
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GC4NC: A BENCHMARK FRAMEWORK FOR GRAPH
CONDENSATION ON NODE CLASSIFICATION WITH NEW
INSIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph condensation (GC) is an emerging technique designed to learn a significantly
smaller graph that retains the essential information of the original graph. This
condensed graph has shown promise in accelerating graph neural networks while
preserving performance comparable to those achieved with the original, larger
graphs. Additionally, this technique facilitates downstream applications like neural
architecture search and deepens our understanding of redundancies in large graphs.
Despite the rapid development of GC methods, particularly for node classification,
a unified evaluation framework is still lacking to systematically compare different
GC methods or clarify key design choices for improving their effectiveness. To
bridge these gaps, we introduce GC4NC, a comprehensive framework for eval-
uating diverse GC methods on node classification across multiple dimensions
including performance, efficiency, privacy preservation, denoising ability, NAS
effectiveness, and transferability. Our systematic evaluation offers novel insights
into how condensed graphs behave and the critical design choices that drive their
success. These findings pave the way for future advancements in GC methods,
enhancing both performance and expanding their real-world applications. The code
is available at https://anonymous.4open.science/r/GC4NC-1620/.

1 INTRODUCTION

Graphs are ubiquitous data structures describing relations of entities and have found applications in
various domains such as chemistry (Reiser et al., 2022; Guo et al., 2023), bioinformatics (Wang et al.,
2021), epidemiology (Liu et al., 2024a), e-commerce (Wang et al., 2023a; Ding et al., 2023) and so
on. To harness the wealth of information in graphs, graph neural networks (GNN) have emerged
as powerful tools for exploiting structural information to handle diverse graph-related tasks (Kipf
and Welling, 2016; Veličković et al., 2018; Wu et al., 2019a; Wang et al., 2023a; Zhou et al., 2021).
However, the proliferation of large-scale graph datasets in practical applications introduce significant
computational difficulties for GNN utilization (Hamilton et al., 2017; Jin et al., 2022a; Zhang et al.,
2023). These large datasets complicate GNN training, as time complexity escalates with the increase
of nodes and edges. Furthermore, the extensive sizes of these graphs also strain GPU memory, disk
storage, and network communication bandwidth (Zhang et al., 2023).

Inspired by dataset distillation (or dataset condensation) (Wang et al., 2018; Yu et al., 2023; Cui
et al., 2022) in the image domain, graph condensation (GC) (Jin et al., 2022a; Hashemi et al., 2024;
Gao et al., 2024; Xu et al., 2024) has been proposed to learn a significantly smaller (e.g., 1,000×
smaller number of nodes) graph that retains essential information of the original large graph. This
condensed graph is expected to train downstream GNNs in a highly efficient manner with minimal
performance degradation. As a data-centric technique, GC is considered to be orthogonal to existing
model-centric efforts on GNN acceleration (Wu et al., 2019b; Frasca et al., 2020), since using
condensed graph datasets as input can further speed up existing models. Remarkably, GC not only
excels at compressing graph data but also shows promise for various other applications, such as
federated learning (Pan et al., 2023) and neural architecture search (NAS) (Ding et al., 2022).

Despite the rapid advancements in this field, the lack of a unified and comprehensive evaluation
protocol for GC significantly hinders progress in evaluating, understanding and improving these
methods. First, existing GC methods adopt different approaches to select the best condensed graphs,

1

https://anonymous.4open.science/r/GC4NC-1620/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

including variations in validation models, reliance on test set results rather than validation ones, and
conducting overly frequent intermediate validations, which could introduce unfairness in evaluation.
Second, while most GC methods are evaluated primarily on performance and transferability, they
often neglect critical aspects such as the effectiveness of NAS. Furthermore, intuitive benefits of
GC like privacy preservation and denoising ability are frequently mentioned but remain under-
explored (Sachdeva and McAuley, 2023; Hashemi et al., 2024). Third, the impact of design choices
during the condensation process including the condensation objectives, how condensed graphs are
initialized, whether to generate a condensed graph structure, and which graph properties to preserve,
are still poorly understood. By systematically addressing these limitations, we aim to shed light on
the successes and pitfalls in current GC research and guide future directions in this evolving area.
Given that most GC methods are developed for node classification (NC), we will focus on this task
and propose a new benchmark framework, GC4NC, with the following contributions:

• A Fair Evaluation Protocol. We establish a graph condensation benchmark by introducing a
fair and consistent evaluation protocol that facilitates comparison across methods. This unified
evaluation approach properly utilizes validation data to select the most effective condensed graphs.
In addition, we provide an open-source, well-structured, and user-friendly codebase specifically
designed to facilitate easy integration and evaluation of different GC approaches.

• Comprehensive Comparison through Multiple Dimensions. Using the fair evaluation protocol,
we conduct comprehensive comparisons of various GC methods across multiple dimensions
including (a) performance and scalability, (b) privacy preservation, (c) denoising ability, (d) NAS
effectiveness, and (e) transferability. To our knowledge, we are the first to systematically benchmark
privacy preservation and denoising ability across various GC methods.

• In-Depth Analysis of Design Choices. We further conduct a thorough analysis of how key
design choices impact condensation performance, including data initialization, structure-free vs.
structure-based methods, and graph property preservation. Our results provide valuable guidance
for optimizing and exploring these critical choices in future research.

• Novel Insights. Through a comprehensive comparison of these methods, our experimental results
provide key insights into the behavior of graph condensation such as:
(a) Among varied condensation objectives, methods based on trajectory matching generally deliver

the best condensation performance but fall short in efficiency. Furthermore, graph condensation
achieves better performance than image dataset condensation at the same reduction rates, but it
struggles to scale to larger reduction rates.

(b) Certain GC methods can preserve privacy by reducing the success of membership inference
attacks while still maintaining high condensation performance.

(c) GC methods exhibit a certain level of denoising ability against structural noise (both adver-
sarial and random noise), yet they are less effective against node feature noise.

(d) Trajectory matching or inner optimization through gradient matching is essential for reliable
NAS performance and enhanced transferability.

(e) Compared to structure-based methods, structure-free methods exhibit strong condensation
performance and favorable efficiency but poorer denoising ability.

Note that two concurrent works (Liu et al., 2024b; Sun et al., 2024) on GC benchmarks have emerged
alongside this paper. While all studies contribute uniquely to the field of graph condensation, GC4NC
stands out by offering deeper insights. First, it covers a wider range of GC methods for NC. Second, it
pioneers the exploration of GC methods in terms of privacy preservation and denoising ability. Third,
it provides a more in-depth analysis of graph property preservation to enhance the understanding of
GC methods. For further details, please refer to the Appendix A.1.

2 RELATED WORK

2.1 GRAPH CONDENSATION

Graph condensation (GC) is an emerging technique designed to create a significantly smaller graph
that preserves the maximum amount of information from the original graph (Jin et al., 2022a; Hashemi
et al., 2024; Jin et al., 2022b; Zhang et al., 2024a; Gao and Wu, 2023; Yang et al., 2024). The goal
is to ensure that GNNs trained on this condensed graph exhibit comparable performance to those
trained on the original one. Based on their specific condensation objectives, existing GC methods
employ the following matching strategies to bridge the gap between condensed and real graphs:

Gradient Matching (GM). GCond (Jin et al., 2022a) matches the gradients of the original graph T

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

and condensed graphs S by: minS Eθ0∼Pθ0

[∑T−1
t=0 D (∇θLT ,∇θLS)

]
, where D(·, ·) denotes a

distance function. During this process, it also updates θ by training the GNN for several epochs on the
condensed graph S , referred to as inner optimization. However, this nested optimization significantly
hinders efficiency and scalability. To address this, DosCond (Jin et al., 2022b) only matches the
gradients of the first epoch. To avoid generating dense graphs while producing diverse structures,
MSGC (Gao and Wu, 2023) utilizes multiple sparse graphs to enhance the capture of neighborhood
information. To explicitly incorporate the information of original structure, SGDD (Yang et al., 2024)
broadcasts the original structure into the synthetic graph by optimal transport.

Trajectory Matching (TM). Inspired by (Cazenavette et al., 2022) in image domain, SFGC (Zheng
et al., 2024) learns node features by matching the GNN training trajectories with the guidance of the
offline expert parameter distribution: minS L =∥ θ̂t+N −θ∗t+M ∥22, where θ̂ is the student parameters
optimized on condensed graph and θ∗ is the expert parameters. GEOM (Zhang et al., 2024a) utilizes
an expanding window technique that adjusts the matching range for nodes of varying difficulty during
the process of matching training trajectories.

Others. Distribution Matching (DM), originally developed for the image domain (Liu et al., 2023a),
has been adapted to the graph domain as GCDM (Liu et al., 2022). They match the distances between
the average embedding outputs of each graph convolution layer in the condensed graph and those in
the original graph. We adopt its structure-free variant, GCDMX, in our experiments as it performs
better in the original paper. To address the issue of higher computational consumption in the inner
optimization of GM, GCSNTK (Wang et al., 2023b) replaces it with Graph Neural Tangent Kernel
(GNTK) (Du et al., 2019) in the Kernel Ridge Regression (KRR) paradigm, which can efficiently
synthesize a smaller graph: LKRR = 1

2 ∥ yT −KT S (KSS + ϵI)
−1

yS ∥2, where K is the kernel
matrix and y is concatenated graph labels. This method is called meta-model matching (MM)
in Sachdeva and McAuley (2023). GDEM (Liu et al., 2023b) employs the eigenbasis matching (EM)
which is derived from GM but avoids the biases inherent in condensation models. All methods except
GDEM are presented in main experiments, while GDEM’s results are included in Appendix A.4.

2.2 CORESET SELECTION AND GRAPH COARSENING

We emphasize the necessity of exploring a broader spectrum of graph reduction methods beyond
GC. First, recent years have seen the development of many coreset selection (Ding et al., 2024) and
coarsening methods (Cao et al., 2024), which show high potential in preserving GNN performance.
Thus, these methods are indispensable baselines for comparison with GC methods. Second, these
methods can all serve as data initialization strategies for GC as we will explore in Section 4.7. Thus,
it can be limited to study GC in isolation without considering other graph reduction methods.

Coreset. Coreset selection (Har-Peled and Kushal, 2005) identifies the most representative samples
based on specific criteria. In graph domain, it typically selects nodes or edges and then utilizes selected
nodes or edges to induce a small graph. We choose the following coreset methods as our baselines:
Random, which randomly selects nodes. KCenter (Har-Peled and Kushal, 2005; Sener and Savarese,
2017) selects nodes in a way that minimizes the maximum distance of any node’s embedding to
the nearest chosen center, thereby effectively covering the feature space. Herding (Welling, 2009)
selects nodes by iteratively minimizing the difference between the mean embedding and the sum of
the embeddings of the selected nodes. More selection methods are explored in Appendix A.4.

Graph Coarsening. To preserve all node information, graph coarsening methods group nodes and
aggregate them to supernodes. The following graph coarsening methods are chosen as baselines
— Averaging, a data initialization strategy in MSGC (Gao and Wu, 2023), creates supernodes by
averaging the features of training set nodes within each class. Virtual Node Graph (VNG) (Si et al.,
2022) minimizes the forward propagation error by applying weighted k-means to obtain a mapping
matrix, which maps each node to a supernode. VNG obtains the adjacency matrix by solving an
optimization problem. Variation Neighbors (VN) (Loukas, 2019; Huang et al., 2021) is a classic
coarsening method which contracts nodes that share the most similar neighborhoods. We do not put
its performance in main content as its reduction rate is uncontrollable.

3 BENCHMARK DESIGN

3.1 EVALUATION PROTOCOL

A Unified Evaluation Approach. Existing GC methods vary in their evaluation strategies to identify

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

optimal condensed graphs throughout the condensation process. First, some approaches utilize the
GNTK as the validation model, while others employ GNNs. Second, some select graphs based on
the best test results rather than validation results. Third, some assess the condensed graph at every
condensation epoch, whereas others opt for periodic evaluations to conserve computational resources.
Thus, a unified evaluation approach is crucial for ensuring a fair comparison. We achieve this by
unifying the validation model and restricting the validation frequency, as detailed in Section 4.1.

Multi-Dimensional Evaluation. Many methods overlook critical evaluation dimensions such as
scalability, privacy preservation, NAS performance, and transferability. Our benchmark aims to
address this gap by enabling a comprehensive comparison of GC methods across these key aspects.
(a) Performance and Scalability. We first attempt to reproduce and measure the basic results of
all graph reduction methods within our scope. In addition to evaluating the performance of GCN
in node classification, we assess their efficiency and highlight the trade-off between performance
and efficiency to assist users in selecting the appropriate method based on their hardware resources.
Our efficiency reports include preprocessing time, running time per epoch, total running time,
peak memory, GPU memory and disk memory usage. By examining the resource consumption
across various dataset sizes and reduction rates, we can also illustrate the scalability of different
methods. Additionally, we also examine the condensation performance across broader reduction rates.
Summary: A good GC method should achieve good performance while also ensure high efficiency.

(b) Privacy Preservation. As the downstream model is trained on a synthetic graph that differs from
the original, GC may preserve a certain level of privacy by obscuring sensitive information. To
evaluate this capability, we assess the resilience of GC against privacy attacks. Specifically, we apply
the method from (Duddu et al., 2020) to measure privacy leakage across different GC techniques.
This approach employs Membership Inference Attack (MIA) to assess privacy risks, where MIA
accuracy reflects the probability that an adversary can correctly identify whether a node belongs to
the training or test set. For a detailed explanation of why MIA is chosen over other attack methods,
please refer to Appendix A.5. Summary: We anticipate that the condensed graph will mitigate the
exposure of sensitive training information, such as membership, thereby reducing privacy risks.
(c) Denoising ability. Since GC preserves the essential information of the original graph, it can
potentially reduce noise present in the original graph, even though it is not specifically designed for
this purpose. We hypothesize that this capability may provide GC with denoising ability against
various types of noise. To study this, we inject three types of noise to the original graph before
feeding it into the GC algorithms: (1) Feature noise, which randomly changes features for all nodes,
(2) Structural noise, which randomly modifies edges, and (3) Adversarial structural noise, which
learns corrupt graph structure to degrade the performance of the GNN model. Furthermore, to
examine the denoising ability of GC in two settings, transductive and inductive, we apply poisoning
plus evasion corruption (i.e., corrupting both the training and test graphs) on transductive datasets,
and poisoning corruption (i.e., only corrupting the training graph) on inductive datasets. Summary:
We expect GC process can mitigate noise without specific denoising design.
(d) Neural Architecture Search (NAS). NAS (Elsken et al., 2019; Ren et al., 2021) is one of the
most promising applications of GC. It focuses on identifying the best-performing architecture from
a vast pool of models but is computationally expensive, which requires the training of numerous
architectures on the full dataset. Since the condensed graph is much smaller than the whole graph, GC
methods are utilized to accelerate NAS (Ding et al., 2022). In practical situations, preserving the rank
of validation results between models trained on the condensed graph and the whole graph is important
because we select the best architectures based on top validation results. We argue that all the graph
condensation methods should be evaluated on the NAS task because it can effectively evaluate the
practical value of a condensation method. Summary: We expect a reliable correlation in validation
performance between training on the condensed graph and the whole graph to be observed.

(e) Transferability. The most critical aspect of evaluating GC methods is determining whether the
condensed data can be effectively used to train diverse GNNs, adhering to a data-centric perspective.
Usually, condensed graphs are closely tied to the backbone GNN used during the condensation process
such as GCN and SGC, potentially embedding the inductive biases of that particular GNN, which
might impair their performance on other GNNs. To address this concern, we aim for condensed graphs
to exhibit consistent performance across different GNNs. Some previous studies (Jin et al., 2022b;
Gao and Wu, 2023) don’t include experiments evaluating transferability across GNNs. Additionally,
evaluations of various methods are often performed on different datasets or reduction rates, hindering

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

fair comparison. Thus, we assess the performance of condensed graphs on multiple widely-used
GNN models with a unified evaluation setting. Summary: A high-quality condensed graph, like a
graph in the real world, should be versatile enough to train different models.

3.2 IMPACT OF DESIGN CHOICES

Current GC methods follow similar procedural frameworks, with multiple choices available at each
intermediate stage of the process. However, the effects of these internal mechanisms, such as how
different configurations or choices influence the performance and effectiveness of graph condensation,
remain largely underexplored. In this benchmark, we aim to go beyond just the matching strategies
discussed in Section 2.1, by thoroughly investigating the following key design choices.
Data Initialization. As a crucial stage in the standard procedure of GC, data initialization helps
accelerate convergence and enhances final results (Cui et al., 2022). Besides, the initialization of
the condensed graph can naturally integrated with coreset selection and graph coarsening methods.
Previous work primarily relies on random selection for data initialization, with only a few studies
employing alternative methods such as KCenter and Averaging (Zhang et al., 2024a; Gao and Wu,
2023). Therefore, we aim to conduct a comprehensive study on whether different data initialization
can impact the performance of GC.

Structure-Free vs. Structure-Based Methods. Another important choice is whether to synthesize
the structure. Structure-based methods including GCond, DosCond, and MSGC, utilize separate
multilayer perceptrons (MLP) to generate links between nodes based on the synthetic node features.
Other structure-based methods adopt different strategies, e.g, SGDD employs a structure broadcasting
strategy, while GDEM aligns the eigenbasis to recover the adjacency matrix. To assist future research
in making this decision, we discuss it in Section 4.2 and 4.4, as this choice shows significant
differences in these two aspects.

Graph Property Preservation. Graph data comprises features, structures, and labels, which can be
characterized by various established metrics, also known as graph properties. We aim to explore what
graph properties are preserved by condensed graphs and understand the reasons behind the success
of current GC methods. We select the following metrics from different aspects of a graph: Density
(structure), Max Eigenvalue of Laplacian matrix (spectra), Davies-Bouldin Index (DBI) (Davies and
Bouldin, 1979) (feature) and Homophily (Zhu et al., 2020a)(structure and label) . To further incorpo-
rate structural information into DBI, we developed a new metric named DBI-AGG (structure and
feature), which calculates DBI based on node embeddings after two rounds of GCN-like aggregation.

4 EMPIRICAL STUDIES

4.1 EXPERIMENTAL SETUP

In an attempt to address unfairness in this area, we unify some of the settings in GC papers while
leaving other hyperparameters as reported in their papers or source code. First, we restrict one set
of hyperparameters for each dataset, ensuring that they do not vary across different reduction rates.
For methods that do not follow this setting, we use the set of hyperparameters from the highest
reduction rate. This setting is more practical because tuning for every reduction rate can be very
expensive. Second, we set the evaluation interval to the number of epochs divided by 10 to balance
the frequency of intermediate evaluations and total epochs for each method. This strategy will benefit
fast-converging and stable methods while penalizing those that rely on long epochs and frequent
validation. Third, we adopt GCN in all evaluation parts, training a 2-layer GCN with 256 hidden
units on the reduced graph. We then evaluate it on the validation and test sets of the original graph,
using 300 epochs without early stopping. We select condensed graphs with best validation accuracy
for final evaluation. To mitigate the effect of randomness, we run each evaluation 10 times and
report the average performance. The above GNN training settings are applied across intermediate,
final evaluations, and all other experiments. Additionally, sparsification is only applied to the final
evaluation, with the threshold adhering to the reported results in the original paper. Specifically, for
structure-free methods, an identity matrix is used as the adjacency matrix during training stage. Then,
in inference stage, the original graph is input into the trained model. To benchmark methods under
both transductive and inductive settings, we use the former for Citeseer, Cora (Kipf and Welling,
2016), Pubmed (Namata et al., 2012) and Arxiv (Hu et al., 2021), and the latter for Flickr, Reddit (Zeng
et al., 2019) and Yelp (Rayana and Akoglu, 2015). All data preprocessing and training/validation/test

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

set splits follow the GCond paper (Jin et al., 2022a). For datasets not used in GCond paper, we follow
the settings of SGDD paper (Yang et al., 2024). More details about datasets and implementation are
in Appendix A.2 and A.3.

4.2 PERFORMANCE, EFFICIENCY AND SCALABILITY

We report the performance of graph reduction methods in Table 1 and the efficiency in Figure 1.

Obs. 1: TM-based methods show the best condensation performance but not the best efficiency.
From Table 1, we observe that GC methods significantly outperform coreset selection and coarsening
methods and the margin is larger at low reduction rates. Among all, TM-based methods, GEOM and
SFGC, lead across most datasets and reduction rates, showing the highest performance is achieved by
trajectory methods. However, when we consider the efficiency and resource consumption in Figure 2,
we find that though achieving state-of-the-art performance in Table 1, both GEOM and SFGC require
additional preprocess time and large disk memory to produce and store the trajectory of experts.
In addition, some learning-free methods, such as Averaging, exhibit high performance on certain
datasets like Yelp, while being more efficient than all GC methods. Finally, the performance gap
between the best GC methods and whole dataset training varies across datasets. Some datasets, like
Arxiv and Reddit, still exhibit significant room for improvement.

Obs. 2: Compared to structure-based methods, structure-free methods are more efficient while
still performing well. When comparing structure-free methods to their structure-based counterparts,
such as GCondX and GCond, e.g., comparing GCondX and GCond in Figure 2 & 3 and Table 1,
the following key insights emerge: (1) the absence of structure synthesis negatively impacts the
performance of structure-free methods. (2) structure-based methods require significantly more
memory and GPU resources, especially when applied to large graphs. (3) structure-free methods
exhibit superior scalability w.r.t. reduction rates, as their computational resource usage remains
relatively stable, even with increasing reduction rates. The increased complexity of structure-based
methods stems from the time- and resource-intensive nature of structure synthesis, which must be
repeated each time the synthetic features are updated. To fully harness the benefits of structure-based
approaches, a more efficient structure generation method is needed. This is crucial as the structure
provides valuable information beyond the features and has the potential to enhance the denoising
ability, as discussed in Section 4.4.

Obs. 3: GC outperforms image dataset condensation at the same reduction rate but struggles
to scale effectively at larger reduction rates, where image dataset condensation excels. We adjust
the reduction rate from values corresponding to only one node per class to values that cause OOM
on large datasets and present the results in Figure 3. While Figure 3 generally shows a positive
correlation between performance and the reduction rate, we have three unique findings that are not
observed in vision dataset condensation (Cui et al., 2022): (1) GC methods can still perform well
when the Instance Per Class (IPC) is as low as 1; (2) Unlike in the image domain, GC methods
cannot scale to larger IPC values due to OOM issues. We foresee the need for more scalable GC
techniques, particularly those structure-based ones. In addition, our results indicate some instability
of structure-free GC, as shown by r=0.5% on Reddit for GEOM and r=1.25% on Arxiv for GCondX.

4.3 PRIVACY PRESERVATION

This attack reveals which samples were used in training, leading to privacy leakage of training set. It
leverages confidence scores, i.e., the probability of the true label, to identify if a sample was part of
the training set. The optimal threshold is determined by analyzing all confidence scores to maximize
the attack’s success in distinguishing between training and non-training samples.

Obs. 4: Certain GC methods can achieve both privacy preservation and high condensation
performance. The results in Table 2 suggest the following: (1) compared to non-protected whole
dataset training, GC methods enhance membership privacy by around 5%-10% on Cora and Citeseer.
Notably, GDEM achieves significant preservation performance on Cora, with an improvement up
to 14.21%, while still maintain a good performance (Acc). Also, certain method such as GEOM
achieve both lowest MIA Acc and highest Acc on Citeseer, highlight the nature of GC in reducing the
risk of privacy leakage. These improvements stem from the fact that no real training nodes are used
when we apply GC, ensuring the membership information remains protected. In addition, the gain
in Arxiv is not as significant, and we conjecture that it’s close to the lower bound of 50%, resulting

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Performance of graph reduction methods under three reduction rates. We report test accuracy
(%) for all datasets, except for Yelp, where we use F1-macro (%). The best and the second-best
results, excluding the whole graph training, are marked in bold and underlined. Structure-free and
structure-based condensation methods are marked in blue and red, respectively.

Dataset Reduction
rate (%)

Coreset Coarsening Condensation
WholeTM DM GM

Cent-D Cent-P Random Herding K-Center Averaging VNG GEOM SFGC GCDM GCondX GCond DosCond MSGC SGDD

Citeseer
0.36 42.86 37.78 35.37 43.73 41.43 69.75 66.14 67.61 66.27 70.65 67.79 70.05 69.41 60.24 71.87

72.60.90 58.77 52.83 50.71 59.24 51.15 69.59 66.07 70.70 70.27 71.27 69.69 69.15 70.83 72.08 70.52
1.80 62.89 63.37 62.62 66.66 59.04 69.50 65.34 73.03 72.36 72.08 68.38 69.35 72.18 72.21 69.65

Cora
0.50 57.79 58.44 35.14 51.68 44.64 75.94 70.40 78.14 75.11 79.21 79.74 80.17 80.65 80.54 80.15

81.51.30 66.45 66.38 63.63 68.99 63.28 75.87 74.48 82.29 79.55 80.26 78.67 80.81 80.85 80.98 80.29
2.60 75.79 75.64 72.24 73.77 70.55 75.76 76.03 82.82 80.54 80.68 78.60 80.54 81.15 80.94 81.04

Pubmed
0.02 56.16 57.28 49.46 62.91 62.91 75.60 75.60 69.64 67.61 77.62 72.03 77.36 58.13 75.25 78.11

78.60.03 55.61 62.50 56.10 69.28 65.59 75.60 75.72 76.21 66.89 76.63 72.05 78.05 52.70 78.26 78.07
0.15 71.95 73.35 71.84 75.53 74.00 75.60 77.53 78.49 67.61 77.48 71.97 76.46 76.45 78.20 75.95

Arxiv
0.05 32.88 36.48 50.39 51.49 50.52 59.62 54.89 64.91 64.91 60.04 59.40 60.49 55.70 57.66 58.50

71.40.25 48.85 47.90 58.92 58.00 55.28 59.96 59.66 68.78 66.58 60.59 62.46 63.88 57.39 64.85 59.18
0.50 52.01 55.65 60.19 57.70 58.66 59.94 60.93 69.59 67.03 60.71 59.93 64.23 61.06 65.73 63.76

Flickr
0.10 40.70 40.97 42.94 42.80 43.01 37.93 44.33 47.15 46.38 43.75 46.66 46.75 45.87 46.21 46.69

47.40.50 42.90 44.06 44.54 43.86 43.46 37.76 43.30 46.71 46.38 45.05 46.69 47.01 45.89 46.77 46.39
1.00 42.62 44.51 44.68 45.12 43.53 37.66 43.84 46.13 46.61 45.88 46.58 46.99 45.81 46.12 46.24

Reddit
0.05 40.00 45.83 40.13 46.88 40.24 88.23 69.96 90.63 90.18 87.28 86.56 85.39 86.56 87.62 87.37

94.40.10 50.47 51.22 55.73 59.34 48.28 88.32 76.95 91.33 89.84 89.96 88.25 89.82 88.32 88.15 88.73
0.20 55.31 61.56 58.39 73.46 56.81 88.33 81.52 91.03 90.71 89.08 88.73 90.42 88.84 87.03 90.65

Yelp
0.05 48.67 46.81 46.08 46.08 46.07 55.04 49.24 52.80 46.20 50.75 52.44 52.30 51.10 52.94 52.02

58.20.10 51.03 46.08 46.28 52.23 46.22 53.51 47.33 47.56 47.96 52.49 49.70 53.22 52.54 50.97 54.13
0.20 46.08 46.08 49.31 47.49 46.85 54.42 48.63 49.48 46.70 55.89 48.77 51.76 52.19 51.35 52.86

0 10000 20000 30000
Total Time (s)

56

58

60

62

64

66

68

70

Te
st

 A
cc

ur
ac

y
(%

)

GCDM

GCondX

DosCond

SFGC

GEOM

MSGC

GCond

SGDD

Figure 1: Test accuracy vs. total time for
structure-free and structure-based condensa-
tion methods on Arxiv. TM is represented by
⋆, GM by •, and DM by ▲. Marker sizes in-
crease with reduction rates of 0.05%, 0.25%,
and 0.50%.

GEOM SFGC GCDM
GCondX GCond

DosCondMSGC SGDD
0.0

0.2

0.4

0.6

0.8

GP
U

M
em

or
y

Ti
m

e(
×1

04)

0

2

4

6

8

D
is

k
M

em
or

y
(×

10
4)

GPU Memory (MB)
Total Time (s)
Preprocess Time (s)
Disk Memory (MB)

Figure 2: Comparison of GPU memory, disk memory,
preprocess time, and total time on Arxiv (r = 0.5%).

.02 .5 1.25 2.5 5
Reduction Rate (%)

30

40

50

60

70

Te
st

in
g

A
cc

ur
ac

y
(%

)

(a) Arxiv

.025 .5 1 2 3
Reduction Rate (%)

30

40

50

60

70

80

90

(b) Reddit

Random
Herding
KCenter
GEOM

GCondX
GCond
MSGC
Whole

Figure 3: Varying reduction rates on Arxiv and Reddit.
No mark represents OOM when the reduction rate is
too large for a method.

in a smaller margin of improvement. (2) Different reduction methods vary in their effectiveness.
For example, GEOM and GDEM exhibit a strong balance between mitigating MIA accuracy and
maintaining model performance. This suggests the potential to design improved GC methods that do
not compromise privacy. In other words, the typical tradeoff between utility and privacy preservation
could potentially be eliminated through the use of GC techniques.

4.4 DENOISING ABILITY

To explore the denoising ability of GC methods, specifically their ability to mitigate noise from
the original graph via the condensation process, we inject three types of representative noise as
outlined in Section 3.1. These include: (1) Feature Noise: We simulate feature noise by masking
node features to zero. (2) Structural Noise: This is introduced by randomly adding edges to the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Privacy preservation evaluation. "MIA Acc" measures how well an attacker can infer whether
a node is in the training or test set. We also report node classification accuracy ("Acc"), aiming to
emphasize the balance between model performance and privacy preservation.

Methods Cora, r = 2.6% Citeseer, r = 1.8% Arxiv, r = 0.5%

MIA Acc (↓) Acc (↑) MIA Acc (↓) Acc (↑) MIA Acc (↓) Acc (↑)

Whole 74.87 ± 1.16 81.50 ± 0.50 81.76 ± 1.01 72.61 ± 0.27 54.26 ± 0.11 71.43 ± 0.11

GCond 72.10 ± 0.96 80.54 ± 0.67 74.11 ± 0.61 69.35 ± 0.82 53.04 ± 0.18 64.23 ± 0.16
GCondX 66.83 ± 0.81 78.60 ± 0.31 71.97 ± 0.58 68.38 ± 0.45 54.64 ± 0.17 59.93 ± 0.54
DosCond 69.70 ± 0.50 81.15 ± 0.50 74.33 ± 0.34 72.18 ± 0.61 54.04 ± 0.79 61.06 ± 0.59

SGDD 70.43 ± 1.63 81.04 ± 0.54 77.07 ± 4.32 69.65 ± 1.68 53.29 ± 0.46 63.76 ± 0.22

GDEM 60.66 ± 1.26 81.76 ± 0.53 70.01 ± 2.94 71.74 ± 0.90 - -

GEOM 67.90 ± 0.55 82.82 ± 0.17 67.55 ± 0.62 73.03 ± 0.31 53.80 ± 0.19 69.59 ± 0.24
SFGC 67.29 ± 1.02 80.54 ± 0.45 72.12 ± 0.44 72.36 ± 0.53 54.49 ± 0.53 67.03 ± 0.48

Table 3: Denoising ability evaluation. "Perf. Drop" shows the relative loss of accuracy compared to
the original results before corruption. The best results are in bold and results that outperform whole
dataset training are underlined. Structure-free and Structure-based methods are colored blue and red.

Feature Noise Structural Noise Adversarial Structural Noise
Dataset Method Test Acc. ↑ Perf. Drop ↓ Test Acc. ↑ Perf. Drop ↓ Test Acc. ↑ Perf. Drop ↓

Whole 64.07 11.75% 57.63 20.62% 53.90 25.76%

GCond 64.06 7.63% 65.64 5.35% 66.19 4.55%
GCondX 61.27 10.40% 60.42 11.65% 60.75 11.15%Citeseer 1.8%

GEOM 58.77 19.53% 51.41 29.60% 57.94 20.67%

Whole 74.77 8.26% 72.13 11.49% 66.63 18.24%

GCond 67.62 16.04% 63.14 21.61% 68.90 14.45%
GCondX 67.72 13.85% 63.95 18.63% 69.24 11.91%Cora 2.6%

GEOM 49.68 40.01% 53.59 35.29% 66.32 19.93%

Whole 46.68 1.51% 42.60 10.13% 44.44 6.24%

GCond 46.29 1.49% 46.97 0.04% 43.90 6.58%
GCondX 45.60 2.11% 46.19 0.83% 42.00 9.83%Flickr 1%

GEOM 45.38 1.63% 45.52 1.32% 44.72 3.06%

graph. (3) Adversarial Structural Noise: We employ PR-BCD (Geisler et al., 2021), a scalable
adversarial noise using Projected Gradient Descent (PGD). In transductive settings, we apply both
poisoning and evasion corruptions, which affects both the training and test phases of the graph. The
perturbation rates are set to 50% for feature and structural noise and 25% for adversarial structural
noise, respectively. Each corruption is repeated three times, producing three distinct corrupted graphs.
We then evaluate and report the average performance across these graphs.

Obs. 5: GC methods exhibit a certain level of denoising ability against structural noise, with
structure-based approaches offering superior denoising compared to structure-free ones. As
shown in Table 3, GC methods outperform GCN trained on the whole corrupted graph in the two
structural noises, but GC does not show denoising ability against feature noise. For example, GC
methods achieve the highest Test Acc. across three datasets under structural noise but fall short
when dealing with feature noise. This suggests that GC methods are more effective at handling
structural denoising than feature denoising. Additionally, the state-of-the-art methods GEOM and the
structure-free version of GCond, GCondX show lower performance compared to GCond after being
corrupted, indicating that structure-free methods lose some denoising ability if they do not synthesize
the structure. While GC can mitigate some noise, it still lacks specialized denoising mechanisms to
achieve stronger denoising capabilities, presenting a potential direction for future work.

4.5 NEURAL ARCHITECTURE SEARCH

Table 4: NAS evaluation. The best result is in bold.
The runner-up is underlined. The worst is colored red.

Random K-Center GCondX SFGC GEOM GCond DosCond MSGC Whole
Top 1 (%) 81.88 81.74 81.49 82.42 82.19 81.82 81.91 82.40 82.51
Acc. Corr. 0.56 0.47 0.40 0.72 0.65 0.70 0.14 0.71 -
Rank Corr. 0.64 0.60 0.57 0.71 0.74 0.66 0.20 0.78 -

As a key application of GC, we evaluate the
performance of NAS using three commonly-
used metrics: Top 1 test accuracy, correla-
tion between validation set accuracies, and
correlation between ranks of validation set
accuracies of the condensed graph and the
whole graph. We use the Pearson coefficient (Cohen et al., 2009) to quantify the correlation. We con-
duct NAS with APPNP, a flexible GNN model whose structure can vary by using a different number
of propagation layers, residual coefficients, etc. More details are provided in the Appendix A.7.

Obs. 6: Trajectory matching or inner optimization is essential for reliable NAS effectiveness.
The results in Table 4 demonstrate that: (1) GC methods demonstrate a strong potential to identify

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Ran
do

m

KCen
ter

Ave
rag

ing

GCon
dX

GEOM
SFGC

GCon
d

Dos
Con

d
SGDD

MSGC

75
80
85
90
95

100
105

R
el

at
iv

e
A

cc
 (%

)

(a) Cora r=2.6%
Ran

do
m

KCen
ter

Ave
rag

ing

GCon
dX

GEOM
SFGC

GCon
d

Dos
Con

d
SGDD

MSGC
75

80

85

90

95

(b) Arxiv r=0.5%
Ran

do
m

KCen
ter

Ave
rag

ing

GCon
dX

GEOM
SFGC

GCon
d

Dos
Con

d
SGDD

MSGC
40
50
60
70
80
90

100

(c) Reddit r=0.1%

GCN SGC APPNP Cheby GraphSage GAT

Figure 4: Condensed graph performance evaluated by different GNNs. The relative accuracy refers
to the accuracy preserved compared to training on the whole dataset.

the best architectures, sometimes even outperforming the results obtained from the original dataset.
(2) Methods utilizing trajectory matching demonstrate strong results in NAS. (3) Models without
inner optimization during the condensation process, such as DosCond, yield poor NAS performance,
with a Pearson correlation coefficient below 0.6. Given that methods employing trajectory matching
or inner optimization tend to achieve better NAS results, we hypothesize that explicitly mimicking
the training trajectory of GNNs is critical for effective NAS.

4.6 TRANSFERABILITY

We conduct extensive experiments assessing the performance of condensed graphs on six widely-used
GNN models: GCN (Kipf and Welling, 2016), SGC (Wu et al., 2019b), APPNP (Gasteiger et al.,
2018), Cheby (Defferrard et al., 2016), GraphSage (Hamilton et al., 2017) and GAT (Veličković
et al., 2018). We tune hyperparameters for these evaluation GNN models, with the search space for
hyperparameters and sensitivity analysis listed in Appendix A.6. To simplify, we fix the reduction
ratios at 2.6%, 0.5%, and 0.1% for Cora, Arxiv and Reddit, respectively.

Obs. 7: Different GC methods exhibit varying degrees of transferability across datasets, leaving
considerable room for improvement in this area. From Figure 4 we can observe that (1) there
is no significant performance loss for the majority of cases when condensed graphs are transferred
to various GNNs. This highlights the success of GC methods, which typically only use GCN or
SGC for condensation. (2) However, for some methods such as DosCond and SGDD, GAT performs
much worse than other GNNs. We conjecture this is because GAT is more structure-sensitive and can
only leverage the connection information instead of the edge weights. (3) We also investigate the
transferability to Graph Transformer (Wu et al., 2023) in Appendix A.6. However, the performance of
Graph Transformer drops a lot, which suggests that future research should explore the transferability
to non-GNN graph learning architectures.

Obs. 8: Trajectory matching or inner optimization facilitates transferability. GEOM and SFGC
achieve significantly better performance than GCondX. Similarly, GCond outperforms DosCond.
These two phenomena indicate that trajectory matching or inner optimization is key to improving
transferability. We conjecture these two designs introduce additional inductive biases related to the
backbone models used in the condensation process, which likely benefit all message-passing GNNs.

4.7 DATA INITIALIZATION

To study the impact of different data initialization strategies, we equip 5 GC methods with 5 ini-
tialization strategies across all datasets. Obs. 9: Current initialization strategies do not have a
consistent impact across all datasets or GC methods. Figure 5 illustrates that there is no single
best data initialization method for every GC method or dataset. Notably, KCenter is the average best
initialization method for most datasets. Averaging is a very unstable strategy, especially for large
datasets, and it only works in rare cases. We conclude that GC methods do not need to be consistently
good with different initialization strategies. Therefore, we recommend treating initialization strategies
as hyperparameters in future studies. Obs. 10: Better coreset selection methods do not guarantee
better GC initialization. When we compare Figure 5 with coreset and coarsening columns in Table 9,
we find that the best one, Herding, is not necessarily the best data initialization method for GC. This
finding cautions that future research should carefully combine different graph reduction methods, as
various GC methods may not complement each other effectively.

4.8 GRAPH PROPERTY PRESERVATION

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

GCondX

DosCond
GCond

MSGC
GEOM

78

80

82
Te

st
in

g
A

cc
ur

ac
y

(%
)

(a) Cora r=2.6%
GCondX

DosCond
GCond

MSGC
GEOM

62.5

65.0

67.5

70.0

72.5

(b) Citeseer r=1.8%
GCondX

DosCond
GCond

MSGC
GEOM

60

65

70

(c) Arxiv r=0.5%
GCondX

DosCond
GCond

MSGC
GEOM

40

42

44

46

(d) Flickr r=1%
GCondX

DosCond
GCond

MSGC
GEOM

75

80

85

90

(e) Reddit r=0.1%

Random Averaging KCenter Herding

Figure 5: Test accuracy for different methods with different initialization.

Table 5: Graph properties of condensed graphs on Cora.
Graph Property VNG GCond MSGC SGDD Avg. Whole

Density% Cora 52.17 82.28 22.00 100.00 64.11 0.14
(Structure) Corr. -0.81 0.07 0.55 0.13 -0.02 -

Max Eigenvalue Cora 3.73 34.90 1.69 14.09 13.60 169.01
(Spectra) Corr. 0.85 0.25 0.95 0.28 0.58 -

DBI Cora 3.69 1.84 0.70 4.34 2.64 9.28
(Label & Feature) Corr. 0.81 0.93 0.94 0.97 0.91 -

DBI-AGG Cora 3.59 0.38 0.57 0.18 1.18 4.67
(Label & Feat. & Stru.) Corr. 0.99 0.93 0.95 0.89 0.94 -

Homophily Cora 0.14 0.16 0.19 0.13 0.16 0.81
(Label & Structure) Corr. -0.83 -0.68 -0.46 -0.80 -0.69 -

We explore the relationship between graph prop-
erty preservation and structure-based GC meth-
ods. We calculate the metrics related to different
graph properties for the condensed graph. For
MSGC, we calculate the average results.

Obs. 11: Only the properties related to node
features and aggregated features, i.e., DBI
and DBI-AGG, are relatively preserved in
condensed graphs. Despite examining various
graph-size-agnostic graph properties, our results
in Table 5 show that none of the absolute values tend to be preserved. Consequently, we resort to
the Pearson correlation between metrics in the original and condensed graphs. From the results, we
can conclude that only DBI and DBI-AGG are relatively preserved, as they have average correlation
coefficients of 0.91 and 0.94. Therefore, we suggest that researchers explicitly preserve these two
properties to potentially bolster performance. Notably, we observed that MSGC preserves the maxi-
mum eigenvalue up to 0.94. As further evidence, the latest method, GDEM (Liu et al., 2023b), focuses
on learning to preserve eigenvectors, supporting the idea that maintaining spectral properties may be
beneficial. In contrast, Density appears to be the least important property to preserve among these GC
methods. Additionally, we observe that a homophilous graph is often condensed into a heterophilous
graph while still achieving high performance. This finding suggests that the relationship between
GNN performance and homophily (Zheng et al., 2022; Zhu et al., 2020b) need to be reconsidered.

5 CONCLUSION AND OUTLOOK

This paper establishes the first benchmark for GC methods with multi-dimension evaluation, providing
novel insights on privacy preservation, denoising ability, and design choices of current GC methods.
The findings from our experimental results inspire the following future directions:

(1) Better performance and scalability. Future work can focus on closing the gap between GC
methods and whole dataset training, and scaling to larger datasets and higher reduction rates.

(2) Comprehensive Privacy Preservation. Future work can exploit the privacy preservation advan-
tage of GC methods to synthesize graphs that safeguard additional types of privacy.

(3) Stronger Denoising Ability. Future work can further explore the denoising ability of graph
condensation methods under diverse settings, such as feature attacks and out-of-distribution
(OOD) and develop techniques to enhance their robustness. Furthermore, it would also be of
interest to incorporate GNN defense methods to enhance the denoising ability of GC methods.

(4) Leveraging coreset selection or coarsening. Future work can combine powerful coreset selec-
tion and graph coarsening methods, making GC competitive in both efficiency and performance.

Limitations. We anticipate that our benchmark and insights will contribute to progress in the field and
encourage the development of more practical GC methods going forward. However, GC-Bench is not
without limitations and some areas of benchmarking can be further explored. These include examining
the effectiveness of other privacy techniques such as Differential Privacy (Ponomareva et al., 2023),
evaluating denoising ability against other types of attacks, measuring NAS effectiveness in larger
architecture spaces such as Graph Design Space (You et al., 2020), examining the transferability
of condensed knowledge to various domains and downstream tasks, and identifying and preserving
certain graph properties to improve performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for
materials science and chemistry. Communications Materials, 3(1):93, 2022.

Zhichun Guo, Bozhao Nan, Yijun Tian, Olaf Wiest, Chuxu Zhang, and Nitesh V Chawla. Graph-based
molecular representation learning. International Joint Conference on Artificial Intelligence, 2023.

Hao Wang, Jiaxin Yang, and Jianrong Wang. Leverage large-scale biological networks to decipher
the genetic basis of human diseases using machine learning. Artificial Neural Networks, pages
229–248, 2021.

Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph neural
networks in epidemic modeling. Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2024a.

Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. Collaboration-aware graph convolutional network
for recommender systems. In Proceedings of the ACM Web Conference 2023, 2023a.

Kaize Ding, Albert Jiongqian Liang, Bryan Perozzi, Ting Chen, Ruoxi Wang, Lichan Hong, Ed H
Chi, Huan Liu, and Derek Zhiyuan Cheng. Hyperformer: Learning expressive sparse feature
representations via hypergraph transformer. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 2062–2066, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019a.

Jiajun Zhou, Zhi Chen, Min Du, Lihong Chen, Shanqing Yu, Guanrong Chen, and Qi Xuan. Ro-
bustecd: Enhancement of network structure for robust community detection. IEEE Transactions
on Knowledge and Data Engineering, 35(1):842–856, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In International Conference on Learning Representations, 2022a. URL
https://openreview.net/forum?id=WLEx3Jo4QaB.

Shichang Zhang, Atefeh Sohrabizadeh, Cheng Wan, Zijie Huang, Ziniu Hu, Yewen Wang, Jason
Cong, Yizhou Sun, et al. A survey on graph neural network acceleration: Algorithms, systems,
and customized hardware. arXiv preprint arXiv:2306.14052, 2023.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark.
Advances in Neural Information Processing Systems, 35:810–822, 2022.

Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash, and Wei Jin. A com-
prehensive survey on graph reduction: Sparsification, coarsening, and condensation. International
Joint Conference on Artificial Intelligence (IJCAI), 2024.

Xinyi Gao, Junliang Yu, Wei Jiang, Tong Chen, Wentao Zhang, and Hongzhi Yin. Graph condensation:
A survey. arXiv preprint arXiv:2401.11720, 2024.

11

https://openreview.net/forum?id=WLEx3Jo4QaB

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Hongjia Xu, Liangliang Zhang, Yao Ma, Sheng Zhou, Zhuonan Zheng, and Bu Jiajun. A survey on
graph condensation. arXiv preprint arXiv:2402.02000, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pages
6861–6871. PMLR, 2019b.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Qiying Pan, Ruofan Wu, LIU Tengfei, Tianyi Zhang, Yifei Zhu, and Weiqiang Wang. Fedgkd:
Unleashing the power of collaboration in federated graph neural networks. In NeurIPS 2023
Workshop: New Frontiers in Graph Learning, 2023.

Mucong Ding, Xiaoyu Liu, Tahseen Rabbani, Teresa Ranadive, Tai-Ching Tuan, and Furong Huang.
Faster hyperparameter search for gnns via calibrated dataset condensation. 2022.

Noveen Sachdeva and Julian McAuley. Data distillation: A survey. Transactions on Machine
Learning Research, 2023.

Yilun Liu, Ruihong Qiu, and Zi Huang. Gcondenser: Benchmarking graph condensation. arXiv
preprint arXiv:2405.14246, 2024b.

Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou, Hao Peng, Jianxin
Li, and Philip S Yu. Gc-bench: An open and unified benchmark for graph condensation. arXiv
preprint arXiv:2407.00615, 2024.

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 720–730, 2022b.

Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, and
Yang You. Navigating complexity: Toward lossless graph condensation via expanding window
matching. arXiv preprint arXiv:2402.05011, 2024a.

Jian Gao and Jianshe Wu. Multiple sparse graphs condensation. Knowledge-Based Systems, 278:
110904, 2023.

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin
Li. Does graph distillation see like vision dataset counterpart? Advances in Neural Information
Processing Systems, 36, 2024.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4750–4759, 2022.

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
Advances in Neural Information Processing Systems, 36, 2024.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient dataset
distillation by representative matching. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 17314–17324, 2023a.

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with structure-based
neural tangent kernel. arXiv preprint arXiv:2310.11046, 2023b.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems, 32, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Yang Liu, Deyu Bo, and Chuan Shi. Graph condensation via eigenbasis matching. arXiv preprint
arXiv:2310.09202, 2023b.

Mucong Ding, Yinhan He, Jundong Li, and Furong Huang. Spectral greedy coresets for graph neural
networks. arXiv preprint arXiv:2405.17404, 2024.

Linfeng Cao, Haoran Deng, Chunping Wang, Lei Chen, and Yang Yang. Graph-skeleton:˜ 1% nodes
are sufficient to represent billion-scale graph. arXiv preprint arXiv:2402.09565, 2024.

Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering. In
Proceedings of the twenty-first annual symposium on Computational geometry, pages 126–134,
2005.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th annual international
conference on machine learning, pages 1121–1128, 2009.

Si Si, Felix Yu, Ankit Singh Rawat, Cho-Jui Hsieh, and Sanjiv Kumar. Serving graph compression
for graph neural networks. In The Eleventh International Conference on Learning Representations,
2022.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural
networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pages 675–684, 2021.

Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying privacy leakage in graph embed-
ding. In MobiQuitous 2020-17th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, pages 76–85, 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 20(55):1–21, 2019.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang.
A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing
Surveys (CSUR), 54(4):1–34, 2021.

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, (2):224–227, 1979.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020a.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8, page 1, 2012.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review networks
and metadata. In Proceedings of the 21th acm sigkdd international conference on knowledge
discovery and data mining, pages 985–994, 2015.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. Advances in Neural Information
Processing Systems, 34:7637–7649, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech processing,
pages 1–4, 2009.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph representations.
In Advances in Neural Information Processing Systems, 2023.

Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S Yu, and Shirui Pan. Graph
neural networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020b.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan
McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml:
A practical guide to machine learning with differential privacy. Journal of Artificial Intelligence
Research, 77:1113–1201, 2023.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances in
Neural Information Processing Systems, 33:17009–17021, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Amy N Langville and Carl D Meyer. Deeper inside pagerank. Internet Mathematics, 1(3):335–380,
2004.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bring order to the web. In Proc. of the 7th International World Wide Web Conf, 1998.

Arthur L Liestman and Thomas C Shermer. Additive graph spanners. Networks, 23(4):343–363,
1993.

Yilun Liu, Ruihong Qiu, and Zi Huang. Cat: Balanced continual graph learning with graph condensa-
tion. In 2023 IEEE International Conference on Data Mining (ICDM), pages 1157–1162. IEEE,
2023c.

Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, S Yu Philip, and
Tyler Derr. A survey on privacy in graph neural networks: Attacks, preservation, and applications.
IEEE Transactions on Knowledge and Data Engineering, 2024b.

Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chee-Kong Lee, and Enhong Chen. Model inversion
attacks against graph neural networks. IEEE Transactions on Knowledge and Data Engineering,
35(9):8729–8741, 2022.

Neil Zhenqiang Gong and Bin Liu. Attribute inference attacks in online social networks. ACM
Transactions on Privacy and Security (TOPS), 21(1):1–30, 2018.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks
and defenses. arXiv preprint arXiv:2005.06149, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang, Xiang Wang, and
Xiangnan He. Exgc: Bridging efficiency and explainability in graph condensation. In Proceedings
of the ACM on Web Conference 2024, pages 721–732, 2024.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A APPENDIX

A.1 COMPARISON WITH CONCURRENT WORKS

To better illustrate the differences of scope and details of our benchmark and others, we create the
table below:

Table 6: Comparison between our GC4NC and two concurrent works. "OOM" means if the benchmark
explore when the GC methods report out-of-memory error. In "Impact of Initialization", new strategy
means the initialization is not served as one baseline methods (coreset or coarsening).
Benchmark Scope GCondenser (Liu et al., 2024b) GC-Bench (Sun et al., 2024) GC4NC
Methods

Coreset & Sparsification Random, KCenter Random, KCenter, Herding Cent-D, Cent-P, Random,
KCenter, Herding, TSpanner

Coarsening - - Averaging, VNG, Clustering, VN
Condensation ↓

Gradient Matching GCond, DosCond, SGDD GCond, DosCond, SGDD GCond, DosCond, SGDD, MSGC
Trajectory Matching SFGC SFGC, GEOM SFGC, GEOM
Others GCDM, DM, GDEM GCDM, DM, KiDD, Mirage GCDM, GDEM, GCSNTK

Datasets Cora, Citeseer, Pubmed,
Arxiv, Flickr, Reddit

Cora, Citeseer, Arxiv,
Flickr, Reddit, Yelp, Amazon
DBLP, ACM, NCI1, DD,
ogbg-molbace ogbg-molbbbp,
ogbg-molhiv

Cora, Citeseer, Pubmed,
Arxiv, Flickr, Reddit, Yelp

Tasks Node classification Node classification, link prediction,
node clustering, graph classification Node classification

Evaluation Protocols
Performance on standard condensation rate ✓ ✓ ✓
Efficiency & Scalability Time Time, Memory, OOM Time, Memory, Disk Space, OOM
Transferability Cross-model Cross-model (include GraphTransformer), cross-task Cross-model (include GraphTransformer)
Privacy preservation - - ✓
Denoising Ability - - ✓
Neural Architecture Search - - ✓
Continual learning ✓ - -

Impact of inner mechanism
Impact of if synthesizing the structure ✓ ✓ ✓
Impact of Initialization 2 new and 1 coreset strategies 5 new strategies 5 coreset and coarsening strategies
Impact of validators ✓ - -
Graph properties - ✓ ✓

From this table, our contributions are evident. First, we incorporate a broader range of traditional
coreset and coarsening methods, along with additional condensation methods focused on node
classification (NC). Second, we provide a more comprehensive analysis of efficiency and scalability,
including disk space considerations. Third, we explore the application of GC methods in terms of
privacy preservation and denoising effects. Finally, our data initialization aligns with the coreset and
coarsening methods, resulting in elegant, reusable code and enabling a preliminary trial of multi-layer
condensation.

Table 6 may also show some limitations of our benchmark, though most of these stem from differences
in opinion and focus. (1) As our title suggests, GC4NC is primarily a benchmark for NC, since the
majority (approximately 90%) of condensation papers have concentrated on this task. That’s also
why we have fewer datasets compared to GC-Bench. (2) We argue that the condensation model
and validator can be viewed as hyperparameters, similar to how methods like GEOM approach it.
Therefore, we do not study the impact of them as they are just selected by datasets. (3) With regard
to another important application, Continual Learning (CL), Gcondenser (Liu et al., 2024b) points
out that many existing methods, including GDEM, SFGC, and GEOM, are incompatible with graph
continual learning frameworks. This somewhat lowers the priority of CL as they are most competitive
ones.

A.2 DATASETS

We evaluate all the methods on four transductive datasets: Cora, Citeseer, Pubmed and Arxiv, and
three inductive datasets: Flickr, Reddit and Yelp. The reduction rate is calculated by (number of
nodes in condensed graph) / (number of nodes in training graph). Specifically, the training graph is
defined as the whole graph in transductive datasets, and only the training set for inductive datasets.
Dataset statistics are shown in Table 7.

For the choices of reduction rate r, we divide the discussion into two parts: for transductive datasets
(i.e. Citeseer, Cora and Arxiv), their training graph is the whole graph. For Citeseer and Cora, since
their labeling rates of training graphs are very small (3.6% and 5.2%, respectively), we choose r to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 7: Datasets Statistics
Dataset #Nodes #Edges #Classes #Features #Training/Validation/Test

Citeseer 3,327 4,732 6 3,703 120/500/1000
Cora 2,708 5,429 7 1,433 140/500/1000
Pubmed 19,717 88,648 3 500 60/500/1000
Arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603

Flickr 89,250 899,756 7 500 44,625/22,312/22,313
Reddit 232,965 57,307,946 210 602 15,3932/23,699/55,334
Yelp 45,954 3,846,979 2 32 36,762/4,596/4,596

be {10%, 25%, 50%} of the labeling rate. For Arxiv, the labeling rate is 53% and we choose r to be
{1%, 5%, 10%} of the labeling rate; for inductive datasets (i.e. Flickr, Reddit and Yelp), the nodes of
their training graphs are all labeled (labeling rate is 100%). Thus, the fraction of labeling rate is equal
to the final reduction rate r. The labeling rate, fraction of labeling rate and final reduction rate r of
each dataset are shown in Table 8.

Table 8: Explanation of Reduction Rate under transductive and inductive settings
Dataset Labeling Rate Reduction Rate of Labeled Nodes Reduction Rate r

Citeseer
10% 0.36%

3.6% 25% 0.9%
50% 1.8%

Cora
10% 0.5%

5.2% 25% 1.3%
50% 2.6%

Pubmed
1% 0.3%

0.3% 10% 3%
50% 15%

Arxiv
1% 0.05%

53% 5% 0.25%
10% 0.5%

Flickr
0.1% 0.1%

100% 0.5% 0.5%
1% 1%

Reddit
0.05% 0.05%

100% 0.1% 0.1%
0.2% 0.2%

Yelp
0.05% 0.05%

100% 0.1% 0.1%
0.2% 0.2%

A.3 IMPLEMENTATION DETAILS

Since the node selection of Random, KCenter, and Herding varies too much in each random seed, we
run these three methods three times, and all the results in Table 1 represent the average performance.
We conduct all the experiments on a cluster mixed with NVIDIA A100, V100, K80 and RTX3090
GPUs. Notably, GDEM can only be reproduced by RTX3090 with their provided eigendecomposition.
We use Pytorch (modified BSD license) and PyG (Fey and Lenssen, 2019) (MIT license) to reproduce
all those methods in a user-friendly and unified way.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.4 PERFORMANCE AND SCALABILITY

Table 9 provides the complete average accuracy with the standard deviation of 10 runs results. We
also append two coreset selection baselines first introduced by Cao et al. (2024): Cent-D selects
nodes based on their degree, prioritizing those with the highest connectivity. Cent-P (Langville
and Meyer, 2004) selects nodes with high PageRank (Page et al., 1998) values, prioritizing those
that are more central and influential in the graph structure. We also explore the potential of one
traditional sparsification method called TSpanner (Liestman and Shermer, 1993) which only reduces
the number of edges and preserves the shortest distance property. Note that due to the reproducibility
challenges of GDEM on larger datasets in our experiments, we have focused on its performance with
the three small datasets and have not included it in the main content.

Table 9: Test accuracy and standard error of each graph reduction method across different datasets
and three representative reduction rates for each dataset. The best and second-best results, excluding
the whole graph training results, are marked in bold and underlined, respectively.
Dataset Reduction

rate (%)
Coreset & Sparsification Coarsen Condensation

WholeStructure-free Structure-based

Cent-D Cent-P Random Herding K-Center TSpanner Averaging VN VNG GEOM SFGC GCSNTK GCDMX GCondX GCond DosCond MSGC SGDD GDEM

Citeseer
0.36 42.86 ± 2.7 37.78 ± 1.3 35.37 ± 2.8 43.73 ± 1.6 41.43 ± 1.4 71.83 ± 0.3 69.75 ± 0.6 34.32 ± 5.9 66.14 ± 0.3 67.61 ± 0.7 66.27 ± 0.8 63.51 ± 1.9 70.65 ± 0.5 67.79 ± 0.7 70.05 ± 2.1 69.41 ± 0.8 60.24 ± 6.0 71.87 ± 0.6 67.88 ± 1.8

72.60.90 58.77 ± 0.5 52.83 ± 0.4 50.71 ± 0.8 59.24 ± 0.4 51.15 ± 1.1 71.62 ± 0.4 69.59 ± 0.5 40.14 ± 5.3 66.07 ± 0.4 70.70 ± 0.5 70.27 ± 0.7 62.91 ± 0.8 71.27 ± 0.6 69.69 ± 0.5 69.15 ± 1.2 70.83 ± 0.4 72.08 ± 0.7 70.52 ± 0.6 70.13 ± 1.1

1.80 62.89 ± 0.4 63.37 ± 0.4 62.62 ± 0.6 66.66 ± 0.5 59.04 ± 0.9 71.60 ± 0.4 69.50 ± 0.6 41.98 ± 7.0 65.34 ± 0.6 73.03 ± 0.3 72.36 ± 0.5 63.90 ± 3.4 72.08 ± 0.2 68.38 ± 0.5 69.35 ± 0.8 72.18 ± 0.6 72.21 ± 0.4 69.65 ± 1.7 71.74 ± 0.9

Cora
0.50 57.79 ± 1.7 58.44 ± 1.7 35.14 ± 2.5 51.68 ± 2.1 44.64 ± 4.4 79.79 ± 0.4 75.94 ± 0.7 24.62 ± 5.7 70.40 ± 0.6 78.14 ± 0.5 75.11 ± 2.2 71.58 ± 0.9 79.21 ± 0.4 79.74 ± 0.5 80.17 ± 0.8 80.65 ± 0.6 80.54 ± 0.3 80.15 ± 0.5 54.76 ± 4.5

81.51.30 66.45 ± 2.2 66.38 ± 1.7 63.63 ± 1.3 68.99 ± 0.7 63.28 ± 1.4 80.84 ± 0.3 75.87 ± 0.6 51.07 ± 5.8 74.48 ± 0.5 82.29 ± 0.6 79.55 ± 0.3 71.22 ± 2.6 80.26 ± 0.3 78.67 ± 0.4 80.81 ± 0.5 80.85 ± 0.4 80.98 ± 0.5 80.29 ± 0.8 72.87 ± 1.8

2.60 75.79 ± 0.7 75.64 ± 1.6 72.24 ± 0.6 73.77 ± 0.9 70.55 ± 1.4 80.41 ± 0.3 75.76 ± 1.1 56.75 ± 5.4 76.03 ± 0.4 82.82 ± 0.2 80.54 ± 0.5 73.34 ± 0.6 80.68 ± 0.3 78.60 ± 0.3 80.54 ± 0.7 81.15 ± 0.5 80.94 ± 0.4 81.04 ± 0.5 81.76 ± 0.5

Pubmed
0.02 56.16 ± 2.6 57.28 ± 1.2 49.46 ± 1.6 62.91 ± 1.5 79.18 ± 0.2 62.91 ± 1.5 74.09 ± 0.6 75.60 ± 0.4 75.60 ± 0.4 69.64 ± 1.4 67.61 ± 2.0 29.45 ± 10.9 77.62 ± 0.2 72.03 ± 1.6 77.36 ± 0.7 58.13 ± 2.2 75.25 ± 0.7 78.11 ± 0.3 77.52 ± 0.7

78.60.03 55.61 ± 1.6 62.50 ± 1.0 56.10 ± 1.8 69.28 ± 1.6 65.59 ± 2.4 79.39 ± 0.3 75.60 ± 0.4 74.09 ± 0.6 75.72 ± 0.3 76.21 ± 0.7 66.89 ± 3.3 68.37 ± 3.0 76.63 ± 1.2 72.05 ± 1.6 78.05 ± 0.3 52.70 ± 0.3 78.26 ± 0.3 78.07 ± 0.3 78.05 ± 1.3

0.15 71.95 ± 0.5 73.35 ± 0.4 71.84 ± 0.7 75.53 ± 0.4 74.00 ± 0.2 78.39 ± 0.2 75.60 ± 0.4 73.68 ± 1.6 77.53 ± 0.5 78.49 ± 0.2 67.61 ± 4.1 69.89 ± 2.2 77.48 ± 0.5 71.97 ± 0.5 76.46 ± 0.5 76.45 ± 0.1 78.20 ± 0.2 75.95 ± 0.3 78.76 ± 1.1

Arxiv
0.05 32.88 ± 2.7 36.48 ± 2.0 50.39 ± 1.4 51.49 ± 0.7 50.52 ± 0.5 - 59.62 ± 0.4 OOM 54.89 ± 0.3 64.91 ± 0.4 64.91 ± 0.5 58.21 ± 1.7 60.04 ± 0.4 59.40 ± 0.5 60.49 ± 0.4 55.70 ± 0.3 57.66 ± 0.4 58.50 ± 0.2 -

71.40.25 48.85 ± 1.1 47.90 ± 0.9 58.92 ± 0.8 58.00 ± 0.5 55.28 ± 0.6 - 59.96 ± 0.3 OOM 59.66 ± 0.2 68.78 ± 0.1 66.58 ± 0.3 59.98 ± 1.7 60.59 ± 0.4 62.46 ± 0.3 63.88 ± 0.2 57.39 ± 0.2 64.85 ± 0.3 59.18 ± 0.2 -
0.50 52.01 ± 0.5 55.65 ± 0.5 60.19 ± 0.5 57.70 ± 0.2 58.66 ± 0.4 - 59.94 ± 0.3 OOM 60.93 ± 0.2 69.59 ± 0.2 67.03 ± 0.5 54.73 ± 5.0 60.71 ± 0.7 59.93 ± 0.5 64.23 ± 0.2 61.06 ± 0.6 65.73 ± 0.2 63.76 ± 0.2 -

Flickr
0.10 40.70 ± 0.4 40.97 ± 0.9 42.94 ± 0.3 42.80 ± 0.1 43.01 ± 0.5 - 37.93 ± 0.3 32.77 ± 5.7 44.33 ± 0.3 47.15 ± 0.1 46.38 ± 0.2 41.85 ± 3.1 43.75 ± 0.3 46.66 ± 0.1 46.75 ± 0.1 45.87 ± 0.3 46.21 ± 0.1 46.69 ± 0.1 -

47.40.50 42.90 ± 0.3 44.06 ± 0.3 44.54 ± 0.5 43.86 ± 0.5 43.46 ± 0.8 - 37.76 ± 0.4 33.79 ± 5.2 43.30 ± 0.6 46.71 ± 0.2 46.38 ± 0.2 33.39 ± 6.0 45.05 ± 0.3 46.69 ± 0.1 47.01 ± 0.2 45.89 ± 0.3 46.77 ± 0.1 46.39 ± 0.2 -
1.00 42.62 ± 0.2 44.51 ± 0.3 44.68 ± 0.6 45.12 ± 0.4 43.53 ± 0.6 - 37.66 ± 0.3 34.39 ± 6.0 43.84 ± 0.8 46.13 ± 0.2 46.61 ± 0.1 31.12 ± 4.2 45.88 ± 0.1 46.58 ± 0.1 46.99 ± 0.1 45.81 ± 0.1 46.12 ± 0.2 46.24 ± 0.3 -

Reddit
0.05 40.00 ± 1.1 45.83 ± 1.7 40.13 ± 0.9 46.88 ± 0.4 40.24 ± 0.8 - 88.23 ± 0.1 OOM 69.96 ± 0.5 90.63 ± 0.2 90.18 ± 0.2 OOM 87.28 ± 0.2 86.56 ± 0.2 85.39 ± 0.2 86.56 ± 0.4 87.62 ± 0.1 87.37 ± 0.2 -

94.40.10 50.47 ± 1.4 51.22 ± 1.4 55.73 ± 0.5 59.34 ± 0.7 48.28 ± 0.7 - 88.32 ± 0.1 OOM 76.95 ± 0.2 91.33 ± 0.1 89.84 ± 0.3 OOM 89.96 ± 0.1 88.25 ± 0.3 89.82 ± 0.1 88.32 ± 0.2 88.15 ± 0.1 88.73 ± 0.3 -
0.20 55.31 ± 1.8 61.56 ± 0.2 58.39 ± 2.3 73.46 ± 0.5 56.81 ± 1.7 - 88.33 ± 0.1 OOM 81.52 ± 0.6 91.03 ± 0.3 90.71 ± 0.1 OOM 89.08 ± 0.1 88.73 ± 0.2 90.42 ± 0.1 88.84 ± 0.2 87.03 ± 0.1 90.65 ± 0.1 -

Yelp
0.05 48.67 ± 0.3 46.81 ± 0.1 46.08 ± 0.0 46.08 ± 0.0 46.07 ± 0.0 - 55.04 ± 0.1 51.52 ± 1.6 49.24 ± 0.1 52.80 ± 2.2 46.20 ± 0.1 OOM 50.75 ± 0.4 52.44 ± 0.4 52.30 ± 0.1 51.10 ± 0.3 52.94 ± 0.2 52.02 ± 0.2 -

58.20.10 51.03 ± 0.1 46.08 ± 0.0 46.28 ± 0.1 52.23 ± 0.3 46.22 ± 0.0 - 53.51 ± 0.8 51.68 ± 1.0 47.33 ± 0.5 47.56 ± 0.2 47.96 ± 0.0 OOM 52.49 ± 0.1 49.70 ± 1.5 53.22 ± 0.1 52.54 ± 0.1 50.97 ± 0.8 54.13 ± 0.2 -
0.20 46.08 ± 0.0 46.08 ± 0.0 49.31 ± 0.4 47.49 ± 0.1 46.85 ± 0.2 - 54.42 ± 0.3 52.63 ± 1.1 48.63 ± 0.4 49.48 ± 0.7 46.70 ± 0.1 OOM 55.89 ± 0.2 48.77 ± 1.3 51.76 ± 0.2 52.19 ± 0.5 51.35 ± 0.5 52.86 ± 0.1 -

Table 10: Experiment results under hyperparameter searching. The search space is shown in
Table 11. The best results, excluding the whole graph training results, are marked in bold.

Dataset Reduction
rate (%)

Coreset & Sparsification Coarsen Condensation
WholeStructure-free Structure-based

Random K-Center Averaging VNG GEOM SFGC GCondX GCond DosCond SGDD

Citeseer
0.36 37.67 ± 2.45 45.11 ± 2.19 69.97 ± 0.36 64.37 ± 1.29 68.90 ± 0.64 66.96 ± 1.47 68.29 ± 1.30 73.63 ± 0.32 69.53 ± 0.65 71.90 ± 0.24

72.60.90 47.13 ± 1.32 55.09 ± 1.14 69.97 ± 0.36 69.37 ± 0.62 73.20 ± 0.35 70.66 ± 0.23 69.73 ± 0.46 70.93 ± 0.51 70.97 ± 0.29 70.10 ± 0.73

1.80 64.21 ± 0.72 62.82 ± 0.78 70.01 ± 0.27 69.35 ± 0.70 74.36 ± 0.30 72.37 ± 0.41 69.19 ± 0.47 70.69 ± 0.47 72.73 ± 0.35 70.11 ± 0.93

Cora
0.50 47.93 ± 0.96 49.92 ± 3.06 76.55 ± 0.91 70.61 ± 0.64 79.03 ± 0.61 76.80 ± 2.18 80.04 ± 0.60 80.63 ± 0.48 80.43 ± 0.72 81.58 ± 0.97

81.811.30 69.54 ± 2.60 63.16 ± 1.37 76.99 ± 0.67 75.72 ± 0.21 83.10 ± 0.41 80.03 ± 0.61 79.22 ± 0.27 81.01 ± 0.50 81.19 ± 0.34 81.24 ± 0.79

2.60 71.70 ± 1.92 72.02 ± 1.21 76.41 ± 1.47 77.19 ± 0.52 83.50 ± 0.43 81.64 ± 0.53 78.98 ± 0.31 81.45 ± 0.46 81.06 ± 0.53 79.80 ± 0.85

Arxiv
0.05 50.29 ± 1.33 49.20 ± 0.35 59.59 ± 0.38 55.36 ± 0.45 64.27 ± 0.12 65.07 ± 0.49 59.63 ± 0.37 55.83 ± 0.68 56.74 ± 0.36 59.13 ± 0.45

71.220.25 59.26 ± 0.45 58.05 ± 0.44 59.94 ± 0.32 61.27 ± 0.19 68.75 ± 0.10 66.63 ± 0.28 62.43 ± 0.31 64.79 ± 0.27 57.56 ± 0.22 56.86 ± 0.42

0.50 62.49 ± 0.75 60.77 ± 0.37 59.93 ± 0.29 64.78 ± 0.13 69.63 ± 0.16 67.43 ± 0.29 60.17 ± 0.54 64.83 ± 0.24 61.26 ± 0.45 61.15 ± 0.20

Flickr
0.10 43.07 ± 0.56 42.68 ± 0.68 44.48 ± 0.64 46.14 ± 0.30 47.14 ± 0.11 46.93 ± 0.25 46.74 ± 0.12 46.63 ± 0.11 45.92 ± 0.19 46.79 ± 0.14

47.40.50 44.86 ± 0.16 44.30 ± 0.38 44.35 ± 0.79 43.23 ± 0.40 47.01 ± 0.17 47.22 ± 0.15 46.76 ± 0.10 47.13 ± 0.14 46.20 ± 0.18 46.38 ± 0.15

1.00 45.63 ± 0.24 44.70 ± 0.47 44.38 ± 0.78 43.97 ± 0.52 46.93 ± 0.24 47.02 ± 0.09 46.63 ± 0.16 46.74 ± 0.15 46.55 ± 0.14 46.54 ± 0.08

Reddit
0.05 40.32 ± 1.20 43.52 ± 2.04 88.65 ± 0.15 71.34 ± 0.34 91.42 ± 0.08 90.18 ± 0.14 86.92 ± 0.26 86.53 ± 0.21 86.66 ± 0.15 87.71 ± 0.20

93.950.10 56.37 ± 2.05 48.97 ± 2.72 88.66 ± 0.15 84.62 ± 0.23 91.57 ± 0.04 89.88 ± 0.19 88.37 ± 0.35 87.81 ± 0.22 88.44 ± 0.15 88.88 ± 0.25

0.20 63.56 ± 1.08 56.27 ± 2.99 88.60 ± 0.34 89.03 ± 0.14 91.57 ± 0.09 90.79 ± 0.09 88.99 ± 0.28 89.80 ± 0.13 88.96 ± 0.23 90.66 ± 0.09

Wins after tune 0 0 0 0 10 3 0 2 0 0
Wins before tune 0 1 0 0 10 0 0 2 1 1

Figure 6 and Figure 7 illustrate the scalability of structure-free and structure-based GC methods
across two datasets. The number of epochs is a hyperparameter for each method. To ensure a fair
comparison, we also record the epoch time for each method. First, structure-free GC methods are
more efficient than structure-based ones, as they generally require less epoch time. Second, different
hyperparameter settings result in varying time costs across datasets. For instance, GEOM employs
soft labels to train GNNs on Cora, which significantly increases the time cost. Third, as the reduction
rate increases, the performance and time costs do not necessarily rise.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.4.1 DETAILS DESCRIPTION FOR TEST ACCURACY VS. TOTAL TIME FIGURE

Figure 1 compares test accuracy (y-axis) and total time (x-axis) for various graph condensation
methods applied to the Arxiv dataset. The methods are distinguished by different marker shapes and
colors: blue stars represent structure-free methods, red circles represent structure-based methods, and
green triangles represent distribution-based methods. The size of each marker indicates the reduction
rate, with smaller markers representing a reduction rate of 0.05%, medium markers 0.25%, and larger
markers 0.50%. Dashed lines connect markers corresponding to the same method across different
reduction rates, illustrating the method’s behavior under varying levels of graph condensation. To
enhance clarity, the name of each method will be positioned near the marker for its respective curve,
ensuring easy identification of methods and their corresponding performance trends.

A.4.2 FURTHER ANALYSIS OF EXPERIMENTAL RESULTS

• Factors Affecting Performance in Arxiv and Reddit. We assume that the imbalanced label distri-
butions in these two datasets are the factors for the performance. Arxiv and Reddit datasets have a
larger number of classes and exhibit significant class imbalance compared to others. Consistent
with most GC works, our implementation ensures at least one instance per class, guaranteeing
representation for each class. However, this approach can cause distribution shifts. In contrast,
datasets like Cora, Citeseer, and Pubmed have more balanced training sets, leading to more stable
performance. This observation highlights the need for improved initialization methods in the GC
field to effectively handle datasets with numerous and imbalanced classes.

• Why Averaging Achieves the Best Performance on Yelp. This performance difference can be
attributed to the characteristics of the Yelp dataset, which is designed for anomaly detection and
evaluated using the F1-macro score. Averaging methods rely only on the average representations of
normal instances and anomalies, resulting in a simple decision boundary that aligns well with the
dataset’s requirements. In contrast, GC methods may struggle due to unbalanced class initialization,
often leading to overfitted decision boundaries for anomalies.

0 10000 20000 30000
Total Time (s)

56

58

60

62

64

66

68

70

Te
st

 A
cc

ur
ac

y
(%

)

GCDM

GCondX

DosCond

SFGC

GEOM

MSGC

GCond

SGDD

0 20 40 60
Epoch Time (s)

54

56

58

60

62

64

66

68

70

Te
st

 A
cc

ur
ac

y
(%

)

GEOM

SFGC

GCondX

GCSNTK

DosCond

GCond

MSGC

SGDD

Reduction Rate
0.5%
0.25%
0.05%

Figure 6: Performance vs. Total Time and Epoch Time on Arxiv.

A.5 PRIVACY PRESERVATION

We focused on a fundamental privacy attack, confidence-based membership inference attack (MIA),
for the following reasons:

We are not merely benchmarking the privacy-preserving properties of existing GC methods but are
also broadening the scope of GC research to encompass critical areas such as privacy and robustness.
This expansion aims to demonstrate the potential of GC methods, inspiring more researchers to
recognize their promise and contribute to this emerging field. Since existing applications of GC
predominantly target Neural Architecture Search (NAS) (Jin et al., 2022a; Ding et al., 2022) and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

5000 10000 15000
Total Time (s)

86

87

88

89

90

91

Te
st

 A
cc

ur
ac

y
(%

)

GEOM
SFGC

GCondXDosCond

GCond

MSGC

SGDD

Reduction Rate
0.2%
0.1%
0.05%

0 10 20 30 40
Epoch Time (s)

86

87

88

89

90

91

Te
st

 A
cc

ur
ac

y
(%

)

SFGC
GEOM

GCondXDosCond

GCond

MSGC

SGDD

Reduction Rate
0.2%
0.1%
0.05%

Figure 7: Performance vs. Total Time and Epoch Time on Reddit.

continual learning (Liu et al., 2023c), we aim to shift the conversation by highlighting their broader
applicability.

To the best of our knowledge, no prior work has empirically validated the privacy-preserving claims
associated with GC. By targeting one of the most fundamental and well-studied privacy attacks,
MIA, our work provides essential, empirical evidence for assessing and understanding the privacy
capabilities of GC. This serves as a preliminary yet foundational step toward establishing a
systematic and rigorous framework for evaluating the privacy guarantees of GC methods. We have
chosen to omit additional privacy attacks for the following reasons:

• Model Inversion Attack (MIvA) (Zhang et al., 2024b): MIvA aims to reconstruct the original
graph and assess attack performance via link prediction tasks. In the context of GC, the condensation
process significantly reduces the number of nodes and reindexes all synthetic nodes. This reduction
diminishes the granularity necessary for accurate link reconstruction, making it difficult for an
attacker to determine specific node connections. Additionally, reindexing disrupts any direct
correspondence between condensed and original nodes, further obfuscating the true link structure.
Instead, we evaluate graph properties in Section 4.8, demonstrating that condensation alters most
graph properties. This suggests that the privacy of graph properties is maintained through the
condensed graph.

• Attribute Inversion Attack (AIA) (Zhang et al., 2022): AIA typically requires datasets with
sensitive attributes, which diverges from the standard datasets in mainstream GNN studies (Zhang
et al., 2022; Gong and Liu, 2018). As a benchmark requiring unifying all baseline methods and
datasets, Incorporating AIA would thus fall outside the scope of our current work.

We believe that our focused approach provides an essential first step toward understanding the privacy
implications of GC methods. We plan to explore additional attack scenarios in future work to further
validate and extend our findings.

A.6 TRANSFERABILITY

A.6.1 HYPERPARAMETERS SEARCHING

For fair evaluation between different architectures, we conduct hyperparameter searching while train-
ing each architecture on the condensed graph. We select the best hyperparameter combinations based
on validation results and report corresponding testing results. The search space of hyperparameters
for each GNN is as follows: Number of hidden units is selected from {64, 256}, learning rate is
chosen from {0.01, 0.001}, weight decay is 0 or 5e-4, dropout rate is 0 or 0.5. For GAT, since we fix
the number of attention heads to 8, to avoid OOM, the number of hidden units is selected from {16,
64} and the search space of dropout rate is in {0.0, 0.5, 0.7}. Additionally, for SGC and APPNP, we

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

also explore the number of linear layers in {1, 2}. For APPNP, we further search for alpha in {0.1,
0.2}.

A.6.2 HYPERPARAMETERS SENSITIVITY ANALYSIS

Figure 8: Hyperparameters Sensitivity Analysis on Condensed Graphs.

0 0.5

60

70

Av
er

ag
e

Ac
c.

 (%
) dropout

64 128 256

hidden

0.001 0.01

lr

2 3 4

nlayers

0 0.0005 0.001

weight_decay

Figure 9: Cora Dataset.

0 0.5
58

60

62

Av
er

ag
e

Ac
c.

 (%
) dropout

64 128 256

hidden

0.001 0.01

lr

2 3 4

nlayers

0 0.0005 0.001

weight_decay

Figure 10: Ogbn-arxiv Dataset.

0 0.5
70

75

80

Av
er

ag
e

Ac
c.

 (%
) dropout

64 128 256

hidden

0.001 0.01

lr

2 3 4

nlayers

0 0.0005 0.001

weight_decay

Figure 11: Reddit Dataset.

To provide additional insights on how varying hyperparameters affect the performance of the GNN
model (e.g. GCN) trained on the whole or the condensed graphs, we further expand the search space
of hyperparameters for GCN as shown in Table 11. The hyperparameter searching results for each
method are shown in Table 10. We compare the winning times differences before and after tuning,
which shows that GC methods that perform better in the main table generally maintain superior
performance after hyperparameter tuning. Notably, methods like GEOM and GCond continue to
outperform others post-tuning, reinforcing the robustness of our initial fixed hyperparameter choices.

Table 11: Hyperparameter Search Space for Sensitivity Analysis
Hyperparameter Values
Number of hidden units {64, 128, 256}
Learning rate {0.01, 0.001}
Number of layers {2, 3, 4}
Weight decay {0, 0.0005, 0.001}
Dropout rate {0, 0.5}

Figure 8 and 12 These figures show that condensed and whole graphs exhibit similar sensitivity
patterns across the Cora, Ogbn-arxiv, and Reddit datasets, suggesting a consistent response to
hyperparameter tuning.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 12: Hyperparameters Sensitivity Analysis on Whole Graphs.

0 0.5

75

80

Av
er

ag
e

Ac
c.

 (%
) dropout

64 128 256

hidden

0.001 0.01

lr

2 3 4

nlayers

0 0.0005 0.001

weight_decay

Figure 13: Cora Dataset.

0 0.5
69

70

Av
er

ag
e

Ac
c.

 (%
) dropout

64 128 256

hidden

0.001 0.01

lr

2 3 4

nlayers

0 0.0005 0.001

weight_decay

Figure 14: Ogbn-arxiv Dataset.

0 0.5

93.00

93.25

93.50

Av
er

ag
e

Ac
c.

 (%
) dropout

64 128 256

hidden

0.001 0.01

lr

2 3 4

nlayers

0 0.0005 0.001

weight_decay

Figure 15: Reddit Dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Ran
do

m

KCen
ter

Ave
rag

ing

GCon
dX

GEOM
SFGC

GCon
d

Dos
Con

d
SGDD

MSGC
W

ho
le

60

65

70

75

80
Te

st
in

g
A

cc
ur

ac
y

(%
)

(a) Cora r=2.6%
Ran

do
m

KCen
ter

Ave
rag

ing

GCon
dX

GEOM
SFGC

GCon
d

Dos
Con

d
SGDD

MSGC
W

ho
le

55

60

65

70

Te
st

in
g

A
cc

ur
ac

y
(%

)

(b) Arxiv r=0.5%
Ran

do
m

KCen
ter

Ave
rag

ing

GCon
dX

GEOM
SFGC

GCon
d

Dos
Con

d
SGDD

MSGC
W

ho
le

40

50

60

70

80

90

Te
st

in
g

A
cc

ur
ac

y
(%

)

(c) Reddit r=0.1%

GCN SGC APPNP Cheby GraphSage GAT

Figure 16: Performance of condensed graphs evaluated by different GNNs.

• Both condensed and whole graphs show low sensitivity to dropout and weight decay, with minimal
variations in accuracy, indicating these hyperparameters have a limited impact on performance.

• The hidden layer size positively influences accuracy in both condensed and whole graphs, with
larger sizes generally improving performance, highlighting the importance of hidden layer capacity
in model effectiveness.

• Learning rate sensitivity is also comparable between condensed and whole graphs; a higher
learning rate (0.01) tends to perform better in both cases, though with slight dataset-specific
variation (i.e. whole graph of Ogbn-arxiv).

• Notably, the number of layers impacts both graph types similarly, as accuracy consistently declines
with an increase in layers, suggesting that deeper architectures do not benefit either condensed or
whole graphs in three datasets.

Thus, condensed and whole graphs have parallel sensitivity trends, where optimizing hidden layer
size and learning rate while managing network depth is likely to enhance performance across both
representations.

A.6.3 RELATIVE AND ABSOLUTE ACCURACY

We calculate the relative accuracy by dividing the results of the model trained on the condensed graph
by the results of the same model trained on the whole graph. For example, the accuracy of GCN on
the GCond condensed graph is divided by the accuracy of results on the whole graph. Since Figure 4
in the main content shows the relative accuracy, we show the absolute results of each GNN here in
Figure 16.

A.6.4 EVALUATE CONDENSED GRAPH BY GRAPH TRANSFORMER

The architectures discussed in the main content primarily utilize message-passing styles, which facili-
tate their transfer to each other. However, they may encounter challenges when applied to an entirely
different architecture. Therefore, to conduct a more comprehensive evaluation of transferability, we
assess the performance of various condensation methods using a graph transformer-based architecture
SGFormer (Wu et al., 2023), which is totally different from those message-passing architectures.
Figure ?? shows that SGFormer achieves comparable performance with other architectures on three
non-GNN methods (Random, KCenter, Averaging). However, its performance significantly drops
when trained on graphs condensed by GNN-involved methods. This suggests that future research
should explore the transferability of other graph learning architectures.

A.7 NEURAL ARCHITECTURE SEARCH

We utilize APPNP (Gasteiger et al., 2018) for NAS experiments because its architecture modules
are flexible and can be easily modified. The detailed architecture search space is shown in Table 12.
Following the settings in GCond (Jin et al., 2022a), we search full combinations of these choices, i.e.
480 in total for each dataset.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Ran
do

m

KCen
ter

Ave
rag

ing

GCon
dX

GEOM
SFGC

GCon
d

Dos
Con

d
SGDD

MSGC
70

75

80

85

90

95

100

105

R
el

at
iv

e
A

cc
 (%

)

GCN SGC APPNP Cheby GraphSage GAT SGFormer

Figure 17: Condensed graph performance evaluated using different models including SGFormer on
Cora.

Table 12: Architecture search space for APPNP.
Architecture Search Space

Number of propagation K {2, 4, 6, 8, 10}
Residual coefficient α {0.1, 0.2}

Hidden dimension {16, 32, 64, 128, 256, 512}
Activation function {Sigmoid, Tanh, ReLU, Linear,

Softplus, LeakyReLU, ReLU6, ELU}

A.8 GRAPH PROPERTY PRESERVATION

The full results on graph property preservation are listed in Table 13. As we mention in the main
content, different GC methods show totally different behavior w.r.t. property preservation. First,
VNG and SGDD tend to produce almost complete graphs linking each node pair. That also leads to a
lower homophily, as they create more proportion of inter-class connections. Second, VNG performs
best in property preservation, however, it shows suboptimal accuracy in Table 9. This suggests that
the selected graph properties are unnecessary to maintain or to preserve as much as possible. Third,
as the only method that creates sparse graphs, MSGC is unique among these methods except in the
Homophily. From this point of view, we hold that homophily is very important for future research on
structure-based GC since all structure-based methods behave consistently. Current research mostly
holds the view that the loss of homophily is harmful (Luan et al., 2021), but our benchmark may
provide a contradictory perspective on this.

Notably, we observed that MSGC preserves the maximum eigenvalue up to 0.94. As further evidence,
the latest method, GDEM (Liu et al., 2023b), focuses on learning to preserve eigenvectors, supporting
the idea that maintaining spectral properties may be beneficial. However, upon closer examination of
the properties of the graph synthesized by GDEM, as shown in Table 15, we find that these properties
are not fully preserved. This is because their method only retains eigenvalues within a middle range,
specifically from K1 to K2. This suggests that methods for accurately preserving spectral properties
remain an area for further exploration.

Since only the metric DBI does not rely on structure, we also exhibit the correlation of DBI of
structure-free methods across all five datasets in Table 14. From the comparison between structure-
free and structure-based methods, we find that GCondX and GEOM also preserve this correlation of
DBI to some extent, similar to structure-based methods.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 13: Graph properties in condensed graphs from different structure-based GC methods. The
"Corr." row shows the correlation of certain properties between the condensed graph and the whole
graph across five datasets.

Graph property Dataset and r VNG GCond MSGC SGDD Avg. Whole
Density% Citeseer 1.8% 36.95 84.58 22.50 100.00 61.01 0.08
(Structure) Cora 2.6% 52.17 82.28 22.00 100.00 64.11 0.14

Arxiv 0.5% 100.00 75.40 8.17 99.91 70.87 0.01
Flickr 1% 100.00 100.00 3.44 99.96 75.85 0.01

Reddit 0.1% 100.00 2.67 32.07 74.85 52.39 0.05
Corr. -0.81 0.07 0.55 0.13 -0.01 -

Max Eigenvalue Citeseer 1.8% 2.98 22.53 1.67 10.29 9.37 100.04
(Spectra) Cora 2.6% 3.73 34.90 1.69 14.09 13.60 169.01

Arxiv 0.5% 2,092.99 163.95 2.33 79.95 584.81 13,161.87
Flickr 1% 1,133.94 281.04 1.76 123.86 385.15 930.01

Reddit 0.1% 1,120.64 152.00 2.00 99.84 343.62 2,503.07
Corr. 0.85 0.25 0.95 0.28 0.58 -

DBI Citeseer 1.8% 4.14 1.40 1.98 3.47 2.75 12.07
(Label & Feature) Cora 2.6% 3.69 1.84 0.70 4.34 2.64 9.28

Arxiv 0.5% 2.27 2.62 2.49 2.80 2.55 7.12
Flickr 1% 5.60 7.14 7.33 13.57 8.41 31.02

Reddit 0.1% 1.51 2.16 1.49 1.53 1.67 9.59
Corr. 0.81 0.93 0.94 0.97 0.91 -

DBI-AGG Citeseer 1.8% 4.11 0.76 1.75 0.00 1.66 8.49
(Label & Feature & Structure) Cora 2.6% 3.59 0.38 0.57 0.18 1.18 4.67

Arxiv 0.5% 2.38 2.86 2.61 1.77 2.41 4.40
Flickr 1% 20.26 11.60 7.90 6.51 11.57 25.61

Reddit 0.1% 1.56 1.90 1.49 1.37 1.58 2.48
Corr. 0.99 0.93 0.95 0.89 0.94 -

Homophily Citeseer 1.8% 0.18 0.18 0.23 0.15 0.18 0.74
(Label & Structure) Cora 2.6% 0.14 0.16 0.19 0.13 0.16 0.81

Arxiv 0.5% 0.08 0.07 0.04 0.07 0.07 0.65
Flickr 1% 0.34 0.27 0.27 0.27 0.29 0.33

Reddit 0.1% 0.04 0.04 0.04 0.07 0.05 0.78
Corr. -0.83 -0.68 -0.46 -0.80 -0.69 -

Table 14: DBI in condensed graphs from both structure-based and structure-free GC methods,
continued from Table 13.

Datasets VNG GCond MSGC SGDD GCondX GEOM Avg. Whole
Citeseer 1.8% 4.14 1.40 1.98 3.47 2.90 2.55 2.74 12.07

Cora 2.6% 3.69 1.84 0.70 4.34 2.18 3.16 2.65 9.28
Arxiv 0.5% 2.27 2.62 2.49 2.80 5.52 4.37 3.35 7.12
Flickr 1% 5.60 7.14 7.33 13.57 22.93 6.04 10.43 31.02

Reddit 0.1% 1.51 2.16 1.49 1.53 0.57 2.96 1.70 9.59
Corr. 0.81 0.93 0.94 0.97 0.95 0.78 0.90 -

Table 15: Property preservation check for GDEM, a method explicitly preserve the graph property.
Dataset Density % Max Eigenvalue DBI AGG Homophily

Cora 14.82 1.57 1.09 0.33
Whole 0.14 169.01 4.67 0.81

Citeseer 11.86 1.51 1.46 0.33
Whole 0.08 100.04 8.49 0.74

Pubmed 6.90 0.02 1.36 1.00
Whole 0.02 172.16 5.01 0.80

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 16: Denoising effects of selected methods. "Perf. Drop" shows the relative loss of accuracy
compared to the original results of each method before being corrupted. The best results are in bold
and results that outperform whole dataset training are underlined. Structure-free and structure-based
methods are colored as blue and red.

Feature Noise Structural Noise Adversarial Structural Noise
Dataset Method Test Acc. ↑ Perf. Drop ↓ Test Acc. ↑ Perf. Drop ↓ Test Acc. ↑ Perf. Drop ↓

Whole 64.07 11.75% 57.63 20.62% 53.90 25.76%

Random 56.91 9.11% 61.56 1.69% 59.42 5.12%
KCenter 52.80 10.57% 55.41 6.15% 55.07 6.73%
GCond 64.06 7.63% 65.64 5.35% 66.19 4.55%

GCondX 61.27 10.40% 60.42 11.65% 60.75 11.15%

Citeseer 1.8%
(Poisoning & Evasion)

GEOM 58.77 19.53% 51.41 29.60% 57.94 20.67%

Whole 74.77 8.26% 72.13 11.49% 66.63 18.24%

Random 59.89 17.10% 62.64 13.28% 65.33 9.57%
KCenter 59.88 15.13% 62.94 10.79% 65.51 7.14%
GCond 67.62 16.04% 63.14 21.61% 68.90 14.45%

GCondX 67.72 13.85% 63.95 18.63% 69.24 11.91%

Cora 2.6%
(Poisoning & Evasion)

GEOM 49.68 40.01% 53.59 35.29% 66.32 19.93%

Whole 46.68 1.51% 42.60 10.13% 44.44 6.24%

Random 44.33 0.78% 43.28 3.13% 43.93 1.69%
KCenter 43.15 0.88% 42.36 2.68% 42.21 3.03%
GCond 46.29 1.49% 46.97 0.04% 43.90 6.58%

GCondX 45.60 2.11% 46.19 0.83% 42.00 9.83%

Flickr 1%
(Poisoning)

GEOM 45.38 1.63% 45.52 1.32% 44.72 3.06%

A.9 DENOISING EFFECTS

All corruptions are implemented by a library for attack and defense methods on graphs, DeepRo-
bust (Li et al., 2020). The full results on denoising effects are in Table 16. Apart from GC methods,
we also add coreset selection methods as baselines. Results show that the simple baseline, Random,
contains a certain level of denoising effects in terms of performance drop in Citeseer and Flickr.
Meanwhile, KCenter exhibits the lowest performance drop in Cora corrupted by structural noise and
adversarial structural attack. However, these phenomena do not necessarily mean they can defend the
attack as the performance of these two methods before being corrupted is worse than GC methods. In
contrast, the GC methods naturally outperform whole graph training in most scenarios, even though
they are not specifically designed for defense.

A.10 CODE AVAILABLITY AND USAGE

We have developed an easy-to-use code package, which is included in the supplementary material
and has been open-sourced as a PyTorch library. The package accepts graphs in the PyG (PyTorch
Geometric) format as input and outputs a reduced graph that preserves the properties or performance
of the original graph. Below, we provide technical details on how users can integrate new datasets,
implement their own methods, propose new settings, and address potential difficulties.

A.10.1 USAGE

1 from graphslim.dataset import *
2 from graphslim.evaluation import *
3 from graphslim.condensation import GCond
4 from graphslim.config import cli
5

6 args = cli(standalone_mode=False)
7 # Customize arguments here
8 args.reduction_rate = 0.5
9 args.device = ’cuda:0’

10 # Add more args.<main_args/dataset_args> as needed
11

12 graph = get_dataset(’cora’, args=args)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

13 # To reproduce the benchmark, use our args and graph class
14 # To use your own args and graph format, ensure the args and graph class

have the required attributes
15

16 # Create an agent for the reduction algorithm
17 # Add more args.<agent_args> as needed
18 agent = GCond(setting=’trans’, data=graph, args=args)
19

20 # Reduce the graph
21 reduced_graph = agent.reduce(graph, verbose=True)
22

23 # Create an evaluator
24 # Add more args.<evaluator_args> as needed
25 evaluator = Evaluator(args)
26

27 # Evaluate the reduced graph on a GNN model
28 res_mean, res_std = evaluator.evaluate(reduced_graph, model_type=’GCN’)

Listing 1: Code Example for Using the Benchmark Package

A.10.2 PARAMETERS CATEGORIZATION

<main_args>: dataset, method, setting, reduction_rate, seed,
aggpreprocess, eval_whole, run_reduction

<attack_args>: attack, ptb_r

<dataset_args>: pre_norm, save_path, split, threshold

<agent_args>: init, eval_interval, eval_epochs, eval_model,
condense_model, epochs, lr, weight_decay, outer_loop, inner_loop, nlayers,
method, activation, dropout, ntrans, with_bn, no_buff, batch_adj, alpha,
mx_size, dis_metric, lr_adj, lr_feat

<evaluator_args>: final_eval_model, eval_epochs, lr, weight_decay

A.10.3 CUSTOMIZATION

Adding a New Dataset: To implement a new dataset, create a new class in dataset/loader.py
and inherit from the TransAndInd class.

Implementing a New Reduction Algorithm: To add a new reduction algorithm, create a new class
in sparsification, coarsening, or condensation, and inherit from the Base class.

Adding a New Evaluation Metric: To implement a new evaluation metric, create a new function in
evaluation/eval_agent.py.

Implementing a New GNN Model: To add a new GNN model, create a new class in models and
inherit from the Base class.

A.10.4 POTENTIAL DIFFICULTIES

Users may encounter the following challenges:

Disk Space Limitations:

• Some methods store training trajectories of multiple experts, which can exceed 100 GB.
• Solution: Reduce the number of experts using the <method_name>.reduce() module to

manage disk space.

Memory and GPU Constraints:

• Larger datasets might cause memory or GPU limitations during the condensation process.
• Solution: Load data and adjust the reduction process to run in a mini-batch manner to reduce

memory usage.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Hyperparameter Adjustment:

• Tuning hyperparameters may be necessary for optimal performance.
• Solution: Modify the JSON configuration files in the configs folder, which contain all hyperpa-

rameters for each method.

We believe this information will help users effectively utilize, customize, and integrate our benchmark
package with new datasets or algorithms. We provide comprehensive documentation and support for
easy adoption and extension.

A.11 BENEFITS TO GRAPH MACHINE LEARNING COMMUNITY

Our benchmark and its insights offer significant benefits to the broader graph machine learning
community in the following areas:

(a) Current Position of GC in Graph Machine Learning. First, GC originated in the computer
vision domain but has been adapted to address the unique challenges of graph data. It incorporates
techniques from graph sampling and coarsening to effectively manage the complexities inherent to
graph modalities while to extract essential information. Second, from the view of representation
learning, GC aims to create a compact representation of the original graph, preserving essential
features for training well-generalized GNNs. Third, GC is gaining traction due to its advantages in
accelerating training, enhancing scalability, and improving visualization, making it a valuable tool
for various graph-based applications such as NAS (Ding et al., 2022), continual learning (Liu et al.,
2023c) and explainability (Fang et al., 2024).

(b) Addressing Key Questions.

• When and Why Specific GC Methods Work: Our benchmark systematically evaluates different
GC methods, elucidating the conditions under which each method excels. This helps researchers
and users understand the strengths and limitations of various condensation techniques.

• Broader Applications of GC: We demonstrate the versatility of GC beyond traditional applications
like NAS and continual learning. Our benchmark highlights its potential in areas such as privacy
preservation and efficient data management.

• Key Observations and Novel Insights: Based on our well-established benchmark, we have made
several new observations and provided fresh insights in the field of GC. For instance, GC methods
exhibit significant denoising capabilities against structural noise but are less effective at mitigating
node feature noise. Additionally, trajectory matching and gradient-based inner optimization are
crucial for achieving reliable performance in NAS and enhancing transferability. These findings
highlight both the strengths and limitations of current GC techniques.

(c) Facilitating General Graph Machine Learning Research.

• Our benchmark provides a pioneering investigation into the practical effectiveness of GC methods
in privacy preservation and their denoising effects (robustness). This highlights the potential of
GC methods to serve as a novel set of baselines for comparison with existing privacy defense and
robustness techniques. Furthermore, as graph condensation inherently involves modifying datasets,
i.e., a data-centric approach, it can be seamlessly integrated with model-centric efforts to deliver
complementary benefits in robustness and privacy preservation.

• Observation 4: Certain GC methods can achieve both privacy preservation and high condensation
performance. This dual capability suggests the potential to break the traditional trade-off between
privacy and utility in the trustworthy graph learning area by effectively synthesizing data.

• Observation 7: We observe that different GC methods exhibit varying degrees of transferability
across datasets, indicating natural differences among GNNs including Graph Transformer. This
inspires a rethinking of the similarities between current GNN models, particularly regarding the
perspectives and priors they prefer to extract.

• Observation 11: We observed that homophilous graphs often become heterophilous after con-
densation while still maintaining high performance. This unexpected outcome challenges the
conventional understanding of the relationship between GNN performance and homophily (Ma
et al., 2021). Our findings suggest that the dependency of GNNs on homophily may need to be
reevaluated, opening new avenues for research into how graph condensation affects structural
properties and model performance.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Overall, our benchmark serves as a valuable resource for graph machine learning researchers by
providing comprehensive evaluations, uncovering new applications of GC, and inspiring innovative
methodologies. This facilitates advancements in the field, enabling the creation of more effective and
adaptable graph learning models.

29

	Introduction
	Related Work
	Graph Condensation
	Coreset Selection and Graph Coarsening

	Benchmark Design
	Evaluation Protocol
	Impact of design choices

	Empirical Studies
	Experimental Setup
	Performance, Efficiency and Scalability
	Privacy Preservation
	denoising ability
	Neural Architecture Search
	Transferability
	Data Initialization
	Graph Property Preservation

	Conclusion and Outlook
	Appendix
	Comparison with concurrent works
	Datasets
	Implementation Details
	Performance and Scalability
	Details description for Test accuracy vs. total time Figure
	Further analysis of experimental results

	Privacy Preservation
	Transferability
	Hyperparameters Searching
	Hyperparameters Sensitivity Analysis
	Relative and Absolute Accuracy
	Evaluate Condensed Graph by Graph Transformer

	Neural Architecture Search
	Graph property preservation
	Denoising effects
	Code Availablity and Usage
	Usage
	Parameters Categorization
	Customization
	Potential Difficulties

	Benefits to Graph Machine Learning Community

