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Abstract001

We introduce CREPE (Rapid Chest X-002
ray Report Evaluation by Predicting Multi-003
category Error Counts), a rapid, interpretable,004
and clinically grounded metric for automated005
chest X-ray report generation. CREPE uses a006
domain-specific BERT model fine-tuned with007
a multi-head regression architecture to pre-008
dict error counts across six clinically meaning-009
ful categories. Trained on a large-scale syn-010
thetic dataset of 32,000 annotated report pairs,011
CREPE demonstrates strong generalization and012
interpretability. On the expert-annotated ReX-013
Val dataset, CREPE achieves a Kendall’s τ cor-014
relation of 0.786 with radiologist error counts,015
outperforming traditional and recent metrics.016
CREPE achieves these results with an inference017
speed approximately 280 times faster than large018
language model (LLM)-based approaches, en-019
abling rapid and fine-grained evaluation for020
scalable development of chest X-ray report gen-021
eration models.022

1 Introduction023

The automatic generation of radiology reports from024

chest X-ray images has seen rapid progress with025

the advent of advanced generative AI technologies.026

Such systems hold substantial promise to reduce ra-027

diologists’ workload and enhance clinical workflow028

efficiency by enabling the automated production of029

clinically meaningful reports at scale (Chen et al.,030

2024; Zambrano Chaves et al., 2025).031

A central challenge that remains is the reli-032

able evaluation of these generated reports. Cur-033

rent metrics for evaluating chest X-ray report gen-034

eration fall into four main categories: overlap-035

based, embedding-based, named entity recognition036

(NER)-based, and large language model (LLM)-037

based approaches. Overlap-based metrics, like038

BLEU (Papineni et al., 2002) and ROUGE (Lin,039

2004) measure surface-level lexical similarity but040

miss clinical meaning. Embedding-based metrics,041

such as BERTScore (Zhang et al., 2020) and Sem- 042

bScore (Smit et al., 2020) capture semantic align- 043

ment but not factual or relational accuracy. NER- 044

based metrics, like F1 RadGraph (Jain et al., 2021; 045

Delbrouck et al., 2024) and RaTEScore (Zhao et al., 046

2024) focus on extracted medical entities and rela- 047

tions, but their reliability depends on the underlying 048

NER system and they can miss nuanced contextual 049

errors. LLM-based metrics, such as GREEN (Ost- 050

meier et al., 2024) and FineRadScore (Huang et al., 051

2024) achieve strong alignment with human judg- 052

ment, yet are limited by high computational cost 053

and slow inference. These trade-offs motivate the 054

need for a fast, clinically appropriate, and robust 055

evaluation metric. 056

In this work, we introduce CREPE (Rapid Chest 057

X-ray Report Evaluation by Predicting Multi- 058

category Error Counts), a novel evaluation metric 059

designed for both rapid inference and clinically 060

interpretable assessment. CREPE leverages a med- 061

ical domain-specific BERT model with multiple 062

regression heads to predict continuous error counts 063

across six clinically meaningful categories. By ex- 064

plicitly modeling these error categories, CREPE 065

outputs both a fast, interpretable overall score and 066

a detailed error breakdown, thus providing action- 067

able, clinically relevant feedback beyond conven- 068

tional summary metrics. 069

Our primary contributions are as follows: 070

• Fast and Fine-Grained Evaluation: We pro- 071

pose CREPE, a rapid and fine-grained eval- 072

uation metric that predicts clinically inter- 073

pretable multi-category error counts via re- 074

gression, achieving performance comparable 075

to or exceeding state-of-the-art LLM-based 076

metrics in alignment with radiologist assess- 077

ments. 078

• Large-Scale Synthetic Training Data: We 079

construct a large-scale synthetic dataset com- 080

prising 32,000 report pairs with detailed, 081
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Figure 1: Overview of CREPE and Comparative Performance. (Left) Schematic illustration of CREPE’s
evaluation pipeline: a ground truth and generated chest X-ray report are concatenated and processed by the CREPE
model, which predicts continuous error counts across six clinically defined categories; the total error count is used as
the final CREPE score. (Right) Comparative analysis of evaluation metrics on the ReXVal dataset, plotting Kendall’s
τ correlation with radiologist error counts (x-axis) against average computation time per report pair (y-axis, log
scale). CREPE achieves superior correlation with expert assessments while maintaining low computational cost,
enabling fast and clinically aligned report evaluation.

category-specific error annotations, automati-082

cally generated using LLMs under strict data083

governance.084

• Robust Generalization: We demonstrate085

strong generalization and robustness of086

CREPE across diverse public evaluation087

benchmarks, including challenging out-of-088

distribution datasets.089

• Efficiency and Scalability: CREPE delivers090

substantial reductions in computational cost091

and inference time compared to LLM-based092

evaluation methods, enabling practical and093

scalable assessment for both research and real-094

world development pipelines.095

An overview of the CREPE pipeline and its com-096

parative performance is illustrated in Figure 1.097

2 Related Work098

2.1 General Text Evaluation Metrics099

Traditional natural language generation (NLG) met-100

rics are widely adopted for evaluating generated101

text in machine translation and summarization.102

Overlap-based metrics such as BLEU (Papineni103

et al., 2002) and ROUGE (Lin, 2004) measure104

n-gram precision and recall, respectively, provid- 105

ing straightforward and interpretable scores but 106

offering limited insight into the semantic or fac- 107

tual correctness of generated content. Embedding- 108

based metrics like BERTScore (Zhang et al., 2020) 109

address some of these limitations by comparing 110

contextualized token embeddings from pretrained 111

language models, thus better capturing semantic 112

similarity. 113

More recently, LLM-based evaluators, including 114

Prometheus (Kim et al., 2023) and G-Eval (Liu 115

et al., 2023) have been proposed to deliver holis- 116

tic and dimension-specific quality assessments 117

through instruction-tuned LLMs. Although these 118

approaches achieve stronger alignment with human 119

judgments, their high computational cost and in- 120

ference latency limit their practical application in 121

large-scale or rapid evaluation settings. 122

2.2 Radiology Report Evaluation Metrics 123

Metrics tailored for clinical text generation aim to 124

address the unique demands of the medical domain, 125

where factual accuracy and clinical interpretability 126

are critical. NER-based metrics such as F1 Rad- 127

Graph (Jain et al., 2021; Delbrouck et al., 2024) 128

focus on the extraction and matching of medical 129

entities and their relations to evaluate factual con- 130
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sistency, while SembScore (CheXbert vector sim-131

ilarity) (Smit et al., 2020) represents findings as132

structured vectors for semantic comparison.133

Composite metrics such as RadCliQ (Yu et al.,134

2023a) employ linear regression to combine the135

outputs of BLEU, BERTScore, SembScore, and F1136

RadGraph into a single score. RaTEScore (Zhao137

et al., 2024) uses medical NER model to emphasize138

entity-level factual precision. LLM-based metrics139

such as GREEN (Ostmeier et al., 2024) and Fin-140

eRadScore (Huang et al., 2024) leverage the rea-141

soning capabilities of language models to provide142

fine-grained, expert-aligned scoring. While each of143

these methods advances clinical alignment or inter-144

pretability, they often introduce complexity, require145

specialized domain resources, or incur substantial146

computational cost, which can hinder scalability147

and routine deployment.148

2.3 Regression-Based Text Evaluation149

Regression-based approaches aim to bridge the gap150

between metric predictions and human judgments151

by training models to directly regress to quality152

scores or error counts from text features. Notable153

examples include COMET (Rei et al., 2020) and154

BLEURT (Sellam et al., 2020), which use pre-155

trained language model encoders with regression156

heads to approximate human evaluation. While157

these methods can offer improved correlation with158

human ratings, they typically operate as black-box159

predictors and may not provide detailed, clinically160

interpretable feedback.161

Overall, despite substantial progress in the devel-162

opment of evaluation metrics, a fast, interpretable,163

and clinically grounded method for chest X-ray164

report generation remains an open challenge.165

3 CREPE166

Our proposed metric, CREPE, evaluates the qual-167

ity of chest X-ray reports by directly predicting168

error counts across clinically relevant categories.169

By providing structured, category-specific error170

estimates, CREPE enables both quantitative assess-171

ment and interpretable feedback, thereby facilitat-172

ing robust comparison and targeted diagnostic im-173

provement in automated report generation.174

3.1 Problem Formulation175

Given a reference report Rref and a generated re-176

port Rcand, the goal is to predict a vector of error177

counts,178

n = [nA, nB, . . . , nF ],179

Figure 2: CREPE Model Architecture. Tokenized ref-
erence and candidate reports are encoded by a medical
domain-specific BERT model, and the pooled represen-
tation is used by the error counting module to output
category-wise error counts.

where each element corresponds to one of six clini- 180

cally defined error categories: 181

(A) False prediction of finding 182

(B) Omission of finding 183

(C) Incorrect location or position of finding 184

(D) Incorrect severity of finding 185

(E) Mention of comparison not present in the ref- 186

erence impression 187

(F) Omission of comparison describing a change 188

from a previous study 189

as defined in the annotation protocol used for the 190

ReXVal dataset (Yu et al., 2023b). 191

The overall error count score, S, is given by the 192

sum of the predicted error counts: 193

S =
∑
c∈E

nc, (1) 194

where E = {A,B,C,D,E, F}. Lower values of 195

S indicate higher report quality, with category-level 196

predictions providing actionable insights for further 197

model refinement. 198

3.2 Model Architecture 199

The CREPE model is built upon a pretrained BERT 200

model specifically tailored for biomedical text, 201

which we fine-tune for regression-based error pre- 202

diction. For each error category, the model jointly 203

estimates both the expected error count and the 204

presence of any error, thereby enabling detailed 205

and clinically interpretable evaluation. The overall 206

architecture of the model is shown in Figure 2. 207

3



Encoder and Feature Extraction. Let x denote208

the tokenized input sequence formed by concate-209

nating Rref and Rcand, separated by special tokens.210

This sequence is processed by the BERT encoder,211

yielding a pooled representation h ∈ Rd:212

h = BERT(x)[CLS] (2)213

A dropout layer is applied to h to prevent over-214

fitting. This pooled output serves as the shared215

feature for all downstream prediction heads.216

Error Regression Heads. For each error cate-217

gory c ∈ E , an independent regression head pre-218

dicts the error count:219

n̂c = fc(h) (3)220

where fc(·) is a category-specific feedforward layer221

outputting a predicted error counts n̂c. The collec-222

tion of outputs, n̂ = [n̂A, n̂B, . . . , n̂F ], constitutes223

the predicted error vector.224

Error Detection Heads. To address the chal-225

lenge of class imbalance, where certain error cat-226

egories are infrequently represented in the train-227

ing data as shown in Figure 4, the model incorpo-228

rates auxiliary error detection heads during training.229

These heads are designed to predict the presence230

or absence of each error type, and their outputs231

are used exclusively for loss calculation to enhance232

learning for rare categories. Specifically, for each233

category c, the model produces a logit:234

p̂c = gc(h) (4)235

where gc(·) is a category-specific feedforward layer.236

During training, a sigmoid activation is applied to237

obtain a probability estimate for error presence, but238

these predictions are not used at inference time.239

Loss Function. As shown in Figure 3, the240

CREPE model is trained with a dual-objective loss241

that captures both the count and presence of clin-242

ically meaningful errors. For each error category243

c ∈ E , the model predicts a continuous error count244

n̂c as well as an auxiliary presence logit p̂c. Let245

n = [nA, . . . , nF ] denote the ground-truth error246

counts, and p = [pA, . . . , pF ] denote the binary247

presence indicators, where pc = I[nc > 0].248

The regression loss encourages accurate estima-249

tion of error counts and is computed using mean250

squared error (MSE):251

Lreg =
1

|E|
∑
c∈E

MSE(n̂c, nc) (5)252

Figure 3: Prediction Heads Architecture. The pooled
[CLS] embedding is passed through a dropout layer
and then fed into two parallel sets of output heads for
each error category: error regression heads (left) predict
continuous error counts, while auxiliary error detection
heads (right) predict the presence or absence of errors
during training.

The presence loss penalizes incorrect predictions 253

of whether an error of a given type is present and 254

is computed using binary cross-entropy (BCE): 255

Lpres =
1

|E|
∑
c∈E

BCE(p̂c, pc) (6) 256

The total loss used for training is the average of 257

the regression and presence losses: 258

L =
Lreg + Lpres

2
(7) 259

This combined objective allows the model to 260

learn both precise error count estimation and im- 261

proved sensitivity to rare or underrepresented error 262

categories, resulting in more accurate and inter- 263

pretable evaluation of chest X-ray reports. 264

Inference and Scoring. As shown in Figure 1, 265

the CREPE model outputs predicted error counts 266

n̂c for each of the six error categories given a pair of 267

reference and generated reports. The CREPE met- 268

ric is defined as the sum of predicted error counts: 269

CREPE =
∑
c∈E

n̂c (8) 270

A lower CREPE score indicates higher report qual- 271

ity, and this aggregate value serves as the primary 272

metric for evaluating overall performance through 273

correlation-based analysis. In addition, category- 274

level error predictions can be analyzed individually, 275

for example using mean absolute error (MAE), to 276

provide more granular diagnostic feedback or to 277

target specific clinical priorities. 278
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Metric ReXVal ReFiSco-v0 RadEvalX RaTE-Eval RaTE-Eval†
τ ρ τ ρ τ ρ τ ρ τ ρ

BLEU-4 0.383 0.516 0.489 0.616 0.074 0.096 0.197 0.247 0.134 0.166
ROUGE-L 0.570 0.748 0.524 0.662 0.257 0.356 0.200 0.281 0.220 0.302
METEOR 0.484 0.653 0.468 0.617 0.201 0.284 0.174 0.245 0.248 0.338
BERTScore 0.521 0.694 0.541 0.689 0.326 0.452 0.224 0.315 0.256 0.351
F1 RadGraph 0.585 0.765 0.475 0.609 0.171 0.243 0.306 0.393 0.258 0.328
SembScore 0.495 0.666 0.461 0.605 0.318 0.434 0.198 0.280 0.245 0.336
RaTEScore 0.520 0.697 0.433 0.571 0.316 0.438 0.339 0.460 0.310 0.419
RadCliQ-v1 0.623 0.809 0.510 0.656 0.326 0.449 0.299 0.415 0.304 0.414
GREEN 0.626 0.798 0.592 0.709 0.411 0.539 0.374 0.457 0.409 0.494
GREEN EC 0.775 0.899 0.723 0.811 0.448 0.577 0.252 0.315 0.432 0.517
CREPE 0.786 0.933 0.697 0.825 0.580 0.745 0.267 0.375 0.407 0.541

Table 1: Correlation with Radiologist Error Counts Across Datasets. Kendall’s τ and Spearman’s ρ correlation
coefficients for each evaluation metric on five benchmark datasets. Bold indicates the best and underline the
second-best value for each metric and dataset. 95% confidence intervals are reported in Table 5.

3.3 Synthetic Training Data Generation279

Obtaining large-scale, expert-annotated error280

counts for chest X-ray reports is logistically and281

financially challenging. To address this, we con-282

structed a synthetic training dataset through an au-283

tomated pipeline, designed to maximize clinical rel-284

evance while adhering strictly to responsible data285

use policies for sensitive medical data.286

Report Pair Sampling. We randomly sam-287

pled 32,000 image-report pairs from the MIMIC-288

CXR (Johnson et al., 2019) training set to serve as289

the basis for synthetic data generation.290

Synthetic Report Generation. For each selected291

image, a candidate report was generated using292

CheXagent (Chen et al., 2024), a vision-language293

foundation model specialized for chest X-ray inter-294

pretation.295

Error Analysis. To identify and classify errors296

between reference and candidate reports, we used297

Gemini 2.5 Pro 03-25 preview version deployed298

via Vertex AI on Google Cloud (Google, 2025).299

This ensured that all analysis was performed in a se-300

cure environment, fully compliant with the MIMIC-301

CXR data use agreement, which prohibits sending302

data to external services such as public LLM APIs.303

Label Extraction. We adapted the prompt from304

GREEN (Ostmeier et al., 2024) to obtain, for each305

reference–candidate report pair, error counts across306

six predefined categories, separately for clinically307

significant and clinically insignificant errors. For308

each category, we summed the significant and in-309

Figure 4: Distribution of per-category error counts
in the synthetic training dataset. The highly skewed
distributions highlight substantial class imbalance, moti-
vating the use of a dual-objective loss to improve learn-
ing of rare error categories.

significant error counts to create the final label 310

vector [nA, nB, . . . , nF ] used for CREPE model 311

training. The distribution of error counts for each 312

category is illustrated in Figure 4. 313

This data generation pipeline enabled us to cre- 314

ate a diverse and representative training dataset, 315

supporting robust model learning across a wide 316

range of clinically meaningful error types while 317

strictly adhering to data governance requirements. 318

For full details on data generation, including 319

prompts and hyperparameters used for the genera- 320

tion models, see Appendix A.1. 321

4 Experiments 322

4.1 Experimental Setup 323

We designed a comprehensive experimental frame- 324

work to evaluate CREPE’s performance across mul- 325

tiple aspects of chest X-ray report evaluation. Be- 326

low, we describe the datasets used for benchmark- 327

ing, the baseline metrics for comparison, and the 328

main implementation and optimization details for 329
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Figure 5: Kendall’s τ Correlation with Radiologist Error Counts Across Datasets. Bar plots show Kendall’s
τ values (with 95% confidence intervals) for each evaluation metric on multiple public benchmarks. CREPE
consistently achieves the highest or near-highest correlation with expert error counts across all datasets.

reproducibility.330

Evaluation Datasets. We evaluated CREPE331

on four publicly available datasets containing332

radiologist-annotated errors: ReXVal (Yu et al.,333

2023b), ReFiSco-v0 (Tian et al., 2023), RadE-334

valX (Calamida et al., 2024), and RaTE-Eval (Zhao335

et al., 2024). ReXVal consists of expert-labeled336

report-level errors from the MIMIC-CXR dataset,337

and we additionally use a filtered variant, ReX-338

Val*, with identical report pairs removed to reduce339

class imbalance. ReFiSco-v0 provides line-level340

severity annotations, which we map to binary error341

labels and aggregate at the report level. RadEvalX342

comprises 100 IU-Xray (Pavlopoulos et al., 2019)343

reports with expert annotations for six standard344

error categories, plus two uncertainty-related cate-345

gories. For RaTE-Eval, we use only the sentence-346

level human rating task, which covers nine imaging347

modalities and 22 anatomies and includes normal-348

ization of error counts by potential error opportu-349

nities. We also report raw counts for comparison.350

Detailed descriptions of dataset construction, anno-351

tation protocols, and pre-processing are provided352

in Appendix A.2.353

Baselines. To contextualize CREPE’s perfor-354

mance, we compared it against general text evalu-355

ation metrics, including BLEU-4 (Papineni et al.,356

2002), ROUGE-L (Lin, 2004), METEOR (Baner-357

jee and Lavie, 2005), and BERTScore (Zhang et al.,358

2020), as well as radiology report evaluation met-359

rics, such as F1 RadGraph (Jain et al., 2021), Sem-360

bScore (Smit et al., 2020), RaTEScore (Zhao et al.,361

2024), RadCliQ (Yu et al., 2023a), GREEN (Ost-362

meier et al., 2024), and GREEN error count363

(GREEN EC).364

Implementation Details. Our experiments were365

conducted using BiomedBERT (Gu et al., 2021), a366

medical domain-specific BERT model, as the foun- 367

dation for the CREPE model. The entire BERT 368

encoder and all regression and presence heads were 369

fine-tuned on the synthetic dataset for 10 epochs, 370

with a validation split of 0.1 and a batch size of 371

64. Sequences were truncated or padded to a max- 372

imum length of 512 tokens, and mixed-precision 373

training (FP16) was employed to accelerate com- 374

putation. All experiments were performed on a 375

single NVIDIA A6000 GPU. The source code will 376

be made publicly available upon acceptance of the 377

paper. 378

Hyperparameter Optimization. Key hyperpa- 379

rameters, including learning rate, weight decay, 380

and warmup ratio, were optimized via automated 381

search using Optuna (Akiba et al., 2019). The opti- 382

mal configuration was selected based on validation 383

set performance, as measured by Kendall’s τ corre- 384

lation. 385

4.2 Results 386

We comprehensively evaluate CREPE across four 387

key dimensions: correlation with human expert 388

judgments (Sec. 4.3), robustness to class imbalance 389

(Sec. 4.4), computational efficiency (Sec. 4.5), and 390

absolute error-prediction accuracy (Sec. 4.6). 391

4.3 Correlation with Human Judgments 392

To assess clinical validity, we evaluate the cor- 393

relation between each metric’s predictions and 394

radiologist-annotated error counts across five pub- 395

lic benchmarks with varying annotation protocols 396

and levels of difficulty. Table 1 reports Kendall’s τ 397

and Spearman’s ρ for all metrics. CREPE achieves 398

the highest or second-highest correlation on most 399

datasets, demonstrating strong alignment with hu- 400

man expert ratings. On ReXVal, CREPE attains 401

a Kendall’s τ of 0.786 and a Spearman’s ρ of 402
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Figure 6: Correlation Between Metric Scores and Radiologist-Identified Errors (ReXVal). Scatter plots show
the relationship between each evaluation metric’s score and the total number of radiologist-identified errors on the
ReXVal dataset. Each subplot includes a regression line and 95% confidence intervals. CREPE achieves the highest
correlation with expert error counts. Kendall’s τ and Spearman’s ρ are shown in the subplot titles.

0.933, while maintaining competitive performance403

on line-level (ReFiSco-v0), category-extended404

(RadEvalX), and out-of-distribution multi-modality405

(RaTE-Eval) datasets.406

Figure 5 summarizes Kendall’s τ (with 95%407

confidence intervals) across all benchmarks, illus-408

trating that CREPE is consistently among the top-409

performing metrics in terms of agreement with ra-410

diologist judgments.411

For a more detailed view, Figure 6 visualizes412

the relationship between metric scores and total413

radiologist-identified errors on ReXVal. The scat-414

ter plots show that CREPE exhibits a monotonic415

association with expert error counts, in line with its416

correlation statistics.417

Taken together, these results suggest that CREPE418

provides reliable alignment with expert judgment419

across a range of evaluation settings and dataset420

characteristics.421

4.4 Robustness to Class Imbalance422

To examine the impact of class imbalance, partic-423

ularly the prevalence of zero-error pairs in ReX-424

Val, we constructed a filtered version, ReXVal*,425

by removing report pairs where the reference and426

candidate reports were identical. As shown in Ta-427

ble 2, this filtering results in a notable decline in the428

performance of conventional metrics; the average429

decrease in Kendall’s τ is approximately 0.12. In430

contrast, CREPE’s correlation with human judg-431

ments decreases by only 0.033, corresponding to a432

4.2 percent relative drop. These results suggest that433

CREPE remains robust and continues to reliably434

differentiate clinically meaningful errors even in435

more challenging evaluation settings.436

Metric ReXVal ReXVal* ∆τ

BLEU-4 0.383 0.215 −0.168
ROUGE-L 0.570 0.459 −0.111
METEOR 0.484 0.355 −0.129
BERTScore 0.521 0.404 −0.117
F1 RadGraph 0.585 0.484 −0.101
SembScore 0.495 0.368 −0.127
RaTEScore 0.520 0.408 −0.113
RadCliQ-v1 0.623 0.500 −0.123
GREEN 0.626 0.500 −0.126
GREEN EC 0.775 0.729 −0.046
CREPE 0.786 0.753 −0.033

Table 2: Robustness to Class Imbalance. Kendall’s τ
for each metric on the original ReXVal dataset and the
filtered set ReXVal*, after removing 26 identical report
pairs. ∆τ shows the change in correlation.

4.5 Computational Efficiency 437

We compare the inference time per sample for all 438

metrics using the ReXVal dataset. As shown in 439

Figure 1 and Table 3, CREPE processes a report in 440

9.5 milliseconds, which is comparable to the fastest 441

neural baselines such as BERTScore. In contrast, 442

LLM-based methods such as GREEN require over 443

2,600 milliseconds per sample, making them ap- 444

proximately 280 times slower. This substantial 445

speed advantage demonstrates that CREPE is well- 446

suited for rapid and large-scale evaluation, without 447

sacrificing alignment with expert judgment. 448

4.6 Error Score Accuracy 449

Among public benchmarks, RaTE-Eval uniquely 450

provides category-level error counts, enabling di- 451

rect assessment of absolute prediction accuracy. 452
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Metric Time (ms)
BLEU-4 4.29
ROUGE-L 125.99
METEOR 24.83
BERTScore 9.65
F1 RadGraph 36.59
SembScore 18.86
RaTEScore 160.28
RadCliQ-v1 370.58
GREEN 2642.37
GREEN EC 2642.37
CREPE 9.53

Table 3: Speed Comparison. Average inference time
per sample (milliseconds) for each evaluation metric on
the ReXVal dataset.

Head Counts τ

1 0.723
2 0.730
6 (ours) 0.753
Loss Function τ

MSE only 0.718
Poisson NLL only 0.738
MSE + BCE (ours) 0.753
Encoder Backbone τ

ClinicalBERT 0.693
Bio_ClinicalBERT 0.716
BiomedBERT (ours) 0.753

Table 4: Ablation on Model Components. Impact of
regression head granularity, loss function, and encoder
backbone on Kendall’s τ for ReXVal*.

On this dataset, CREPE achieves a mean absolute453

error (MAE) of 0.739±0.627, which is 33% lower454

than the MAE of GREEN EC (1.102 ± 0.632).455

Both metrics offer category-specific predictions,456

but CREPE’s lower error demonstrates the effec-457

tiveness of regression-based modeling when de-458

tailed supervision is available.459

5 Ablation Studies460

We conducted ablation studies on the balanced461

ReXVal* dataset to quantify the contributions of462

key architectural and modeling choices. Unless oth-463

erwise specified, all variants share the same hyper-464

parameters as the full model (six regression heads,465

dual-objective MSE + BCE loss, and BiomedBERT466

backbone).467

5.1 Number of Regression Heads 468

To assess the impact of output granularity, we com- 469

pared three regression head configurations: (1) a 470

single head predicting the total error count, (2) two 471

heads for clinically significant and insignificant er- 472

rors, and (3) six heads for category-specific errors, 473

which is the default setting. As shown in Table 4, 474

increasing the number of regression heads leads 475

to consistently higher agreement with radiologist 476

judgments, with the six-head model achieving the 477

best Kendall’s τ . 478

5.2 Loss Function 479

We evaluated three loss formulations: MSE only, 480

Poisson negative log likelihood (NLL) only, and a 481

dual-objective MSE+BCE loss that incorporates 482

an auxiliary error presence term. The results in Ta- 483

ble 4 demonstrate that the dual-objective loss yields 484

the highest correlation with expert annotations, in- 485

dicating the value of explicitly modeling both error 486

counts and the presence of rare error types. 487

5.3 Encoder Backbone 488

To determine the importance of domain-specific 489

pre-training, we replaced BiomedBERT with two 490

clinical BERT models: ClinicalBERT (Wang 491

et al., 2023; Liu et al., 2025) and 492

Bio_ClinicalBERT (Alsentzer et al., 2019), 493

keeping all other settings fixed. As reported 494

in Table 4, BiomedBERT yields the highest 495

Kendall’s τ . The reason for BiomedBERT’s superior 496

performance may be related to its pre-training on a 497

broader biomedical literature corpus, potentially 498

offering better coverage of radiology terminology 499

than models trained solely on clinical notes. 500

Details about encoder backbones are provided in 501

Appendix A.3. 502

6 Conclusion 503

We presented CREPE, an efficient evaluation met- 504

ric for automated chest X-ray report generation that 505

predicts clinically meaningful error counts using 506

a domain-specific BERT model with a multi-head 507

regression architecture. CREPE provides both an 508

overall score and interpretable category-level feed- 509

back, demonstrating strong correlation with expert 510

judgments, robustness to class imbalance, and fast 511

inference compared to existing evaluation methods. 512

Future work includes extending this approach to 513

additional medical imaging domains and further 514

investigating its generalizability. 515
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Limitations516

Despite its advantages, CREPE has several limita-517

tions. First, the model requires a GPU for efficient518

inference, which may limit accessibility in low-519

resource environments compared to purely rule-520

based or string-matching metrics. Second, although521

inference is fast, the generation of synthetic train-522

ing data involves significant computational cost,523

including the use of large foundation models and524

commercial LLM APIs, which could restrict repro-525

ducibility or scalability in some settings. Third,526

while CREPE demonstrates robust performance527

on several public benchmarks, its accuracy on out-528

of-distribution modalities and reporting styles is529

not guaranteed and may degrade when applied to530

clinical scenarios substantially different from those531

in the training data. Additionally, the reliance on532

synthetic error annotations, rather than large-scale533

real-world expert labeling, may introduce biases534

or affect generalizability. Addressing these chal-535

lenges will be important for future extensions and536

real-world deployment.537
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A Appendix 739

A.1 Details for Synthetic Data Generation 740

We provide here the details and prompts used to generate the synthetic training data for the CREPE model. 741

A.1.1 Candidate Report Generation 742

To generate candidate reports, we utilized StanfordAIMI/CheXagent-8b from the Hugging Face 743

Hub (Wolf et al., 2020) with default inference settings. From the MIMIC-CXR training split, we 744

randomly sampled 32,000 examples. For each sample, the ‘FINDINGS’ section was used as the reference 745

report; if this section was unavailable, we instead used the ‘IMPRESSION’ section. The candidate report 746

was generated by providing the associated chest X-ray image along with a standardized prompt. 747

{image} Provide a radiological report for the following image. ASSISTANT:

11



A.1.2 Error Count Data Generation748

To obtain error counts, we used gemini-2.5-pro-preview-03-25 accessed via Vertex AI on Google749

Cloud, again with default parameters (temperature 1.0, topP 0.95, candidateCount 1). For each refer-750

ence–candidate pair, the model was prompted to compare the candidate report against the reference,751

following explicit instructions to assess both clinically significant and clinically insignificant errors across752

six predefined categories. The prompt also required the model to return a structured output, detailing error753

counts and explanations for each category, as well as matched findings between the reports.754

Objective:
Evaluate the accuracy of a candidate radiology report in comparison to a reference radiology report
composed by expert radiologists.

Process Overview:
You will be presented with:
1. The criteria for making a judgment.
2. The reference radiology report.
3. The candidate radiology report.
4. The desired format for your assessment.

1. Criteria for Judgment:
For each candidate report, determine:

- The count of clinically significant errors.
- The count of clinically insignificant errors.

Errors can fall into one of these categories:
a) False report of a finding in the candidate.
b) Missing a finding present in the reference.
c) Misidentification of a finding's anatomic location/position.
d) Misassessment of the severity of a finding.
e) Mentioning a comparison that isn't in the reference.
f) Omitting a comparison detailing a change from a prior study.

Note: Concentrate on the clinical findings rather than the report's writing style.
Evaluate only the findings that appear in both reports.

2. Reference Report:
{reference_report}

3. Candidate Report:
{candidate_report}

4. Reporting Your Assessment:
Follow this specific format for your output, even if no errors are found:
Do NOT abbreviate the name of the error type.
```
[Explanation]:
<Explanation>

[Clinically Significant Errors]:
(a) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>
....
(f) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>

[Clinically Insignificant Errors]:
(a) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>
....
(f) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>

[Matched Findings]:
<The number of matched findings>. <Finding 1>; <Finding 2>; ...; <Finding n>
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A.2 Dataset Details and Processing 755

We provide detailed descriptions of each benchmark used in our evaluation. Figure 7 visualizes the 756

distribution of total error counts across all datasets. 757

Figure 7: Total error count distributions for all evaluation datasets.

A.2.1 ReXVal 758

ReXVal contains radiologist-annotated errors for generated reports compared to ground-truth reports 759

from the MIMIC-CXR dataset. Six radiologists independently evaluated both clinically significant and 760

insignificant errors, assigning counts for each of six predefined error categories. For each ground-truth 761

report, four candidate reports were generated by different automated methods. To address class imbalance, 762

we also evaluate on ReXVal*, a variant where pairs with identical reference and candidate reports are 763

removed. 764

A.2.2 ReFiSco-v0 765

ReFiSco-v0 provides line-level radiologist error annotations for MIMIC-CXR reports, categorizing each 766

line as ‘No error’, ‘Not actionable’, ‘Actionable nonurgent error’, ‘Urgent error’, or ‘Emergent error.’ We 767

map ‘No error’ to zero and all other categories to one, then aggregate the binary error labels across lines 768

to produce report-level error counts. 769

A.2.3 RadEvalX 770

RadEvalX consists of 100 reports sampled from the IU-Xray dataset, selected to balance normal and 771

abnormal findings. Each report and its generated counterpart were annotated by experts for six standard 772

error categories, consistent with ReXVal, as well as two additional categories related to uncertainty 773

(mention or omission of uncertainty). For our evaluation, we sum error counts across all categories. 774

A.2.4 RaTE-Eval 775

For RaTE-Eval, we use the sentence-level human rating benchmark, which spans nine imaging modalities 776

and 22 anatomical regions, representing a multi-modality and out-of-distribution test case. Annotators 777

counted errors per sentence, and scores are normalized by the number of potential error opportunities. For 778

consistency, we also report results using the raw, unnormalized error counts, denoted as RaTE-Eval† 779

A.2.5 Additional Notes 780

All datasets were used in accordance with their respective data use agreements and ethical guidelines. 781

Where necessary, we standardized error category definitions across datasets for consistency in evaluation. 782
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A.3 Details for BERT Encoder Backbones783

We summarize here the key characteristics and pretraining corpora for each encoder backbone used in our784

experiments.785

A.3.1 medicalai/ClinicalBERT786

ClinicalBERT is a domain-adapted BERT model initially trained on general English text and then further787

pre-trained on a large corpus of de-identified clinical notes. Its training corpus encompasses approximately788

1.2 billion words of clinical narratives, including diverse disease phenotypes and a wide range of free-text789

observations from electronic health records. The model is designed for masked language modeling and790

fine-tuned for downstream clinical NLP tasks such as information extraction, symptom detection, and791

temporal representation of patient trajectories. ClinicalBERT has demonstrated high performance in792

extracting clinically relevant information from free-text notes, with an average F1 score of 94.5% in793

symptom extraction tasks on annotated samples.794

A.3.2 emilyalsentzer/Bio_ClinicalBERT795

Bio_ClinicalBERT is based on the BERT architecture, initialized from BioBERT, and further pre-trained796

on approximately two million clinical notes from the MIMIC-III database. This corpus includes a797

comprehensive range of note types, including both discharge summaries and general clinical narratives.798

The pre-training process follows standard masked language modeling objectives and leverages the799

full MIMIC corpus for greater domain coverage. Bio_ClinicalBERT embeddings are intended as a800

community resource for downstream medical NLP tasks. Pre-training required significant computational801

resources, estimated at 17–18 days on a high-end GPU.802

A.3.3 microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract803

BiomedBERT, previously named PubMedBERT, used as the primary encoder backbone for CREPE, is pre-804

trained on large-scale biomedical text corpora, including PubMed abstracts and clinical literature. The805

model employs the standard BERT-base architecture and is optimized for masked language modeling to806

capture domain-specific biomedical terminology and semantics. For our experiments, BiomedBERT was807

further fine-tuned on the CREPE training set for the specific task of clinical error count regression.808
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Metric ReXVal ReXVal* ReFiSco-v0
τ ρ τ ρ τ ρ

BLEU-4 0.383 [0.274, 0.482] 0.516 [0.371, 0.633] 0.215 [0.104, 0.333] 0.294 [0.144, 0.447] 0.489 [0.408, 0.561] 0.616 [0.520, 0.692]

ROUGE-L 0.570 [0.490, 0.636] 0.748 [0.661, 0.809] 0.459 [0.373, 0.537] 0.633 [0.523, 0.716] 0.524 [0.443, 0.602] 0.662 [0.569, 0.742]

METEOR 0.484 [0.400, 0.558] 0.653 [0.546, 0.738] 0.355 [0.260, 0.444] 0.497 [0.369, 0.606] 0.468 [0.388, 0.538] 0.617 [0.514, 0.694]

BERTScore 0.521 [0.441, 0.598] 0.694 [0.597, 0.776] 0.404 [0.313, 0.497] 0.558 [0.438, 0.668] 0.541 [0.467, 0.606] 0.689 [0.604, 0.759]

F1 RadGraph 0.585 [0.512, 0.650] 0.765 [0.686, 0.823] 0.484 [0.401, 0.563] 0.661 [0.562, 0.742] 0.475 [0.392, 0.547] 0.609 [0.509, 0.690]

SembScore 0.495 [0.416, 0.574] 0.666 [0.571, 0.751] 0.368 [0.271, 0.455] 0.513 [0.388, 0.621] 0.461 [0.387, 0.538] 0.605 [0.512, 0.691]

RaTEScore 0.520 [0.439, 0.589] 0.697 [0.601, 0.770] 0.408 [0.319, 0.495] 0.564 [0.448, 0.667] 0.433 [0.356, 0.504] 0.571 [0.472, 0.654]

RadCliQ-v1 0.623 [0.566, 0.676] 0.809 [0.749, 0.855] 0.540 [0.475, 0.602] 0.730 [0.654, 0.791] 0.510 [0.433, 0.576] 0.656 [0.564, 0.729]

GREEN 0.626 [0.555, 0.685] 0.798 [0.729, 0.843] 0.541 [0.459, 0.614] 0.713 [0.617, 0.789] 0.592 [0.518, 0.663] 0.709 [0.632, 0.781]

GREEN EC 0.775 [0.728, 0.814] 0.899 [0.861, 0.924] 0.729 [0.667, 0.776] 0.864 [0.807, 0.900] 0.723 [0.660, 0.780] 0.811 [0.744, 0.866]

CREPE 0.786 [0.749, 0.816] 0.933 [0.907, 0.949] 0.753 [0.703, 0.794] 0.911 [0.871, 0.937] 0.697 [0.640, 0.747] 0.825 [0.761, 0.873]

Metric RadEvalX RaTE-Eval RaTE-Eval†
τ ρ τ ρ τ ρ

BLEU-4 0.074 [-0.092, 0.231] 0.096 [-0.120, 0.301] 0.197 [0.119, 0.270] 0.247 [0.151, 0.339] 0.134 [0.060, 0.208] 0.166 [0.075, 0.255]

ROUGE-L 0.257 [0.111, 0.382] 0.356 [0.155, 0.519] 0.200 [0.136, 0.260] 0.281 [0.192, 0.362] 0.220 [0.146, 0.284] 0.302 [0.201, 0.387]

METEOR 0.201 [0.065, 0.334] 0.284 [0.100, 0.458] 0.174 [0.105, 0.244] 0.245 [0.150, 0.340] 0.248 [0.183, 0.310] 0.338 [0.251, 0.420]

BERTScore 0.326 [0.195, 0.442] 0.452 [0.274, 0.596] 0.224 [0.160, 0.284] 0.315 [0.226, 0.395] 0.256 [0.196, 0.316] 0.351 [0.270, 0.432]

F1 RadGraph 0.171 [0.053, 0.294] 0.243 [0.070, 0.409] 0.306 [0.235, 0.374] 0.393 [0.304, 0.476] 0.258 [0.185, 0.329] 0.328 [0.235, 0.418]

SembScore 0.318 [0.165, 0.447] 0.434 [0.228, 0.593] 0.198 [0.134, 0.258] 0.280 [0.190, 0.360] 0.245 [0.186, 0.308] 0.336 [0.256, 0.421]

RaTEScore 0.316 [0.192, 0.435] 0.438 [0.270, 0.583] 0.339 [0.280, 0.396] 0.460 [0.379, 0.534] 0.310 [0.250, 0.369] 0.419 [0.340, 0.494]

RadCliQ-v1 0.326 [0.206, 0.459] 0.449 [0.288, 0.609] 0.299 [0.238, 0.357] 0.415 [0.332, 0.492] 0.304 [0.247, 0.363] 0.414 [0.338, 0.488]

GREEN 0.411 [0.308, 0.517] 0.539 [0.408, 0.661] 0.374 [0.303, 0.439] 0.457 [0.371, 0.532] 0.409 [0.343, 0.470] 0.494 [0.419, 0.562]

GREEN EC 0.448 [0.341, 0.546] 0.577 [0.441, 0.686] 0.252 [0.184, 0.320] 0.315 [0.229, 0.396] 0.432 [0.369, 0.495] 0.517 [0.443, 0.585]

CREPE 0.580 [0.477, 0.669] 0.745 [0.625, 0.826] 0.267 [0.202, 0.331] 0.375 [0.288, 0.457] 0.407 [0.349, 0.466] 0.541 [0.468, 0.611]

Table 5: Correlation with Radiologist Error Counts and Confidence Intervals. Kendall’s τ and Spearman’s ρ
correlation coefficients, with 95% confidence intervals, for each evaluation metric on six datasets. Bold indicates
the best and underline the second-best values for each metric and dataset.
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