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Abstract

Talking face generation (TFG) aims to animate a target identity’s face to create
realistic talking videos. Personalized TFG is a variant that emphasizes the per-
ceptual identity similarity of the synthesized result (from the perspective of ap-
pearance and talking style). While previous works typically solve this problem by
learning an individual neural radiance field (NeRF) for each identity to implicitly
store its static and dynamic information, we find it inefficient and non-generalized
due to the per-identity-per-training framework and the limited training data. To
this end, we propose MimicTalk, the first attempt that exploits the rich knowledge
from a NeRF-based person-agnostic generic model for improving the efficiency
and robustness of personalized TFG. To be specific, (1) we first come up with a
person-agnostic 3D TFG model as the base model and propose to adapt it into a
specific identity; (2) we propose a static-dynamic-hybrid adaptation pipeline to
help the model learn the personalized static appearance and facial dynamic fea-
tures; (3) To generate the facial motion of the personalized talking style, we pro-
pose an in-context stylized audio-to-motion model that mimics the implicit talking
style provided in the reference video without information loss by an explicit style
representation. The adaptation process to an unseen identity can be performed in
15 minutes, which is 47 times faster than previous person-dependent methods. Ex-
periments show that our MimicTalk surpasses previous baselines regarding video
quality, efficiency, and expressiveness. Source code and video samples are avail-
able at https://mimictalk.github.io.

1 Introduction

Audio-driven talking face generation (TFG) (Prajwal et al., 2020; Hong et al., 2022; Tian et al., 2024;
Xu et al., 2024) is a cross-modal task that leverages multi-modal knowledge from speech, vision,
and computer graphics to animate a target identity’s face given arbitrary driving audio, aiming to
create lifelike talking videos or interactive avatars. Personalized TFG (Suwajanakorn et al., 2017;
Thies et al., 2020a; Guo et al., 2021; Lu et al., 2021b) is a variant of TFG with several real-world
applications, such as video conferencing and audio-visual chatbots, in which we emphasize that
the generated results should have excellent perceptual similarity to a specific individual (from the
perspective of both visual quality and expressiveness). In this setting, a video clip of the target
identity (from several seconds to minutes) is provided as a detailed reference for the target person’s
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personalized attributes, such as geometry shape (Mildenhall et al., 2021; Kerbl et al., 2023) and
talking style (Wu et al., 2021; Ma et al., 2023; Tan et al., 2023). To meet the quality requirement of
high perceptual identity similarity, the community has focused on identity-dependent methods (Tang
et al., 2022; Li et al., 2023a; Xu et al., 2023), in which an individual model is trained from scratch
for each target person’s video. The primary reason for the prevailing of these identity-dependent
approaches is that during the training process, the person-specific model can implicitly memorize
nuanced personalized details of the target person’s video, such as their speaking style and subtle
expressions, which are hard to represent explicitly with hand-crafted conditions. As a result, these
approaches could train small-scale person-dependent models, achieving high identity similarity and
expressive results.

However, the identity-dependent methods (Tang et al., 2022; Li et al., 2023a) face two well-known
challenges: (1) the first is weak generalizability. The limited training data scale in the per-identity-
per-training restricts the generalizability to out-of-domain (OOD) conditions during inference. For
example, lip-sync performance may degrade when driven by OOD audio (from a different language
or speaker), and the rendering may fail when synthesizing OOD expressions (such as large yaw).
(2) the second is low training and sample efficiency. Since the identity-dependent model needs
to be trained from scratch on the target person video and no prior knowledge can be enjoyed, the
training process can take more than several hours (low training efficiency), and it often requires
over 1-minute length of training data to achieve reasonable lip-sync results (low sample efficiency).
By contrast, another line of works, the identity-agnostic (or, say, one-shot) TFG methods (Zhou
et al., 2020; Wang et al., 2021; Zhao and Zhang, 2022; Li et al., 2023b), which incorporate vari-
ous identities’ video during training and only use one source image during inference, can achieve
good generalizability to OOD conditions since various audio/expressions have been seen during the
training. However, due to the limited information in the single input image, the one-shot methods
cannot exploit the rich samples of the target identity to imitate its personalized attributes. Therefore,
it is promising to bridge the gap between person-agnostic one-shot methods and person-dependent
small-scale models to achieve expressive, generalized, and efficient personalized TFG.

Based on the observation above, our key motivation is to dig out the prior knowledge of pre-trained
person-agnostic TFG models (Li et al., 2024; Chu et al., 2024; Ye et al., 2024) to better mimic
the personalized attributes of target identities. We propose MimicTalk, a high-quality and expres-
sive personalized TFG framework, which utilizes the generalizability power of a large generic TFG
model to improve the efficiency and robustness of TFG and devises a talking style-controllable
motion generator to obtain results of high expressiveness and personalized characteristics. Specif-
ically, (1) our method starts with a 3D person-agnostic generic model. This is due to the finding
that the widely used warping-based methods cannot well handle large movements, and state-of-the-
art person-dependent methods have turned to Neural Radiance Field (NeRF) or Gaussian Splatting,
which are advanced neural rendering techniques with strong 3D prior, to achieve video consistency
and geometric realism. Inspired by this, we resort to a recent NeRF-based one-shot TFG method to
provide a 3D-aware base model in our framework. (2) Given a pre-trained one-shot model, we de-
sign a static-dynamic (SD)-hybrid adaptation pipeline for an efficient and stable finetuning process.
Specifically, we propose a tri-plane inversion method to learn a personalized 3D face representation
to store the static texture details; we also first introduce low-rank adaptation (LoRA) in TFG to
adapt the dynamic characteristics of the target speaker, which are difficult to model explicitly. (3)
We note that generating motion of personalized talking styles is vital for perceptual reality in audio-
driven TFG. Although finetuning the motion generation module on the target individual dataset
can allow the network to implicitly memorize the target talking style, it leads to high computation
costs and training instability. To address this, we propose an in-context-style audio-to-motion (ICS-
A2M) model capable of mimicking the in-context zero-shot talking style. The ICS-A2M model is
facilitated by a newly proposed training paradigm named audio-guided motion-infilling, which en-
courages the model to denoise the partially masked motion track by exploiting the implicit talking
style revealed in the unmasked motion track. We also incorporate conditional flow-matching into the
co-speech motion generation task, achieving state-of-the-art lip-sync and style-mimicking accuracy.

The contributions of the paper are summarized as follows:

• We are the first work that considers utilizing 3D person-agnostic models for personalized
TFG. We propose an SD-hybrid pipeline for efficient and high-quality adaptation to learn-
ing the static and dynamic characteristics of the target speakers.
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• We propose the ICS-A2M model, which achieves high lip-sync quality and in-context talk-
ing style mimicking audio-driven TFG.

• Our MimicTalk only requires a few seconds long reference video as the training data and
several minutes for training. Experiments show that our MimicTalk surpasses previous
person-dependent baselines in terms of both expressiveness and video quality while achiev-
ing 47x times faster convergence.

2 Related Work

Our work is mainly about personalized and expressive talking face generation. We discuss the related
works in the field of talking face generation and expressive co-speech facial motion generation,
respectively.

2.1 Talking Face Generation

Based on different real-world applications, talking face generation (TFG) methods have been ma-
jorly divided into two settings: identity-agnostic and identity-dependent. The identity-agnostic meth-
ods focus on the one-shot scenario: the model is provided with only one image and aims to animate
it to create a video. These approaches hence train a large-scale generic model with a large amount of
identity video data so that it can generalize to unseen photos during the inference stage. On the other
hand, identity-dependent methods focus on achieving better video quality for a specific speaker: typ-
ically using a segment of the target user’s video as training data and expecting the model to mimic
the personalized features of that speaker, known as personalized TFG. These two lines of work have
evolved independently over the years and have developed significantly different methodologies. (1)
As for the person-agnostic methods, the earliest works (Chung et al., 2017; Prajwal et al., 2020;
Wang et al., 2022) typically adopt a pixel-to-pixel framework (Isola et al., 2017) or generative ad-
versarial network (GAN) setting to generate the result, which results in training instability and bad
visual quality. Then, the majority of prior works (Averbuch-Elor et al., 2017; Ren et al., 2021; Wang
et al., 2021; Hong et al., 2022; Zhao and Zhang, 2022; Hong and Xu, 2023; Liang et al., 2024;
Jiang et al., 2024b) resort to a dense warping field (Siarohin et al., 2019) to deform the pixels of the
source image given the 3D-aware keypoints extracted from the driving resource. The warping-based
method achieves better image fidelity, yet due to a lack of 3D prior knowledge, it occasionally pro-
duces warping and distortion artifacts. Recently, to handle these artifacts, some work (Zeng et al.,
2022; Sun et al., 2023; Li et al., 2023b,c; Ye et al., 2024) propose one-shot NeRF-based methods
by learning to reconstruct a 3D face representation (tri-plane) (Chan et al., 2022) from the source
image. (2) As for the person-dependent setting (Thies et al., 2020b; Yi et al., 2020; Lu et al.,
2021a; Ye et al., 2022), which trains an individual model on a specific video of the target identity,
the recent works (Guo et al., 2021; Yao et al., 2022; Tang et al., 2022; Ye et al., 2023; Li et al.,
2023a) are mainly based on NeRF for its high image fidelity and realistic 3D modeling. Despite the
NeRF-based person-specific method achieving the best video quality and identity similarity among
all TFG methods, it typically requires hours of training, and its generalizability to driving conditions
is hampered by limited training data. To our knowledge, Mimictalk is the first work that considers
bridging the gap between NeRF-based person-agnostic and person-dependent methods to improve
the task of personalized TFG.

2.2 Expressive Facial Motion Generation

The recent advance in neural rendering has significantly improved the image quality, temporal con-
sistency, and stability of the synthesized video, making expressiveness the next focus of the TFG
community. The critical challenge in achieving high expressiveness is to generate high-quality facial
motion from audio content. This requires the generated motion sequence to not only synchronize
with the audio track but also reflect a consistent and expressive talking style similar to the target
speaker. Some studies implicitly model this process in a deterministic and end-to-end audio-to-
image model (Prajwal et al., 2020; Guo et al., 2021). For better controllability and audio-lip syn-
chronization, other works propose explicitly modeling the audio-to-motion mapping using external
generative models (Thies et al., 2020b; Ye et al., 2023). However, these studies do not explicitly
model the speaker’s talking style. To address this, Wu et al. (2021) and Ma et al. (2023) developed
a style vector extracted from arbitrary motion sequences to achieve explicit talking style control.
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Figure 1: The inference process of MimicTalk. We use an in-context stylized audio-to-motion model
to produce expressive facial motion mimicking the talking style of a reference video. Then, a per-
sonalized renderer could render high-quality talking face videos that mimic the static and dynamic
visual attributes of the target identity.

EMMN (Tan et al., 2023) disentangles expression styles and lip motion, constructing a memory
bank to produce lip-synced videos with vivid expressions. A concurrent work, VASA-1 (Xu et al.,
2024), proposes to add previous audio/motion latent as the input of the latent diffusion model to keep
temporal consistency. We can see that most previous methods rely on intermediates to represent the
talking style Jiang et al. (2024a), risking information loss. In contrast, our method first achieves
in-context-learning (ICL) talking style control, better preserving the target identity’s talking style.

3 MimicTalk

As shown in Fig. 1, MimicTalk is a personalized and expressive 3D talking face generation frame-
work, in which the personalized renderer inherits the rich facial knowledge from a person-agnostic
generic model (discussed in Sec. 3.1) via a static-dynamic (SD)-hybrid adaptation pipeline (in Sec.
3.2). In Sec. 3.3, we propose an in-context stylized audio-to-motion (ICS-A2M) model to generate
personalized facial motion, which is necessary to achieve high expressiveness in the generated video.
We describe the design and training process in the following sections. Due to space limitations, we
provide technical details in Appendix B.

3.1 NeRF-based Person-Agnostic Renderer

The previous personalized TFG works trained a separate model on the target speaker to memorize
personalized information of the target person, in which NeRF is typically used as the underlying
technology to better store the target speaker’s geometry, texture, and other information. We aim to
leverage the prior knowledge of pre-trained person-agnostic TFG models to achieve greater gener-
alizability and efficiency than previous person-dependent methods. To this end, we resort to recent
one-shot NeRF-based TFG works (Li et al., 2023b, 2024; Ye et al., 2024; Chu et al., 2024) to con-
struct a person-agnostic TFG model. Specifically, We build our base model on the basis of Real3D-
Portrait (Ye et al., 2024) with its official implementation 1. As shown in Fig. 2, the first step is
reconstructing a canonical 3D face (formulated as tri-plane representation (Chan et al., 2022)) from
the target person’s source image Isrc:

Pcano = FaceRecon(Isrc), (1)

where FaceRecon is an image-to-3D face reconstruction model based on SegFormer (Xie et al.,
2021) that transforms the input image into a tri-plane representation Chan et al. (2022). Then a
light-weight SegFormer-based motion adapter could control the facial expression in the 3D face,
and a volume renderer of Mip-NeRF (Barron et al., 2021) could render the dynamic talking face of
arbitrary head pose by controlling the camera:

Iraw = VolumeRenderer(Pcano + MotionAdapter([PNCCsrc,PNCCtgt]), camtgt), (2)

where PNCCsrc and PNCCtgt are projected normalized coordinate codes (Li et al., 2023b), which
is rasterized from the 3DMM face (Paysan et al., 2009) of the source and target image, and camdrv

1https://github.com/yerfor/Real3DPortrait
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Figure 2: The training process of the personalized TFG renderer via the static-dynamic (SD)-hybrid
adaptation pipeline. We adopt a pretrained one-shot person-agnostic 3D TFG model as the back-
bone, then fine-tune a person-dependent 3D face representation to memorize the static geometry
and texture details. We also inject LoRA units into the backbone to learn the personalized dynamic
features.

is the driving camera to control the head pose. Iraw is the volume-rendered low-resolution image,
which is further processed by a super-resolution module to generate the final high-resolution result:

Ipred = SuperResolution(Iraw) (3)

We provide detailed network structure of the FaceRecon, MotionAdapter, VolumeRenderer, and
SuperResolution of person-agnostic renderer in Fig. 5 of Appendix B. For more details about the
one-shot person-agnostic base model, please refer to (Ye et al., 2024).

3.2 Static-Dynamic-Hybrid Identity Adaptation

With the pre-trained person-agnostic renderer introduced in Sec. 3.1, we could synthesize talking
face videos for unseen identities without any adaptation. However, there exists a significant identity
similarity gap between the un-tuned renderer and previous person-dependent methods, which is re-
flected in two aspects: (1) The static similarity, which measures whether the generated frame has
same texture (e.g., wrinkles, teeth, and hair) or geometry details as the target identity; (2) The dy-
namic similarity, which describes the relationship between the input motion condition and the facial
muscle/torso movement in the output facial image. To be more intuitive, trained on the large-scale
talking face dataset with various speakers, our person-agnostic model learns a statistically averaged
motion-to-image mapping for face animation, which produces talking person videos that are se-
mantically correct yet lack personalized characteristics. By contrast, the previous person-dependent
methods, by overfitting the model on one target identity, inherently learn the personalized motion-
to-image mapping in the model. Based on the observation above, we propose an efficient static-
dynamic-hybrid (SD-Hybrid) adaptation pipeline to achieve good static/dynamic identity similarity,
which is shown in Fig. 2.

Tri-Plane Inversion for Static Similarity. The canonical 3D face representation Pcano, which is
extracted from the source image by the pre-trained 3D face reconstruction model (Ye et al., 2024),
stores all static properties of the target identity (i.e., geometry and texture information). We find
that the information loss in this feed-forward image-to-3D transform is the primary reason for the
inferior static similarity in our method. To this end, inspired by previous GAN-inversion methods
(Roich et al., 2021), we propose a tri-plane inversion technique, which regards the canonical 3D face
representation as a learnable parameter and optimizes it to maximize the static identity similarity. To
be specific, as shown in Fig. 2, when adapting our model to a specific identity given a video clip,
we initialize the learnable tri-plane with the first frame’s image-to-3D prediction, then optimize the
tri-plane alongside other parameters.
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Figure 3: The process of in-context stylized motion prediction. For the training process please refer
to Fig. 7.

Injecting LoRAs for Dynamic Similarity. As for dynamic similarity, since the person-agnostic
model learns averaged motion-to-image mapping in the multi-speaker talking face dataset, we need
to adapt the generic model specifically to the target person’s video to learn its personalized facial
dynamics. A naive solution is to directly fine-tune the whole model or the last few layers on the
target person’s video. However, considering the large model capacity and the small data scale of
the target person’s video, it faces several challenges, such as high GPU memory footprints, training
instability, and catastrophic forgetting. To this end, we resort to low-rank adaptation (LoRA) (Hu
et al., 2021), which was initially proposed for efficient adaptation of language models and recently
extended to computer vision applications such as text-to-image synthesis (Rombach et al., 2021).
As shown in Fig. 6 of Appendix B.2, LoRAs can be conveniently plugged into our person-agnostic
model by injecting a low-rank learnable matrix to every linear layer and convolution kernel. All pre-
trained parameters in the person-agnostic model are fixed, and only the LoRAs are updated during
training.

Adaptation Process. As shown in Fig. 2, with the SD-hybrid design, the rendering process of the
predicted image can be expressed as:

Ipred = SR(VolumeRenderer(P∗
cano+MotionAdapter([PNNCsrc,PNCCtgt]; θ

∗
1), camdrv; θ

∗
2); θ

3
3),
(4)

where P∗
cano is the learnable 3D face representation, which is initialized from the first-frame pre-

diction by the pre-trained 3D face reconstruction model. SR denotes the super-resolution module,
θ∗1 , θ

∗
2 , θ

∗
3 are the learnable LoRA parameters injected in the volume renderer, motion adapter, and

the super-resolution module, respectively.

During adaptation, a short video clip of a specific identity is utilized as the training data, and only
the personalized tri-plane and LoRAs are updated. The training loss of the SD-hybrid adaptation is:

LSD-Hybrid = L1 + λLPIPS · LLPIPS + λID · LID, (5)

where L1,LLPIPS,LID, denotes L1 loss, LPIPS loss by VGG16 (Simonyan and Zisserman, 2014),
and identity loss by VGGFace (Cao et al., 2018), respectively. We set the learning rate to 0.001,
λLPIPS = 0.2, λID = 0.1. Thanks to the static-dynamic-hybrid design, our method achieves good
identity similarity while enjoying a fast and low-memory-cost adaptation process compared to exist-
ing person-dependent methods, illustrated in Table 1. Besides, we demonstrate that our SD-Hybrid
pipeline achieves good training and sample efficiency in Fig. 4.

3.3 In-Context Stylized Audio-to-Motion

In the above sections, we have proposed a unified framework for motion-conditioned talking face
generation. Then, we present in-context stylized audio-to-motion (ICS-A2M) model to generate
personalized facial motion for audio-driven scenarios.
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Audio-guided Motion Filling Task Inspired by the success of in-context learning methods in
large language models (Liu et al., 2023) and text-to-speech synthesis (Le et al., 2023), we devise an
audio-guided motion infilling task. We visualize the audio-guided motion-infilling task’s detailed
training and inference pipeline in Fig. 7 of Appendix B.3. Specifically, the audio-motion pairs
are temporally aligned and channel-wise concatenated and processed by the audio-to-motion model.
During training, we randomly masked several segments in the motion track and trained the model
with the motion reconstruction error on the masked segments. Since the model is provided with
surrounding unmasked motion and the complete audio track, it learns to exploit the talking style
in the motion context to predict the masked co-speech motion more accurately. During inference,
as shown in Fig. 3 (a), we could concatenate the reference audio-motion pair as the talking style
prompt, arbitrary driving audio as the condition, and a noisy placeholder for predicted motion as the
input of the model. This way, the model could predict the audio-synchronized facial motion with
the talking style provided in the style prompt.

Audio-to-Motion Flow Matching Model We first introduce an advanced generative model, flow
matching (Lipman et al., 2023), to generate expressive facial motions. The model is parameterized
by a transformer θ and predicts a flow field ϕ that stores the velocity vt = dxt

dt of the data points
xt pointing towards the target distribution. Similar to diffusion models, the time step t is increasing
from 0 to 1 during the inference process, i.e., we have prior data points x0 ∼ N(0, 1) and the
target data points x1 ∼ q(x), where q(x) denotes the ground truth data distribution. Due to space
limitation, we provide detailed preliminaries of flow matching in Appendix B.3.2. To be intuitive,
we visualize the forward process of our flow-matching-based audio-to-motion model in Fig. 3 (a).
The network input is the same as what we defined in the previous paragraph (a concatenation of the
style prompt, audio condition, and noisy motion xt). The model’s output is the velocity vt of the
noisy motion xt. And we could train the model with the conditional flow matching (CFM) objective:

LCFM = Et,q(x),p(x|x1)||ut(x|x1)− vt(x,a, s; θ)||22, (6)

where vt(x,a, s; θ)is the predicted velocity by flow matching model of parameter θ, a and s is th
audio condition and style prompt, and ut(x|x1) is the ground truth velocity of the optimal transport
(OT) path (Le et al., 2023) given the target motion x1 and the noisy motion xt, which is exactly the
unit vector pointing from xt to x1.

Apart from the flow matching objective, we find it necessary to add a lip-sync loss on the denoised
sample x̂1 to generate accurate and expressive facial motion. Specifically, we first solve the ODE
problem in Eq. 9 to obtain the predicted sample x̂1 using the predicted velocity vt(x,a, s; θ), then
feed it into a pre-trained audio-expression SyncNet (Ye et al., 2023) to obtain a discriminative sync
loss Lsync that measure the synchronization between the input audio and the predicted expression.
Therefore, the training loss of the ICS-A2M model is:

LICS-A2M = LCFM + λsync · Lsync, (7)

where λsync = 0.05. During inference, as visualized in Fig. 3(b), now that the A2M model could
predict the velocity field of the data point, we could iteratively push the data from the Gaussian dis-
tribution to the target distribution by solving the ordinary differential equation in Eq. 9 of Appendix
B.3.2 and finally obtain the predicted motion x̂1 to drive the personalized renderer in Sec. 3.2.

Classifier-Free Guidance for Enhancing Style Mimicking Classifier-free guidance (CFG) is a
popular inference method that manipulates the condition strength during the sampling process of
conditional diffusion models. While CFG has become a standard technique in text-to-image Rom-
bach et al. (2021) and other weak-conditioned generation tasks, we found it also helps enhance
the style mimicking quality of our stylized audio-to-motion model. Specifically, we mix the two
network predictions with/without style prompt to construct the CFG velocity vCFG

t :

vCFG
t = v(x,a, s; θ) + w · (v(x,a, s; θ)− v(x,a,0; θ)), (8)

where w is the CFG scale and we empirically set w = 2. v(x,a, s is the network prediction with
both audio condition and style prompt as the input, and v(x,a,0) is the predicted velocity with zero
style prompt.
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Table 1: Quantitative results of all methods. Time. and Mem. denote training time and GPU memory
used for adaptation on a A100 GPU. StyleTalk is a one-shot method, so the Time. and Mem. are 0.

Methods CSIM↑ PSNR↑ FID↓ AED↓ Sync. ↑ Time (h)↓ Mem. (GB)↓
RAD-NeRF (Tang et al., 2022) 0.825 30.85 33.51 0.122 4.916 13.22 5.432
GeneFace (Ye et al., 2023) 0.819 30.44 34.16 0.115 6.480 16.57 7.981
ER-NeRF (Li et al., 2023a) 0.834 31.45 30.38 0.113 5.631 3.77 8.676
StyleTalk (Ma et al., 2023) 0.671 27.39 45.25 0.106 7.173 / /
MimicTalk (ours) 0.837 31.72 29.94 0.098 8.072 0.26 8.239

Table 2: MOS score of different methods. The error bars are 95% confidence interval.
Methods RAD-NeRF GeneFace ER-NeRF StyleTalk MimicTalk
ID. Similarity 3.96±0.29 3.78±0.28 4.06±0.24 3.27±0.38 4.15±0.20
Visual Quality 3.98±0.24 3.87±0.24 4.10±0.22 3.46±0.35 4.22±0.20
Lip Sync. 3.65±0.27 3.93±0.22 3.82±0.24 4.01±0.24 4.13±0.22

4 Experiment

4.1 Experimental Setup

Implementation Details. 2 We obtain the pre-trained person-agnostic renderer from the official
implementation of Ye et al. (2024). For the SD-Hybrid adaptation, we trained the model on 1 Nvidia
A100 GPU, with a batch size of 1 and total iterations of 2,000, requiring about 8 GB of GPU memory
and 0.26 hours. Regarding the ICS-A2M model, we trained it on 4 Nvidia A100 GPUs, with a batch
size of 20,000 mel frames per GPU. The flow-matching-based ICS-A2M model was trained for
500,000 iterations, taking 80 hours. We provide full experiment details in Appendix C.

Data Preparation. To evaluate the personalized renderers, we tested on ten 3-minute-long target
person videos by (Tang et al., 2022) and (Ye et al., 2023). To train the ICS-A2M model, we use a
large-scale lip-reading dataset, voxceleb2 (Chung et al., 2018), which consists of about 2,000 hours
videos from 6,112 celebrities.

Compared Baselines. We compare our method with three person-dependent methods: (1) RAD-
NeRF (Tang et al., 2022), (2) GeneFace (Ye et al., 2023), and (3) ER-NeRF (Li et al., 2023a). We also
compare with a style-oriented TFG method that considers controlling the talking style, (4) StyleTalk
(Ma et al., 2023). We discuss the characteristics of all test methods in Appendix A.

4.2 Quantitative Evaluation

We use CSIM to measure identity preservation, PSNR, FID to measure the image quality, and AED
(Deng et al., 2019) and SyncNet confidence (Chung and Zisserman, 2017) to measure audio-lip syn-
chronization. The results are shown in Table 1. We have the following observations: (1) Thanks to
the powerful flow matching model and the in-context-style-mimicking ability, our method achieves
the best lip accuracy (AED) and perceptual lip-sync quality (SyncNet confidence); (2) Our SD-
hybrid adaptive renderer shows better visual quality than the person-specific baselines. (3) Thanks to
the efficiency of the LoRA-based adaptation process, our method requires significantly less training
time to adapt to a new identity within 2,000 iterations and 15 minutes (47x faster than RAD-NeRF).
It also requires a low GPU memory usage (8.239 GB) for adaptation.

4.3 Qualitative Evaluation

4.3.1 Case Study

We provide demo videos at https://mimictalk.github.io. We also adopted several case stud-
ies to demonstrate better performance. Specifically, (1) our SD-Hybrid adaptation has better train-

2We release the source code at https://mimictalk.github.io.
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(a) CSIM results at different iterations (b) CSIM results at different data scales

Figure 4: Training/data efficiency of SD-Hybrid adaptation: CSIM results at different iterations and
data scales. The baseline RAD-NeRF uses 180-second-long training samples and is updated for
250,000 iterations.

Table 3: CMOS results on the style controllability and identity similarity of MimicTalk and
StyleTalk. CMOS score ranges from -3 to +3. Error bars are 95% confidence intervals.

Methods CMOS-style-control↑ CMOS-identitiy-similarity ↑
#1. MimicTalk (ours) 0.549± 0.225 1.735± 0.362
#2. StyleTalk (Ma et al., 2023) 0.000 0.000

ing/sample efficiency than previous person-specific methods; (2) our ICS-A2M model predicts styl-
ized facial motion.

Training / Sample Efficiency of SD-Hybrid Adaptation To evaluate the training and sample effi-
ciency of our SD-hybrid adaptation, we perform a case study of a talking video of President Obama
provided by Tang et al. (2022). For training efficiency, as shown in Fig. 4(a), we adapt the model on
a 180-second-long clip as the training data and use the lasting 10-second clip as the validation set.
Our SD-hybrid adaptation enjoys a fast convergence and good performance compared to the person-
specific baseline. As for the sample efficiency, we visualize the results of CSIM at different scales of
training data in Fig. 4(b). It can be observed that the CSIM score improves as the amount of training
data increases. Additionally, our method achieves comparable performance to the person-specific
baseline, which was trained with 180 seconds of data, using only one-third of the data (60 seconds).

Talking Style-Coherent Motion Prediction by ICS-A2M Model Given a short reference video
as the talking style prompt, our ICS-A2M model could accurately mimic its talking style (such as
smiling or duck mouth). We provide a demo video at https://mimictalk.github.io/static/
videos/demo_ics_a2m.mp4 for better demonstration. We also conducted a comparative mean
score opinion (CMOS) test between our method and StyleTalk (Ma et al., 2023) to qualitatively
evaluate talking style accuracy. As shown in Table 3, our method achieves better talking style
controllability and identity similarity. Please refer to Appendix C.3 for detailed user study settings.

4.3.2 User study

We conducted the Mean Opinion Score (MOS) test to evaluate the perceptual quality of generated
samples, scaled from 1 to 5. Following Chen et al. (2020), the attendees are required to rate the

Table 4: Ablation studies on different settings in the SD-hybrid adptation.

Settings CSIM↑ PSNR↑ FID↓ AED↓ APD↓
#1. Ours (SD-Hybrid) 0.837 31.72 29.94 0.098 0.028
#2. Ours - Tri-plane Inv. 0.823 30.65 33.28 0.102 0.030
#3. Ours - LoRAs 0.805 29.95 36.56 0.108 0.033
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Table 5: Ablation studies on different settings in ICS-A2M. L2Landmark denotes the L2 reconstruction
error on the 68 3D landmarks, and LSync denotes a audio-expression synchronization contrastive loss
provided by (Chung and Zisserman, 2017). and (Ye et al., 2023)

Settings L2Landmark↓ LSync↓
#1. Ours (ICS-A2M) 0.026 0.423
#2. Ours w.o. Flow Matching 0.034 0.466
#3. Ours w. style vec. (Huang and Belongie, 2017) 0.031 0.429
#4. Ours w. style enc. (Ma et al., 2023) 0.029 0.428
#5. Ours w.o. sync loss 0.028 0.536

videos from three aspects: (1) identity similarity, (2) visual quality, and (3) lip-sync. Detailed
settings are in Appendix C.3. The results are shown in Table 2. We have the following observa-
tions: (1) our method achieves the best lip-synchronization and identity similarity / visual quality
compared to SOTA person-dependent methods (RAD-NeRF, GeneFace, and ER-NeRF). The MOS
results demonstrate the effectiveness of the proposed MimidTalk framework.

4.3.3 Ablation study

SD-Hybrid Adaptation. We tested two settings in the SD-Hybrid adaptation: (1) Not performing
tri-plane inversion to finetune a personalized tri-plane and (2) not injecting LoRAs into the model.
As shown in line 2 and line 3 of Table 4, utilizing both techniques achieves the best identity similarity
(CSIM), visual quality (FID), and geometry accuracy (AED and APD).

ICS-A2M Model. We also analyze three settings in the ICS-A2M: (1) replace the flow matching
model with a deterministic transformer, as shown in line 2 of Table 5, which leads to worse motion
reconstruction quality and worse sync score; (2) replace the in-context style control with a hand-
crafted style vector in (Wu et al., 2021) or learn a style encoder as in StyleTalk Ma et al. (2023), as
shown in line 3 and line 4, which leads to worse motion reconstruction quality, proving that the ICL
talking style mimicking could prevent information loss caused by compressing the style into a global
encoding; (3) remove the sync loss during training, as shown in line 5, which leads to significantly
worse perceptual lip-sync performance.

5 Conclusion

In this paper, we propose MimicTalk, an efficient and expressive personalized talking face generation
framework. We first come up with the idea of adapting a pre-trained 3D person-agnostic model
to personalized datasets to inherit its generalizability and achieve fast training. The SD-Hybrid
adaptation pipeline helps the generic model learn the target person’s static and dynamic features,
leading to better identity similarity than previous person-dependent baselines. Besides, the proposed
ICS-A2M model is the first facial motion generator that enables in-context talking style control,
which helps produce expressive facial motion in the generated video. Due to space limitations, we
provide impact statements in Sec. E and discuss limitations and future works in Appendix D.
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Figure 5: The detailed network structure of the person-agnostic renderer.

A Comparison between Different Methods

As for the person-dependent talking face renderer, all previous methods like RAD-NeRF (Tang
et al., 2022), GeneFace (Ye et al., 2023), and ER-NeRF (Li et al., 2023a) follow a per-identity-per-
training paradigm, which means they have to learn a model from scratch for an unseen identity,
which is time-consuming and the generalizability of the model is limited due to the small scale
of training data. By contrast, our method is the first work to adapt a pre-trained generic one-shot
3D talking face model into the target identity. Thanks to using LoRA and the tri-plane inversion,
our method could converge in 2,000 iterations (47 times faster than RAD-NeRF) and enjoy better
generalizability, sample efficiency, and training efficiency due to the generic backbone.

As for the audio-to-motion model in the audio-driven TFG, most previous works like SadTalker
(Zhang et al., 2023) and StyleTalk (Ma et al., 2023) utilize a deterministic mapping to model the
audio-to-motion transform, and cannot achieve talking style control. By contrast, our method first
introduces flow-matching for the audio-to-motion task and achieves in-context talking style control.

B Model Details

B.1 Network Structure of the Person-Agnostic Renderer

We provide detailed network structure of the person-agnostic renderer in Figure 5.

B.2 Details on LoRAs for SD-Hybrid Adaptation

We visualize a detailed process that plugs the LoRA into our person-agnostic renderer in Fig. 6. For
each pretrained kernel or weight of shape cin× cout, the LoRA Matrix A and LoRA Matrix B could
represent a weight matrix of shape cin × cout and rank r, where r << min(cin, cout) and we set
r = 4 in our setting. During training, the pre-trained weights of the backbone are fixed, and only
the LoRA matrices are updated.

B.3 Details on In-Context Stylized Audio-to-Motion Model

B.3.1 Audio-Guided Motion Infilling Task

In Fig. 7, we present a visualization of the training and inference process for the Audio-Guided
Motion Infilling task. Paired audio-motion samples are required for this task, which can be easily
extracted from talking face datasets and used as training data. During training, we randomly mask
several segments in the motion track and encourage the model to reconstruct them based on the
complete audio track and the unmasked motion context. This training approach enables the model
to learn to mimic the talking style provided in the context.
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During inference, there are two main usage scenarios. Firstly, we can guide the model to mimic
a specific talking style by providing an audio-motion pair of the target person as the talking style
prompt. This setting allows for in-context talking style control over the generated facial motions.
Alternatively, we also support audio-only motion sampling. Without a style prompt, the model will
generate semantically correct facial motions with a randomly sampled talking style.

B.3.2 Preliminaries on Flow Matching

In this section, we introduce preliminaries of flow matching. Conditional flow matching (CFM) is
a variant of continuous normalizing flows (Chen et al., 2018), which is a class of generative models
for modeling an unknown data distribution q(x), where x denotes the data point in the distribution.
The CFM method aims to predict a time-dependent flow field that represents the velocity ut =

dxt

dt
of the data point xt at a continuous timestep t, where the data point x0 ∼ p(x) starts from a simple
prior distribution p(x) (e.g., Gaussian distribution) at the timestep t = 0, and is pushed towards the
target distribution q(x) by the velocity field as the timesteps finally approach t = 1. This process
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can be formulated as an ordinary differential equation (ODE) as follows:

dxt

dt
= ut ≈ vt(xt, θ), s.t.x0 ∼ p(x), t ∈ [0, 1], (9)

where ut is the ground truth velocity for xt and is expected to be approximated by the CFM model.
vt is the predicted velocity by the CFM model with the parameter θ. Once the ut is obtained, we
can train the model with a simple flow-matching objective:

LCFM = Et||ut − vt(xt; θ)||22. (10)

Once the training is done, we can obtain vt(xt; θ) ≈ dxt

dt , and solve the ODE in Eq. 9 to obtain the
predicted sample x1.

Now, we consider the specific formulation of the ground truth velocity ut. We adopt the optimal
transportation (OT) path proposed in (Lipman et al., 2023) to obtain the ground truth velocity. Specif-
ically, given the target data point x1 and the current data point xt, the most efficient way is to go
with a straight line, i.e., ut = (x1 − xt)/(1 − t), where (1 − t) is a normalization term to make
the ground truth velocity a unit vector. We choose the OT path for its simplicity and prior evidence
(Lipman et al., 2023; Le et al., 2023) that it outperforms other alternatives (such as diffusion paths
(Ho et al., 2020; Song et al., 2021)).

C Experiment Details

In the following sections, we illustrate the model configuration and training details of our Mim-
icTalk.

C.1 Model Configuration

We provide detailed hyper-parameter settings about the model configuration in Table 6.

Table 6: Model Configuration
Hyper-parameter Value

SD-Hybrid Adaptation
LoRA rank 2
Learnable Tri-plane shape 256× 256× 32× 3

ICS-A2M Model

Transformer - Attention Hidden Size 1024
Transformer - Norm Type LayerNorm
Transformer - Attention Layers 16
Transformer - MLP Layers per Block 2
Transformer - Attention Head Hidden Size 64
Transformer - Attention Heads 8
Flow Matching - Final sigma 0.
Flow Matching - ODE method midpoint
Flow Matching - ODE infer steps 5

C.2 Training Details

We use the pre-trained one-shot person-agnostic renderer provided in the official implementation3

of (Ye et al., 2024).

For the SD-Hybrid adaptation, we trained the model on 1 Nvidia A100 GPU, with a batch size of
1, requiring about 8 GB of GPU memory. Surprisingly, our method achieved better results than
existing person-specific baselines in just 2,000 iterations, which took about 0.26 hours and was 47
times faster than RAD-NeRF.

Regarding the ICS-A2M model, we trained it on 4 Nvidia A100 GPUs, with a batch size of 20,000
mel frames per GPU. The flow-matching-based ICS-A2M model was trained for 500,000 iterations,
taking 80 hours.

3https://github.com/yerfor/Real3DPortrait/
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C.3 Detailed User Study Setting

As for mean score opinion (MOS) test in Table 2, we select 5 audio clips and 10 trained identities
(as used in by Tang et al. (2022) and Ye et al. (2023)) to construct 50 talking portrait video samples
for each method. Each video has been rated by 20 participants. We perform the identity similarity,
visual quality, and lip-synchronization MOS evaluations. For MOS, each tester is asked to evaluate
the subjective score of a video on a 1-5 Likert scale. For identity similarity, we tell the participants
to "only focus on the similarity between the identity in the source image and the video"; for visual
quality, we tell the participants to "focus on the overall visual quality, including the image fidelity
and smooth transition between adjacent frames"; as for lip synchronization, we tell the participants
to "only focus on the semantic-level audio-lip synchronization, and ignores the visual quality".

As for comparative mean score (CMOS) test in Table 3, we first trained 10 person-specific renderers
on 10 identities’ ten-second-long videos. We randomly select 5 out-of-domain audio clips for driving
each renderer. So there are 50 result videos for each setting. We include 20 participants in the user
study. Each tester is asked to evaluate the subjective score of two paired videos on a -3 +3 Likert
scale(e.g., the first video is constantly 0.0, and the second video is +3 means the tester strongly
prefers the second video). To examine the aspect of (lip-sync, pose-sync, expressiveness), we tell
the participants to "only focus on the (lip-sync, pose-sync, expressiveness), and ignore the other two
factors.".

D Limitations and Future Work

In this section, we discuss the limitations of the proposed method and how we plan to handle them
in future work. Firstly, in this paper, our main focus is on the face segment. By contrast, the rigid
modeling of the hair and torso segment are relatively naive and occasionally produce artifacts. We
plan to adopt conditional video diffusion models like (Hu et al., 2023) to enhance the naturalness of
the hair and torso segments. Secondly, we can consider more conditions, such as eyeball movement
and hand gestures. Finally, the inference speed (15 FPS on 1 A100) can be improved by introducing
more efficient network structures like Gaussian Splatting.

E Broader Impacts

In this section, we discuss the ethical impacts that might be brought by the rapidly developing talking
face generation technology and our measures to address these concerns.

MimicTalk facilitates efficient and expressive personalized talking face synthesis. With the devel-
opment of talking face generation techniques, it is much easier to synthesize talking human portrait
videos. Under appropriate usage, this technique could facilitate real-world applications like virtual
idols and customer service, improving the user experience and making human life more convenient.
However, the talking face generation method can be misused in deepfake-related usages, raising
ethical concerns. We are highly motivated to handle these misusage problems. To this end, we plan
to include several restrictions in the license of MimicTalk. Specifically,

• We will add visible watermarks to the video synthesized by MimicTalk so that the public
can easily tell the fakeness of the synthesized video.

• The synthesized videos should only be used in educational or other legal usages (like online
courses), and any abuse will take responsibility by tracking the method we come up with
in the next point.

• We will also inject an invisible watermark into the synthesized video to store the informa-
tion of the video maker so that the video maker has to account for the potential risk raised
by the synthesized video.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions include: (1) first propose to exploit generic model for per-
sonalized 3D talking face generation; (2) a SD-hybrid adaptation pipleine for fast and ef-
fective identity adaptation; (3) a ICS-A2M model for expressive motion generation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper is a application paper. No theoretical assumption is made.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided model details and training details to improve reproducibil-
ity. We will also release the code after the review phase.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided model details and training details to improve reproducibil-
ity. We will also release the code after the review phase.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided details experimental setting and details in the paper and
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use 95% confidence in user study.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have introduced the compute resources used during the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform to the NeurIPS code of Ethics,
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Please see Appendix E.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The research conform to the licenses for existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We will well documented the source code that will be released after the re-
view.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [Yes]
Justification: See Appendix C.3.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no risks in mean opinion score test.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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