta(a|s) \mathbb{E}_k[\log \pi^k(a|s)]] + \mathbb{E}_{a \sim \pi_\theta(\cdot|s)}[\nabla_\theta \log \pi_\theta(a|s) \epsilon_N(a)]$. Using the law of total variance and that $\epsilon_N(a)$ has zero mean we obtain:

1417
1418
1419
1420
1421
1422

$$\begin{aligned} \text{Var}_{a \sim \pi_\theta}^k(g_1(a)) &= \text{Var}_{a \sim \pi_\theta}(\mathbb{E}_k[g_1|a]) + \mathbb{E}_{a \sim \pi_\theta}[\text{Var}_k(g_1|a)] \\ &= \text{Var}_{a \sim \pi_\theta}(\nabla_\theta \log \pi_\theta(a|s) \mathbb{E}_k[\log \pi^k(a|s)]) \\ &\quad + \mathbb{E}_{a \sim \pi_\theta} \left[(\nabla_\theta \log \pi_\theta(a|s)) (\nabla_\theta \log \pi_\theta(a|s))^T \frac{\text{Var}_k(\log \pi^k(a|s))}{N} \right] \end{aligned} \quad (52)$$

1423
1424
1425

Learned policy prior. Assuming π_{θ_p} to be exact, the only source of randomness in g_2 is the sampling of actions a : $\text{Var}_{a \sim \pi_\theta}(g_2) = \text{Var}_{a \sim \pi_\theta}(\nabla_\theta \log \pi_\theta(a|s) \mathbb{E}_k[\log \pi^k(a|s)])$.

1426
1427
1428

Which is identical to the first term in $\text{Var}_{a \sim \pi_\theta}^k(g_1(a))$. Then it follows that, under the condition that $N \ll K$ and that π^k are not all identical, the variance of gradient g_2 will be strictly lower than g_1 .

1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457