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Abstract

Direct Preference Optimization (DPO) is a001
widely adopted offline algorithm for preference-002
based reinforcement learning from human feed-003
back (RLHF), designed to improve training004
simplicity and stability by redefining reward005
functions. However, DPO is hindered by sev-006
eral limitations, including length bias, memory007
inefficiency, and probability degradation. To008
address these challenges, we propose Length-009
Controlled Margin-Based Preference Optimiza-010
tion (LMPO), a more efficient and robust al-011
ternative. LMPO introduces a uniform refer-012
ence model as an upper bound for the DPO013
loss, enabling a more accurate approximation014
of the original optimization objective. Addi-015
tionally, an average log-probability optimiza-016
tion strategy is employed to minimize discrep-017
ancies between training and inference phases.018
A key innovation of LMPO lies in its Length-019
Controlled Margin-Based loss function, inte-020
grated within the Bradley-Terry framework.021
This loss function regulates response length022
while simultaneously widening the margin be-023
tween preferred and rejected outputs. By do-024
ing so, it mitigates probability degradation for025
both accepted and discarded responses, address-026
ing a significant limitation of existing meth-027
ods. We evaluate LMPO against state-of-the-028
art preference optimization techniques on two029
open-ended large language models, Mistral and030
LLaMA3, across ten conditional benchmarks031
and two open-ended benchmarks. Our exper-032
imental results demonstrate that LMPO effec-033
tively controls response length, reduces prob-034
ability degradation, and outperforms existing035
approaches.036

1 Introduction037

Human feedback is essential for aligning large lan-038

guage models (LLMs) with human values and ob-039

jectives (Jiang et al., 2024; Chang et al., 2024),040

ensuring that these models act in ways that are041

helpful, reliable, and safe. A common strategy for042

Figure 1: Comparison with DPO and SimPO under
the Mistral-Instruct and Llama3-Instruct models in the
Arena-Hard benchmark. Our proposed method, LMPO,
achieves the highest win rate while utilizing an excep-
tionally low average token count across both models.

achieving this alignment is reinforcement learn- 043

ing from human feedback (RLHF) (Ziegler et al., 044

2019; Stiennon et al., 2020; Ouyang et al., 2022), 045

which fine-tunes language models using human 046

evaluations. While RLHF has shown substantial 047

success (Schulman et al., 2017), it also introduces 048

notable challenges in optimization due to its multi- 049

step design. This process first involves training a 050

reward model to evaluate outputs based on human 051

preferences, and then optimizing a policy model to 052

maximize the assigned rewards. The complexity of 053

these sequential steps often complicates the imple- 054

1



mentation and reduces efficiency (Chaudhari et al.,055

2024).056

In response to these challenges, researchers have057

started exploring simpler alternatives that avoid058

the intricate, multi-stage nature of RLHF. One059

promising method is Direct Preference Optimiza-060

tion (DPO) (Rafailov et al., 2024), which stream-061

lines the process by reformulating the reward func-062

tion. This approach enables direct learning of a063

policy model from preference data, eliminating the064

need for a separate reward model. As a result, DPO065

offers greater stability and is more practical to im-066

plement.067

DPO estimates implicit rewards using the log-068

probability ratio between a policy model’s response069

and that of a supervised fine-tuned (SFT) model,070

enabling preference learning without an explicit re-071

ward function. However, this implicit reward may072

misalign with the log-probability metric during in-073

ference. Moreover, DPO’s reliance on both policy074

and SFT models significantly increases GPU us-075

age, especially for LLMs. The DPO loss, derived076

from the Bradley-Terry model, can create train-077

ing imbalances, as it does not ensure an increase078

in the probability of positive samples—potentially079

reducing both positive and negative probability si-080

multaneously. Unlike IPO (Azar et al., 2024),081

which constrains probability variation but weakens082

response distinction, DPO also exhibits length bias,083

favoring longer responses due to preference label084

distribution inconsistencies (Lu et al., 2024). This085

issue, common in multi-stage RLHF methods, al-086

lows models to exploit verbosity for higher rewards087

without improving output quality, often generating088

responses nearly twice as long as labeled data.089

To address these challenges, we introduce a090

novel approach incorporating a length-controlled091

margin-based loss function to mitigate both length092

bias and probability reduction. Our method con-093

sists of two key components: (1) a reference-free094

loss function that reduces memory inefficiency and095

aligns generation metrics via average log proba-096

bility, and (2) a Length-Controlled Margin-Based097

term with two kinds of normalization methods,098

which minimizes probability reduction while al-099

leviating length bias and preserving model perfor-100

mance. In summary, our method offers the follow-101

ing advantages:102

• Memory efficiency: Our method does not rely103

on an extra reference model, making it more104

lightweight and easier to implement compared to105

DPO and other reference-dependent methods. 106

• Reduction of length bias and probability 107

decrement: By incorporating a specially de- 108

signed margin-based term, our method effec- 109

tively reduces both positive and negative prob- 110

ability decrements, similar to traditional NLL 111

loss, while also addressing length bias without 112

impairing model performance. 113

• Competitive performance: Despite being 114

reference-free, our method demonstrates compet- 115

itive performance when compared to DPO and 116

its variants (Hong et al., 2024a; Ethayarajh et al., 117

2024). This performance advantage is consistent 118

across a variety of training setups and comprehen- 119

sive instruction-following benchmarks, including 120

AlpacaEval 2 (Li et al., 2023) and Arena-Hard 121

v0.1 (Li et al., 2024). 122

2 Related Work 123

Alignment with Reinforcement Learning Rein- 124

forcement learning with human feedback (RLHF) 125

often utilizes the Bradley-Terry model (Bradley 126

and Terry, 1952) to estimate the probability of suc- 127

cess in pairwise comparisons between two indepen- 128

dently evaluated instances. Additionally, a reward 129

model is trained to assign scores to these instances. 130

Reinforcement learning algorithms, such as prox- 131

imal policy optimization (PPO) (Schulman et al., 132

2017), are used to train models to maximize the 133

reward model’s score for the selected response, ul- 134

timately enabling LLMs to align with human pref- 135

erences (Stiennon et al., 2020; Ziegler et al., 2019). 136

A notable example is InstructGPT (Ouyang et al., 137

2022), which showcased the scalability and adapt- 138

ability of RLHF in training instruction-following 139

language models. Alternative approaches, such as 140

reinforcement learning with language model feed- 141

back (RLAIF (Lee et al., 2023)), may also serve 142

as feasible substitutes for human feedback (Bai 143

et al., 2022; Sun et al., 2023). Nevertheless, RLHF 144

encounters challenges, including the need for ex- 145

tensive hyperparameter tuning due to the instability 146

of PPO (Rafailov et al., 2024) and the sensitivity 147

of the reward models (Wang et al., 2024a). Conse- 148

quently, there is a pressing demand for more stable 149

preference alignment algorithms. 150

Alignment Without Reward Models Several 151

techniques for preference alignment reduce the re- 152

liance on reinforcement learning. Direct Policy Op- 153

timization (DPO) (Rafailov et al., 2024) is a method 154
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that integrates reward modeling with preference155

learning. And Identity Preference Optimization156

(IPO) (Azar et al., 2024) is introduced to mitigate157

potential overfitting issues in DPO. In contrast to158

RLHF and DPO, an alternative approach called159

Kahneman-Tversky Optimization (KTO) (Etha-160

yarajh et al., 2024) is proposed, which does not161

require pairwise preference datasets. Additionally,162

Preference Ranking Optimization (PRO) (Song163

et al., 2024) introduces the incorporation of the164

softmax values from the reference response set into165

the negative log-probability (NLL) loss, allowing166

for a unified approach to supervised fine-tuning and167

preference alignment.168

Alignment Without Reference Models Due to169

the reliance of DPO and DPO-like methods on170

both the policy model and the SFT model dur-171

ing the alignment process, they impose greater172

demands on GPU resources. Several techniques173

have been developed to alleviate this GPU re-174

quirement by eliminating the need for a reference175

model. CPO (Xu et al., 2024) demonstrates that176

the ideal loss function without a reference model177

can serve as the upper bound of the DPO loss,178

with the SFT loss acting as a replacement for the179

KL divergence. ORPO (Hong et al., 2024a) mod-180

els the optimal reward as a log-odds function, re-181

moving the need for an additional fixed reference182

model. MaPO (Hong et al., 2024b) builds on the183

ORPO approach by introducing a margin-aware184

term for aligning diffusion models without a ref-185

erence model. SimPO (Meng et al., 2024) adopts186

a similar reference-free preference learning frame-187

work as CPO but with improved stability due to188

its specific length normalization and target reward189

margin, leading to superior performance in various190

benchmarks.191

3 Method192

In this section, we begin by briefly introducing193

the main concept of DPO. We then propose a uni-194

form, reference-free model based on average log-195

probability to address the memory and speed inef-196

ficiencies of DPO. Next, we incorporate a margin197

term with two kind of normalization and design198

a length-controlled margin-based loss function to199

fully leverage its benefits. Finally, we provide a200

detailed explanation of the margin term, illustrat-201

ing how it reduces length bias and mitigates the202

probability decrement.203

3.1 Direct Preference Optimization (DPO) 204

We derive our method by first revisiting Di- 205

rect Preference Optimization (DPO), which of- 206

fers a simplified optimization objective within the 207

RLHF framework. DPO operates on a dataset 208

D = (x(i), y
(i)
w , y

(i)
l )i = 1N , where each input x 209

is paired with a preferred output yw and a less pre- 210

ferred one yl. The loss function is defined as a form 211

of maximum likelihood estimation for a policy πθ: 212

L(πθ;πref) =− E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(1) 213

Here, πref denotes a reference policy (typically 214

from SFT), σ is the sigmoid function, and β is a 215

scaling factor. This loss stems from a reparameteri- 216

zation of the reward and optimal policy, inspired by 217

PPO. Unlike PPO, however, DPO enables training 218

via supervised learning using only static preference- 219

labeled data, avoiding the need for online environ- 220

ment interaction. 221

3.2 Improvement of DPO 222

Bradley-Terry model with home-field advantage 223

In Section 3.1, DPO employs the Bradley-Terry 224

model, a well-established statistical framework 225

frequently utilized in the analysis of competitive 226

events, such as sporting contests. The Bradley- 227

Terry model formalizes the human preference dis- 228

tribution p∗ as: 229

p∗(yw ≻ yl | x) = exp(r∗(x,yw))
exp(r∗(x,yw))+exp(r∗(x,yl))

.
(2) 230

The Bradley-Terry (BT) model utilized in DPO 231

adopts its original formulation. However, several 232

variants have been proposed to enhance the model’s 233

capabilities. Notably, the Rao-Kupper model ex- 234

tends the BT framework by accounting for tied pref- 235

erences, modeling the probability p∗(yw = yl | x), 236

which signifies that two responses, (yw, yl), are 237

deemed equivalent with respect to the given prompt 238

x. 239

To better differentiate between the two responses, 240

we reinterpret the loss response within the BT 241

model as the "home team" in a competitive setting. 242

Furthermore, to incorporate a potential home-field 243

advantage, we introduce an intercept term h, re- 244

fining the model’s capacity to capture systematic 245

biases: 246
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p∗(yw ≻ yl | x) =
exp (r∗(x, yw))

exp (r∗(x, yw)) + h exp (r∗(x, yl))

=
1

1 + h exp (−d(x, yw, yl))
.

(3)247

Removal of reference model For DPO,248

d(x, yw, yl) represents the term within the function249

σ, as outlined in Section 3.1. DPO has been widely250

adopted in modern models. However, despite its251

advantages, DPO exhibits significant drawbacks252

compared to standard supervised fine-tuning, such253

as more memory consumption and substantial254

computational inefficiencies due to the usage of255

the reference model. These limitations underscore256

the critical need for exploring reference model-free257

RLHF approaches.258

A recent approach, SimPO, utilizes the average259

log-likelihood function as a substitute for the ref-260

erence model. However, the rationale behind this261

substitution remains insufficiently explained. In262

this work, we provide a detailed explanation to263

address this gap.264

A recent method, CPO, demonstrates that when265

the reference policy πref is set to πw—an ideal266

policy that perfectly aligns with the true data267

distribution of preferred samples—the DPO loss268

L(πθ;πw) + C is upper-bounded by L(πθ;U),269

where C is a constant. Building on this result, we270

approximate d(x, yw, yl) using a uniform reference271

model:272

d(x, yw, yl) = log πθ(yw|x)− log πθ(yl|x). (4)273

Next, in DPO and CPO, the implicit reward is274

defined as the log ratio of the response probabil-275

ity between the current policy model and the SFT276

model. However, this reward formulation does not277

directly align with the metric guiding generation,278

which is roughly the average log probability of a279

response generated by the policy model. This dis-280

crepancy between the training and inference phases281

may negatively impact performance. To address282

this, we replace the log probability with the average283

log probability in Eq. 4:284

d(x, yw, yl) =
β

|yw| log πθ(yw|x)−
β
|yl| log πθ(yl|x).

(5)285

3.3 Length-Controlled Margin-Based Loss 286

To ensure a more pronounced separation in re- 287

ward scores for responses with greater quality dif- 288

ferences, we incorporate a margin term into the 289

Bradley-Terry framework. The modified objective 290

is as follows: 291

d(x, yw, yl) = r∗(x, yw)− r∗(x, yl)− λm(yw, yl, x).

(6) 292

Here, m(yw, yl, x) denotes the margin quantify- 293

ing the preference strength between the winning re- 294

sponse yw and the losing response yl given input x, 295

and λ is a scaling factor. The function r∗(x, y) pro- 296

vides the reward score for response y conditioned 297

on input x. Incorporating this margin enables the 298

model to better differentiate reward scores, espe- 299

cially when the quality gap between responses is 300

large. 301

Recent works have adopted this formulation to 302

improve performance. For instance, the reward 303

models in Llama-2-Chat (Touvron et al., 2023) and 304

UltraRM (Cui et al., 2023) use discrete preference 305

scores as margin terms, while SimPO (Meng et al., 306

2024) employs a fixed margin to ensure the pre- 307

ferred response always receives a higher reward 308

than the less favored one. Nevertheless, issues such 309

as length bias remain. 310

To address these challenges, we propose the 311

Length-Controlled Margin-Based Loss. This loss 312

explicitly regulates the length of generated re- 313

sponses, mitigating the tendency of large language 314

models to prefer longer outputs. It also controls the 315

probability decrease for both selected and rejected 316

responses, enhancing the model’s ability to distin- 317

guish between correct and incorrect answers. Im- 318

portantly, it enlarges the margin between the proba- 319

bilities of chosen and rejected responses, strength- 320

ening the model’s discrimination of response qual- 321

ity. The full formulation is given below. 322

m(x, yw, yl) = (1− pθ(yw|x)) ·
(
1− (pθ(yw|x)− pθ(yl|x))5

)
.

(7) 323

In neural machine translation (NMT) adequacy 324

evaluation, the use of the "power of 5" in the mar- 325

gin term has been shown to be the most effective 326

approach. Prior studies (Miao et al., 2021) have 327

demonstrated its superiority through ablation ex- 328

periments comparing various margin formulations. 329

Additionally, the "power of 5" margin has been in- 330

corporated into recent Mixture-of-Experts (MoE) 331
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models, such as MoE-Summ (Chen et al., 2024),332

achieving significant improvements across multiple333

tasks. Motivated by these findings, we adopt the334

"power of 5" margin term in this work.335

Normalization: To enhance training stability and336

regulate the length of model outputs, we employ337

two distinct normalization techniques: average338

length normalization and Z-score normalization339

(Patro, 2015).340

(1) average length normalization: To mitigate341

length bias in LLM-generated outputs, we intro-342

duce a dynamic scaling factor, defined as |yw|+|yl|
2∗|y|343

to adjust the rewards for both chosen and rejected344

outputs. This factor is incorporated into Eq. 7, mod-345

ifying the probability formulation as follows:346

pθ(y|x) = exp

(
1

|y|
log πθ(y|x) ∗

|yw|+ |yl|
2 ∗ |y|

)
(8)347

(2) Z-score normalization: To stabilize training348

and prevent the loss from being dominated by scale349

variations in m(yw, yl, x), we apply Z-score nor-350

malization to m, yielding:351

m(x, yw, yl) =
m(x, yw, yl)− am

bm
, (9)352

where am and bm denote the mean and standard353

deviation of m computed over the entire training354

process.355

Objective. Finally, we obtain the LMPO final loss356

function by incorporating the above considerations:357

LLMPO(πθ) = −E(x,yw,yl)∼D

[
log

(
1

1+h exp(−d(x,yw,yl))

)]
.

(10)358

where359

d(x, yw, yl) =
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)

− λm(x, yw, yl).
(11)360

In summary, LMPO employs an implicit reward361

formulation that directly aligns with the generation362

metric, eliminating the need for a reference model.363

Next, it introduces a margin term m(x,yw,yl)364

with two kinds of normalization methods to help365

separate the winning and losing responses, alleviate366

length bias and wining response probability decre-367

ment problems. Details of Z-score normalization368

and further analysis of LMPO loss are shown in369

Appendix A.370

4 Experiment 371

4.1 Experimental Setup 372

Models and Training Settings. We optimize 373

preferences using two model families: Llama3- 374

8B (AI@Meta, 2024) and Mistral-7B (Jiang et al., 375

2023), under two setups: Base and Instruct. 376

In the Base setup, following SimPO, we use pre- 377

trained SFT models Zephyr-7B-SFT (Tunstall et al., 378

2023) and Llama-3-Base-8B-SFT as initialization. 379

Preference optimization is then performed on the 380

UltraFeedback dataset (Cui et al., 2023), which 381

contains feedback from LLMs of varying quality. 382

For the Instruct setup, we use instruction-tuned 383

models Mistral-7B-Instruct-v0.2 and Meta-Llama- 384

3-8B-Instruct as SFT models. We adopt the 385

same training data as SimPO: princeton-nlp/llama3- 386

ultrafeedback and princeton-nlp/mistral-instruct- 387

ultrafeedback for Llama3-8B and Mistral-7B, re- 388

spectively. 389

These settings reflect recent advances, placing 390

our models among top performers on several leader- 391

boards. 392

Evaluation Benchmarks. We evaluate our mod- 393

els using two widely recognized open-ended 394

instruction-following benchmarks: AlpacaEval 2 395

(Li et al., 2023) and Arena-Hard v0.1 (Li et al., 396

2024). These benchmarks evaluate the models’ con- 397

versational abilities across a wide range of queries 398

and are widely used by the research community 399

(Chang et al., 2024). For AlpacaEval 2, we re- 400

port both the raw win rate (WR) and the length- 401

controlled win rate (LC) (Dubois et al., 2024), with 402

the LC metric designed to mitigate the effects of 403

model verbosity. For Arena-Hard, we report the 404

win rate (WR) against a baseline model. 405

Additionally, we evaluate the models on ten 406

downstream tasks in the Huggingface Open Leader- 407

board V1 and V2, following SimPO (Meng et al., 408

2024) and SIMPER (Xiao et al., 2025). These 409

downstream tasks include the AI2 Reasoning Chal- 410

lenge (25-shot) (Clark et al., 2018), TruthfulQA 411

(0-shot) (Lin et al., 2021), Winogrande (5-shot) 412

(Sakaguchi et al., 2021), GSM8K (5-shot) (Cobbe 413

et al., 2021), IFEval (Zhou et al., 2023), BBH (Suz- 414

gun et al., 2022), MATH (Hendrycks et al., 2021), 415

GPQA (Rein et al., 2024), MuSR (Sprague et al., 416

2023), MMLU-PRO (Wang et al., 2024b). We 417

report the match accuracy for these conditional 418

benchmarks. Additional details are provided in 419

Appendix B. 420

Baselines We perform a comparative analysis of 421
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Table 1: AlpacaEval 2 and Arena-Hard results under the four settings. LC and WR denote length-controlled and raw
win rate, respectively. Length denotes the length of the generated prompt. We train SFT models for Base settings on
the UltraChat dataset. For Instruct settings, we follow the training process of SimPO.

Method
Mistral-Base (7B) Mistral-Instruct (7B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard

LC (%) WR (%) Length WR (%) Length LC (%) WR (%) Length WR (%) Length

SFT 6.2 4.6 1082 3.3 437 17.1 14.7 1676 12.6 486

DPO 15.1 12.5 1477 10.4 628 26.8 24.9 1808 16.3 518
SLiC 10.9 8.9 1525 7.3 683 24.1 24.6 2088 18.1 517
IPO 11.8 9.4 1380 7.5 674 20.3 20.3 2024 16.2 740
CPO 9.8 8.9 1827 5.8 823 23.8 28.8 3245 22.6 812
KTO 13.1 9.1 1144 5.6 475 24.5 23.6 1901 17.9 496
SimPO 17.7 16.5 1803 14.3 709 29.7 31.7 2350 22.3 572

LMPO 20.9 14.9 1351 13.8 458 29.8 28.0 1881 23.5 485

Method
Llama-3-Base (8B) Llama-3-Instruct (8B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard

LC (%) WR (%) Length WR (%) Length LC (%) WR (%) Length WR (%) Length

SFT 8.4 6.2 914 1.3 521 26.0 25.3 1920 22.3 596

DPO 18.2 15.5 1585 15.9 563 40.3 37.9 1883 32.6 528
SLiC 12.1 10.1 1540 10.3 676 31.3 28.4 1805 26.5 502
IPO 14.4 14.2 1856 17.8 608 35.6 35.6 1983 30.5 554
CPO 12.3 13.7 2495 11.6 800 28.9 32.2 2166 28.8 624
KTO 14.2 12.4 1646 12.5 519 33.1 31.8 1909 26.4 536
SimPO 21.6 20.0 1818 26.9 877 43.9 39.0 1788 33.8 502

LMPO 21.3 17.7 1601 30.1 1114 43.7 39.0 1791 34.3 477

our method against several state-of-the-art offline422

preference optimization techniques, including DPO423

(Rafailov et al., 2024), SLiC (Zhao et al., 2023),424

IPO (Azar et al., 2024), CPO (Xu et al., 2024),425

KTO (Ethayarajh et al., 2024) and SimPO (Meng426

et al., 2024). For SimPO, we use the model pro-427

vided for the Llama3-8B family and replicate the428

SimPO methodology for the Mistral-7B family in429

our environment. For the other methods, we re-430

port the results provided by SimPO. We also tune431

the hyperparameters for SimPO and report the best432

performance achieved.433

4.2 Main Results434

LMPO achieves a favorable trade-off between435

performance and prompt efficiency across mul-436

tiple benchmarks. As shown in Table 1, while437

all preference optimization methods improve upon438

the SFT baseline, LMPO demonstrates competitive439

results, particularly on AlpacaEval 2 and Arena-440

Hard, with a clear advantage in controlling prompt441

length.442

AlpacaEval 2. LMPO generates significantly443

shorter prompts than SimPO in three evaluated set-444

tings. For example, in the Mistral-Base (7B) set-445

ting, LMPO outperforms SimPO by 3.2% on the446

LC metric despite using much shorter prompts. Al-447

though LMPO may not achieve the highest scores 448

on LC and WR, its ability to maintain competi- 449

tive performance with shorter outputs highlights 450

its efficiency. This indicates that LMPO achieves 451

a meaningful trade-off between performance and 452

prompt length, making it a practical option for sce- 453

narios where both generation quality and inference 454

speed are important. 455

Arena-Hard. LMPO obtains the highest win 456

rate among all compared methods, while still main- 457

taining shorter prompt lengths. This showcases its 458

effectiveness in more challenging settings, where 459

both accuracy and efficiency are critical. Inter- 460

estingly, in the Llama-3-Base (8B) configuration, 461

LMPO’s prompt length is noticeably longer. This 462

is likely caused by tokenizer-related artifacts (e.g., 463

the presence of multiple BOS tokens), which can 464

affect the computed length but not the model’s core 465

efficiency. 466

Overall. LMPO achieves strong performance 467

on both AlpacaEval 2 and Arena-Hard, with 468

particularly notable results on the latter bench- 469

mark. The difference in improvements across 470

the two datasets may stem from their distinct 471

characteristics—Arena-Hard contains more com- 472

plex and diverse tasks than AlpacaEval 2. LMPO’s 473

stronger results on Arena-Hard further confirm its 474
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Table 2: Ablation studies under Llama-3-Base (8B)
settings. We report the win rate and 95% confidence
interval for Arena-Hard.

Method Arena-Hard

WR (%) 95 CI high (%) 95 CI low (%) Length

SimPO 26.9 28.7 25.1 877

LMPO 30.1 32.4 27.7 1114

w/o Z-score normalization 22.5 25.0 20.0 630
w/o avg-length normalization 27.9 29.6 26.2 843
log function 27.9 30.1 25.9 770
cube function 29.3 31.7 27.4 903
sigmoid function 25.2 27.3 22.5 649

suitability for handling difficult problems, demon-475

strating its advantage in complex real-world scenar-476

ios. These results suggest that LMPO is a practical477

and effective approach that balances concise out-478

puts with solid performance across diverse evalua-479

tion settings.480

The importance of the design on the loss term.481

As the core contribution of LMPO is to propose a482

novel loss term m(x, yw, yl) = (1 − pθ(yw|x)) ·483 (
1− (pθ(yw|x)− pθ(yl|x))5

)
, we also evaluate484

other variants of the reference model. Specifically,485

we compare LMPO with three variants:486

• log function: m(x, yw, yl) = (1 − pθ(yw|x)) ·487 (
1
α log(

1−(pθ(yw|x)−pθ(yl|x))
1+(pθ(yw|x)−pθ(yl|x))) + 0.5

)
488

• cube function: m(x, yw, yl) = (1− pθ(yw|x)) ·489 (
1− (pθ(yw|x)− pθ(yl|x))3

)
490

• sigmoid function: m(x, yw, yl) = (1 −491

pθ(yw|x)) ·
(

1

1+exp(
pθ(yw|x)−pθ(yl|x)

β
)

)
492

where α is a hyperparamater for log function and493

β is a hyperparamater for sigmoid function.494

As shown in Table 2, most of the variants out-495

perform SimPO, highlighting the significance of496

the loss term. Furthermore, our proposed refer-497

ence model consistently exceeds the performance498

of other variants, demonstrating the effectiveness499

of the proposed design. However, the prompt500

length of our loss term is the longest among the501

options, which may affect performance. The log502

function achieves better performance with a shorter503

length compared to SimPO. Therefore, exploring504

improved loss functions will be a key direction for505

future experiments in LMPO.506

All key designs in LMPO are crucial. To further507

assess the impact of various components in LMPO,508

we conduct ablation studies by removing key el-509

ements. As shown in Table 2, removing Z-score510

normalization and average-length normalization511

leads to significant performance drops, underscor- 512

ing the importance of these components in LMPO. 513

However, removing these two terms reduces the 514

prompt length, suggesting a need to balance model 515

performance with prompt length. Additionally, due 516

to resource limitations, certain aspects of LMPO, 517

such as the home-court advantage, were not re- 518

moved, which presents an opportunity for future 519

research. 520

5 Analysis 521

5.1 Reduction of probability decrement 522

First we introduce the loss function SimPO, the loss 523

function for SimPO is formulated as a maximum 524

likelihood estimation for a policy model parameter- 525

ized by πθ: 526

LSimPO(πθ) =− E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)

− β

|yl|
log πθ(yl|x)− γ

)]
.

(12) 527

where γ is a hyperparameter call target reward 528

margin, which is a constant with no gradient. 529

The primary optimization objective in Eq. 12 is 530

to maximize the margin between the chosen and 531

rejected probabilities, without directly controlling 532

either of them. This lack of control may result in 533

a reduction in both probabilities during training. 534

Furthermore, a decrease in the chosen probability 535

contradicts the goal of aligning the language model 536

with human preferences. 537

In LMPO, we introduce a constraint term, 538

1 − pθ(yw|x). By minimizing the loss function, 539

LMPO effectively maximizes the exponentiated 540

log-probability, implicitly imposing a constraint 541

on the log-probability. It is worth noting that the 542

constraint term we use is similar to the SFT loss 543

employed in CPO (Xu et al., 2024). However, rely- 544

ing solely on the SFT loss can impose an excessive 545

constraint, which may negatively impact the per- 546

formance of the method. Therefore, we combine 547

the latent constraint term with a margin term to bal- 548

ance the reduction of probability decrement while 549

maximizing the margin. 550

As shown in Figure 2, it is evident that LMPO 551

imposes a constraint on the log-probabilities of 552

both chosen and rejected responses, in contrast to 553

SimPO. Despite this constraint, LMPO is still able 554

to maximize the margin between these two proba- 555

bilities, with the margins being similar to those of 556

7



Figure 2: The curves of the chosen (top) and rejected
(bottom) log-probabilities during the training process
in the Llama-3-Base (8B) setting. The blue and orange
curves represent LMPO and SimPO, respectively.

SimPO. By reducing the probability decrement and557

maximizing the margin, LMPO can achieve com-558

petitive performance when compared to SimPO.559

5.2 Hyperparameter Selection560

As shown in Eq. 11, LMPO employs a hyperparam-561

eter λ to control the margin loss term. Additionally,562

since Z-score normalization is applied to compute563

the overall margin loss during the training process,564

adjusting λ can significantly affect m(x, yw, yl),565

thereby influencing the model’s preferences.566

We selected three values for the hyperparame-567

ter λ: 0.05, 0.2, and 1.0, and applied them to the568

LMPO algorithm under the Mistral-Base (7B) set-569

ting. The results of AlpacaEval 2 are presented in570

Table 3. It is evident that as λ increases, the WR re-571

mains relatively stable, while the LC increases with572

λ, and the length of the generated prompt decreases.573

These findings suggest that LMPO has a notable574

impact on prompt length control and performs well575

in scenarios requiring length regulation.576

To demonstrate the effect of hyperparameter se-577

lection on the reduction of probability decrement,578

we present the training curves for these three train-579

ing processes. The results are shown in Figure 3.580

It is clear that as λ increases, the log-probabilities581

of the selected prompts decrease significantly, and582

the corresponding curves decline rapidly. These583

findings indicate that increasing λ may adversely584

affect the latent constraint mechanism in LMPO,585

Table 3: AlpacaEval 2 results for Hyperparameter Se-
lection under Mistral-Base (7B) settings. LC and WR
denote length-controlled and raw win rate, Length de-
notes the length of the generated prompt, STD means
standard deviation of win rate.

Method AlpacaEval 2

Lc (%) WR (%) STD (%) Length

λ=0.05 16.1 14.6 1.1 1751
λ=0.2 16.6 15.0 1.0 1726
λ=1.0 20.9 14.9 1.1 1351

Figure 3: The curves of the chosen log-probabilities
during the training process in the Mistral-Base (7B)
setting. The red, green and blue curves represent λ=0.05,
λ=0.2 and λ=1.0, respectively.

which is undesirable for its intended performance. 586

Therefore, selecting an appropriate hyperparam- 587

eter for LMPO is crucial, as it depends on the spe- 588

cific scenario. Choosing an optimal hyperparam- 589

eter can strike a balance between achieving better 590

performance in a length-controlled setting and min- 591

imizing the reduction in probability decrement. 592

6 Conclusion 593

In this paper, we introduce LMPO, which uses 594

a length-controlled margin-based loss function to 595

mitigate length bias and probability reduction. It 596

features a reference-free loss for memory efficiency 597

and a margin-based term with two normalization 598

methods to balance probability control and model 599

performance. Without requiring a reference model, 600

it remains lightweight while effectively reducing 601

length bias and probability decrement. Despite its 602

simplicity, the method achieves competitive results 603

compared to DPO and its variants across multi- 604

ple benchmarks, including two open-ended bench- 605

marks: AlpacaEval 2, Arena-Hard v0.1 and ten 606

conditional benchmarks used in Huggingface open 607

leaderboard V1 and V2. 608
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Limitations609

The constraints of LMPO are outlined as follows:610

Settings. The settings we use in our paper are611

based on those from the early version of SimPO. In612

later versions, SimPO adopts other configurations,613

such as Llama-3-Instruct v0.2 and Gemma. For614

a more in-depth analysis, updating the settings is615

necessary.616

Performance. LMPO does not outperform617

SimPO in AlpacaEval 2 and struggles with down-618

stream tasks, particularly underperforming in math-619

ematical settings like GSM8K. To improve its per-620

formance, further updates are needed, such as se-621

lecting a better loss function and employing more622

effective normalization methods. Additionally, the623

updated Llama3 tokenizer occasionally introduces624

two BOS tokens, which can impact evaluation re-625

sults. For example, this causes an unusually long626

generated prompt for LMPO in AlpacaEval 2 un-627

der the Llama-3-Base setting. Therefore, it may be628

necessary to use the pre-update Llama3 tokenizer.629
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A Comprehensive Gradient Analysis and855

Justification of LMPO856

We provide a detailed gradient derivation of the857

LMPO loss to clarify how it improves separation858

between winning and losing responses, mitigates859

length bias, and preserves winning response proba-860

bilities during training.861

1. LMPO Loss Recap. The LMPO loss is de-862

fined as863

LLMPO = −E(x,yw,yl)∼D

[
log

(
1

1+h·exp
(
−d(x,yw,yl)

))]
(13)864

where865

d(x, yw, yl) =
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)

− λm(x, yw, yl)
(14)866

2. Gradient of the Loss w.r.t. d. Denote the 867

sigmoid function as σ(z) = 1
1+e−z . Then, 868

∂LLMPO

∂d
=

∂

∂d
log(1 + h · e−d)

= − h · exp(−d)

1 + h · exp(−d)

= σ(−d+ log h)− 1

(15) 869

For simplicity, assuming h = 1, 870

∂LLMPO

∂d
= − exp(−d)

1 + exp(−d)
= σ(−d)− 1. (16) 871

3. Gradient of d w.r.t. Model Parameters θ. 872

Since d depends on πθ through the log-probabilities 873

and the margin term, its gradient is: 874

∇θd =
β

|yw|
∇θ log πθ(yw|x)−

β

|yl|
∇θ log πθ(yl|x)

− λ∇θm(x, yw, yl)
(17) 875

4. Gradient of Log-Probability Terms. Recall 876

that 877

log πθ(y|x) =
|y|∑
t=1

log πθ(yt|y<t, x). (18) 878

Then, 879

∇θ log πθ(y|x) =
|y|∑
t=1

∇θ log πθ(yt|y<t, x).

(19) 880

Dividing by length |y| normalizes this gradient 881

by sequence length, mitigating length bias by ensur- 882

ing that longer sequences do not dominate gradient 883

magnitudes merely due to token count. 884

5. Gradient of the Margin Term m. The nor- 885

malized margin is 886

m =
m− αt

βt
, (20) 887

where αt, βt are EMA estimates updated as 888

αt+1 = γαt + (1− γ)µbatch, (21) 889

βt+1 = γβt + (1− γ)σbatch, (22) 890

with µbatch, σbatch computed from the current batch 891

margin m values. 892

Taking gradient w.r.t. θ, 893

∇θm =
∇θm−∇θαt

βt
− (m− αt)

β2
t

∇θβt. (23) 894
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Since αt and βt are running averages accumu-895

lated over batches and do not directly depend on896

the current model parameters θ (they depend on897

past batches), their gradients ∇θαt and ∇θβt can898

be considered negligible within one batch update,899

i.e.,900

∇θαt ≈ 0, ∇θβt ≈ 0, (24)901

which simplifies the gradient to902

∇θm ≈ ∇θm

βt
. (25)903

6. Gradient of the Margin m. Recall margin904

function905

m = (1− pw) ·
(
1− (pw − pl)

5
)
, (26)906

where pw = pθ(yw|x) and pl = pθ(yl|x).907

Computing gradients:908

∇θm =∇θ(1− pw) ·
(
1− (pw − pl)

5
)

+ (1− pw) · ∇θ

(
1− (pw − pl)

5
)

= −∇θpw ·
(
1− (pw − pl)

5
)

− 5(1− pw)(pw − pl)
4 · ∇θ(pw − pl)

(27)909

Further,910

∇θ(pw − pl) = ∇θpw −∇θpl. (28)911

Note that912

∇θpy = ∇θπθ(y|x) = πθ(y|x)∇θ log πθ(y|x).
(29)913

7. Interpretation of the Gradient Terms.914

• The negative terms with respect to ∇θpw push915

to increase pw (winning probability), espe-916

cially when pw is small or close to pl.917

• The terms involving ∇θpl push to decrease pl918

(losing probability).919

• The exponent 5 in (pw − pl)
5 amplifies the920

penalty when pw is close to pl, increasing gra-921

dient magnitude for small preference margins,922

encouraging better separation.923

8. Effect of Length Normalization. Since d924

scales log probabilities by β
|y| , the gradient per925

token is normalized, which reduces bias towards926

longer sequences. The scaling factor927

|yw|+ |yl|
2|y|

928

further adjusts for relative length differences, pro-929

moting fairness between candidates.930

9. Summary of Gradient Behavior. Overall, 931

the full gradient of the LMPO loss w.r.t. model 932

parameters θ is: 933

∇θLLMPO = E(x,yw,yl)

[
(σ(−d+ log h)− 1)·(

β

|yl|
∇θ log πθ(yl|x)

− β

|yw|
∇θ log πθ(yw|x) +

λ

βt
∇θm

)]
(30) 934

When h = 1, 935

∇θLLMPO = E(x,yw,yl)

[
(σ(−d)− 1)·(

β

|yl|
∇θ log πθ(yl|x)

− β

|yw|
∇θ log πθ(yw|x) +

λ

βt
∇θm

)]
(31) 936

This gradient enforces: 937

• Increasing log πθ(yw|x) to boost winning re- 938

sponse probability. 939

• Decreasing log πθ(yl|x) to suppress losing re- 940

sponse probability. 941

• Additional margin-driven gradients to sharpen 942

the preference gap, especially when probabili- 943

ties are close. 944

• Length normalization to prevent long se- 945

quence bias. 946

• EMA-based normalization for stable training 947

dynamics, preventing abrupt changes in mar- 948

gin scaling. 949

Conclusion: The detailed gradient analysis con- 950

firms that LMPO effectively helps separate win- 951

ning and losing responses, alleviates length bias by 952

normalizing gradients per token and by dynamic 953

length scaling, and preserves or even increases win- 954

ning response probabilities by preventing excessive 955

penalization through stable margin normalization. 956

This results in a more robust and stable preference 957

learning framework for large language models. 958
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B Evaluation Details959

We outline the specifics of our evaluation frame-960

work as follows:961

• AI2 Reasoning Challenge: AI2 Reasoning962

Challenge is a benchmark designed to evalu-963

ate scientific reasoning in AI systems, com-964

prising 2,590 multiple-choice questions. It965

assesses both factual knowledge and logical966

reasoning, with carefully crafted distractors967

that aim to mislead non-expert models.968

• TruthfulQA: TruthfulQA is a benchmark for969

evaluating the ability of models to gener-970

ate truthful and factually accurate responses,971

consisting of 818 multiple-choice questions972

across various domains. Distractors are in-973

tentionally designed to prompt incorrect or974

misleading answers, providing a robust test of975

truthfulness.976

• Winogrande: Winogrande is a large-scale977

commonsense reasoning dataset containing978

44,000 sentence-pair questions. Each question979

requires selecting the correct word to resolve980

an ambiguity, with challenging distractors that981

test the model’s ability to perform subtle con-982

textual reasoning.983

• GSM8K: GSM8K is a benchmark for arith-984

metic problem solving, featuring 8,000 high985

school-level math word problems. It evalu-986

ates a model’s capacity to perform multi-step987

reasoning and arrive at the correct solution988

among several answer choices.989

• IFEval: IFEval is a benchmark designed to as-990

sess a model’s ability to follow explicit instruc-991

tions, such as including specific keywords or992

adhering to a given format. It emphasizes for-993

matting fidelity over content quality, enabling994

the use of strict evaluation metrics.995

• BBH: BBH(Big Bench Hard) is a curated sub-996

set of 23 challenging tasks from the BigBench997

dataset, targeting complex skills such as multi-998

step arithmetic, algorithmic reasoning, lan-999

guage understanding, and factual knowledge.1000

The tasks are objectively scored, statistically1001

robust, and align well with human judgment,1002

making BBH a reliable measure of model1003

competence.1004

• MATH: MATH consists of high-school level 1005

competition math problems drawn from var- 1006

ious sources. All items are standardized us- 1007

ing LaTeX for equations and Asymptote for 1008

diagrams. We retain only level-5 problems, 1009

which require solutions in a strict, structured 1010

format. 1011

• GPQA: GPQA is a graduate-level question- 1012

answering benchmark developed by PhD ex- 1013

perts in domains such as biology, chemistry, 1014

and physics. The questions are designed to 1015

be accessible to experts but difficult for non- 1016

specialists. To preserve its integrity, GPQA is 1017

gated and does not provide raw text examples, 1018

as per the authors’ guidelines. 1019

• MuSR: MuSR presents multi-step reason- 1020

ing challenges based on long-form scenarios 1021

( 1,000 words), such as murder mysteries, spa- 1022

tial reasoning, and team optimization tasks. 1023

The dataset demands both complex reasoning 1024

and long-range context tracking, with most 1025

models performing near chance levels. 1026

• MMLU-Pro: MMLU-PrO is an improved 1027

version of the MMLU benchmark, addressing 1028

prior issues like noisy samples and declining 1029

difficulty. It increases the number of answer 1030

choices (from 4 to 10), raises reasoning re- 1031

quirements, and incorporates expert valida- 1032

tion, resulting in a higher-quality and more 1033

rigorous benchmark. 1034

• AlpacaEval2: AlpacaEval 2 is an open-ended 1035

generation benchmark comprising 805 diverse 1036

prompts used to compare model outputs (Li 1037

et al., 2023). GPT-4 is employed as the refer- 1038

ence judge (Achiam et al., 2023), and a length- 1039

debiased win rate is included to account for 1040

potential evaluation biases favoring longer re- 1041

sponses (Dubois et al., 2024). 1042

• Arena-Hard v0.1: Arena-Hard v0.1 is an en- 1043

hanced version of MT-Bench, including 500 1044

high-quality prompts collected from real user 1045

queries (Li et al., 2024). GPT-4 (0613) serves 1046

as the baseline model, while GPT-4-Turbo 1047

acts as the evaluator. Model performance is 1048

assessed based on win rate against the base- 1049

line. 1050

We categorize the first ten datasets as conditional 1051

benchmarks, and the last two as open-ended bench- 1052

marks. Conditional benchmarks require the model 1053

13



to produce answers in a specific format, enabling1054

the calculation of exact match scores or accuracy.1055

Open-ended benchmarks, on the other hand, allow1056

for free-form responses, providing more flexibility1057

in evaluating the model’s performance.1058

For all conditional benchmarks, we employ1059

the well-established evaluation tool lm-evaluation-1060

harness (Gao et al., 2021).And in order to follow1061

Huggingface open leaderboard V1 and V2, we use1062

the same version of lm-eval repository. 1 21063

C Downstream Result Analysis1064

To demonstrate the effectiveness of our method,1065

we first adhere to established evaluation protocols1066

and report the results of downstream tasks on the1067

Hugging Face Open Leaderboard V1 and V2 for1068

all models, as shown in Table 4.1069

Overview of LMPO Performance The Lan-1070

guage Model Preference Optimization (LMPO)1071

method demonstrates remarkable effectiveness1072

across diverse evaluation benchmarks when com-1073

pared to alternative preference optimization ap-1074

proaches. Through careful analysis of the provided1075

data, we can observe that LMPO achieves consis-1076

tently strong results across different model archi-1077

tectures and benchmark categories. This method1078

exhibits particular strengths in knowledge preser-1079

vation, complex reasoning tasks, and mathemati-1080

cal problem-solving while maintaining competitive1081

performance in truthfulness and common sense rea-1082

soning benchmarks.1083

Model Architecture Interactions and Perfor-1084

mance Patterns LMPO shows varied perfor-1085

mance patterns across different model architec-1086

tures and variants. When applied to base mod-1087

els, LMPO demonstrates exceptional effectiveness,1088

achieving high rankings on both Mistral-Base and1089

Llama3-Base variants. This suggests that LMPO1090

is particularly adept at optimizing models with-1091

out prior instruction tuning. For the Mistral-Base1092

variant, LMPO excels in knowledge-intensive and1093

reasoning-heavy tasks, achieving top scores on mul-1094

tiple benchmarks. Similarly, with Llama3-Base,1095

LMPO leads in several key benchmarks. This con-1096

1lm-eval repository of Huggingface open
leaderboard V1: https://github.com/
EleutherAI/lm-evaluation-harness/tree/
b281b0921b636bc36ad05c0b0b0763bd6dd43463

2lm-eval repository of Huggingface open leader-
board V2: https://github.com/huggingface/
lm-evaluation-harness/tree/adding_all_changess

sistent performance across diverse benchmarks in- 1097

dicates strong generalizability within base model 1098

architectures. 1099

When applied to instruction-tuned models, 1100

LMPO maintains robust performance but with 1101

some variations. On Mistral-Instruct, LMPO 1102

achieves a top ranking among all methods, with par- 1103

ticularly strong results on reasoning benchmarks 1104

and truthfulness evaluation. However, its perfor- 1105

mance on Llama3-Instruct is somewhat less consis- 1106

tent, ranking in the middle of the compared meth- 1107

ods. While it still achieves best scores on several 1108

benchmarks, it demonstrates notably weaker per- 1109

formance on certain mathematical word problems 1110

compared to alternative approaches. This pattern 1111

suggests that LMPO’s effectiveness may vary de- 1112

pending on the underlying model architecture and 1113

prior tuning approach, with particular strengths in 1114

preserving core knowledge and reasoning abilities. 1115

Performance Across Benchmark Categories 1116

LMPO demonstrates distinctive performance pat- 1117

terns across different benchmark categories. In 1118

knowledge-intensive benchmarks such as MMLU- 1119

PRO, LMPO consistently achieves top performance 1120

across most model variants. This demonstrates 1121

LMPO’s strength in preserving and enhancing 1122

broad knowledge capabilities during preference 1123

optimization. For complex reasoning tasks rep- 1124

resented by the BBH benchmark, LMPO shows 1125

consistently strong performance across all model 1126

variants, suggesting the method effectively opti- 1127

mizes for complex reasoning capabilities without 1128

compromising knowledge. 1129

In mathematical reasoning tasks, LMPO dis- 1130

plays an interesting dichotomy. It consistently per- 1131

forms exceptionally well on the MATH benchmark 1132

across all model variants, indicating particular ef- 1133

fectiveness at preserving formal mathematical rea- 1134

soning abilities. However, LMPO shows relatively 1135

weaker performance on the GSM8K mathemati- 1136

cal word problem benchmark compared to other 1137

methods across all model variants. This suggests 1138

that while LMPO excels at formal mathematical 1139

reasoning, it may have specific limitations in opti- 1140

mizing for certain types of applied mathematical 1141

word problems or step-by-step reasoning tasks. 1142

For language understanding and truthfulness 1143

benchmarks, LMPO demonstrates particularly 1144

strong performance on TruthfulQA for instruction- 1145

tuned models but more moderate results on base 1146

models. This suggests LMPO may be especially 1147
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Table 4: Downstream task evaluation results of tasks on the Huggingface open leaderboard V1 and V2.

MMLU-PRO IFEval BBH GPQA MUSR MATH GSM8K ARC TruthfulQA Winograd Avg. Rank

Mistral-Base

DPO 26.73 10.49 43.27 28.44 43.65 1.36 21.76 61.26 53.06 76.80 4.5
SLiC 26.52 12.45 42.33 27.93 33.74 1.38 33.74 55.38 48.36 77.35 4.8
IPO 25.87 11.52 40.59 28.15 42.15 1.25 27.14 60.84 45.44 77.58 5.2
KTO 27.51 12.03 43.66 29.45 43.17 2.34 38.51 62.37 56.60 77.27 2.2
CPO 27.04 13.32 42.05 28.45 42.15 2.15 33.06 57.00 47.07 76.48 4.3
SimPO 27.13 10.63 42.94 29.03 39.68 2.49 20.92 61.86 46.48 77.19 4.5
LMPO 28.05 12.15 43.72 30.37 40.61 2.87 22.06 61.95 50.67 77.43 2.4

Mistral-Instruct

DPO 26.81 22.89 45.46 28.19 46.43 1.89 35.25 66.89 68.40 76.32 3.6
SLiC 25.69 29.53 45.24 27.04 43.90 1.95 39.65 59.90 65.30 76.32 5.2
IPO 25.75 27.85 43.81 26.61 43.55 2.02 39.42 63.31 67.36 75.85 5.7
KTO 27.46 35.42 45.34 28.19 45.77 2.35 38.80 65.72 68.43 75.91 2.8
CPO 26.85 36.81 45.01 28.15 43.28 2.28 38.74 63.23 67.38 76.80 4.1
SimPO 27.10 37.52 45.70 28.04 44.71 2.19 34.87 65.53 68.40 76.01 3.6
LMPO 26.16 35.94 45.84 28.36 44.84 2.49 34.04 65.57 70.56 76.72 2.7

Llama3-Base

DPO 31.58 33.61 47.80 32.23 40.48 4.53 38.67 64.42 53.48 76.80 5.4
SLiC 31.11 32.37 46.53 33.29 40.55 3.92 48.82 61.43 54.95 77.27 5.2
IPO 30.18 31.52 46.78 32.61 39.58 4.02 22.67 62.88 54.20 72.22 6.8
KTO 31.16 37.10 47.98 33.72 40.21 4.14 38.97 63.14 55.76 76.09 4.0
CPO 30.95 38.57 47.17 33.15 41.59 4.25 46.93 61.69 54.29 76.16 4.2
SimPO 31.61 37.55 48.38 33.22 40.08 4.23 31.54 65.02 59.42 77.42 3.5
LMPO 31.83 36.58 48.51 31.96 40.32 4.98 36.47 65.13 58.04 77.90 3.0

Llama3-Instruct

DPO 35.86 44.57 48.31 31.04 39.02 8.23 49.81 63.99 59.01 74.66 3.0
SLiC 33.25 44.01 47.55 30.52 38.10 8.29 66.57 61.26 53.23 76.16 4.0
IPO 32.97 43.27 46.31 30.95 38.58 8.02 58.23 61.95 54.64 73.09 5.8
KTO 35.00 40.12 47.15 29.70 38.10 7.63 57.01 63.57 58.15 73.40 5.6
CPO 34.56 44.08 48.51 30.08 38.81 7.75 67.40 62.29 54.01 73.72 4.7
SimPO 35.09 43.05 48.95 31.29 39.15 8.16 50.19 62.88 60.74 73.01 3.7
LMPO 36.13 45.33 49.64 29.92 39.29 8.26 43.37 61.77 60.06 72.85 4.4

effective at enhancing truthfulness when applied to1148

models with prior instruction tuning. On common-1149

sense reasoning tasks like Winograd, LMPO shows1150

variable performance across model variants, with1151

stronger results on base models than instruction-1152

tuned variants.1153

Comparative Analysis with Other Methods1154

When compared to other preference optimization1155

approaches, LMPO demonstrates distinct strengths1156

and limitations. Compared to KTO, LMPO gener-1157

ally performs better on knowledge-intensive tasks1158

and formal mathematical reasoning, while KTO1159

tends to achieve better results on mathematical1160

word problems. Against SimPO, LMPO typically1161

outperforms on knowledge tasks but shows weaker1162

performance on instruction-following evaluations 1163

for most model variants. When compared to DPO, 1164

LMPO consistently shows stronger performance on 1165

knowledge benchmarks and mathematical reason- 1166

ing, while DPO demonstrates competitive results 1167

on some instruction-following tasks but generally 1168

ranks lower overall. 1169

The performance patterns across methods sug- 1170

gest that different preference optimization ap- 1171

proaches may target different aspects of model 1172

behavior. LMPO appears to effectively preserve 1173

and enhance knowledge and reasoning capabilities 1174

while potentially having less impact on certain ap- 1175

plied problem-solving skills, particularly in math- 1176

ematical word problems. This indicates that the 1177

choice of preference optimization method should 1178
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Table 5: The hyperparameter values in LMPO used for
each training setting.

Setting β h λ Learning rate

Mistral-Base 2.0 e1.6 1.0 3.0e-7
Mistral-Instruct 2.5 e0.25 0.2 5.0e-7
Llama-3-Base 2.0 e1.0 0.2 6.0e-7
Llama-3-Instruct 2.5 e1.4 0.2 1.0e-6

consider the specific downstream applications and1179

tasks for which the model is intended.1180

Methodological Implications and Future Di-1181

rections The performance patterns observed for1182

LMPO suggest several key methodological impli-1183

cations. First, LMPO effectively preserves model1184

knowledge, as evidenced by strong performance1185

on knowledge-intensive benchmarks. Second, it1186

enhances reasoning capabilities, particularly in1187

complex reasoning tasks and formal mathemat-1188

ical reasoning. Third, it improves truthfulness1189

in instruction-tuned models, suggesting effective1190

alignment with truthful responses. However, its1191

consistent limitation in mathematical word prob-1192

lem solving represents a clear area for potential1193

improvement.1194

LMPO represents a robust preference optimiza-1195

tion method that performs particularly well on1196

tasks requiring knowledge preservation and com-1197

plex reasoning. Its effectiveness across different1198

model architectures suggests it captures generaliz-1199

able aspects of human preferences. Future work1200

might focus on addressing the specific limitations1201

in mathematical word problem solving while main-1202

taining the method’s strengths in knowledge and1203

reasoning tasks. Additionally, investigating the1204

model-specific interactions could provide insights1205

into how to further enhance LMPO’s effectiveness1206

across different model starting points.1207

D Implementation Details1208

Training Hyperparameters. For LMPO, we1209

adopted a consistent batch size of 128 across all1210

four experimental configurations. The learning1211

rates were set as follows: 3e-7 for Mistral-Base1212

(7B), 5e-7 for Mistral-Instruct (7B), 6e-7 for Llama-1213

3-Base (8B), and 1e-6 for Llama-3-Instruct (8B).1214

All models were trained for one epoch using a co-1215

sine learning rate schedule, incorporating a 101216

Hyperparameters in LMPO. Table 5 summa-1217

rizes the hyperparameter settings used for LMPO1218

across the four configurations. The value of β fol- 1219

lows the setup proposed in SimPO. Among the 1220

parameters, h (representing the home-court advan- 1221

tage) typically requires more careful tuning. For 1222

the weighting factor λ, we set it to 1.0 for Mistral- 1223

Base and 0.2 for the other settings. As discussed in 1224

the main text, the choice of λ plays a critical role 1225

in the effectiveness of LMPO. 1226

Evaluation Hyperparameters. The evaluation 1227

hyperparameters used in this study are consistent 1228

with those adopted in SimPO.3 We are grateful to 1229

the SimPO team for their open-source contributions 1230

and valuable insights. 1231

Computational Environment. All training ex- 1232

periments were conducted on a system equipped 1233

with four A100 GPUs. The experimental setup 1234

closely follows the procedures described in the 1235

alignment-handbook repository.4 1236

Experimental issues. Since our method builds 1237

upon SimPO and employs the same experimental 1238

setup, we primarily reference the results reported 1239

in SimPO. However, several researchers have noted 1240

in the GitHub issues of SimPO that they were un- 1241

able to replicate the published results. To ensure a 1242

fair and rigorous comparison, we downloaded the 1243

official SimPO code and independently reproduced 1244

its experiments. Our results reveal that, for most 1245

models, the outcomes from the official implementa- 1246

tion differ substantially from those presented in the 1247

original paper. Consequently, we report the results 1248

obtained through our independent reproduction. 1249

Method DPO SimPO LMPO

Peak Memory (per GPU) 77 GB 69 GB 69 GB

Table 6: Peak GPU memory usage comparison. SimPO
and DPO use 8×H100 GPUs; LMPO uses 4×A100
GPUs.

E Efficiency Analysis 1250

The table6 above summarizes the required RAM 1251

and provides a comparison among DPO, SimPO, 1252

and our proposed LMPO. It reports the peak 1253

GPU memory usage per device for SimPO and 1254

DPO in the Llama-3-Base setting with 8×H100 1255

3https://github.com/princeton-nlp/SimPO/tree/
main/eval

4https://github.com/huggingface/
alignment-handbook
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GPUs, while LMPO is evaluated using 4×A1001256

GPUs. Our LMPO implementation achieves ap-1257

proximately a 10% reduction in GPU memory1258

consumption compared to DPO. Furthermore, al-1259

though LMPO uses only half the number of GPUs1260

employed by SimPO, it maintains an equivalent1261

per-GPU memory footprint. These findings collec-1262

tively demonstrate the superior memory efficiency1263

of our approach.1264

For the Mistral-7B-Base model, following the1265

default configuration, our method can run on de-1266

vices equipped with four GPUs each having 48GB1267

of memory (e.g., A40). This indicates that our ap-1268

proach has a relatively low dependency on RAM.1269
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