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Abstract

Covariate-dependent graph learning has gained increasing interest in the graphical

modeling literature for the analysis of heterogeneous data. This task, however, poses

challenges to modeling, computational efficiency, and interpretability. The parameter

of interest can be naturally represented as a three-dimensional array with elements

that can be grouped according to two directions, corresponding to node level and

covariate level, respectively. In this article, we propose a novel dual group spike-

and-slab prior that enables multi-level selection at covariate-level and node-level, as

well as individual (local) level sparsity. We introduce a nested strategy with specific

choices to address distinct challenges posed by the various grouping directions. For

posterior inference, we develop a tuning-free Gibbs sampler for all parameters, which

mitigates the difficulties of parameter tuning often encountered in high-dimensional

graphical models and facilitates routine implementation. Through simulation studies,

we demonstrate that the proposed model outperforms existing methods in its accuracy

of graph recovery. We show the practical utility of our model via an application to

microbiome data where we seek to better understand the interactions among microbes

as well as how these are affected by relevant covariates.

Keywords: Bayesian inference, Gaussian graphical model, global-local prior, human micro-

biome, variable selection.

1

ar
X

iv
:2

40
9.

17
40

4v
1 

 [
st

at
.M

E
] 

 2
5 

Se
p 

20
24



1 Introduction

Gaussian graphical models have been applied in a wide variety of fields to recover the depen-

dence structure among data (Lauritzen, 1996; Maathuis et al., 2018). The idea dates back to

Dempster (1972), who proposed the covariance selection method that estimates conditional

independencies based on the inverse covariance matrix (a.k.a., precision matrix or concen-

tration matrix) by linking the absence of an edge in an undirected graph to a zero entry in

the precision matrix. Expanding upon this idea, Meinshausen and Buhlmann (2006) showed

that neighborhood selection for each node in the graph is equivalent to perform variable se-

lection in a Gaussian linear model, turning the edge detection problem into variable selection

for independent regressions. This approach has inspired numerous studies with a focus on

using different selection methods to recover edges within a graph (Peng et al., 2009; Leday

et al., 2017; Liu and Wang, 2017).

Recent work has demonstrated the value of incorporating covariates in the modeling of

subject-specific graphs via Gaussian graphical regression models, in particular for character-

izing and discovering interactions in complex biological systems and diseases such as cancer

(Ni et al., 2019; Zhang and Li, 2023; Wang et al., 2022; Niu et al., 2023). Most of the existing

literature has focused on covariate-adjusted mean structures in Gaussian graphical models,

with either constant graphs across subjects or group-specific graphs depending on discrete

covariates; for a comprehensive review of this rich literature, see Zhang and Li (2023) and

Section 1.3 of Wang et al. (2022), with Osborne et al. (2022) providing a recent example.

In this article, instead, we focus on modeling the dependence of the precision matrix on co-

variates, a framework referred to as precision-on-scalar regression. This covariate-dependent

graph learning task is comparatively much less studied and poses challenges to modeling,

computational efficiency, and interpretability. Partition-based Bayesian approaches to model

covariate-dependent graphs are explored by (Niu et al., 2023), while Wang et al. (2022)

consider an edge regression model for undirected graphs, which estimates conditional depen-

dencies as a function of subject-level covariates, and employs shrinkage priors. Zhang and Li

(2023) introduce bi-level sparsity, where element- and group-wise sparsity are encouraged by

lasso and group lasso, respectively. Also, Ni et al. (2019) consider a conditional DAG model
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that allows the graph structure to vary with covariates. Their approach assumes a known

hierarchical ordering of the nodes, a prior knowledge that may not always be available in

practical settings.

Precision-on-scalar regression models are characterised by an ultra-dimensional param-

eter space, which can be viewed according to more than one grouping direction, e.g. node

or covariate. It is desirable to have both node-level and covariate-level group sparsity, in

addition to individual (local) level sparsity. This simultaneous sparsity at the local level and

the two group levels is crucial for interpretable graphical models, particularly in the presence

of many nodes and covariates. The majority of the existing works on heterogeneous graphs

fail to model such structured sparsity, as they typically group parameters in one direction

only, and there is a lack of efficient estimation strategies with easy parameter tuning to ad-

dress the daunting computational challenges. Also, in the work of Zhang and Li (2023), the

authors use lasso and group lasso to induce covariate-level sparsity by imposing node-level

sparsity. However, relying on one group level to induce the sparsity of another restricts the

ability to flexibly capture interactions between the two group levels. Here, we introduce a

novel dual-group spike-and-slab prior as a general framework to encode group sparsity at

both the covariate and the node level. At the covariate level, we allow for group (global) and

individual (local) sparsity. Even though this general prior is complementary to a wide range

of existing priors and empowers them into dual-group variants, modeling the two grouping

directions in the context of graphical models has distinct challenges. To this end, we pro-

pose to use particular choices tailored to each grouping direction, leading to a dual-group

spike-and-slab prior well suited for graphical models. We complete our proposed modeling

construction with tuning-free posterior sampling, that aids model interpretability. Overall,

we are not aware of any work in the Bayesian literature addressing multiple covariates with

the aforementioned structured sparsity. Through simulation studies, we demonstrate that

the proposed model outperforms the method of Zhang and Li (2023) in its accuracy of graph

recovery. We also compare performances to the Bayesian sparse group selection method of

Xu and Ghosh (2015).

As an illustration of the utility of our method, we consider an application to multivari-

ate data arising from microbiome studies. The human microbiome has been implicated in
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many diseases including colorectal cancer, inflammatory bowel disease, and immunologi-

cally mediated skin diseases. Here, we apply the proposed method to real data from the

Multi-’Omic Microbiome Study-Pregnancy Initiative (MOMS-PI) study, to estimate the in-

teraction between microbes in the vagina, as well as the interplay between vaginal cytokines

and microbial abundances, providing insight into mechanisms of host-microbial interaction

during pregnancy. These factors influence the microbiome by introducing new organisms,

changing the abundance of metabolites, or altering the pH of their environment. Identifying

factors that lead to the prevalence of different microbes can improve the understanding of

the importance and the function of the microbiome. Our method identifies a large number of

microbiome interactions (edges) that are simultaneously influenced by multiple cytokines. It

also highlights a subnetwork of multiple microbes that belong to the same family (phylum)

and that appear to be consistently detected as having covariate-dependent interactions for

various cytokines, which aligns with previous findings.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed

prior construction and the sampling procedure. In Section 3, we conduct simulations and

compare the proposed approach with existing methods. In Section 4, we apply the proposed

model to a human microbiome study. In Section 5 we provide some concluding remarks.

2 Methods

2.1 Gaussian Graphical Regression Models with Covariates

Let Y = (Y 1, . . . , Y p) be a p-dimensional outcome vector and X = (X1, . . . , Xq) a q-

dimensional covariate vector. We denote N independent and identically distributed obser-

vations by yn = (y1n, . . . , y
p
n) and xn = (x1

n, . . . , x
q
n), for n = 1, . . . , N . For simplicity, we

assume that the outcomes have been centered with zero mean. The covariate-dependent

Gaussian graphical model can be written as

yn|xn ∼ Np

(
0, [Ω (xn)]

−1) , (1)

where Ω (xn) = (ωij (xn))
p
i,j=1. Similarly to the typical covariate-free setting studied in the

Gaussian graphical model literature (Lauritzen, 1996), the covariate-dependent precision
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matrix Ω (X) encodes independence for node i and node j given the other nodes Y −(i,j)

but in a covariate dependent manner as: ωij (X) = 0 ⇐⇒ Y i ⊥ Y j|Y −(i,j),X. This adds

flexibility to modeling the dependence structure of Y .

Under the Gaussian assumption (1) the elements of the precision matrix, ωij (xn), are

related to the coefficients in the linear regression of yin on the other yjn, 1 ≤ i ̸= j ≤ p as

yin =

p∑
j ̸=i

θij (xn) y
j
n + ϵin ϵin ∼ N

(
0, σ2

i (xn)
)
,

where θij(xn) = −ωij(xn)
ωii(xn)

, σ2
i (xn) =

1
ωii(xn)

. This model generalizes the standard treatment

of Gaussian graphical models (Meinshausen and Buhlmann, 2006; Peng et al., 2009) to a

covariate-dependent regime. To complete the model specification, we consider specifying

θij (xn) and ωii(xn) using interpretable structures. In particular, we assume ωii (xn) = ωii

to be independent of covariates as in Wang et al. (2022) and Zhang and Li (2023), and

assume a linear structure θij(xn) =
∑q

k=1 β
ij
k x

k
n for 1 ≤ i ̸= j ≤ p. These assumptions lead

to the following model

yin =

p∑
j ̸=i

q∑
k=1

βij
k x

k
ny

j
n + ϵin, ϵin ∼ N

(
0, σ2

i

)
, 1 ≤ i ≤ p, n = 1, ..., N. (2)

2.2 Dual group spike-and-slab prior

The conditional regression in Eq. (2) models the effect of covariate xk
n on edge (i, j) via

coefficient βij
k . Therefore, sparsity of the regression coefficients βij

k induces sparsity of the

covariate-dependent precision Ω (xn). Let us collect the coefficients βij
k in Eq. (2) into a p-

by-p-by-q array B =
(
βij
k

)
, for i, j = 1, . . . , p and k = 1, ..., q, with diagonal elements βii

k = 0.

The elements of this multi-dimensional array B can be grouped in different ways, i.e., as node-

level and covariate-level groupings. Simultaneous sparsity at the two group levels, as well

as locally at individual level, can improve the interpretability and estimability of covariate-

dependent graphical models, particularly in the case of many nodes and covariates (Zhang

and Li, 2023).

Here, we introduce a novel dual-group spike-and-slab prior as a general framework to

encode group sparsity at both the covariate and the node level. At the covariate level, we

allow for group (global) and individual (local) sparsity. We complete our proposed modeling
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construction with tuning-free posterior sampling, that aids model interpretability. Even

though this general prior is complementary to a wide range of existing priors and empowers

them into dual-group variants, the two grouping directions in the context of graphical models

have distinct challenges. In our construction, we allow covariate-dependent directed effects

between two nodes to be asymmetric; symmetrizing βij
k , if desired, can be achieved by

enforcing the constraint βij
k = βji

k as in Wang et al. (2022), or via posterior summary, as

commonly done in the literature (Meinshausen and Buhlmann, 2006; Zhang and Li, 2023).

We start with a conventional spike-and-slab prior of the type:

βij
k |δ

ij
k , σ

ij
k ∼ δijk N

[
0,
(
σij
k

)2]
+ (1− δijk )δ0, (3)

where δijk ∈ {0, 1} is the overall selection indicator for a combination of nodes (i, j) and

covariate k, σij
k represents the prior variance of the slab distribution, and δ0 is the Dirac

mass at 0 (see (Tadesse and Vannucci, 2021) for a comprehensive treatment of this class

of priors). To encode sparsity, we decompose the selection indicator δijk into three parts:

δijk = δij × δk × γij
k , where δk is the covariate-level effect, δij is the node-level effect, and γij

k

represents the local-level effect. For each (i, j, k), the marginal prior on βij
k is

βij
k |δ

ij, δk, γ
ij
k , σ

ij
k ∼ δijδkγ

ij
k N

[
0,
(
σij
k

)2]
+
(
1− δijδkγ

ij
k

)
δ0. (4)

One particular challenge in this dual-group approach is to build interpretable group structures

into the prior on βij
k jointly across (i, j, k) beyond the marginal specification in (4), which

not only should encode two group structures but also account for the distinct challenges

posed by high-dimensional graphical models.

The two sets of group indicators (δij) and (δk) are symmetric in (4) in that no particular

order between the two groups is enforced when combined with the local-level indicator γij
k .

The spike-and-slab specification allows us to consider any sequential order of them, leading

to a notion of nested decomposition of the two groups. Without loss of generality, below

we focus on the sequence of first δij then δk, and discuss the different corresponding model

structures along with our specification of each group sparsity. To this end, we let τ ijk =

δkγ
ij
k σ

ij
k and reparameterize Eq (4) as

βij
k |δ

ij, τ ijk ∼ δijN
[
0,
(
τ ijk
)2]

+
(
1− δij

)
δ0, (5)
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and describe our dual-group structured prior specification below.

2.2.1 Node-level group sparsity: outer-layer structured prior for scalar response

For a given pair of nodes (i, j), let the coefficient vector Bij = (βij
k )1≤k≤q indicate the

coefficients grouped based on the paired indices (i, j). The model in Eq. (2) leades to

yin =

p∑
j ̸=i

(xT
nB

ij)yjn + εin,

where Bij = 0 implies that node j has no effect on node i. The group sparsity at the

node-level is described by the sparsity of vector Bi = (Bij)1≤j≤p
j ̸=i with group label j. One

challenge in defining a prior on Bij is the need to achieve sparsity at both the group level

and individual level, with the added difficulty when addressing dual group sparsity.

Note that the model above is a high-dimensional linear regression model with standard

scalar response, for which a rich menu of group priors has been proposed, such as Stingo

et al. (2011); Xu and Ghosh (2015); Bai et al. (2022). We propose to use the multivariate

spike-and-slab prior for group sparsity in the outer layer of our model:

Bij = diag
(
τ ij1 , ..., τ ijq

)
bij, 1 ≤ i ̸= j ≤ p, (6)bij|δij ∼ δijMVN (0q, Iq) + (1− δij) δ0q ,

δij|πi ∼ Bernoulli (πi) , πi ∼ Beta (ai, bi) ,

(7)

where bij =
(
bij1 , ..., b

ij
q

)T
. Conditional on τ ijk for k = 1, . . . , q, Eqs. (6) and (7) provide

node-level selection for the paired indices (i, j) for all k. The node-level indicator δij models

the group effect of node j on node i through all covariates. For every j, if δij = 0 then effects

bij will be excluded from the model, implying that node j does not affect node i through any

of the covariates, i.e., Bij = 0. The parameter πi can be interpreted as the prior probability

that yi is affected by the other nodes.

2.2.2 Covariate-level group and local sparsity: inner-layer structured prior for

multivariate response

For a given covariate xk, let the coefficient matrix Bk = (βij
k )

1≤i,j≤p indicate the coefficients

grouped based on the index k. One challenge in modeling the sparsity of matrix Bk is
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to achieve simultaneous group sparsity and individual sparsity in an interpretable manner.

This calls for a strategy different from the treatment of node-level sparsity. To see this, the

independent regression system from Eq. (2) has the representation

yn =

q∑
k=1

(Bkyn)x
k
n + εn,

which, unlike the preceding node-level representation, is a high-dimensional vector-on-scalar

regression model with multivariate response, where Bk = 0 implies that covariate xk has no

influence on the precision matrix. We propose to jointly model (δk, γ
ij
k ) by

δk = I(πk ≥ dk), γij
k |πk ∼ Bernoulli(πk), πk ∼ Beta(ak, bk). (8)

This global-local structure has been recently advocated by Zeng et al. (2024) in a different

setting when studying image-on-scalar regression, which is the inner layer of our prior. The

global level indicator δk represents the covariate-level selection, as δk = 0 zeros out τ ijk for

any 1 ≤ i ̸= j ≤ p, eliminating the covariate from the model. That is, δk = 0 implies that

covariate xk has no influence on any of the edges, hence the whole graph. At the local level

γij
k refers to the influence of the covariate on the pair of nodes (i, j). The importance of

a covariate is characterized by the total number of pairs influenced by that covariate. The

parameter πk, which can be interpreted as the probability that xk has an influence on the

graph, is called participation rate in Zeng et al. (2024) and is estimated under the assumption

that the covariate affects all pairs independently. The participation rate πk also informs the

selection by excluding those covariates expected to affect less than dk × 100% pairs, saying

τk = 0, if πk < dk, leading to Bk = 0. This hard-threshold provides a probability-based

selection rule and uses the local-level selection to inform the global-level selection. Without

prior domain knowledge, Zeng et al. (2024) recommend dk = 0.05 (i.e., 5%) as a conventional

probability threshold for sparse models.

Eqs. (6), (7), and (8) lead to a dual-group spike-and-slab prior. The prior sparsity

encoded therein can be obtained by calculating the expectation of the selection indicator
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δijk = [δk × γij
k ]× δij =

[
I(πk ≥ dk)× γij

k

]
× [δij]:

E[δijk ] = E
[
I(πk ≥ dk)γ

ij
k δ

ij
]
= Eπk

[
E
[
I(πk ≥ dk)γ

ij
k

]
|πk

]
Eπi

[
E
[
δij
]
|πi
]

= Eπk
[I(πk ≥ dk)πk]Eπi

[
πi
]
=

∫ 1

dk

πk
1

B(ak, bk)
πak−1
k (1− πk)

bk−1dπk
ai

ai + bi

= E [πk] [1− FBetak(dk)]E
[
πi
]
=

ai

ai + bi
ak

ak + bk
[1− FBetak(dk)] , (9)

where FBetak(·) is the cumulative distribution function of Beta(ak + 1, bk). Eq. (9) offers a

flexible way to incorporate prior beliefs on the graphical structure. For example, a possible

belief is that the graph consists of a dense population level and a sparse covariate level,

which corresponds to an always-included intercept term with imbalanced penalization for

the intercept and covariates, as seen in Zhang and Li (2023). Although our model does not

intentionally incorporate an intercept, it can adapt to this belief by incorporating x1
n = 1

for all n and adjusting the prior parameters dk, ak and bk, i.e., d1 = 0 and a1
a1+b1

> ak
ak+bk

for

k ̸= 1. Similarly, prior parameters ai and bi can be adjusted to adapt to beliefs on node

sparsity. Without any prior information, a non-informative prior can be used, allowing the

model to learn from the data.

2.2.3 Complete tuning-free prior specification

We place a prior F ij
k with positive support on σij

k . In particular, we specify F ij
k = N+(0, s2k),

ie. a truncated normal on the positive line. Combining this with Eq. (8), our prior on τ ijk is
τ ijk = τ̃ ijk I (πk ≥ dk)

τ̃ ijk |γij
k ∼ γij

k N
+ (0, s2k) +

(
1− γij

k

)
δ0

γij
k |πk ∼ Bernoulli(πk), πk ∼ Beta(ak, bk).

(10)

Finally, we complete the model by assigning conjugate priors s2k ∼ InvGamma(1, t), with

t ∼ Gamma (at, bt), for k = 1 . . . , q, and inverse gamma priors on the error variances, σ2
i ∼

InvGamma(aiσ, b
i
σ), for i = 1, . . . , p. We set at = bt = 0, which leads to a commonly used

flat and improper prior on t, although other values can be used. These specifications, along

with Eqs. (6), (7) and (10), complete our prior model.
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We conclude this section by noting that in the presentation of our proposed dual-group

spike-and-slab prior we have used the sequential order of nesting a vector-on-scalar regression

into a scalar-on-scalar regression. In practice, one can also vary this order and substitute

particular choices for each module with alternative structures, following the same nesting

strategy to address multi-level sparsity.

2.3 Posterior Inference

We derive a tuning-free full Gibbs sampler for inference in the proposed model, which com-

bines blocked Gibbs strategies based on the samplers used in Xu and Ghosh (2015) and

Zeng et al. (2024). We describe the updates of the parameters below and provide detailed

derivations in the supplementary materials.

• Update the covariate-level selection parameters
{
τ ijk , τ̃ ijk , γij

k , πk

}
We rewrite the distribution of response node i in Eq. (2) by separating the parameters

to be sampled as follows:

yin|− ∼ N


∑
s ̸=k

∑
l ̸=i

βil
s y

l
nx

s
n︸ ︷︷ ︸

conditional on s ̸= k

denoted as c1,ijkn

+
∑

j′ /∈{i,j}

βij′

k yj
′

n x
k
n︸ ︷︷ ︸

conditional on j′ /∈{i,j}
denoted as c2,ijkn

+βij
k y

j
nx

k
n, σ

2
i


. (11)

By denoting yijkn = yin−c1,ijkn −c2,ijkn . Eqs. (10) and (11) lead to the following conditional

probabilities for the latent coefficients and indicators,

yijkn |τ̃ ijk , γij
k = 1,− ∼ N

(
τ̃ ijk bijk y

j
nx

k
n, σ

2
i

)
τ̃ ijk |γij

k = 1 ∼ N+
(
0, s2k

)
(12)

yijkn |γij
k = 0,− ∼ N

(
0, σ2

i

)
with corresponding Bayes factor, integrating out τ̃ ijk , given as

θijk =
p
(
yijk· |γij

k = 0, τ̃ ijk = 0
)
× (1− πk)∫

p
(
yijk· |γij

k = 1, τ̃ ijk

)
p
(
τ̃ ijk
)
dτ̃ ijk × πk

=
1− πk

2 (s2k)
− 1

2 ×
(
ν̃2
ijk

) 1
2 exp

{
1
2

m̃2
ijk

ν̃2ijk

}
Φ
(

m̃ijk

ν̃ijk

)
× πk

,
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where yijk· denotes
{
yijkn

}N
n=1

, Φ(·) denotes the cumulative distribution function of the

standard Normal distribution, and

ν̃2
ijk =

(
N∑

n=1

(
yjnx

k
n

)2 (
bijk
)2

/σ2
i + 1/s2k

)−1

and m̃ijk = ν̃2
ijkb

ij
k

N∑
n=1

yjnx
k
ny

ijk
n /σ2

i .

This Bayes factor allows to sample the local indicators γij
k from

γij
k |− ∼ Bernoulli

(
1

1 + θijk

)
.

If γij
k = 1, Eq. (12) leads to the update τ̃ ijk |− ∼ N+

(
m̃ijk, ν̃

2
ijk

)
; else if γij

k = 0, we set

τ̃ ijk = 0.

After updating all indicators for covariate xk, we update

πk|− ∼ Beta

(
ak +

∑
1≤i ̸=j≤p

γij
k , bk + p(p− 1)−

∑
1≤i ̸=j≤p

γij
k

)
.

leading to τ ijk = τ̃ ijk δk = τ̃ ijk I (πk ≥ d). This joint update of parameters and selection

indicators avoids reversible jump (Savitsky et al., 2011).

• Update the node-level selection parameters {bij, δij, πi} together with {βij
k }

We rewrite the distribution of response node i in Eq. (2) by separating the parameters

to be sampled as follows:

yin|− ∼ N

 ∑
j′ /∈{i,j}

q∑
k=1

βij′

k yj
′

n x
k
n +

q∑
k=1

βij
k y

j
nx

k
n, , σ

2
i

 . (13)

Denoting zijn = yin −
∑

j′ /∈{i,j}
∑q

k=1 β
ij′

k yj
′

n x
k
n, eqs. (7) and (13) lead to the following

conditional probability distributions for the latent coefficients and indicators

zijn |δij = 1,− ∼ N
((

X ij
n

)T
V ijbij, σ2

i

)
bij|δij = 1 ∼ MVN (0q, Iq) (14)

zijn |δij = 0,− ∼ N
(
0, σ2

i

)
where X ij

n = (yjnx
1
n, ..., y

j
nx

q
n)

T
and V ij = diag

(
τ ij1 , . . . , τ ijq

)
. In addition, we denote

Zij =
(
zij1 , . . . , z

ij
n

)T
and X ij =

(
X ij

1 , ...,X
ij
n

)T
. The Bayes factor of edge (i, j) can be
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obtained by integrating out bij,

θij =
p (Zij|δij = 0, bij = 0)× (1− πi)∫
p (Zij|δij = 1, bij) p (bij) dbij × πi

=
1− πi∣∣∣Σ̃ij

∣∣∣ 12 exp{1
2
(µ̃ij)T

(
Σ̃ij
)−1

µ̃ij

}
× πi

,

where Σ̃ij =
(

1
σ2
i
(X ijV ij)

T
(X ijV ij) + Iq

)−1

and µ̃ij =
(

1
σ2
i
(Zij)

T
X ijV ijΣ̃ij

)T
.

This Bayes factor allows to sample the indicators δij as

δij|− ∼ Bernoulli

(
1

1 + θij

)
.

Then, if δij = 1, we update bij|− ∼ MVN
(
µ̃ij, Σ̃ij

)
; otherwise if γij = 0, we set

bij = 0. The update of (βij
k )1≤k≤q is followed by Bij = V ijbij.

After all indicators for node i are updated, the probability πi can be updated by

πi|− ∼ Beta

(
ai +

∑
j ̸=i

δij, bi + (p− 1)−
∑
j ̸=i

δij

)
.

• Update the variances {σ2
i }

This is a conjugate update

σ2
i |− ∼ InvGamma

N

2
+ aσ,

1

2

N∑
n=1

(
yin −

∑
j ̸=i

q∑
k=1

βij
k y

j
nx

k
n

)2

+ bσ

 .

• Update {s2k} and t:

These are also conjugate updates. For each k ∈ [q], we sample

s2k|− ∼ InvGamma

(
1 +

1

2

∑
1≤i ̸=j≤p

γij
k , t+

1

2

∑
1≤i ̸=j≤p

(
τ̃ ijk
)2)

.

After all sk are updated, we sample

t|− ∼ Gamma

(
q + 1,

q∑
k=1

1

s2k

)
.

Given the MCMC samples, we perform posterior inference by calculating the marginal

posterior probabilities of inclusion (MPPIs) of the indicators δijk . Following the median
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probability model (Barbieri and Berger, 2004; Zeng et al., 2024), we define the inclusion

indicator κij
k = 1 if the MPPIs of δijk is greater than 0.5. To infer the edges in the undirected

graph, we use the “OR” rule (Meinshausen and Buhlmann, 2006; Zhang and Li, 2023), which

concludes that the edge (i, j) is affected by covariate xk if either κij
k = 1 OR κji

k = 1. At the

two group level, we conclude that the edge (i, j) exists if either
∑

k κ
ij
k ̸= 0 OR

∑
k κ

ji
k ̸= 0,

and that the covariate xk is influential if
∑

ij κ
ij
k ̸= 0. Bayesian false discovery rate control

methods can also be utilized in determining the κij
k ’s (Newton et al., 2004).

3 Simulation Study

In this section, we conduct simulations and compare the proposed approach with selected

covariate-dependent Gaussian graphical regression approaches.

3.1 Data Generation

We generate data from Eq (1) using Ω (xn) = (ωij (xn))
p
i,j=1 =

(∑q
k=1 β

ij
k x

k
n

)p
i,j=1

. We set

the number of nodes to p = 25 and the number of covariates to q = 10, and introduce

sparsity as follows. First, we generate a 25-by-25 random graph G with sparsity-level at 0.4

and randomly divide the edges into four parts for B1−4. We set B5−10 = 0 for the empty

covariates. The values of the non-zero entries βij
k are sampled from uniform distributions

supported on the intervals [−0.5,−0.35] ∪ [0.35, 0.5]. To generate a valid precision matrix,

we follow Zhang and Li (2023) by first rescaling each row i by dividing by 1
2

∑
j

∑
k |β

ij
k |

and then averaging βij
k and βji

k to fill each entry of (i, j, k). We set X1 = 1 as the intercept

and sample X2−10 from uniform[0, 1]. We use two different sample sizes n = 200, 500 and

repeatedly generate data 50 times for each size to evaluate the model performances.

3.2 Comparison Study

We compare performances of the proposed method, for which we use the acronym DGSS, to

Lasso regression (Tibshirani, 1996), the GMMReg method of Zhang and Li (2023) and the

Bayesian sparse group selection method with spike and slab prior of Xu and Ghosh (2015).
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We implement Lasso by the R-package glmnet and GMMReg by the Matlab code from the

authors’ page. For both Lasso and GMMReg, we tune the regularization parameters by

cross-validation. We denote the Bayesian sparse group selection with spike and slab prior as

BSGSSS, implemented by the R-package MBSGS. Lasso only considers local sparsity, whereas

the other methods also take group sparsity into account. Specifically, GMMReg uses node-

level sparsity to induce covariate-level sparsity, BSGSSS accounts for node-level sparsity only,

and the proposed DGSS decouples node-level and covariate-level sparsity, modeling them

with the dual group spike-and-slab prior. For DGSS, we run 20, 000 MCMC iterations with

a burn-in of 10, 000. We specify non-informative priors as πk ∼ Beta(1, 1), πi ∼ Beta(1, 1)

and use the conventional sparsity threshold dk = 0.05 for all k = 1, . . . , q. For BSGSSS, we

increase the MCMC iterations from default 10, 000 with a burn-in of 5, 000 to 20, 000 with

a burn-in of 10, 000 and keep all other parameters set to their default values.

We consider the covariate-dependent edge detection as a classification task with the

presence of an edge within each precision coefficient being treated as a positive signal. The

total number of parameters is p(p − 1)q = 6, 000, and on average, p(p − 1) × 0.4 = 240 of

them are signals, which may vary due to random graph generation. The covariate-dependent

edge further provides inference to the node-level and covariate-level selections, as described

in Section 2.3. We report the following four metrics for comparison: True Positive Rate

(TPR), False Positive Rate (FPR), F1 score (F1), and Matthews correlation coefficient

(MCC). These metrics are defined by:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
, F1 =

TP

TP + 1/2× (FP + FN)
,

MCC =
TP× TN− FP× FN√

TP + FP×
√
TP + FN×

√
TN+ FP×

√
TN+ FN

,

where TP, FP, TN and FN represent numbers of True Positive, False Positive, True Negative

and False Negative, respectively.

3.3 Results

Figure 1 shows examples of the adjacency matrices corresponding to the precision coeffi-

cients Bk, k = 1, . . . , q, for one simulated dataset with n = 200, 500. For both sample sizes,
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(a) n = 200

(b) n = 500

Figure 1: Adjacency matrices corresponding to the precision coefficients B1:10 (left to right),

from one simulated dataset with sample size n = 200 (top) and n = 500 (bottom). In each

plot, the five rows are the true matrices (1st row), and estimated matrices by Lasso (2nd

row), GMMReg (3rd row), BSGSSS (4th row) and DGSS (5th row).

we observe that Lasso and BSGSSS do not penalize the coefficients sufficiently, failing to

eliminate covariates X5−10. On the contrary, GMMReg penalizes the coefficients excessively,
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selecting too few edges. This phenomenon may be caused by their sparsity assumptions.

Lasso and BSGSSS totally ignore the covariate-level sparsity by treating the problem as a

high-dimensional linear regression at each node, ultimately failing to exclude those covari-

ates with no impact on edges. On the other hand, GMMReg assumes a dense intercept

and sparse covariates, and tunes the parameters via cross-validation, which fails to find an

optimal penalty for both dense intercept and covariates under their assumption, ultimately

limiting the number of edges selected. Compared to the three existing methods, the proposed

DGSS achieves relatively good sparse estimates, identifying the important covariates with a

reasonable sparsity level.

We now proceed to assess each method using the edge and covariate selection metrics

introduced above. All results are reported in Table 1, averaged across 50 replicates. For

covariate-dependent edge detection, performance metrics tend to be low for all methods,

even with the relatively large sample size n = 500. In this scenario, Lasso only considers

the local-level penalty, while the other methods, GMMReg, BSGSSS and DGSS include at

least two level of selection/penalties. With sample size n = 200, GMMReg and BSGSSS

outperform Lasso in terms of F1 and MCC, because their second level selection/penalty

can efficiently exclude the empty coefficients. On the contrary, with the relatively large

sample size, n = 500, their performances become comparable to the Lasso in terms of those

two scores as their second level of selection/penalty does not fit the sparsity pattern in the

data-generation process. Meanwhile the proposed DGSS method takes advantage of the

multi-level selection and outperforms the other methods in terms of F1 and MCC.

Next, we evaluate the models’ performance in edge detection for the overall graph, which

we define as the graph where an individual edge is present if affected by any of the covariates

xk. This corresponds to group edge selection at the node level. There are p− 1 = 24 edges

at the node group level, and on average (p − 1) × 0.4 = 9.6 of them are signals. Results in

Table 1 show comparable performance across all methods. Although the GMMReg seems to

have a higher F1 score than other methods when the sample size is n = 200, this appears to

be due to higher TPR score at the cost of higher FPR score. As evidence, its MCC scores

are close to those of other methods, and hence, we do not conclude that there is a significant

outperformance.
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Finally, we look at the task of covariate selection based on the precision coefficient esti-

mates B̂k. Four out of ten covariates are signals. We select Xk if B̂k ̸= 0. From Table 1

we observe the failure of the Lasso and BSGSSS methods in this task. Without sufficient

selection/penalties, these two methods include all covariates in almost all replicates, as also

illustrated in Figures 1a and 1b, with the exception of 2 out of 100 cases. Although GMMReg

tends to favor a dense precision coefficient for the intercept and sparse precision coefficients

for the other covariates, its performance is similar to that of DGSS. The proposed DGSS,

on the other hand, outperforms GMMReg in terms of all averaged metrics.
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Table 1: Performance for edge and covariate detection. Results are averaged over 50 repeated

simulations, with standard errors reported in parentheses.

(a) Covariate-dependent edge detection

sample size n = 200 sample size n = 500

Lasso GMMReg BSGSSS DGSS Lasso GMMReg BSGSSS DGSS

TPR
0.146 0.228 0.173 0.271 0.429 0.303 0.508 0.679

(0.009) (0.007) (0.009) (0.013) (0.016) (0.005) (0.012) (0.012)

FPR
0.023 0.025 0.017 0.025 0.043 0.028 0.062 0.066

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

F1
0.164 0.246 0.211 0.283 0.341 0.307 0.337 0.414

(0.007) (0.006) (0.007) (0.009) (0.007) (0.005) (0.004) (0.004)

MCC
0.142 0.220 0.197 0.260 0.318 0.279 0.322 0.417

(0.007) (0.007) (0.006) (0.009) (0.009) (0.005) (0.005) (0.005)

(b) Group edge detection in the overall graph

sample size n = 200 sample size n = 500

Lasso GMMReg BSGSSS DGSS Lasso GMMReg BSGSSS DGSS

TPR
0.345 0.552 0.266 0.412 0.658 0.748 0.648 0.780

(0.016) (0.011) (0.011) (0.013) (0.014) (0.006) (0.011) (0.010)

FPR
0.054 0.160 0.018 0.060 0.074 0.123 0.056 0.132

(0.004) (0.005) (0.002) (0.005) (0.005) (0.007) (0.003) (0.005)

F1
0.470 0.605 0.404 0.538 0.735 0.771 0.743 0.782

(0.015) (0.008) (0.013) (0.011) (0.009) (0.004) (0.008) (0.005)

MCC
0.382 0.412 0.380 0.433 0.622 0.636 0.639 0.650

(0.012) (0.011) (0.010) (0.010) (0.010) (0.009) (0.010) (0.008)

(c) Covariate selection

sample size n = 200 sample size n = 500

Lasso GMMReg BSGSSS DGSS Lasso GMMReg BSGSSS DGSS

TPR
1 0.845 1 0.925 1 0.895 1 1

(0) (0.030) (0) (0.019) (0) (0.022) (0) (0)

FPR
0.993 0.463 0.993 0.327 1 0.303 1 0.327

(0.005) (0.036) (0.005) (0.031) (0) (0.039) (0) (0.029)

F1
0.573 0.663 0.573 0.776 0.571 0.775 0.571 0.816

(0.001) (0.018) (0.001) (0.020) (0) (0.018) (0) (0.015)

MCC
0.272 0.419 0.272 0.605 - 0.637 - 0.686

(0) (0.035) (0) (0.038) - (0.031) - (0.026)
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4 Application to Microbiome Data

We demonstrate the proposed method with data from the Multi-Omic Microbiome Study:

Pregnancy Initiative (MOMS-PI), a study funded by the NIH Roadmap Human Microbiome

Project to understand the impact of the vaginal microbiome on pregnancy and the fetal

microbiome. This study contains samples from multiple body sites, including mouth, skin,

vagina and rectum, of 596 subjects throughout pregnancy and for a short term after child-

birth. Previous research found the vaginal microbiome can change early in pregnancy and

be predictive of pregnancy outcomes (Serrano et al., 2019; Fettweis et al., 2019).

4.1 Data

Data from the MOMS-PI study is publicly available and can be found in the R package

HMP2Data. Following Osborne et al. (2022), we focus on the interplay between microbial

abundances and vaginal cytokines, a mechanism by which the host regulates the composition

of the vaginal microbiome, and use the first baseline visit data of the n = 225 subjects

whose microbiome and cytokine profiling of the vagina are available among the 596 subjects

enrolled in the study. Furthermore, we consider p = 90 OTUs whose absolute abundance

is greater than 1 in at least 10% of the subjects and use all the 29 available cytokines as

covariates, adding an intercept term, which implies q = 30. We apply the centered log

ratio transformation to normalize the abundance counts (Aitchison, 1982; Gloor et al., 2017;

Lin and Peddada, 2020), as commonly done in Gaussian graphical modeling for microbiome

data to satisfy the Gaussian assumption (Kurtz et al., 2015; Wilms and Bien, 2022). After

transformation, we center the data such that each OTU has zero mean. For the covariates,

we transform the data to the log scale and use the min-max normalization, so that values

fall within the [0, 1] interval.

4.2 Results

We use the same non-informative prior specifications and MCMC settings as in the simulation

study. Given the results obtained in the simulation study, we restrict comparisons to the

GMMReg and the proposed DGSS methods. On a server, with two 20-core 2.4 GHz Intel(R)
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Xeon CPUs, running the MCMC algorithm of our DGSS method, coded in Rcpp, took about

15 seconds per iteration.

Table 2 reports the number of covariate-dependent edges selected by DGSS and GMM-

Reg, for each covariate and for the overall graph. Similar to the simulation study, we observe

that GMMReg tends to select zero edges for almost all covariates, and a few more for the

intercept (baseline). On the other hand, DGSS selects significantly more edges than GMM-

Reg, not only for each covariate but also in the overall graph. Figure 2 shows the adjacency

matrices of the graphs corresponding to the precision coefficients Bk of the four covariates

with the most covariate-dependent edges and the four covariates with the least covariate-

dependent edges. We observe that a large number of edges are simultaneously influenced

by multiple cytokines. Additionally, it appears that some edges remain within a block of

the OTU 1-26 across covariates, which aligns with a finding from Osborne et al. (2022), as

discussed next.

Table 2: Number of selected covariate-dependent edges

Baseline Eotaxin FGF G-CSF GM-CSF IFN-g IL-10
IL-12
(p70) IL-13 IL-15 IL-17A IL-1b IL-1ra IL-2 IL-4

GMMReg 97 0 0 0 0 0 0 0 0 0 0 0 1 0 0

DGSS 201 104 105 190 167 163 172 104 189 132 146 123 204 195 87

IL-5 IL-6 IL-7 IL-8 IL-9 IP-10
MCP-1
(MCAF)

MIP
(1a)

MIP
(1b)

PDGF
(bb)

RAN-
TES

TNF
(a) VEGF

FGF
basic IL-17

GMMReg 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DGSS 93 154 165 130 156 170 192 186 100 147 167 21 127 38 25

Figure 3 shows the adjacency matrix of the overall graph selected by DGSS, together with

a plot showing the commonly selected edges with the graph selected in Osborne et al. (2022).

OTUs are grouped based on their phylum (Firmicutes, Actinobacteria, Bacteroidetes, Pro-

teobacteria, Fusobacteria, and TM7). Interestingly, even though Osborne et al. (2022) used

a different Bayesian approach from our method, based on a latent Gaussian graphical model

with separate variable selection priors for both covariate-dependent mean and covariate-

independent precision, we found that a large number of edges in the overall graph selected

by DGSS were also detected by their method (98 out of 271 edges). In particular, the

common edges highlight the subnetwork formed by OTUs 1 - 26 within Firmicutes, which

appears to be the area consistently detected as having covariate-dependent edges for vari-

ous cytokines. Jointly, these findings may imply the existence of a subnetwork within the
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IL-1ra (204) Baseline (201) IL-2 (195) MCP-1(MCAF) (192)

IL-4 (87) FGF basic (38) IL-17 (25) TNF-a (21)

Figure 2: Adjacency matrices corresponding to the precision coefficients Bk of the four

covariates with the most covariate-dependent edges (first row) and of the four covariates

with the least covariate-dependent edges (second row), labeled by each covariate’s name,

with the number of edges indicated in parentheses.

Firmicutes that is widely affected by cytokines. Additionally, the proposed method selects

more inter-phylum edges compared to the model from Osborne et al. (2022), which capture

correlations among different OTUs across phyla, suggesting more complex latent effects of

microbiome during pregnancy.
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(a) DGSS (b) Common edges

Figure 3: Adjacency matrix of the overall graph selected by DGSS (a) and the common

edges selected by both DGSS and Osborne et al. (2022) (b).

5 Concluding remarks

We have considered the framework of covariate-dependent Gaussian graphical modeling for

learning heterogeneous graphs and proposed a dual group spike-and-slab prior that achieves

simultaneous local sparsity and bi-directional group sparsity. The proposed prior accom-

plishes covariate-level selection, inferred by the local-level selection, on grouped precision

coefficients sliced in one direction and the node-level selection on grouped coefficients sliced

in another direction. Our approach has led to a parsimonious model for covariate-dependent

precision matrices with improved interpretability. For posterior inference, we have designed

a Gibbs sampler to automatically tune the hyper-parameters while incorporating their un-

certainty, leads to interpretable and flexible selection results. Through simulation studies, we

have demonstrated that the proposed model outperforms existing methods in its accuracy of

graph recovery. We have applied our model to microbiome data to estimate the interaction

between microbes in the vagina, as well as the interplay between vaginal cytokines and mi-

crobial abundances, providing insight into mechanisms of host-microbial interaction during
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pregnancy.

There are several interesting future directions to extend our model. First, the model can

be expanded to incorporate a covariate-adjusted mean. A potential challenge here is the

increased computational complexity due to a larger parameter space. Secondly, although

our focus in on Gaussian graphical models, the structured sparsity we consider can be useful

for other models with ultra-dimensional parameter spaces, such as arrays, that exhibit var-

ious grouping directions. Finally, approximation methods such as Variational Expectation

Maximization may be worth investigating, as they improve the scalability of the method and

allow for its application to larger datasets.

Supplementary Material

The supplementary material includes detailed derivations of the Gibbs sampler in Section 2.3.

R code and scripts to reproduce the results from the simulation study and the real data

applications, with main functions coded in Rcpp, will be made available on Github upon

acceptance of the paper.
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K. D., Jefferson, K. K., Strauss, J. F., and Buck, G. A. (2019). The vaginal microbiome

and preterm birth. Nature Medicine, 25:1012–1021.

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017). Microbiome

datasets are compositional: And this is not optional. Frontiers in Microbiology, 8.

Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau,

R. (2015). Sparse and compositionally robust inference of microbial ecological networks.

PLoS Computational Biology, 11.

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press.

Leday, G. G. R., de Gunst, M. C. M., Kpogbezan, G. B., van der Vaart, A., van Wieringen,

W. N., and van de Wiel, M. A. (2017). Gene network reconstruction using global-local

shrinkage priors. The Annals of Applied Statistics, 11 1:41–68.

Lin, H. and Peddada, S. D. (2020). Analysis of microbial compositions: a review of normal-

ization and differential abundance analysis. NPJ Biofilms and Microbiomes, 6.

Liu, H. and Wang, L. (2017). Tiger: A tuning-insensitive approach for optimally estimating

Gaussian graphical models. Electronic Journal of Statistics, 11(1):241–294.

Maathuis, M., Drton, M., Lauritzen, S., and Wainwright, M. (2018). Handbook of Graphical

Models. CRC Press.

Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graphs and variable selection

with the lasso. Annals of Statistics, 34:1436–1462.

Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene

expression with a semiparametric hierarchical mixture method. Biostatistics, 5(2):155–176.

24



Ni, Y., Stingo, F. C., and Baladandayuthapani, V. (2019). Bayesian graphical regression.

Journal of the American Statistical Association, 114(525):184–197.

Niu, Y., Ni, Y., Pati, D., and Mallick, B. K. (2023). Covariate-assisted bayesian graph

learning for heterogeneous data. Journal of the American Statistical Association, pages

1–15.

Osborne, N., Peterson, C. B., and Vannucci, M. (2022). Latent network estimation and

variable selection for compositional data via variational EM. Journal of Computational

and Graphical Statistics, 31(1):163–175.

Peng, J., Wang, P., Zhou, N., and Zhu, J. (2009). Partial correlation estimation by joint

sparse regression models. Journal of the American Statistical Association, 104:735–746.

Savitsky, T. D., Vannucci, M., and Sha, N. (2011). Variable selection for nonparametric

Gaussian process priors: Models and computational strategies. Statistical Science, 26

1:130–149.

Serrano, M. G., Parikh, H. I., Brooks, J. P., Edwards, D. J., Arodz, T. J., Edupuganti, L.,

Huang, B., Girerd, P. H., Bokhari, Y., Bradley, S. P., Brooks, J. L., Dickinson, M. R.,

Drake, J. I., Duckworth, R. A., Fong, S. S., Glascock, A. L., Jean, S., Jimenez, N. R.,
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Supplementary materials

S1. Markov Chain Monte Carlo Sampling (MCMC)

In this section, we provide the detailed derivations for the Gibbs sampler used in the main

paper.

• Update the covariate-level selection parameters
{
τ ijk , τ̃ ijk , γij

k , πk

}
Rewriting the likelihood of yin from the covariate-level group perspective, we have that

the mean part is ∑
s ̸=k

∑
l ̸=i

βil
s y

l
nx

s
n︸ ︷︷ ︸

conditional on s
denoted as c1,ijkn

+
∑
j ̸=i

βij
k y

j
nx

k
n,
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leading to the conditional distribution

(yin − c1,ijkn )|− ∼ N

(∑
j ̸=i

βij
k y

j
nx

k
n, σ

2
i

)
.

Similarly, with βij
k = τ ijk bijk , we have

(yin − c1,ijkn )|− ∼ N


∑

j′ /∈{i,j}

βij′

k yj
′

n x
k
n︸ ︷︷ ︸

conditional on j′ /∈{i,j}
denoted as c2,ijkn

+τ ijk bijk y
j
nx

k
n, σ

2
i


.

Denoting yijkn = yin−c1,ijkn −c2,ijkn , we have that the distribution of the latent coefficients

conditional upon the indicators is

yijkn |τ̃ ijk , γij
k = 1,− ∼ N

(
τ̃ ijk bijk y

j
nx

k
n, σ

2
i

)
yijkn |γij

k = 0,− ∼ N
(
0, σ2

i

)
.

Following Zeng et al. (2024), we integrate out the latent coefficients, obtaining

p
(
γij
k = 1 |−

)
=

∫
p
(
γij
k = 1, τ̃ ijk |−

)
dτ̃ ijk

p
(
γij
k = 0, τ̃ ijk = 0|−

)
+
∫
p
(
γij
k = 1, τ̃ ijk |−

)
dτ̃ ijk

=
1

1 + θijk
,

where the Bayes factor is

θijk =
p
(
γij
k = 0, τ̃ ijk = 0|−

)∫
p
(
γij
k = 1, τ̃ ijk |−

)
dτ̃ ijk

=

1

p(yijk· )
p
(
yijk· |γij

k = 0, τ̃ ijk = 0
)
× (1− πk)

1

p(yijk· )

∫
p
(
yijk· |γij

k = 1, τ̃ ijk

)
p
(
τ̃ ijk
)
dτ̃ ijk × πk

=
p
(
yijk· |γij

k = 0, τ̃ ijk = 0
)
× (1− πk)∫

p
(
yijk· |γij

k = 1, τ̃ ijk

)
p
(
τ̃ ijk
)
dτ̃ ijk × πk

=

∫ p
(
yijk· |γij

k = 1, τ̃ ijk
)
p
(
τ̃ ijk
)
dτ̃ ijk

p
(
yijk· |γij

k = 0, τ̃ ijk = 0
)

−1

× 1− πk

πk

.

27



Next, we estimate θijk . First we note that

p
(
yijk· |γij

k = 0, τ̃ ijk = 0
)
=
(
2πσ2

i

)−N
2 exp

{
−1

2

N∑
n=1

(
yijkn

)2
/σ2

i

}
.

Therefore,∫
p
(
yijk· |γij

k = 1, τ̃ ijk
)
p
(
τ̃ ijk
)
dτ̃ ijk

=

∫ (
2πσ2

i

)−N
2 exp

{
−1

2

N∑
n=1

(
yijkn − yjnx

k
nb

ij
k τ̃

ij
k

)2
/σ2

i

}

× 2
(
2πs2k

)− 1
2 exp

{
−1

2

(
τ̃ ijk
)2

/s2k

}
1
(
τ̃ ijk ≥ 0

)
dτ̃ ijk

=2
(
2πs2k

)− 1
2
(
2πσ2

i

)−N
2 exp

{
−1

2

N∑
n=1

(
yijkn

)2
/σ2

i

}
︸ ︷︷ ︸

=p(yijk· |γij
k =0,τ̃ ijk =0)

×
∫

exp

{
−1

2

[(
N∑

n=1

(
yjnx

k
n

)2 (
bijk
)2

/σ2
i + 1/s2k

)(
τ̃ ijk
)2 − 2

(
bijk

N∑
n=1

yjnx
k
ny

ijk
n /σ2

i

)
τ̃ ijk

]}
1
(
τ̃ ijk ≥ 0

)
dτ̃ ijk .

Letting ν̃2
ijk =

(∑N
n=1

(
yjnx

k
n

)2 (
bijk
)2

/σ2
i + 1/s2k

)−1

and m̃ijk = ν̃2
ijkb

ij
k

∑N
n=1 y

j
nx

k
ny

ijk
n /σ2

i ,

we obtain the ratio∫
p
(
yijk· |γij

k = 1, τ̃ ijk
)
p
(
τ̃ ijk
)
dτ̃ ijk

p
(
yijk· |γij

k = 0, τ̃ ijk = 0
)

=2
(
2πs2k

)− 1
2
(
2πν̃2

ijk

) 1
2 exp

(
1

2

m̃2
ijk

ν̃2
ijk

)

×
∫ (

2πν̃2
ijk

)− 1
2 exp

{
−1

2

[(
τ̃ ijk
)2 − 2τ̃ ijk m̃ijk + (m̃ijk)

2
]
/ν̃2

ijk

}
1
(
τ̃ ijk ≥ 0

)
dτ̃ ijk

=2
(
s2k
)− 1

2 ×
(
ν̃2
ijk

) 1
2 exp

{
1

2

m̃2
ijk

ν̃2
ijk

}
× Φ

(
m̃ijk

ν̃ijk

)
,

where the last line follows from the fact that the integral to be evaluated is asso-

ciated with the truncated normal kernel, N+(m̃ijk, ν̃
2
ijk), which leads to the result

Φ(m̃ijk/ν̃ijk).
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Substituting the ratio above yields

θijk =

∫ p
(
yijk· |γij

k = 1, τ̃ ijk
)
p
(
τ̃ ijk
)
dτ̃ ijk

p
(
yijk· |γij

k = 0, τ̃ ijk = 0
)

−1

× 1− πk

πk

=
1− πk

2 (s2k)
− 1

2 ×
(
ν̃2
ijk

) 1
2 exp

{
1
2

m̃2
ijk

ν̃2ijk

}
Φ
(

m̃ijk

ν̃ijk

)
× πk

.

Hence, we sample each γij
k as

γij
k |− ∼ Bernoulli

(
1

1 + θijk

)
.

Then, if γij
k = 1, we update τ̃ ijk |− ∼ N+

(
m̃ijk, ν̃

2
ijk

)
; else, if γij

k = 0, we set τ̃ ijk = 0.

After updating all indicators for covariate xk, we update

πk|− ∼ Beta

(
ak +

∑
1<i ̸=j≤p

γij
k , bk + p(p− 1)−

∑
1<i ̸=j≤p

γij
k

)
,

leading to τ ijk = τ̃ ijk δk = τ̃ ijk I (πk ≥ d) .

• Update the node-level selection parameters {bij, δij, πi} together with {βij
k }

Rewriting the likelihood of yin from the node-level group perspective, we have the mean

part ∑
j′ /∈{i,j}

∑
k

βij′

k yj
′

n x
k
n +

∑
k

βij
k y

j
nx

k
n.

With βij
k = τ ijk bijk , we denote zijn = yin −

∑
j′ /∈{i,j}

∑
k β

ij′

k yj
′

n x
k
n, leading to

zijn |− ∼ N

(∑
k

bijk τ
ij
k yjnx

k
n, σ

2
i

)
and

zijn |δij = 1,− ∼ N
((

X ij
n

)T
V ijbij, σ2

i

)
zijn |δij = 0,− ∼ N

(
0, σ2

i

)
,

where X ij
n = (yjnx

1
n, ..., y

j
nx

q
n)

T
and V ij = diag

(
τ ij1 , . . . , τ ijq

)
. In addition, we denote

Zij =
(
zij1 , . . . , z

ij
n

)T
and X ij =

(
X ij

1 , ...,X
ij
n

)T
, leading to the vector form formula-

tions

Zij|δij = 1,− ∼ MVN
(
X ijV ijbij, σ2

i In
)

Zij|δij = 0,− ∼ MVN
(
0n, σ

2
i In
)
.
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Similarly, we integrate out bij

p
(
δij = 1 |−

)
=

∫
p (δij = 1, bij|−) dbij

p (δij = 0, bij = 0|−) +
∫
p (δij = 1, bij|−) dbij

=
1

1 + θij
,

where the Bayes factor is

θij =
p (δij = 0, bij = 0|−)∫
p (δij = 1, bij|−) dbij

=

1
p(Zij)

p (Zij|δij = 0, bij = 0)× (1− πi)
1

p(Zij)

∫
p (Zij|δij = 1, bij) p (bij) dbij × πi

=
p (Zij|δij = 0, bij = 0)× (1− πi)∫
p (Zij|δij = 1, bij) p (bij) dbij × πi

=

(∫
p (Zij|δij = 1, bij) p (bij) dbij

p (Zij|δij = 0, bij = 0)

)−1

× (1− πi)

πi
.

We next estimate θij. First, we note that

p
(
Zij|δij = 0, bij = 0

)
=
(
2πσ2

)−N
2 exp

{
− 1

2σ2
i

(
Zij
)T

Zij

}
.

Therefore,∫
p
(
Zij|δij = 1, bij

)
p
(
bij
)
dbij

=

∫ (
2πσ2

i

)−N
2 exp

{
− 1

2σ2
i

(
Zij −X ijV ijbij

)T (
Zij −X ijV ijbij

)}
× (2π)−

q
2 exp

{
−1

2

(
bij
)T

bij
}
dbij

=
(
2πσ2

i

)−N
2 exp

{
− 1

2σ2
i

(
Zij
)T

Zij

}
︸ ︷︷ ︸

=p(Zij |δij=0,bij=0)

(2π)−
q
2 (2π)

q
2

∣∣∣Σ̃ij
∣∣∣ 12 exp{1

2

(
µ̃ij
)T (

Σ̃ij
)−1

µ̃ij

}

×
∫

(2π)−
q
2

∣∣∣Σ̃ij
∣∣∣− 1

2
exp

{
−1

2

[(
bij
)T ( 1

σ2
i

(
X ijV ij

)T (
X ijV ij

)
+ Iq

)
bij

−2
1

σ2
i

(
Zij
)T

X ijV ijΣ̃ij
(
Σ̃ij
)−1

bij +
(
µ̃ij
)T (

Σ̃ij
)−1

µ̃ij

]}
.

Letting Σ̃ij =
(

1
σ2
i
(X ijV ij)

T
(X ijV ij) + Iq

)−1

and µ̃ij =
(

1
σ2
i
(Zij)

T
X ijV ijΣ̃ij

)T
,
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we obtain the ratio ∫
p (Zij|δij = 1, bij) p (bij) dbij

p (Zij|δij = 0, bij = 0)

=
∣∣∣Σ̃ij

∣∣∣ 12 exp{1

2

(
µ̃ij
)T (

Σ̃ij
)−1

µ̃ij

}
,

where the last line follows from the fact that the integral to be evaluated is the prob-

ability of a MVN
(
µ̃ij, Σ̃ij

)
random vector, i.e., 1.

Substituting the ratio above yields

θij =

(∫
p (Zij|δij = 1, bij) p (bij) dbij

p (Zij|δij = 0, bij = 0)

)−1

× (1− πi)

πi

=
1− πi∣∣∣Σ̃ij

∣∣∣ 12 exp{1
2
(µ̃ij)T

(
Σ̃ij
)−1

µ̃ij

}
× πi

.

Hence, we first sample each δij by

δij|− ∼ Bernoulli

(
1

1 + θij

)
.

Then, if δij = 1, we update bij|− ∼ N
(
µ̃ij, Σ̃ij

)
; else, if δij = 0, we set bij = 0q.

After updating all indicators for node i, we update

πi|− ∼ Beta

(
ai +

∑
j ̸=i

δij, bi + (p− 1)−
∑
j ̸=i

δij

)
,

and

(βij
k )1≤k≤q = Bij = V ijbij.

• Update the variances {σ2
i }

The posterior of σ2
i is:

p
(
σ2
i |−
)

∝
(
σ2
i

)−N
2 exp

−1

2

1

σ2
i

N∑
n=1

(
yin −

∑
j ̸=i

q∑
k=1

βij
k y

j
nx

k
n

)2


×
(
σ−2
i

)aσ+1
exp

{
−σ−2

i bσ
}

∝
(
σ−2
i

)N
2
+aσ+1

exp

−σ−2
i

1
2

N∑
n=1

(
yin −

∑
j ̸=i

q∑
k=1

βij
k y

j
nx

k
n

)2

+ bσ

 ,

which is an Inverse-Gamma distribution

σ2
i |− ∼ InvGamma

N

2
+ aσ,

1

2

N∑
n=1

(
yin −

∑
j ̸=i

q∑
k=1

βij
k y

j
nx

k
n

)2

+ bσ

 .
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• Update {s2k} and t:

We have conjugate updates:

p
(
s2k|−

)
=

∏
1≤i ̸=j≤p

γij
k =1

2
(
2πs2k

)− 1
2 exp

{
−1

2

(
τ̃ ijk
)2

s2k

}
1
(
τ̃ ijk ≥ 0

)

× t1

Γ(1)

(
s2k
)−2

exp

{
− t

s2k

}
∝

(
s2k
)−( 1

2

∑
1≤i̸=j≤p γij

k +1+1)
exp

{
−s−2

k

[
1

2

∑
1≤i ̸=j≤p

(
τ̃ ijk
)2

+ t

]}
,

which is an Inverse-Gamma distribution

s2k|− ∼ InvGamma

(
1 +

1

2

∑
1≤i ̸=j≤p

γij
k , t+

1

2

∑
1≤i ̸=j≤p

(
τ̃ ijk
)2)

.

The posterior of t is:

p (t|−) =

q∏
k=1

t1

Γ(1)

(
s2k
)−2

exp

{
− t

s2k

}

∝ tq exp

(
−t

q∑
k=1

1

s2k

)
,

which is a Gamma distribution

t|− ∼ Gamma

(
q + 1,

q∑
k=1

1

s2k

)
.
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