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ABSTRACT

Load forecasting is of great significance in the power industry as it can provide
a reference for subsequent tasks such as power grid dispatch, thus bringing huge
economic benefits. However, there are many differences between load forecast-
ing and traditional time series forecasting. On the one hand, the load is largely
influenced by many external factors, such as temperature or calendar variables.
On the other hand, load forecasting aims to minimize the cost of subsequent tasks
such as power grid dispatch, rather than simply pursuing prediction accuracy. In
addition, the scale of predictions (such as building-level loads and aggregated-level
loads) can also significantly impact the predicted results. In this paper, we provide
a comprehensive load forecasting archive, which includes load domain-specific
feature engineering to help forecasting models better model load data. In addition,
different from the traditional loss function which only aims for accuracy, we also
provide a method to customize the loss function and link the forecasting error to
requirements related to subsequent tasks (such as power grid dispatching costs)
integrating it into our forecasting framework. Based on such a situation, we con-
ducted extensive experiments on 16 forecasting methods in 11 load datasets at
different levels under 11 evaluation metrics, providing a reference for researchers
to compare different load forecasting models.

1 INTRODUCTION

Time series data are becoming ubiquitous in numerous real-world applications (Wen et al.| 2022} [Lai
et al.l2021; Zhou et al., [2022; Wang et al.} 2018). Among them, electrical load forecasting is crucial
for maintaining the supply and demand balance in the power system. Thanks to the development of
machine learning in recent years, various methods have been developed for load forecasting (Yildiz
et al.| 2017; Zhang et al.l 2021)). To further promote the development of this field, many power load
forecasting competitions like the Global Energy Forecasting (GEF) Competition have been held over
the years (Hong et al., [2014; 2016} |2019). In addition, many competitions target specific themes, like
building energy management based on electricity demand and solar PV generation (Nweye et al.,
2022) and the impact of COVID-19 issues on the power systems (Farrokhabadi et al.,[2022).

Although many advanced load forecasting methods have emerged in the past decades, the winners
of load forecasting competitions often use conventional machine learning models (like non-deep
learning models). The secret to their victory lies in targeted feature engineering and adjustment of
forecasting strategies, which is also the major difference between load forecasting and general time
series forecasting (Sobhani et al., [2020). However, no existing benchmarks focus on those parts in
load forecasting. Compared with other time series, electrical load data are greatly affected by external
factors such as temperature and calendar variables, making it challenging to model the load dynamics
accurately. Therefore, exploring the impact of external factors on load forecasting has always been an
important research direction in this field (Aprillia et al.,|2020). And temperature is considered to have
a significant impact on the power load. Many researchers have focused on how to use temperature
variables to assist in constructing load forecasting models (Haben et al., 2019} Sobhani et al., 2020
Liu et al.,2023)). At present, the utilization of temperature variables can be roughly divided into two
strategies. One is to make targeted transformations on temperature variables, which are often based
on relatively simple statistical learning methods (Guan et al.| 2021} [Farfar & Khadir, [2019). The other
one is to extract features by neural networks. Such models usually achieve better accuracy (Imani,
2021 [Hafeez et al.,|2020). However, the interpretability of this kind of model decreases due to the
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black-box characteristic of neural networks. Nevertheless, related feature engineering also has a
guiding role for neural network-based forecasting models. Currently, no large-scale experimental
results have been provided to demonstrate this. Therefore, we will provide various related feature
engineering in our package and discuss the impact on load forecasting models based on temperature
feature engineering.

Apart from feature engineering, another difference is that the most important concern of power load
forecasting models is to achieve the lowest cost instead of the best accuracy of predictions. Due
to the diversity of the time series, general time series forecasting results are rarely optimized for a
specific task. However, the load forecasting results will mainly be used for subsequent power grid
dispatch, which inspires us to pay attention to the relationship between the prediction and subsequent
decision-making cost. (Wang & Wu, 2017) discovered the asymmetry between cost and forecasting
error and this asymmetry comes from actual scenarios. Underestimating predictions at peak points
will result in additional power purchase costs while overestimating predictions at low points will
waste power generation. Therefore, bias will be introduced if we just use traditional gradient loss
functions like MSE and MAE to train the model. Then, (Zhang et al.| 2022) proposed to use the
characteristics of piecewise linearization and the Huber function to model the relationship between
forecasting error and real cost. Inspired by this work, our package provides methods for modeling the
relationship between forecasting error and other variables and then constructing the corresponding
loss function.

To provide an accessible and extensible reference for future researchers in load forecasting, our
developed package differs from the existing time series packages (Alexandrov et al.| 2020; |Goda+
hewa et al., [2021)). Specifically, our package splits the entire power load forecasting process into
five modules: data preprocessing, feature engineering, forecasting methods, postprocessing, and
evaluation metrics. Our package will cover both probabilistic forecasting and point forecasting,
providing feature engineering methods and predictors based on traditional machine learning models
and deep learning models. Users can combine any of these components and obtain their customized
models. Furthermore, our package adds specific functionalities to address the characteristics of load
forecasting and its differences from traditional time series forecasting, greatly enhancing the user’s
freedom to construct load forecasting models.

Lastly, we conduct extensive experiments to evaluate both point forecasting and probabilistic fore-
casting performance of different models on multiple load datasets at different levels. These results
not only provide insights about different forecasting models under various scenarios and evaluation
metrics but also show the accessibility and extensibility of our package and benchmark. Furthermore,
we also demonstrate how the feature engineering and the loss function we provide could affect the
load forecasting results.

We summarize our primary contributions as follows:

1. Domain-specific feature engineering and self-defined loss function. Based on the characteristics
of load, temperature, and calendar variables, we integrate the feature engineering that reflects
the ternary relationship into our package for users to use in any forecasting model. At the same
time, we also provide users with a function to customize the loss function. Users can define the
relationship between the forecasting error and any variable (such as the dispatching cost of the
power grid) and integrate it into our forecasting framework as a loss function. In our experiment,
we simulate an IEEE 30-bus system, provide the relationship between simulated forecasting error
and cost, and construct the corresponding loss function.

2. Fully open-source platform with accessibility and extensibility. We release the relevant
code on GitHul{l Users can freely combine the components we provide to design their load
forecasting framework to cope with different power load forecasting scenarios. We provide
over 20 forecasting methods, including both probabilistic forecasting and point forecasting. In
addition, we also encourage users to combine their forecasting methods based on our framework.
After defining the input and output of their method, users only need one command to add their
forecasting model to our framework to accomplish common 24-hour-ahead electricity forecasting
tasks. At the same time, we also provide various evaluation and visualization methods to facilitate
users to evaluate the predictive performance of different models from multiple perspectives.
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3. The first large-scale benchmark for electrical load forecasting. Based on 11 electrical load
dataset including aggregated-level and building-level, we conduct our experiment on both proba-
bilistic forecasting and point forecasting. For probabilistic forecasting, we compare 16 probabilistic
forecasting methods and apply 11 metrics to comprehensively compare the performance. For
point forecasting, we focus on 7 widely used deep learning methods and compare the traditional
MSE loss function with our proposed loss function based on the relationship between forecasting
error and cost. To the best of our knowledge, this is the first work to construct comprehensive
benchmarks with large-scale datasets for load forecasting scenarios.

2 DATA DESCRIPTION

In this section, we will introduce how our dataset is collected and the characteristics of the dataset.
We have collected a total of 11 datasets for our data collection, and a detailed description of each
dataset is provided in the Appendix [A] In summary, the data we collect mainly comes from UCI
machine learning databases (Dua & Graff, [2017), Kaggle data competition platforms (Nicholas||2019;
Yeafi, |2021}; |Shahane, 2021)), and the famous global energy forecasting competitions (Hong et al.,
2014} 20165 2019). In addition, we also include a dataset reflecting the impact of the COVID-19
epidemic on the power system into our archives. Under the influence of COVID-19, an influential
external factor, the power load has changed significantly, posing a challenge to the robustness of
the forecasting model (Farrokhabadi et al., [2022). From the perspective of load hierarchy, 7 of
the data we collect are aggregated-level datasets, and the remaining 4 are building-level datasets.
Aggregated-level load refers to the total load that aggregates multiple independent loads (such as the
power demand of various buildings in the power system) together. More specifically, we classify
the load of an area greater than one building as aggregated level. Because the aggregated-level
load results from multiple load aggregations, it typically exhibits more pronounced periodicity and
seasonality. For this reason, calendar variables significantly impact load forecasting at this level.
In contrast, the load of the building level, which can also be seen as a part of the aggregated load.
Building-level loads change very dramatically, resulting in significant uncertainty. Therefore, many
works related to building-level load forecasting often focus on probabilistic forecasting (Xu et al.,
2019; Jeong et al.,|2021b). To provide a reference for researchers in related fields, we also collect
building-level datasets from the Building Data Genome 2 (BDG2) Data-Set (Miller et al.| [2020).
In addition to different levels, the data we collect also has the characteristic of almost covering all
meteorological data (actual measurement) such as temperature, which may be greatly beneficial to
forecasting because of the great impact of external variables (especially temperature) on load. The
number of time series contained in each dataset and their corresponding features are listed in Table[T]
And all the data will be released under appropriate licenses.

Table 1: Datasets in the load forecasting archive.

Dataset No. of series Length Resolution Missing License Type External variables
1 Covid19(Farrokhabadi et al. 72022» 1 31912 hourly No CCBY 4.0 aggregated-level airTemperature, Humidity, etc
2 GEF12(Hong et al.||2014) 20 39414 hourly No CCBY4.0 aggregated-level airTemperature
3 GEF14(Hong et al.|2016) 1 17520 hourly No CCBY4.0 aggregated-level airTemperature
4 GEF17(Hong et al.|2019) 8 17544 hourly No CCBY4.0 aggregated-level airTemperature
5 PDB(Yeafi| 2021) 1 17520 hourly No CCO0 1.0  aggregated-level airTemperature
6 Spain(Nicholas|[2019) 1 35064  hourly Yes CCO 1.0 aggregated-level airTemperature, seaL.vIPressure, etc
7 Hog(Miller et al.|2020) 24 17544 hourly Yes MIT License building-level  airTemperature, wind speed, etc
8 Bull(Miller et al.|2020) 41 17544 hourly Yes MIT License building-level  airTemperature, wind speed, etc
9 Cockatoo(Miller et al.|[2020) 1 17544 hourly Yes MIT License building-level  airTemperature, wind speed, etc
10 ELF( Shahanej2021 ) 1 21792 hourly No CCBY4.0 aggregated-level No
11 UCL(Dua&Graf f}|2017) 321 26304 hourly No CCBY4.0 building-level No
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Figure 1: Overview of the load forecasting package.

3 PACKAGE FUNCTIONS

3.1 OVERVIEW OF THE PACKAGE

Fig[T|shows the overview of our package. As stated before, we divide the overall forecasting process
into several parts to address potential issues in load forecasting for the power industry. First of
all, load data is obtained by physical devices such as electricity meters. During this process, it is
inevitable to encounter missing values, omissions, and other situations. Such a situation is more
common in the load data of building-level (Jeong et al.,|2021a). In this regard, our package provides
various methods such as ARIMA based on Kalman filtering (Harvey & Pierse, |1984)), K-nearest
neighbor algorithm (Garcia-Laencina et al.,|2010) to fill in missing values, ensuring minimum data
information distortion. Secondly, our model provides a variety of feature selection strategies to meet
the needs of different scenarios. For example, users can choose the corresponding data from the
previous seven days for day-ahead forecasting or use Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) metrics to help select the lagged values. In addition, our framework
allows users to add external variables such as temperature and calendar variables that may impact the
forecasting model. As for the forecasting methods, we provide both probabilistic forecasting and point
forecasting methods. Among them, probabilistic forecasting will be based on quantile forecasting.
However, quantile regression may lead to confusion about quantile, that is, the forecasting result of a
larger quantile is smaller than that of a smaller quantile. To address this situation, we have provided
corresponding post-processing for reordering.

After obtaining forecasting results, we need reasonable metrics to evaluate them. Existing forecasting
packages generally provide a variety of metrics, such as Pinball Loss and CRPS. Although they can
evaluate the quality of forecasting results, they reduce the discrimination of forecasting models. For
example, a model may perform poorly in a certain quantile while performing well in other quantiles.
To more intuitively compare the performance of models in different quantiles, our package provides
the matrix visualization function of multiple metrics in different quantiles. And the evaluation metrics
we have implemented include CalibrationError (Chung et al.| [2021), WinklerScore (Barnett, |1973)),
CoverageError, and so on (details can be seen in Appendix Section [D.2).

3.2 TEMPERATURE-CALENDAR FEATURE ENGINEERING STRATEGY

The impact of temperature on load is greatly influenced by calendar variables. Inspired by the
Hongtao linear regression model (Hong et al.,|2016)), we apply one-hot encoding to calendar variables
and then model this coupling relationship by taking their products with temperature to the first,
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second, and third powers as features. The specific formula is as follows.
9t =Po + 1 Trend, +B2 M, + BsWy + BuHy + BsWiHy + B6Ty + BT}
——

replaced by sequence model

+ BT} + BoTy My + BroTE My + B TEMy + BroTyHy + BT Hy + B1aT} Hy,

where M;, Wy, Hy, and T} represent the month, workday, and hour vectors after one-hot encoding and
temperature at the corresponding time. Due to the one-hot coding, one categorical variable is changed
into multiple binary categorical variables. When the corresponding variable is O, the parameters
of the linear model will not have any effect on it. Therefore, the result of doing so is constructing
multiple personalized models based on calendar variables. Such a feature engineering strategy can
help the forecasting model cope with situations where the temperature and load relationship shifts
under different calendar variables. To preserve such characteristics and integrate existing sequence
modeling methods (such as LSTM, and N-BEATS), we treat the information extracted by sequence
modeling methods as trend variables and concatenate them with the previously obtained calendar
temperature coupling variables. Finally, a fully connected layer is used to map the final output result.
In section 5, we will compare the impact of this feature engineering on forecasting results across
multiple datasets.

3.3 CUSTOM LOSS FUNCTION

Based on (Zhang et al.l 2022}, our framework provides corresponding piecewise linearization func-
tions to help users model the relationship between forecasting errors and real requirements (such as
scheduling costs) and integrate it into the gradient descent training. Specifically, we need data pairs
(e, 01)1:1,..., N, Where ¢; is the forecasting error and C; is the real requirement(here we mainly refer

to the dispatching cost). Here, we consider using Forecasting Error Percentage (FEP) €; = W

as our error metric. At the same time, we normalize {C'};—1 .y, making its value fall between 0 and
1. Now, our goal has become how to construct L(e) to estimate C'. To achieve high fitting accuracy,
we can use a spline cubic function, denoted as s, to fit it. However, the disadvantage of doing so is
that there will be many discontinuities, which is not convenient to integrate them into our forecasting
framework as a loss function. To ensure the fitting ability of the function while making it as simple
as possible, a piecewise linearization strategy is adopted here. The number of segments K can be

5
(Ismax s”(e)%de) 2
€min

determined by setting the upper bound of the fitting error ||s — L(e)||, < ke (Berjon

et al.l 2015). Regarding the position of the corresponding interval points, we strive to distribute the
data points within the interval formed by each pair of endpoints (De Boor & De Boorl [1978). So far,
we have obtained a piecewise linearization function. To take it as a loss function, we need to ensure its
differentiability. Specifically, we use a quadratic function in a cell around each breakpoint to smooth
it. Note that the quadratic function does not need to fit the data, but only needs to ensure its left and
right continuity and the continuity of the corresponding first derivative to obtain the parameters.

forecasting error-cost relationship

Adapted from (Zhang et al.|[2022)), we employ a modified

IEEE 30-bus test system to simulate an economic dispatch 0s
optimization problem (Hota & Naikl 2016)). This system
comprises 6 generators and 3 Battery Energy Storage Sys- 03
tems (BESS) connected to the network to supply power
to 21 loads. We will address two dispatch optimization
problems: the Day-Ahead Economic Dispatch (DAED)
problem and the Intra-day Power Balancing (IPB) problem,
to obtain the dispatch cost. The DAED problem primarily 00
focuses on dispatching the power output of all online gen-
erators based on forecasted results, while the IPB problem
fine-tunes the outputs of generators, charging/discharging Figure 2: Visualization of simulated loss
behavior of BESS, and load shedding to balance the intra- function.

day load deviation. The simulation process can be found

in Appendix The simulated visualization result can be found in Fig|2| From the simulation
results, we can identify two key distinctions in comparison to traditional Mean Squared Error (MSE)
losses. First, there is a significant asymmetry between forecasting error and dispatching cost, which
is evidenced by the considerable discrepancy in dispatching costs between instances when predicted

—e— loss function

-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100
forecasting error
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values are higher than the true value and instances when predicted values are lower than the true
value. This difference stems from varying sources of dispatching costs. When the predicted value is
too high, the system may over-dispatch power generation equipment, whereas when the predicted
value is too low, the system may need to purchase emergency power supplies. Second, in order to
minimize dispatching costs, we often do not need to require that predicted values perfectly match
true values. Instead, we only need to meet specific accuracy requirements to minimize dispatching
costs. This finding can guide the model to focus more on data points with low forecasting accuracy,
thereby minimizing the final dispatching cost. We have packaged the loss function based on these
simulated data for users to call.

3.4 USAGE OF THE PACKAGE

Our software package provides multiple components for users to freely combine and construct various
power load forecasting scenarios. Meanwhile, we also encapsulate the default strategy, where users
only need one command to achieve the default 24-hour ahead power probabilistic forecasting task
and obtain detailed result files, including multiple forecasting methods and evaluation metrics for
further analysis.

err_tot, forecast_tot, true = calculate_scenario(data=data,
target=target, methods_to_train=methods_to_train)

In addition, our package has a good extensibility and we also encourage users to implement more
forecasting methods based on our framework and construct more power load forecasting scenarios.
Similarly, after adding a new model, users can also add the new forecasting model to the forecasting
task with a simple command.

[ methods_to_train.append (mi.MY_model ())

We will provide a detailed description process in the Appendix|C.2)and corresponding code documents
to help users use our package to incorporate more power forecasting methods into the framework and
construct different power load forecasting scenarios to adapt to different power forecasting tasks.

4 BENCHMARKING PROCESS

In our archive, we will mainly discuss the results of probabilistic forecasting. At the same time, to
explain our proposed custom loss function, we will also compare the point forecasting performance
of the forecasting model trained using gradient descent.

Data preprocessing and 24 hours-ahead forecasting. We first use the functions provided by our
framework to fill in missing values and address the issue of zero padding. For forecasting scenarios,
we chose the most common load forecasting, which is to forecast 24 hours in advance, as our main
task for evaluation (our framework also supports the construction of other forecasting scenarios).
To meet the needs of subsequent power grid scheduling, load forecasting needs to reserve sufficient
time for subsequent tasks, which means that there is a certain gap between the available historical
sequences and the forecasting range. Therefore, we adopt the widely used forecasting setting in the
power industry (Qin et al.,2023; Wang et al., 2022), which uses the historical values of the previous
7 days at the same time to forecast the corresponding power load on the 8th day.

Feature engineering. As mentioned in Section 3.2, we apply the transformation of feature engineer-
ing based on temperature and calendar variables to our forecasting models. For sequence models
like the LSTM, we concatenate the features with the output of the models and input them into a
single-layer MLP. As for the non-sequence models, we concatenate all the features and input lagged
values. As a comparison, we also conduct experiments on non-transformed features simultaneously,
directly inputting calendar variables and temperature as features.

Forecasting models and loss functions. We introduce 16 probabilistic forecasting methods for
comparison, covering multiple types. These include two simple moving quantile methods based on
global historical data (BEQ) and fixed-length windows (BMQ), as well as two models that account
for forecasting errors, based on the Persistence (BECP) and linear regression methods (CE). In
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addition, there are 5 non-deep learning methods, and they are quantile regression methods based on
the K-nearest neighbor algorithm (Hastie et al.,[2009), quantile regression methods based on random
forest and sample random forest (Meinshausen & Ridgewayl [2006), and quantile regression methods
based on extreme random tree and sample extreme random tree (Geurts et al.| 2000). Finally, we
introduce 7 deep learning methods, including simple forward propagation networks (Jain et al.| [1996),
LSTM networks (Hochreiter & Schmidhuber, |1997) for sequence modeling, convolutional neural net-
works (Li et al., 2021) (where we use one-dimensional convolutional kernels), Transformer (Vaswani
et al.,[2017)) networks applying attention mechanisms. In addition, we include methods that modify
the above neural network structures to make them more suitable for time series forecasting, such as
LSTNet (Lai et al.;, 2018), which is designed to simultaneously capture both long-term and short-term
patterns of time series, WaveNet based on causal convolution (Oord et al., 2016)), and N-BEATS
stacked into blocks using multiple linear layers (Oreshkin et al., 2020). Among them, the neural
network is trained based on gradient descent. For probabilistic forecasting, we take the sum of
ninety-nine quantile losses from 0.01 to 0.99 as the loss function. For point forecasting, we provide
an asymmetric differentiable loss function through data fitting and integrate it into our forecasting
framework as a loss function. At the same time, we also construct neural networks based on the
traditional MSE Loss function for comparison.

5 BENCHMARK EVALUATION

With the help of the framework, we conduct extensive experiments on the collected load dataset based
on the 16 probabilistic forecasting methods mentioned above. In addition, we also provide relevant
point forecasting results for our proposed custom loss function. All experiments were conducted on
Intel (R) Xeon (R) W-3335 CPU @ 3.40GHz and NVIDIA GeForce RTX3080Ti. Here, we primarily
discuss the forecasting results of datasets with corresponding temperature data and the methods that
can combine external data like temperature. The complete forecasting results as well as the running
time of all the datasets are summarized in the Appendix [D.3]and our code repository.

5.1 COMPARISON OF TEMPERATURE FEATURE ENGINEERING

In this section, we will examine the impact of the temperature feature engineering we provide on the
forecasting results from the perspectives of both probabilistic forecasting and point forecasting. We
use Pinball Loss] to evaluate the results of probabilistic forecasting and MAPE] to evaluate point
forecasting.

Fig [3|reports partial probabilistic and point forecasting results, where the blue part represents the
results of incorporating our feature engineering, while the green one represents the results without
doing so. From the perspective of forecasting models, non-deep learning methods perform better than
deep learning methods without the temperature transformation strategy. In deep learning methods,
simple FFNN, LSTM, and CNN methods usually perform better than the more complicated ones.
Moreover, complex deep learning models like the Wavenet and N-BEATS may even yield poor results.
With the temperature transformation strategy, non-deep learning methods do not experience much
improvement. The KNNR method experienced significant performance degradation on all datasets.
This is because our feature engineering makes the input features very sparse, which seriously affects
the performance of the K-nearest neighbor clustering algorithm, leading to a decrease in performance.
However, deep learning methods have great improvements with this feature engineering.

Table 2| summarizes partial probabilistic forecasting results with PinBall Loss| under different deep
models. Among them, for the COVID-19 dataset, adding feature engineering significantly worsens
the result. The characteristic of this data is that after the impact of COVID-19, the load of the power
system has changed significantly, and there is a large deviation between the training set and the test
set. Therefore, the decrease in forecasting performance indicates that after this feature engineering,
the model tends to learn more about the relationship between temperature and load, while ignoring
the influence of historical load to a certain extent. In addition, the probabilistic forecasting results in
the Spanish dataset also indicate the negative effect of the feature engineering. This is because the
temperature data of this dataset does not exactly match the load data (see Appendix [A]for details). On
the contrary, in datasets such as GEF12, 14, and 17, it can be seen that for relatively stable aggregated
level loads with corresponding temperature data, such feature engineering can significantly improve
the performance of the forecasting model.

We provide more complete results in the Appendix and the corresponding code repository.
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Figure 3: Comparison on parts of datasets (note that GEF14 and GEF17 are aggregated-level while
Hog is building-level).

Table 2: Comparison of temperature feature engineering on deep learning-based probabilistic fore-
casting by PinBall Loss (the lower the better, the underline indicates a performance improvement
after incorporating temperature-calendar feature engineering).

(a) Without temperature feature engineering (partial)

Pinball Loss | \ FFNN LSTM CNN Transformer LSTNet N-BEATS WaveNet
Covid19 21,964.79 20,491.07 18,785.34 21,536.55 21,532.66  25,760.11 24,242.31
GEF12 6,197.50  8,345.04  6,147.87 8,536.78 8,492.35 8,806.05  15,589.50
GEF14 92.99 131.05 86.51 137.47 421.25 156.07 132.32
GEF17 64.81 93.90 66.26 94.83 93.58 147.78 224.84
Spain 1,503.36 1,656.65 1,389.27 1,764.79 1,666.29 1,458.66 3,402.79
Bull 12.80 13.90 12.20 14.16 15.31 19.87 21.71
Hog 396.26 489.46 433.83 483.95 552.26 693.08 798.83
Cockatoo 51.10 68.46 3545 67.21 67.70 122.90 122.97
PDB 404.23 654.04 369.75 619.95 645.56 1,902.73 1,933.24
(b) With temperature feature engineering (partial)
Pinball Loss | \ FFNN LSTM CNN Transformer LSTNet N-BEATS WaveNet
Covid19 33,109.56  30,194.04 34,247.64 33,502.34 3479391 74,741.26  43,739.91
GEF12 5,880.49  6,327.383  5,858.94 6,514.78 6,142.80 6,933.65 7,544.14
GEF14 67.36 79.26 62.05 85.93 77.99 79.70 98.37
GEF17 53.53 59.05 52.82 62.08 59.77 62.66 73.37
Spain 1,680.22 1,784.30 1,544.18 1,703.50 1,623.11 2,053.57 1,620.20
Bull 12.23 12.89 12.55 13.76 13.60 15.25 15.34
Hog 392.52 470.77 462.54 451.55 459.44 603.73 635.95
Cockatoo 35.66 43.34 34.11 42.85 42.38 48.78 4191
PDB 263.59 361.91 255.95 387.89 347.62 359.84 358.55

5.2 COMPARISON OF ASYMMETRIC FITTING LOSS FUNCTION

According to (Zhang et al., [2022), the relationship between load error and the scheduling cost it
causes is not symmetrical; the cost of underestimating at peak and overestimating at low values is



Under review as a conference paper at ICLR 2024

Table 3: Comparison of different loss functions on deep learning-based probabilistic forecasting by
cost (see the description in section [3.3).

(a) Trained by MSE loss function

Cost], |FFNN LSTM CNN Transformer LSTNet N-BEATS Wavenet

Covidl9 | 0.2048 0.1965 0.2242 0.1749 0.2911 0.6141 0.6140
GEF12 | 03259 0.3213 0.3337 0.3298 0.3314 0.3571 0.4438
GEF14 | 0.0384 0.0417 0.0413 0.0421 0.0412 0.0648 0.0651
GEF17 | 0.1109 0.0982 0.1028 0.1095 0.1075 0.1177 0.1614
Spain 0.2248 0.2192 0.2244 0.2025 0.2067 0.2038 0.2684
Bull 1.8616 1.7499 1.8071 1.7603 1.7768 1.7765 2.2614
Hog 1.4099 1.3431 1.2443 1.1334 1.3918 1.5175 1.8091
Cockatoo | 1.7939 14710 1.8784 1.4991 1.3170 1.4124 1.7414
PDB 0.2487 0.1808 0.1848 0.1733 0.1906 0.1568 0.2412

(b) Trained by asymmetric fitting loss function

Cost| |FFNN LSTM CNN Transformer LSTNet N-BEATS Wavenet

Covidl9 | 0.1977 0.1866 0.2005 0.2238 0.2308 0.2242 0.6949
GEF12 | 03227 0.3324  0.3207 0.3412 0.3365 0.3542 0.4178
GEF14 | 0.0380 0.0461 0.0392 0.0422 0.0703 0.0715 0.0707
GEF17 | 0.1352 0.1165 0.1298 0.1272 0.1287 0.1792 0.1728
Spain 0.2301 0.2340 0.2276 0.2441 0.2142 0.2318 0.2163
Bull 1.8245 1.7592 1.7679 1.7314 1.8759 1.7930 2.1777
Hog 1.3157 1.2560 1.4364 1.2189 1.4511 1.3205 1.5243
Cockatoo | 1.2561 1.1589 1.1991 1.2367 1.2486 1.2493 1.2455
PDB 0.0449 0.0597 0.0451 0.0583 0.0608 0.1192 0.1211

different. Therefore, we use the relationship between forecasting error and cost (¢;, C;) as shown
in Figure [2]to estimate the costs of different methods and evaluate the impact of our asymmetric
loss function. Among them, because the results in the previous section show that temperature-
based feature engineering significantly improves the deep learning network, we apply this feature
engineering to all of the methods.

Table B|reports the point forecasting results with different loss functions. It can be seen that asym-
metric loss brings improvements in most cases. However, in the GEF17 and Spain datasets, the
performance of the asymmetric loss function is generally lower than that of the MSE loss function.
Due to our estimation of dispatching costs coming from a 30-bus system, there may be some differ-
ences in scale compared to a real large-scale power system, so our loss function may perform poorly
on aggregated-level data like the GEF17. On the contrary, with building-level data, our custom loss
function can help the model recognize the asymmetric nature between forecasting error and cost,
bringing significant positive effects on minimizing costs. Overall, asymmetric loss functions can
provide some performance improvement for most methods on most datasets, thereby minimizing the
dispatching costs.

6 CONCLUSIONS

In this paper, we construct a package and benchmark specifically designed for electrical load fore-
casting. Our load forecasting package comes with high accessibility and extensibility by dividing the
entire power forecasting process into several modules for users to freely combine and construct their
own forecasting frameworks. In addition, our package also provides the engineering implementation
of features based on temperature and the construction method of custom loss functions by data fitting.
Meanwhile, with the help of our package, we have provided comprehensive forecasting benchmark
results using multiple forecasting methods and multiple datasets as well as detailed discussion and
analysis, serving as an important reference for researchers in the community.
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A  DATASET DESCRIPTION

As shown in Table[T] we collected multiple load datasets at different levels and organized them into a
user-friendly ‘.pkl’ format and users can obtain them through the URL at GitHub we provide. Now
we will introduce their sources and detailed information one by one.

A.1 GEF12

The GEF12 dataset is sourced from the Global Energy Forecasting Competition 2012
[2014). This competition has multiple tracks, and we have compiled the dataset provided by the
load forecasting tracks as one of our benchmark datasets. In this dataset, there are a total of 20
aggregated-level load series data and 11 temperature series. It is worth noting that the one-to-one
correspondence between these temperature data and load data has not been clearly defined. For
simplicity, the strategy used in our benchmark testing is to simply use only one temperature series data
as the temperature variable for all series (the randomly selected result here is the second temperature
data). Each time series covers load data with a resolution of 1 hour from 0:00 on January 1, 2004, to
5:00 on June 30, 2008. Because this dataset is used for competitions and the integrity of the data is
relatively good, we did not preprocess the data (such as filling in missing values).

Load data visualization of GEF12(1)

45000

40000

35000

30000

T 25000

Electrical Load

20000

15000

10000

2004-01 2004-07 2005-01 2005-07 2006-01 2006-07 2007-01 2007-07 2008-01 2008-07
Time

Figure 4: Visualization of the first load series in the GEF12 dataset.

Load data visualization of GEF12(2)
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Figure 5: Visualization of the second load series in the GEF12 dataset.

Fig. ] and Fig. [f] visualize the partial load sequence in the GEF12 dataset. From it, we can see
that these load series have obvious periodicity and seasonality. And this is an important feature of
aggregated-level load.

A.2 GEF14

The GEF14 dataset is from the Global Energy Forecasting Competition 2014 (Hong et all,[2016).
This competition also has multiple tracks, and we focus on load forecasting tracks. The competition
provides load data spanning up to 8 years from 2006 to 2014. Unlike the 2012 competition, We
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truncate the load data and only use the data from 2013 and 2014 for testing. On the one hand, it is
because the impact of load data from many years ago on the current forecast is very small, and on
the other hand, it is because most of the load data we collect is about 2 years in length. For relative
consistency, we only took the last two years to construct our load forecast archive. Our adjusted load
data covers load data with a resolution of 1 hour from 1:00 on January 1, 2013, to 0:00 on January 1,
2015. Fig. 6] shows the adjusted load data, similar to the data in GEF12, which is also aggregated
level data. Therefore, the data in GEF14 also shows obvious periodicity and seasonality.

Load data visualization of GEF14
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Figure 6: Visualization of the load series in the GEF14 dataset.

A.3 GEF17

The GEF17 dataset is from the Global Energy Forecasting Competition 2017 (Hong et all,[2019).
Similar to GEF12, this dataset also provides multiple aggregated-level load data. However, the
difference is that it clarifies the corresponding relationship between the temperature series and load
series, providing a one-to-one temperature series corresponding to the load series. In terms of period,
it provides load data from 2013 to 2017. For the reasons mentioned above, we have intercepted the
load data and only used the load data from the past two years (i.e. 2016 and 2017). Finally, we used
8 aggregated-level load data from 2016 to 2017 and their corresponding temperature data to construct
our load forecasting archive. Fig.[7)and Fig. 8] visualize some data in the GEF17 dataset, similarly, it
also showcases the common characteristics of aggregated-level load data, namely periodicity and
seasonality.

Load data visualization of GEF17 SEMASS
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Figure 7: Visualization of the load series in the GEF17 SEMASS dataset.

A.4 CoviDl19

The Covid19 dataset is from the Day-Ahead Electricity Demand Forecasting Competition: Post-
COVID Paradigm (Farrokhabadi et al.,2022)). This dataset covers the load data from 0:00 on March
18, 2017, to 15:00 on November 5, 2020. In addition to load data and temperature, this dataset also
provides other meteorological factors such as humidity and wind speed. To maintain the consistency
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Load data visualization of GEF17 CT
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Figure 8: Visualization of the load series in the GEF17 CT dataset.
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Figure 9: Visualization of the load series in the Covid19 dataset.

of the forecasting archives, we did not consider such factors. Unlike the datasets mentioned above,
this dataset focuses on the impact of COVID-19 on the power system. Fig.[9]shows the load data
in the Covid19 dataset. The blue part indicates that the power system has not yet been impacted
by COVID-19, similar to other aggregated level load data, showing periodicity. The orange section
displays the load data after COVID-19. It can be seen that it is different from the blue part. The
absolute value of the load rapidly decreases during the period being impacted, and then recovers
smoothly after a period of time. However, compared to the same period when it was not impacted,
the load value has decreased. This transformation poses a challenge to the robustness of forecasting
models. As shown in the main text, our temperature-calendar variable feature engineering will make
the model more inclined to remember the impact of the temperature and calendar variable on the
load and ignore the historical value to a certain extent, which ultimately leads to the decline of the
forecasting performance. Therefore, when encountering strong external events like this, day-ahead
forecasting should focus more on historical values.

A5 PDB

The PDB dataset is a public dataset from the Kaggle data competition platform (Yeafi, 2021). It
covers load and temperature data from 1:00 on January 1, 2013, to 0:00 on January 1, 2015. Due to
its moderate length, we did not intercept it. Fig. [I0]shows its load data visualization results.

A.6 SPANISH

The Spanish dataset is also a public dataset from the Kaggle data competition platform (Nicholas),
. It provides nationwide load data for Spain from 0:00 on January 1, 2015, to 23:00 on December
31, 2018. At the same time, it also provides meteorological data (such as temperature and wind speed)
corresponding to the five major cities in Spain. This situation is similar to GEF12. For the same
reason, we select relevant meteorological data from the economically developed Barcelona region as
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Load data visualization of PDB
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Figure 10: Visualization of the load series in the Spanish dataset.

Load data visualization of Spanish
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Figure 11: Visualization of the load series in the PDB dataset.

the corresponding meteorological data. In addition, the load data of this dataset is partially missing
(with a missing rate of 0.1%). Because of the low missing rate, we used a simple Linear interpolation
method to fill the data. Fig.[TT|shows the corresponding load visualization results. Compared to other
aggregated level loads, the periodicity and seasonality of the Spanish national load have become
relatively less pronounced.

A.7 HoG

The Hog dataset comes from The Building Data Genome 2 (BDG2) Data-Set (Miller et al.,[2020).
BDG?2 is an open dataset that includes building-level data collected from 3053 electricity meters,
which covers 1636 buildings. From the perspective of the area where the building is located, it
includes the load, cooling, and heating data of buildings in multiple areas such as Hog and Bull. From
a period perspective, it covers data from 2016 and 2017. In addition, BDG?2 also classifies buildings,
including buildings for educational purposes, offices, and so on. Based on the characteristics of this
dataset, we divide it by region, and the Hog dataset is composed of relevant load data from buildings
in the Hog region in the BDG2 dataset. Because the data in this dataset is all building-level data and
we often find situations such as missing values and outliers in data at this level(TJeong et al., [2021a).
Therefore, we first use the functions provided by the package to check for outliers. Specifically, we
first calculate the lower quartile (Q1) and the upper quartile (Q3) and then calculate the quartile
interval (IQR), that is, QR = Q3 — Q1. Here, the outlier is defined as the point that is lower than
Q1 — g x IQR or higher than @3 + g x IQR. The outlier factor ¢ here is set to 1.5. We set the
detected outlier as the missing value, and discard the sequence with a missing rate of more than 10%.
For sequences with a missing rate of less than 10%, we interpolate them (using linear, polynomial,
etc.). Finally, we obtained 24 available load sequences and their corresponding temperature sequences
for the Hog region.

Fig.[12]and Fig.[T3]show two load sequences in the Hog dataset. They belong to educational facilities
and offices respectively. It can be seen that compared to aggregate-level datasets, building-level
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Load data visualization of Hog_education_Haywood
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Figure 12: Visualization of the Hog education Haywood in the Hog dataset.

Load data visualization of Hog_office_Elizbeth
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Figure 13: Visualization of the Hog office Elizbeth series in the Hog dataset.

datasets exhibit greater uncertainty. The similarity of data for the same period in different years is
also significantly lower than those aggregate-level ones. Although the data is only two years old,
the building dataset also exhibits significant seasonality. Specifically, the load during summer and
autumn is relatively high, while the load during winter and spring is relatively low. In addition,
despite the different properties of buildings, they still maintain a relatively similar seasonality.

A.8 BULL

Similar to the Hog dataset, the Bull dataset also comes from the BDG2 dataset. Similarly, we screen
and preprocess the building load data in the Bull area, resulting in 41 available sequences covering
multiple building properties. Fig.[T4]and Fig. [I3]show the load data of two representative building
types in the Bull area. Similar to other building-level load data, the manifestation of periodicity is
not obvious. Meanwhile, sudden changes also occur from time to time, posing challenges for the
forecasting model to accurately model and forecast.

A.9 COCKATOO

Cockatoo is also from the BDG2 dataset. However, after our screening, only one load sequence met
our requirements, which is “Cockatoo Office Laila”. Fig.[T6|shows the load characteristics of this
building. It is worth noting that during the period from February to April 2016, the load data appeared
relatively stable. This may be caused by the fault of the measuring meters, by human error in the
reading, or it may be the real situation. These errors typically occur in building-level load data and it
is difficult to avoid this situation through data cleansing unless we directly discard the relevant data.
Here, we retain this data to evaluate its impact on the final forecasting performance.
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Load data visualization of Bull_education_Luke
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Figure 14: Visualization of the Bull education Luke series in the Bull dataset.

Load data visualization of Bull_office_Yvonne
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Figure 15: Visualization of the Bull office Yvonne series in the Bull dataset.

A.10 ELF

The ELF dataset comes from the Kaggle data platform 2021). It is worth noting that the
platform provides temperature data from multiple Panama cities as well as other meteorological
data such as wind speed and humidity. However, the relationship between these meteorological data

and load data has not been clarified, and unlike datasets such as Spanish, we are not clear about the

detailed regions to which the load value data belongs. Therefore, we only conduct experiments on

historical load series and calendar variables. However, users can also add relevant meteorological
variables to the forecasting model through simple code. Fig.|17|shows the load data for this dataset.
Similar to the Covid19 dataset, this dataset also shows the impact of COVID-19 on the power system

(see the data after April 2020).

Load data visualization of Cockatoo_office_Laila
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Figure 16: Visualization of the Cockatoo office Laila series in the Cockatoo dataset.
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Figure 17: Visualization of the load series in the ELF dataset.

A.11 UCI
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Figure 18: Visualization of the load series in the UCI dataset.
The UCI dataset is a power load dataset from the UCI database, which has been widely used in the

field of machine learning(Dua & Graff, 2017). Unlike the original dataset, we select the processed
version, which includes 321 load sequences with hourly resolution (Bergsma et al,[2022).

B FEATURE ANALYSIS

As we mentioned before, external features have a significant impact on load forecasting. And among
them, temperature variables and calendar variables have the greatest impact. This is also recognized
by the famous global energy forecasting competition. Based on this, the organizer developed a linear
model called the HongTao vanilla model, which considers load, calendar variables, and temperature
as the main variables and it serves as the benchmark for the forecasting competition (Hong et al |
[2014). Therefore, in this section, we will visualize the relevant features in different levels of datasets
to explore the relationship between load, calendar variables, and temperature. At the same time, we
will also provide feature engineering based on the relationship among load, calendar variables, and
temperature.

B.1 TEMPERATURE-LOAD ANALYSIS

Figures[T9) and [20] show scatter plots of the relationship between temperature load at two different
levels, respectively. The data at the aggregated level comes from the GEF14 competition, while
the building level is randomly selected from the BDG2(Bull) dataset. It is worth noting that in the
BDG?2 dataset, each building has its corresponding attribute usage, such as educational facilities,
office space, and so on. We divided the scatter plot of load and temperature into 12 blocks by month,
with the aim of expanding the relationship between temperature and load to the ternary relationship
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between temperature, load, and calendar variables. Among them, we can consider calendar variables
as indicators of seasons, months, workdays (weekends), and hours, and explore the temperature load
relationships of different seasons (months, etc.). Similarly, we will only analyze the months here and
include the remaining analysis.

From figure [1;9], we can see that, in line with common sense, the relationship between load and
temperature shows significant differences when in different months. From May to September,
there is a significant positive correlation between load and temperature. Starting from October, the
relationship between load and temperature gradually shifted from a significant positive correlation to
an insignificant correlation. May to September is also a period of frequent high-temperature weather,
indicating that when the temperature is high, there is a significant positive correlation between
temperature and load. It is worth noting that this positive correlation is not always true. If we directly
hand over the temperature variables to the model for modeling without processing, such changes in
the relationship may cause confusion and ultimately lead to a decrease in forecasting performance.

When it comes to building-level load, figure 20] shows that the uncertainty of the detected load is
significantly greater than that of the aggregated load since each month presents different temperature-
load relationships. As this is the load data from educational facilities, there may be classifications
such as teaching days or rest days, as shown in the figure, where there is a clear phenomenon of
fragmentation within multiple months.

In summary, the two levels of load exhibit different load-temperature relationships in different
months. This situation also occurs in other time scales such as the hour. Therefore, to make the
forecasting model understand this relationship correctly, it is necessary to consider calendar variables
and temperature together.
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Figure 19: Temperature-aggregated load scatter plots for 12 months.
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Figure 20: Temperature-building load scatter plots for 12 months.

C PACKAGE USAGE

C.1 ASYMMETRIC LOSS FUNCTION

The ultimate goal of power load forecasting is to minimize subsequent scheduling costs, which
are closely related to prediction errors. Inspired by (Zhang et al.,[2022)), our package provides a
piecewise linearized function to fit forecasting errors with other variables (which can be corresponding
scheduling costs, etc.). At the same time, we also give an asymmetric loss function to replace the
symmetric MSE loss function. Specifically, in actual power grid dispatch, the economic losses caused
by forecasting values being less than the true values are often greater than the losses caused by
forecasting values being greater than the true values. Therefore, we use a simple quadratic function
to construct a piecewise generating function.

Here, € represents the Forecasting Error Percentage(FEP) € = W We first use this function to

sample and obtain many data points and then use a smoothing spline, denoted as s, to fit them. To
avoid many breakpoints, which may make it difficult to integrate into our forecasting framework as
a loss function (Perperoglou et al, 2019), we use piecewise linearization to approximate the spline
function. The selection of breakpoints can be based on the following formula(Berjon et all, 2013,

5
i srotac)’

€min

V120K2 ’

where K is the number of breakpoints, and the integration interval we choose here is (—0.15,0.15).
By controlling the error between piecewise linear functions and spline functions, we can obtain an
appropriate number of breakpoints. Here we control the error lower than 0.005. As for the location
of the breakpoints, we first calculate the cumulative breakpoint distribution function according

IB—MQMS(
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to (De Boor & De Boor, [1978)),

fek

F o) - s (@)]*° da
) = e |
Jem s (@) da

€min

The breakpoints {ek}f:_ll will be placed such that each subinterval can contribute equally to the value
of the cumulative breakpoint distribution function. To eventually integrate it into our forecasting
framework as a loss function, we need to ensure that it is differentiable. And we can achieve this by
inserting a quadratic function at each breakpoint. Specifically, we insert a quadratic function within
the 0.000001 distance before and after each breakpoint and obtain the parameters of the quadratic
function by ensuring the continuity of the function and its first derivative at the two connections
before and after.

As mentioned in section [3.3] we simulate an IEEE 30 bus system to get the relationship between
forecasting error and dispatching cost. Fig[21]shows the specific process of simulation. Here we
mainly focus on two optimization problems DEAD and IPB. The mathematical definitions of these
two can be found in (Zhang et al.|[2022). To solve these two optimization problems, we have provided
the corresponding MATLAB code. Based on the above process, we have provided the relationship
between the load forecasting error and the actual dispatching cost for each hour within 24 hours of a
day, as shown in Fig[22] All corresponding data is saved in the file "breakpoint_new.mat" we provide
and we can construct the corresponding loss function through a single line of code. Note that our
experiment is conducted based on the hour 9.

1 [loss_function = ContinuousPiecewiselLinearFunction (breakpoint) ]
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Figure 21: Loss function generation (adapted from (Zhang et al., [2022))).

C.2 HOW TO USE THE PACKAGE

C.2.1 HOW TO CONSTRUCT FORECASTING SCENARIOS

Our framework mainly constructs forecasting scenarios through the function "calculate_scenario”.
Below, we will introduce how to prepare the input for this function separately.
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Figure 22: Loss function visualization.

def calculate_scenario (data,
target,
methods_to_train,
horizon,
train_ratio,
feature_transformation,
time_stationarization,
datetime_features,
target_lag_selection,
external_feature_selection,
post_processing _quantile,
post_processing_value,
evaluation_metrics,
)

T

Code

T

data The load dataset, we need to input the data in Pandas format.

target The column name of the variable we need to predict in the input Pandas, and other columns
will be treated as external variables.

methods_to_train A list containing the forecasting methods we need to include.

horizon The default is to make predictions 24 hours in advance and multiple time scale forecasting
can be made by adjusting this.

train_ratio The division of the training and test sets.

feature_transformation The strategies that used to stabilize the time series, including logarithmic
transformation, data differentiation, and so on.

time_stationarization The division of the training and test sets.
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datetime_features Define what calendar variables to consider, such as day, month, year, whether it
is holiday, etc.

target_lag selection Define how to select historical data for forecasting. In our default settings and
our benchmark, we will select values from the same time point in the past seven days to forecast the
corresponding values for the eighth day. In addition, we also provide a strategy for selecting highly
correlated historical data based on the autocorrelation of the data.

external_feature_selection We provide two strategies for selecting external variables: direct input
and based on temperature calendar variable relationships.

post_processing_quantile Quantile-based forecasting may sometimes result in lower quantiles
being greater than higher quantiles, and the main focus here is to rearrange them.

post_processing_value To limit the final output result, such as forcing the forecasting result to not
exceed a certain value.

evaluation_metrics We include various evaluation metrics for users to choose from, which can be
referenced specifically from[D.2]

C.2.2 HOW TO ADD NEW MODELS

Our framework mainly focuses on quantile-based probabilistic forecasting, and to add new models,
we need to make definitions for the new models.

class MYQuantile Regressor (MultiQuantileRegressor) :
def _ init__ (self, quantiles: List[float] =
- [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]):
super () .__init__ (
X_scaler=StandardScaler (),
y_scaler=StandardScaler (),
quantiles=quantiles)

def set_params(self, input_dim:
— 1int,external_features_diminsion: int) :
self.model = models.pytorch.PytorchRegressor (
model=models.pytorch.MYQuantile_Model (input_dim,
external_features_diminsion,
n_output=len(self.quantiles)),
loss_function=
pytorchtools.PinballlLoss (self.quantiles))
return self

In addition, users also need to provide a specific details of the forecastng model, that is, how to handle
the output of the model and ultimately convert it into output. Note that here we need to provide
information on how the model handles external variables. Generally speaking, the specific form of
external variables is related to the external variable processing strategy we define. Common external
variables include meteorological factors such as temperature. If there are no external variables, we
will use the corresponding calendar variables as external variables.
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class MYQuantile_ Model (nn.Module) :
def _ init__ (self,input_parameters) :
super (MYQuantile_Model, self)._ init_ ()

build your model here

v

def forward(self, X_batch,X_ batch_ex):
LI |
input the data into the model,
here X_batch is the sequence data while
X _batch_ex 1s the external variable.

v

return output

D BENCHMARK EVALUATION

D.1 HYPER PARAMETERS

In this section, we will introduce the hyperparameter settings in our load forecasting archive. Table[d]
shows the parameter settings for non-deep learning methods. Here, BMQ represents the moving
quantity method based on a fixed number of past time points, while BEQ is based on all historical
data. BECP represents that the forecasting error obtained by the persistence method on the training set
is directly added to the forecasting results obtained by the persistence method as quantile forecasting.
QCE is similar but replaces the persistence method with linear regression. In addition, there are
quantile regression methods based on the K-nearest neighbor algorithm (Hastie et al.,[2009), quantile
regression methods based on random forest and sample random forest (Meinshausen & Ridgeway),
2000), and quantile regression methods based on extreme random tree and sample extreme random
tree (Geurts et al., [2000).

Table 4: Parameter settings for non-deep learning methods.

Method Parameters

Window size N_neighbors N_estimators Quantiles
BMQ 7 - - 0.01~0.99
BEQ all - - 0.01~0.99
BCEP - - - 0.01~0.99
CE - - - 0.01~0.99
KNNR - 20 - 0.01~0.99
RFR - - 100 0.01~0.99
SRFR - - 100 0.01~0.99
ERT - - 100 0.01~0.99
SERT - - 100 0.01~0.99

Apart from those, we introduce several deep learning methods and they are feed-forward neural
networks(FFNN) (Jain et al.,|1996), LSTM networks (Hochreiter & Schmidhuber, |1997) for sequence
modeling, convolutional neural networks (Li et al.,|2021)), and Transformer (Vaswani et al., [2017)
networks applying attention mechanisms. Additionally, we also have methods that modify the above
neural network structures to make them more suitable for time series forecasting, such as LSTNet (Lai
et al., 2018]), which is designed to simultaneously capture both long-term and short-term patterns
of time series, Wavenet based on causal convolution (Oord et al., [2016)), and N-BEATS stacked
into blocks using multiple linear layers (Oreshkin et al., [2020). Tables E] and @respectively show
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the hyperparameter settings of the training process and the network structure and parameters of the
relevant deep learning methods. We divide the entire dataset into training and test sets at a ratio of
0.2, and then divide the training set into the final training and validation sets at a ratio of 0.2. To
reduce the impact of neural network overfitting, we enable the early stop mechanism. Specifically,
when the loss on the validation does not decrease for 15 epochs, we will stop training.

Table 5: Training process parameters.

Parameters
Loss function Validation ratio Epochs Patience Optimizer Learning rate
MSE
custom loss function 0.2 1000 15 torch.Adam 0.0005

PinballLoss(0.01~0.99)

Table 6: Parameter settings for deep learning methods, here e represents the dimension of the external

variables.

Method Parameters
Network structure Network parameters Quantiles
Dense_1: (1+€,50)
FFNN 2 Dense layers Dense_2: (50.1) 0.01~0.99
1 LSTM layer LSTM: (1,64,2)
LST™ 1 Dense layer Dense: (1+e,1) 0.01~0.99
Convld_1: (1+e, batch size, 1, 1)
3 Convld layers Conv1d_2: (batch size, 128, 1, 3)
CNN 2 Maxpoolld layers Convl1d_3: (128, 256, 1, 3) 0.01~0.99
2 Dense layers Dense_1: (256, 128)
Dense_2: (128, 1)
.. . Encoding: (1, 256)
1 Positional Epcodmg layer Decoding: (1, 256)
1 Encoding layer .
. Transformer: d_model=256,
Transformer 1 Decoding layer 1 head=4 0.01~0.99
1 Transformer layer . -
1 Dense laver dim_forward=512
y Dense: (7x256+e, 1)
Conv2d: (1, 16,2, 1)
GRU_1: (16, 16)
1 Conv2d layer GRU_2: (16, 32)
2 GRU layers hidden_1: (16+1x32, 1)
LSTNet 2 hidden(Dense) layers hidden_2: (16, 1) 0.01~0.99
1 Dense layer Dense: (1+e, 1)
skip=1
highway=7
CausalConvld: (1, 16,2, 1)
| CausalConv1d layer DllatedStack: re.:51dua1 size=16
1 DilatedStack skip size=4
WaveNet dilation depth=2 0.01~0.99
2 Convld layers .
| Dense laver Convld_1: 4,1,1,0)
y Convld 2: (1,1, 1,0)
Dense: (1+e, 1)
Trend: hidden=64,
1 Trend Stack theta dim=(4,8)
N-BEATS 1 Seasonal Stack Seasonal: hidden=64, 0.01~0.99

1 Dense layer

theta dim=(4,8)
Dense: (1+e,1)

26



Under review as a conference paper at ICLR 2024

D.2 EVALUATION METRICS

To evaluate the forecasting performance of different methods in our set day-ahead forecasting, we will
introduce many evaluation metrics, which are divided into metrics for point forecasting and metrics
for probabilistic forecasting. It is worth noting that not all metrics are used to directly distinguish
forecasting performance, and some of them may be used to describe the shape of probabilistic
forecasting, thereby more comprehensively presenting the forecasting characteristics of different
models. We will provide a detailed introduction below.

D.2.1 POINT FORECASTING EVALUATION

Similar to (Godahewa et al.,|2021), we adopt 4 metrics that are widely used to evaluate the results
of deterministic forecasting, and they are MAPE (Mean Absolute Percentage Error), MASE (Mean
Absolute Scaled Error), RMSE (Root Mean Squared Error), and MAE (Root Mean Squared Error)
respectively. Their mathematical definitions are listed below, note that {y; }}- ; represents the actual
value and { F;}}_, represents the predicted one.

» MAPE. MAPE is a metric of forecasting accuracy that calculates the average percentage
of forecasting error for all data points. The smaller the value of MAPE, the higher the
forecasting accuracy. Due to its percentage error, it can be used to compare forecasting
performance at different scales. However, MAPE may result in an infinite or very large
error percentage for zero or near zero actual values. The formal definition of MAPE is given

below

MAPE = © Z

n
t=1

yr — Iy
Yt

x 100%.

* MASE. MASE is a scale-independent error measure that calculates errors by comparing the
forecasting error with the average absolute first-order difference of the actual value sequence.
The advantage of MASE is that it is not affected by the size of actual values, so it is more
robust for forecasting problems of different sizes. The formal definition of MASE is given

below

1 lys — F|
MASE = — _
n ; A 0 |y — yeal

* RMSE. RMSE is a commonly used measure of forecasting error that calculates the square
root of the average of the sum of squares of forecasting errors for all data points. The smaller
the value of RMSE, the higher the forecasting accuracy. It is sensitive to outliers, which
may lead to large forecasting errors. However, RMSE has good interpretability because its
units are the same as the actual and predicted values. The formal definition of RMSE is
given below

RMSE =

S|

> (e — F)2

* MAE. MAE is also a commonly used measure of forecasting error, which calculates the
average of the absolute value of forecasting errors for all data points. The smaller the value
of MAE, the higher the forecasting accuracy. Compared with RMSE, MAE is less sensitive
to outliers, so it may be more robust in the case of outliers. The formal definition of MAE is
given below

1 n
MAE = LS - A

t=1

D.2.2 PROBABILISTIC FORECASTING EVALUATION

Compared to point forecasting, probabilistic forecasting can provide more information. Therefore,
we can evaluate the results of probabilistic forecasting from more aspects. We have summarized a
total of 11 metrics to comprehensively evaluate the load probabilistic forecasting results and list
them below. Note that we will also perform matrix visualization based on some metrics to help users
better evaluate different prediction models.
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CoverageError (CE). CoverageError is a method of measuring the quality of forecasting
intervals, which measures the difference between the proportion of actual observations falling
within the forecasting interval and the expected coverage rate. A smaller CoverageError
indicates that the forecasting interval captures actual observations more accurately. Here,
L; and U, represent the lower and upper bound of the forecasting interval while U B and
L B respectively represent the upper and lower bounds of the interval we want. It is worth
noting that when we visualize it, we call it ReliabilityMatrix. Specifically, we first divide
the quantiles into the upper half and the lower half with 0.5 as the boundary. And perform
pairwise combinations to obtain different nominal coverage rates as the horizontal axis,
while the vertical axis represents the actual coverage rate.

n

cp=1 > (I(Li <ye <Ui) — (UB - LB)).
"=

Winkler Score (WS). Winkler Score (WS) is a metric that measures the quality of fore-
casting intervals. The forecasting interval is the forecasting range for future observations,
usually represented by a lower bound and an upper bound. Winkler Score is used to evaluate
whether the forecasting interval accurately captures actual observations, taking into account
the width of the interval. A lower Winkler Score indicates better forecasting interval quality.
Here, the symbols used are the same as CE while § = U; — L;. Similar to CE, in the
corresponding visualization matrix, the abscissa should be different nominal coverage rates,
and for a central (1-« )% forecasting interval, it is defined as follows:

9, Ly <y <Us.
WSap = 8+ 2b gy > U,
6+ 72(Ltl;yt), Y < Lt.

Pinball Loss (PL). Pinball Loss considers the difference between the forecasting value
and the actual observation value, and weights the error based on whether the forecasting
value falls on the side of the actual observation value (above or below). This enables Pinball
Loss to capture the uncertainty in probabilistic forecasting and assign different weights to
symmetric errors in loss calculations. A lower Pinball Loss indicates a smaller error between
probabilistic forecasting and actual observations. Here, L, represents the Pinball Loss at
the quantile 7 and g, ; is the forecasting value of corresponding time and quantile. In our
setting, we consider the sum of 99 quantiles from 0.01 to 0.99, and it is defined as follows:

1 n N,

n,n ZZLT (gT,tvyt) .

t=1 i=1

PL =

RampScore (RS). RampScore measures the consistency of the slope (i.e. increasing or
decreasing trend) between the forecasting sequence and the actual observation sequence.
Firstly, we use the Swing Door compression algorithm (Khan et al., 2020) to compress the
forecasting sequence and the observed sequence, and then calculate the first-order difference
values of these two sequences separately. Finally, we calculate the absolute difference
between the first-order difference values of the two sequences and take the average to obtain
the RampScore. A lower RampScore indicates that the model is more capable of capturing
trends in sequence changes. Here, we calculate RampScore for 9 quantiles from 0.1 to 0.9.
CalibrationError. CalibrationError (Chung et al.| 2021)) mainly evaluates the accuracy of
forecasting models in representing uncertainty. The CalibrationError represents the differ-
ence between the forecasting quantile and the actual quantile. A smaller CalibrationError
means that the forecasting model has higher accuracy in representing uncertainty, while a
larger calibration error means that the forecasting model has lower accuracy in representing
uncertainty. In the visualization matrix, we show the proportion of the predicted value
greater than the true value under different quantiles. The closer the forecasting method is to
the line y=Xx, the better the performance will be.

In addition to the metrics mentioned above, we also provide many other metrics. Although we will
not present each of them in detail here, interested users can easily visualize them with the open-source
code we provide. These evaluation metrics include IntervalWidth, QuantileCrossing, BoundaryCross-
ing, Skewness, Kurtosis, and QuartileDispersion. Among them, IntervalWidth calculates the width
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of probabilistic forecasting intervals given by different methods while QuantileCrossing gives the
ratio of any two quantiles in which the predicted value of the lower quantile is greater than the
predicted value of the higher quantile. BoundaryCrossing calculates the probability that the true value
falls outside the forecasting range. Skewness and Kurtosis are metrics that describe the shape of a
probability distribution. As for QuartileDispersion, its detailed description can be found in (Bonett,
2006).

D.3 EVALUATION RESULTS

In this section, we will mainly demonstrate the forecasting performance of 14 out of the 16 probabilis-
tic forecasting methods we mentioned earlier, as well as 7 point forecasting methods. The relevant
results of the two methods based on moving average can be obtained in the repository we provide.

D.3.1 RUNNING TIME

In our archive, all experiments were conducted on Intel (R) Xeon (R) W-3335 CPU @ 3.40GHz
and NVIDIA GeForce RTX3080Ti. Table [7} Table 8] Table [0l and Table [I0| report the training
and inference time of various methods separately (note that the time for calculating metrics is not
included). From the perspective of deep learning probabilistic forecasting models, incorporating
temperature feature engineering not only improves the forecasting performance (see section [5.1]
and Appendix but also reduces the time spent. For non-deep learning models, incorporating
temperature feature engineering greatly increases the required time. This may be because our feature
engineering incorporates a large amount of sparse data, which is difficult for nondeep learning models
to handle. From the perspective of point forecasting, the traditional MSE loss and asymmetric loss
functions take approximately the same amount of time.

Table 7: Comparison of running time for probabilistic forecasting (except for ELF and UCI).

(a) Deep learning methods

Time(s) FFNN CNN LSTM LSTN WaveNet NBEATS Transformer
With feature engineering  671.898 668.576 1565.256 2396.536 3665.051 3915.706 6484.478
Without feature engineering 1107.768 608.697 1738.488 4651.474 4717.738 5292.745 5097.802

(b) Non-deep learning methods

Time(s) BMQ BEQ BCEP CE KNNR RFR SRFR ERT SERT
With feature engineering 46.436 109.675 108.340 60.916 70.052 4548.035 3967.662 4542.447 4538.864
Without feature engineering - - 108.395 0.934 60.196 1861.025 1318.141 1276.955 1315.708

Table 8: Comparison of running time for probabilistic forecasting (for ELF and UCI).

(a) Deep learning methods

Time(s) FFNN CNN LST™M LSTN  WaveNet NBEATS Transformer
Without feature engineering 6465.294 3187.983 8666.618 21245.597 23781.845 31907.537 26157.561

(b) Non-deep learning methods

Time(s) BMQ BEQ BCEP CE KNNR RFR SRFR ERT SERT
Without feature engineering 180.455 444.142 425.788 3.386 145.617 6151.749 4809.492 4256.425 5129.695

D.4 POINT FORECASTING RESULTS

Tables[TT] [T2] and[T3|respectively report the performance comparison of forecasting models based on
the MSE loss function in several different datasets. Among them, only a portion of the UCI dataset is

29


https://anonymous.4open.science/r/ProEnFo-17CC

Under review as a conference paper at ICLR 2024

Table 9: Comparison of running time for different loss functions (except for ELF and UCI).

Time(s) FFNN CNN LSTM LSTN WaveNet NBEATS Transformer
MSE without feature engineering 1116.204 545.852 1145.189 2918.964 2869.714 4043.892 4475.159
MSE with feature engineering 585.367 716.680 1388.907 2369.784 3680.179 3606.027 6356.714

custom loss function with feature engineering 1275.936 1146.166 2106.425 3439.587 4615.414 4400.446 7074.623

Table 10: Comparison of running time for different loss functions (for ELF and UCI).

Time(s) FFNN CNN LSTM LSTN  WaveNet NBEATS Transformer
MSE 5216.818 2386.388 7562.510 15905.827 15621.957 23684.826 20519.646
custom loss function 12066.808 4485.706 14169.861 23616.685 21856.217 29754.229 23146.784

reported. The remaining results and other evaluation metrics can be found in the Githu‘dﬂ From the
perspective of MAPE metrics, in some datasets, existing forecasting models cannot provide reasonable
forecasting results. This situation is particularly severe in building-level datasets. Fortunately, in
the aggregated level data, the vast majority of prediction models can provide reasonable prediction
results. This is due to the stronger stationarity of aggregated level data compared to the building-level
ones. From the perspective of predictive models, models based on simple structures perform better
than relatively complex models such as LSTNet, WaveNet, and N-BEATS. Among them, WaveNet
performs the worst in multiple datasets, indicating that it is not suitable for application in the scenario
of day-ahead forecasting of the power grid.

D.5 PROBABILISTIC FORECASTING RESULTS

Similar to point forecasting, we present the PinballLoss results of the forecasting model on some
datasets in Tables [I4] [I5] [T6€] and[I7] while placing other results in repository for users to read. These
tables present the forecasting results for all datasets with temperature variables.

» From the perspective of forecasting models, the performance of non-deep learning forecast-
ing models is generally better than that of deep learning models. Among them, ERT and
SERT perform relatively well. In deep learning methods, LSTM networks perform well
while Transformer, FFNN, and CNN can also achieve the best results on certain datasets.
However, the relatively complex neural network methods are lagging on the vast majority of
datasets, which is relatively consistent with the results of point forecasting methods.

* From the perspective of feature engineering, when there is no one-to-one correspondence
between temperature data and load data in some data sets, such as Spain and GEF12, feature
engineering on temperature may reduce forecasting accuracy. When there is a clear one-to-
one correspondence, such as GEF17, feature engineering of temperature-calendar variables
will greatly improve the model’s forecasting performance.

Figure report the evaluation result of two data in the GEF17 dataset respectively as an
illustration. These three figures show the results after adding the temperature-calendar variable feature
engineering. In most of these figures, the abscissa represents different quantiles, and the ordinate is
the corresponding evaluation metric. The best-performing methods on these three datasets by the
PinballLoss metric are FFNN, CNN, and QCE. Take CT as an example. Although FFNN performs
best in PinballLoss, it cannot maintain an advantage in other metrics. For WinklerScoreMatrix, the
LSTM model performs better than the FENN method under high nominal coverage. This indicates
that the LSTM model is superior to FFNN in considering extreme scenarios. For RampScoreMatrix,
although FFNN has achieved good results in low quantiles, it is not better than the simple QCE
method in high quantiles. Similar results have also been observed in other datasets and it is rare for a
forecasting method to overwhelm all other forecasting methods in all aspects. These examples show
that different quantiles can be considered separately as well as different metrics are needed to focus

https://anonymous.4dopen.science/r/ProEnFo-17CC
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on different aspects of the forecasting model so that different forecasting models can be distinguished.
And this is also a major contribution of our load forecasting archive.
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Figure 23: Visualization evaluation metrics in the GEF17 CT dataset.
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Figure 24: Visualization evaluation metrics in the GEF17 ME dataset.

E DOCUMENTATION

Long-term preserve plan: Currently, our relevant datasets and prediction results are saved in the
folder in a cloud service. This is mainly because we are still updating it, and the main direction is
to add more fine-grained data related to smart meters. After our dataset is fully developed, we will
apply for the relevant DOI for it.

Author statement: We confirm that the relevant dataset sources comply with relevant regulations
and we bear all responsibility in case of violation of rights, etc., and confirmation of the data license.
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Table 11: MAPE comparison results based on MSE Loss function in datasets with temperature
variables (I), the coloring indicates that the current forecasting model cannot obtain reasonable results
on this dataset.

Methods
MAPE(%) FFNN LSTM CNN LSTNet WaveNet N-BEATS Transformer

GEF12_1 9.21 9.53 9.16 9.32 9.77 11.72 9.73
GEF12_2 5.58 541 5.53 5.57 6.99 7.03 5.49
GEF12_3 5.65 5.48 5.59 5.46 7.02 6.97 5.51
GEF12_4 27.36 26.28 26.67 26.8 28.4 27.04 26.96
GEF12_5 9.3 9.19 9.17 9.47 11.05 9.52 9.62
GEF12_6 5.53 5.48 5.65 5.53 6.89 5.57 5.57
GEF12_7 5.65 5.48 5.59 5.46 7.02 6.97 5.51
GEF12_8 8.48 8.08 8.12 8.45 11.16 8.16 8.02
GEF12_9 118.52 107.78 12449 122.08 141.54 140.2 99.19
GEF12_10 26.21 31 27.29 26.81 394 33.38 31.74
GEF12_11 6.87 6.97 6.8 7.01 10.08 6.6 6.38
GEF12_12 7 7.17 6.46 7.36 10.03 7.16 7.1
GEF12_13 7.67 7.67 7.96 7.76 9.67 7.74 7.88
GEF12_14 10.57 10.97 10.58 10.86 13.29 11.77 11.08
GEF12_15 8.32 8.21 8.29 8.36 10.61 8.88 8.67
GEF12_16 8.46 8.88 8.54 8.84 10.26 9.82 9.21
GEF12_17 7.26 7.01 6.79 7.08 9.76 7.41 7.01
GEF12_18 8.21 8.27 8.14 8.28 10.35 8.67 8.32
GEF12_19 9.85 9.83 9.56 9.78 12.66 10.16 9.98
GEF12_20 6.8 6.44 6.64 6.39 9.36 9.4 6.5
GEF14 2.26 2.48 2.52 2.36 3.02 3.01 2.44
GEF17_CT 3.76 3.75 3.63 3.78 5.02 4 4.29
GEF17_ME 3.08 3.08 3.21 3.07 3.2 3.22 3.06
GEF17_NEMASSBOST  3.85 3.51 3.84 3.69 4.67 3.98 3.88
GEF17_NH 3.67 3.7 3.66 4.76 4.61 3.85 3.93
GEF17_RI 33 3.38 3.34 3.36 4.4 4.48 3.55
GEF17_SEMASS 4.76 4.84 4.8 4.85 5.58 5.17 5.07
GEF17_VT 5.01 4.96 5.03 5 6.2 6.11 5.55
GEF17_WCMASS 3.88 3.8 3.8 3.7 4.86 4.11 3.92
Covid19 5.19 5.16 5.55 6.54 11.71 11.71 4.9

Bull_assembly_Amalia 2192 2096 21.02 2153 24.07 23.86 21.19
Bull_assembly_Goldie 20.34 18.49 18.27  23.78 24.79 19.79 20.12

Bull_assembly_Lance 26.42 26.6 26.43 27.26 27.7 27.38 27.27
Bull_assembly_Maren 86.83 60.86 89.6 111.2 124.41 77.62 53.34
Bull_assembly_Nathanial 12.12 11.67 10.88 11.19 12.68 13.67 11.42
Bull_assembly_Vanessa 21.52 20.12 21.34 194 234 19.88 20.22
Bull_education_Arthur 34.48 31.22 33.86 32.37 43.8 31.51 30.82

Bull_education_Bernice 21.11 20.13 20.99 20.24 26.06 22.33 20.74
Bull_education_Brain 29.12 27.88 27.5 29.52 31.81 30.89 27.53
Bull_education_Brenda 39.39 38.99 35.22 36.29 43.16 36.07 39.96

Bull_education_Dan 2279 21.89 2146  23.88 29.66 22.06 21.82
Bull_education_Dora 31.19 2944  27.67 29.52 29.8 30.77 29.65
Bull_education_Dottie 3392  21.67 3064 20.37 45.3 19.78 19.93
Bull_education_Elva 3703 3939 3451 38.09 43.1 40.74 36.9

Bull_education_Gregory  127.84 52.35 148.31 85.61 84.84 429.83 36.06
Bull_education_Jae 14.36 14.55 1492 1413 20.3 18.81 15.57
Bull_education_Joseph 2298 2414  23.07 2327 31.05 24.45 26.48
Bull_education_Kendra 20.69  21.31 20.71 21.71 35.31 21.01 19.91

Bull_education_KTrista 65.97 62.57 60.66 64.12 85.78 86.32 63.59
Bull_education_Lenny 34.1 29.99 31.52 31.53 47.07 30.59 30.66
Bull_education_Linnie 31.24 29.19 31.6 35.97 36.4 29.77 29.62
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Table 12: MAPE comparison results based on MSE Loss function in datasets with temperature
variables (II), the coloring indicates that the current forecasting model cannot obtain reasonable

results on this dataset.

Methods
MAPE(%) FFNN LSTM CNN LSTNet WaveNet N-BEATS Transformer

Bull_education_Luke 22.73 22.23 22.68 22.9 23.75 22.48 22.28
Bull_education_Magaret 137.24 108.8 138.13 109.81 190.14 109.75 109.24
Bull_education_Mervin 37.97 3391 33.68 34.04 34.33 47.01 39.5
Bull_education_Miranda 21.35 20.8 21.38 21.35 25.53 20.36 20.38
Bull_education_Patrina 30.02 29.06 30 28.97 34.97 29.27 29.82
Bull_education_Racheal 56.78 65.22 58.9 64.3 55.41 67.88 68.37
Bull_education_Reina 30.04 28.79 25.6 26.84 32.55 28.89 26.5
Bull_education_Roland 37896 418.75 356.88 375.33 381.9 478.95 467.88
Bull_education_Roseann 45.68 43.38 44.55 43.97 46.57 45.81 42.81
Bull_lodging_Carie 107.47 98.5 112.22 103.09 146.3 84.83 101.97
Bull_lodging_Hugo 55.93 53.55 70.42 59.78 65.33 55.56 61.16
Bull_lodging_Jeremiah 13.18 12.22 13.9 14.38 21.95 14.73 13.43
Bull_lodging_Lettie 25.19 25.65 24.71 24.7 29.7 25.14 27.04
Bull_lodging_Melissa 20.8 23.35 20.77 22.64 24.37 22.49 25.61
Bull_lodging_Perry 25.13 24.1 2345 2454 24.15 26.96 28.28
Bull_lodging_Terence 24.65 2294  27.15 @ 22.26 32.09 22.7 22.67
Bull_lodging_Travis 15.37 15.3 17.97 22.81 31.7 14.67 14.25
Bull_office_Chantel 78.93 68.54 79.19 73.42 96.3 68.03 68.57
Bull_office_Yvonne 29.72 23.36 3493 25.04 48.33 22.8 23.29
Bull_public_Hyun 21.22 20.7 19.61 21.09 22.19 21.48 23.34
Hog_education_Haywood 16.44 16.58 12.97 20.98 19.96 16.01 17.47
Hog_education_Jewel 22.53 22.04 23.67 31.47 30.49 21.26 20.21
Hog_education_Leandro 120.88 234.08 211.67 182.21 241.2 192.01 208.26
Hog_education_Luvenia 21.09 18.64 16.75 18.26 20.38 18.4 19.44
Hog_education_Sonia 186.16 22447 214.12 223.01 319.63 205.18 279.88
Hog_lodging_Shanti 106.31 81.9 101.81 88.25 161.28 158.54 75.17
Hog_office_Betsy 16.82 23.57 18 21.91 21.6 17.92 18.74
Hog_office_Byron 30.03 27.33 25.12 27.51 49.41 49.59 27.7
Hog_office_Candi 169.49 167.73 179.04 17345 322.46 175.25 164.42
Hog_office_Charla 11.72 12.44 11.61 15.07 14.74 14.91 12.48
Hog_office_Corey 58.37 72.63 56.7 70.6 76.69 78.21 76.82
Hog_office_Cornell 22.39 19.87 25.47 20.82 20.82 30 19.27
Hog_office_Elizbeth 14.07 16.62 17.09 15.37 21.97 15.78 16.19
Hog_office_Elnora 16.56 16 14.87 19.62 19.73 20.04 16.43
Hog_office_Leanne 78.77 47.73 78.73 72.48 90.79 92.55 71.63
Hog_office_Nia 25.21 23.6 23.77 23.44 29.73 32.57 25.06
Hog_office_Richelle 100.88 73.73 96.45 74.58 74.87 63.8 74.83
Hog_office_Roger 8.05 7.67 8.47 6.76 13.67 9.05 7.54
Hog_office_Rolando 15.16 18.08 14.55 18.63 21.87 16.8 17.2
Hog_office_Terry 12.29 12.34 12.81 12.06 25.49 12.24 11.19
Hog_public_Brad 11.16 11.6 12.25 12.89 17.74 20.97 11.67
Hog_public_Crystal 450.2 280.87 426.0 274.48 291.52 592.19 281.31
Hog_public_Kevin 22729 258.55 205.92 223.34 250.82 227.99 238.8
Hog_public_Octavia 19.01 17.12 19.94 17.96 21.71 21.15 17.67
Cockatoo 26.39 25.64 24.64 26.93 26.12 27.69 26.07
PDB 6.35 5.24 5.34 5.35 6.04 4.75 5.02
Spain 6.05 5.83 6 5.58 6.94 5.55 5.63
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Table 13: MAPE comparison results based on MSE Loss function in datasets without temperature
variables (Partial), the coloring indicates that the current forecasting model cannot obtain reasonable
results on this dataset.

Methods
MAPE(%) FFNN LSTM CNN LSTNet WaveNet N-BEATS Transformer
ELF_load 4.07 4.26 4.07 4.38 4.64 4.39 4.33
UCIL_0 8593 8347 6891 96.69 90.91 253.25 89.81
UCL_1 5.52 5.36 5.55 5.41 18.3 6.55 5.35
UcCI_2 27.81 1552 19.39 186.33 176.38 17 18.9
UCIL_3 7.1 7.47 7.25 7.26 24.75 8.07 7.45
UCI_4 11.5 11.89 12.08 3847 26.91 12.76 11.74
UCL_5 6.92 7.32 6.95 7.23 24.88 8.24 7.66
UCI_6 36.15 3692 40.84 32.01 72.87 42.37 41.16
UCIL_7 5.93 6.18 6.17 6.17 14.55 6.64 6.24
UCIL_8 13.51 1443 136 15.03 14.94 28.97 14.02
UCIL_9 23.01 224 22.88 23.15 43.88 23.65 24.65
UCL_10 8.27 8.48 8.47 8.51 21.28 21.32 8.37
UCI_11 13.31 1348 1348 14.54 13.9 13.65 13.52
UCIL_12 7.64 7.8 8.07 23.69 24.29 10.35 8.31
UCI_13 8.77 8.97 9.09 8.94 25.66 11.36 10.21
UCI_14 5.66 591 5.56 5.81 16.87 6.35 5.84
UCI_15 11.35 1144 11.29 11.61 23.52 23.63 11.61
UCL_16 9.79 9.46 9.81 19.3 19.31 10.08 9.47
UCI_17 1235 1247 1242 125 12.5 18.71 12.51
UCI_18 5.83 6.02 5.86 6.09 21.16 6.66 6.54
UCL_19 12.78 13.11 1279 13.94 37.44 18.66 13.5
UCI_20 11.32 11.76  11.23 26.05 12.08 26.04 11.79
UCI_21 9.97 9.97 9.79 10.07 31.48 31.58 10.14
UCI_22 8.57 8.58 8.33 8.67 25.04 9.25 8.79
UCI_23 9.02 9.11 9.14 33.44 27.28 23.81 9.22
UCI_24 7.25 7.42 7.56  7.53 20.24 20.14 7.51
UCI_25 1435 1478 1442 15.63 51.78 14.38 16.06
UCI_26 6.91 7.12 6.88 21.33 21.34 7.76 7.13
UCI_27 8.79 8.88 8.88 8.71 22.93 22.93 8.92
UCI_28 9 8.97 9.16 9.18 18.54 9.94 948
UCI_29 38.46 40.07 37.95 37.85 101.18 49.83 39.39
UCI_30 9.94 9.72 10.49 10.04 23.17 10.78 9.9
UCI_31 5.82 591 5.81 5.79 18.68 6.17 5.93
UCI_32 41.21 67.08 23.04 113.77 362.63 47.05 89.83
UCI_33 7.98 8.08 8.16 15.86 8.15 8.31 8.32
UCI_34 6.71 6.95 6.77 7.21 7.03 7.76 7
UCI_35 7.1 7.32 7.16 19.73 19.75 19.72 7.42
UCI_36 2195 228 22.11  23.09 63.61 24.83 22.97
UCI_37 8.72 8.79 8.77 9.01 22.42 9.61 8.83
UCI_38 9.34 9.71 9.48 9.73 21.71 10.4 9.65
UCI_39 11.2 11.22 1156 11.54 21.86 11.76 11.33
UCI_40 6.28 6.45 6.25 6.56 18.2 18.1 6.62
UCI_41 7.75 7.86 7.48 8.28 8.44 25.07 8.1
UCI_42 10.75 10.8 10.9 10.87 22.12 11.37 10.84
UCI_43 8.16 8.07 8.13 8.12 23.95 24.04 8.17
UCI_44 8.98 9.37 8.88 9.24 31.73 9.78 9.32
UCI_45 54 5.54 5.56 5.4 14.03 5.68 5.53
UCI_46 1556 1398 1585 36.2 33.63 43.56 13.57
UCI_47 5.87 6.03 6.11 5.97 19.44 19.44 6
UCI_48 1431 14.27 1488 33.58 33.63 33.55 14.52
UCI_49 9.17 9.26 9.52 9.28 26.85 10.28 9.38
UCI_50 124 1256 1241 13.39 22.93 15.04 12.58
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