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ABSTRACT

Time-series data are ubiquitous these days, but lack of the labels in time-series
data is regarded as a hurdle for its broad applicability. Meanwhile, active learn-
ing has been successfully adopted to reduce the labeling efforts in various tasks.
Thus, this paper addresses an important issue, time-series active learning. Inspired
by the temporal coherence in time-series data, where consecutive data points tend
to have the same label, our label propagation framework, called TCLP, automat-
ically assigns a queried label to the data points within an accurately estimated
time-series segment, thereby significantly boosting the impact of an individual
query. Compared with traditional time-series active learning, TCLP is shown to
improve the classification accuracy by up to 7.1 times when only 0.8% of data
points in the entire time series are queried for their labels.

1 INTRODUCTION

A time series is a sequence of data points at successive timestamps. Supervised learning (e.g., clas-
sification) with a time series requires the label of every data point, but unfortunately labels are often
missing and hard to obtain due to lack of domain-specific knowledge (Shen et al., 2018; Malhotra
et al., 2019; Li et al., 2020). It is worse for a time series collected for an extended length of time, as
manually labeling so many data points is labor-intensive and time-consuming (Perslev et al., 2019;
Tonekaboni et al., 2021). Active learning (Settles, 2009), a method that iteratively selects the most
informative data point and queries a user for its label, can mitigate the high labeling cost. However,
most active learning methods are not geared for time-series data, as they assume that data points are
independent of one other (Sener & Savarese, 2018; Yoo & Kweon, 2019; Ash et al., 2020), which is
obviously not true in time-series data.

Time-series data typically has the characteristic of temporal coherence; that is, temporally consecu-
tive data points tend to have the same label (Wang et al., 2020; Barrow et al., 2020; Ishikawa et al.,
2021). Let us refer to a sub-sequence of temporally coherent data points as a segment. For exam-
ple, in motion-sensing time-series data, a segment consists of data points with the same motion
status (e.g., walking, running). This temporal coherence of a segment can be exploited in time-series
active learning. Specifically, when the label of a certain data point is obtained from a user, the same
label can be propagated to other data points in the same segment. One challenge here is that the seg-
ment length is not known but needs to be estimated. If it is too short, unnecessarily frequent queries
are issued; if too long, data points on the fringe of the segment are labeled incorrectly, consequently
damaging the learning performance (e.g., classification accuracy). Thus, accurate estimation of the
segments is important to enable the label propagation to achieve the maximum learning performance
with the minimum number of queries.

This paper addresses the label propagation segment estimation problem in time-series active learn-
ing through a novel framework called Temporal Coherence-based Label Propagation (TCLP). Fig-
ure 1 illustrates the overall workflow in the time-series active learning centered on TCLP. TCLP
receives the class probabilities (i.e., softmax output) for the label of each data point from a classifier
model and estimates the extent of the segment to propagate the label. This estimation is challenging
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Figure 1: Overall workflow of time-series active learning centered on TCLP. A data point that is
queried for a label is determined by a query selection strategy. The label obtained is then propagated
to adjacent data points guided by the TCLP framework.

in a real time series, as the classifier model output is uncertain and the time-series segments are
unknown. TCLP meets this challenge by taking advantage of the temporal coherence via a quadratic
plateau model (Moltisanti et al., 2019), by fitting it to the classifier model output to smooth out the
fluctuations of class probabilities across consecutive data points.

To the best of our knowledge, TCLP is the first that performs label propagation for time-series
active learning. The previous work closest to ours is pseudo-labeling in single-timestamp supervised
learning, where labels are known for at least one data point in each segment (Moltisanti et al., 2019;
Ma et al., 2020; Li et al., 2021). The approximate location and true class of a segment must be known
in their work, which is often impractical in the real world. Moreover, the known labels are relatively
dense in single-timestamp supervised learning, but they are very sparse in active learning—typically,
no more than 5% of segments in our experiments. Thus, finding the boundaries between segments
is more challenging in active learning than in single-timestamp supervised learning. To cope with
the sparsity of labeled data points, TCLP performs sparsity-aware label propagation by exploiting
temperature scaling (Guo et al., 2017) and plateau regularization.

Contributions of this paper are summarized as follows:

• It proposes a novel time-series active learning framework equipped with a sparsity-aware label
propagation within an accurately estimated segment.

• It verifies the merit of TCLP through extensive experiments. The classification accuracy is im-
proved by up to 7.1 times with TCLP compared to without label propagation. Moreover, TCLP
works with any query selection strategy including core-set sampling (Sener & Savarese, 2018)
and BADGE (Ash et al., 2020), boosting the effect of individual labeling.

2 RELATED WORK

2.1 ACTIVE LEARNING

Active learning is a special case of machine learning that ‘actively’ queries a user for the labels of
data points, to the effect of using fewer labels to achieve the same learning performance. Recent
studies have focused on developing such query strategies for machine learning based on deep neural
networks (Settles, 2009; Ren et al., 2020). These approaches exploit prediction probabilities (Beluch
et al., 2018), embeddings (Sener & Savarese, 2018), gradients (Ash et al., 2020), and losses (Yoo
& Kweon, 2019) from deep neural networks to estimate the impact of each unlabeled data point
if it were to be labeled. However, these methods are not suitable for time-series data, because they
assume that data points are independent.

Several methods have been developed for time-series or sequence data, but most of them are applica-
ble to only segmented time-series data under the assumption that a time series is already divided into
labeled and unlabeled segments. Treating these segments as independent and identically distributed,
these methods simply apply existing active learning frameworks to the segments. For example, He
et al. (2015) select unlabeled segments that are far from labeled segments to maximize diversity;
Peng et al. (2017) select unlabeled segments with distinctive patterns to maximize diversity; and
Zhang et al. (2017) select unlabeled segments with high gradients to consider uncertainty for sen-
tence classification. In addition, new neural network architectures or measures have been developed
for sequence-data applications such as named entity recognition (Shen et al., 2018), video action
recognition (Wang et al., 2018), and speech recognition (Malhotra et al., 2019). None of these meth-
ods is applicable to our problem, which handles unsegmented time-series data.

2.2 PSEUDO-LABELING

Pseudo-labeling has been actively studied for label-deficient learning environments, such as semi-
supervised learning, to exploit unlabeled data points in training a classifier (Lee et al., 2013). In
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general, a pseudo-label is given to an unlabeled data point based on the predictions from a classifier
trained with labeled data points. Confidence-based methods create a pseudo-label if it is confidently
predicted by a classifier (Lee et al., 2013). Consistency-based methods create a pseudo-label if it is
consistently predicted for the original and augmented data points (Sajjadi et al., 2016; Rizve et al.,
2021). Graph-based methods propagate pseudo-labels from labeled data points (nodes) to unlabeled
data points based on a similarity graph constructed from the features of all data points (Shi et al.,
2018; Liu et al., 2019; Wagner et al., 2018). However, these methods are not designed for time-series
data, and therefore are not directly applicable to our problem.

Coherence-based methods are developed for single-timestamp supervised learning for unsegmented
time-series data; they assume that at least one data point in each segment is given a true class label
through weak-supervision. Ma et al. (2020) propose probability thresholding propagation (PTP),
which propagates known labels bidirectionally unless the predicted class probability for each data
point is decreased by more than a threshold. Deldari et al. (2021) propose embedding similarity
propagation (ESP), which propagates known labels bidirectionally unless the embedding of each
data point changes rapidly. Recently, Moltisanti et al. (2019) adopt a plateau model that represents
class probabilities across consecutive data points, where a plateau model is constructed for each
labeled data point and fitted to the classifier output; a known label is propagated as long as the value
of a plateau model is higher than a threshold. While this work shares the idea of using a plateau
model with our work, using the plateau model as it is for active learning results in performance
degradation owing to the difference in the density of known labels, as will be shown in Section 4.

3 TCLP: TEMPORAL COHERENCE-BASED LABEL PROPAGATION

3.1 PRELIMINARIES AND PROBLEM SETTING

Active learning: LetD = {(xt, yt), t ∈ T } be a time series where T is the index set of timestamps;
xt is a multi-dimensional data point at timestamp t, and yt is one of the class labels if xt is labeled
or null otherwise. Let DL ⊆ D be a labeled set, i.e., a set of labeled data points, and DU ⊆ D
be an unlabeled set, i.e., a set of unlabeled data points, where DU ∪ DL = D. At each round of
active learning, b data points are selected from DU by a query selection strategy, such as entropy
sampling (Wang & Shang, 2014), core-set selection (Sener & Savarese, 2018), and BADGE (Ash
et al., 2020), and their ground-truth labels are obtained from a user; these newly-labeled b data
points are then removed from DU and added to DL. After DL is updated, a classifier model fθ is
re-trained using the updated labeled set.

Label propagation: Given a data point at timestamp tq and its label, (xtq , ytq ), obtained from a
user in response to a query, TCLP assigns the label ytq to nearby data points in the timestamp range
[ts : te] (ts ≤ tq ≤ te) estimated according to its temporal coherence property criteria. We call
the sub-sequence of data points in [ts : te] an estimated segment at tq . There are two properties: (i)
accuracy, which indicates that as many data points in the segment as possible should have the same
ground-truth label ytq ; and (ii) coverage, which indicates that the length of the segment (te − ts)
should be as long as possible. More formally, we estimate the segment for tq by

ts, te = arg min
t′s,t

′
e

1

t′e − t′s

t′e∑
t=t′s

(
1− fθ(xt)[ytq ]

)
, (1)

where t′s ≤ tq ≤ t′e holds, fθ(xt) is the softmax output vector of the classifier model at timestamp t,
and fθ(xt)[ytq ] is the estimated probability of the label ytq . In Equation (1), the accuracy is achieved
by minimizing the sum of errors in the numerator, and the coverage is achieved by maximizing the
candidate segment length in the denominator. Note that estimated probabilities are used to calculate
the errors, since the true probabilities are not known.

Once segment estimation is done, all data points in the estimated segment (i.e., in [ts : te]) are re-
moved fromDU and added toDL with the label ytq , thus doing coherence-based label propagation.
At each round of active learning, the segment estimation repeats for each of the b queried data points;
as a result, the size of DL is increased by the total length of the estimated segments. Besides, we
allow the data points in [ts : te], except tq , to be queried again in subsequent rounds so that the
propagated labels can be refined subsequently.
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3.2 PLATEAU MODEL FOR SEGMENT ESTIMATION

An adequately trained classifier model fθ returns higher probabilities of the (unknown) true labels
for data points inside a segment and lower priorities for data points outside the segment. Besides,
the output probabilities of the model are not constant within the segment because of noise in the
time-series data. Thus, one natural approach to finding a segment is to fit a plateau model to the
output of the classifier model and make a plateau of probability 1 into an estimated segment.

3.2.1 PLATEAU MODEL AND ITS FITTING
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Figure 2: Plateau model and its fitting.

Among many functions with a plateau-shaped value, we
use the function introduced by Moltisanti et al. (2019):

h(t; c, w, s) =
1

(es(t−c−w) + 1)(es(−t+c−w) + 1)
, (2)

where c, w, and s are trainable parameters for the model
h. As shown in Figure 2, c and w respectively represent
the center and half-width of the plateau, and s indicates the steepness of the side slopes.

The fitting of the plateau model at timestamp tq is illustrated in Figure 2. At the beginning, as in
Figure 2a, c is set to tq , andw and s are set to initial values and updated by the following optimization

c, w, s = arg min
c′,w′,s′

1

2w′

c′+w′∑
t=c′−w′

|h(t; c′, w′, s′)− fθ(xt)[ytq ]|, (3)

where h(t; c′, w′, s′) = 1 for t ∈ [c′−w′ :c′+w′]. Letting ε(t) be |h(t; c′, w′, s′)−fθ(xt)[ytq ]|/2w′
in Equation (3) and E be

∑
t ε(t), the optimal values of the three parameters are obtained by repeat-

ing a gradient update step,

c = c′ − η∇c′E,w = w′ − η∇w′E, and s = s′ − η∇s′E, where η is the learning rate. (4)
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Figure 3: Updated plateau models.

After a model is fitted through enough rounds,
as shown in Figure 2b, the plateau is located at
the center of a true segment and its width covers
most of the true segment. [c−w : c+w], indi-
cated by the red line in Figure 2b, is determined
as the estimated segment for the plateau model
at tq . Overall, as shown in Figures 3a and 3b, as
active learning progresses, more data points are
queried, estimated probabilities becomes more
accurate, and plateau models are better fitted
to the estimated probabilities. Eventually, the
plateau models accurately represent the true segments in the time series.

3.2.2 SPARSITY-AWARE LABEL PROPAGATION

In active learning, known labels are typically very sparse—initially no more than 5% of the segments
and growing slowly as more labels are obtained for queried data points. Our experience indicates
that simply optimizing the plateau model as explained in Section 3.2.1 tends to generate plateaus
much longer than true segments. See Section 4.4 for the poor performance of the typical (sparsity-
unaware) plateau model. On the other hand, in single-timestamp supervised learning, where the
plateau model has been successfully employed (Moltisanti et al., 2019), at least one label should
exist for every segment; thus, the boundaries of segments can be easily recognized while making
the plateaus not overlap between segments. Thus, to overcome the lack of potential boundaries for
segment estimation, we extend the procedure of the plateau model fitting in three ways.

Calibrating the classifier output: Because modern neural network models have millions of learning
parameters, the distribution of predicted probabilities in such models is often highly skewed to either
1 or 0, which means that the model is overconfident (Guo et al., 2017; Müller et al., 2019). That is, the
output of the classifier model fθ could be too high even outside the true segment, thereby making the
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plateau wider than the true segment. We address this issue by employing temperature scaling (Guo
et al., 2017) to calibrate the classifier output (i.e., softmax probabilities). Temperature scaling is
widely used to mitigate the overconfidence issue, because it reduces the differences of the softmax
probabilities while keeping their order. Specifically, temperature scaling divides the logits (inputs to
the softmax layer) zt by a learned scale parameter T , i.e., as fθ(xt) = softmax(zt/T ).

Regularizing the width of a plateau: To prevent a plateau from rapidly growing wider than a true
segment, we constrain the amount of updates on the parameter w of the plateau model. Specifically,
w cannot be increased more than twice its current value in a single round of active learning. Accord-
ingly, the gradient update ofw in Equation (4) is slightly modified tow = min(2w′, w′−η∇w′ε(t)).

Balancing the class skewness: This issue of class label imbalance can become more severe by
label propagation from sporadic queries; although the propagated labels are correct, the number
of such propagated labels can vary across different classes. To reduce the effect of this potential
skewness, we re-weight the loss `(ŷt, yt) at each timestamp in training the classifier model fθ, where
ŷt = arg maxk fθ(xt)[k] and yt is the propagated ground-truth label (Johnson & Khoshgoftaar,
2019). The loss is adjusted by the inverse ratio of the number of the timestamps of a given class over
that of the most infrequent class. That is, if we letNk be the number of the timestamps assigned with
the class k, the parameter of the classifier model is updated as follows: θ = θ− λminiNi

Nyt
∇`(ŷt, yt),

where λ is another learning rate for training a classifier model fθ.

3.3 THEORETICAL ANALYSIS

We show that our plateau-based segment estimation is expected to produce a segment closer to the
true segment than a simple threshold-based segment estimation. For ease of analysis, we consider
a single segment whose true length is L, the query data point at tq is located at the center of the
true segment with k = ytq known. In addition, we assume that the estimated class probabilities
fθ(xt)[k](1 ≤ t ≤ L) are conditionally independent at different timestamps (Graves et al., 2006;
Chung et al., 2015).

Threshold-based segment estimation: A simple and straightforward way to estimate the segment
is to expand its width bidirectionally as long as the estimated probability at each timestamp is higher
than or equal to a threshold δ. The probability that the length of a segment reaches l is

Pr(te−ts= l) = l · zl−1(1− z)2, (5)

where z = Pr(fθ(xt)[k] ≥ δ). Here, the l multiplied to zl−1(1− z)2 in Equation (5) is the number
of alignments possible for a segment containing the center tq . As a result, the expected length is

Efθ(xt)[te−ts] =

L∑
l=1

l · Pr(te−ts= l) =

L∑
l=1

l2zl−1(1− z)2

=
1 + z − (L+ 1)2zL + (2L2 + 2L− 1)zL+1 − L2zL+2

1− z
.

(6)

Plateau-based segment estimation: Let us fix c to tq and s to ∞ (90◦ steepness), and denote the
plateau model simply as h(t;w). Then, h(t;w) = 1 if c−w ≤ t ≤ c+w, and h(t;w) = 0 otherwise.
In addition, for simplicity, let us fix the denominator 2w′ in Equation (3) to L. Then, the inside of
the argmin operator in Equation (3) becomes

ε(l) =
1

L

(
(L− l) · |0− fθ(xt)[k]|+ l · |1− fθ(xt)[k]|

)
, (7)

where l (= 2w) denotes the length of the segment estimated with the plateau model. ε(l) is a linear
function of l, where its slope is (1− 2fθ(xt)[k]) and 1 ≤ l ≤ L. Thus, Equation (7) evaluates to the
minimum at either l = 1 when the slope is positive or l = L when the slope is negative. Letting z be
Pr(fθ(xt)[k]≥0.5), the probabilities of l = 1 and l = L are 1−z and z, respectively. In conclusion,
the expected length of the estimated segment is

Efθ(xt)[te − ts] = 1 · Pr(l = 1) + L · Pr(l = L) = 1− z + Lz. (8)

Comparison and discussion: AsL increases, Equation (6) converges toward 1+z
1−z and is not affected

by L, whereas Equation (8), which equals z(L− 1) + 1, increases linearly with L. Therefore, when
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a true segment is sufficiently long and z is in the typical range (e.g., less than 0.9), the plateau-
based segmentation (Equation (8)) is expected to produce a longer (i.e., closer to L) segment than
the threshold-based segmentation (Equation (6)).

3.4 OVERALL ACTIVE LEARNING PROCEDURE WITH TCLP

Algorithm 1 Time-series active learning with TCLP

Input: Timestamp feature xt, initially labeled set DL, unlabeled set DU , query strategyQ,
number of rounds R, query size b, initial classifier fθ0 , classifier loss `, learning rateλ.

Output: Final classifier fθR+1
.

1: H0 ← Initialized plateau models for DL;
2: θ1 = θ0 − λminiNi

Nyt
∇`(ŷt, yt) for each (xt, yt) ∈ DL;

3: for r = 1, . . . , R do
4: ȳt = TEMPERATURESCALING(fθr (xt)); Hr = Ø; // see Section 3.2.2
5: for h in Hr−1 do
6: h′ ← fit h on ȳt; Hr ← Hr

⋃
h′; // see Section 3.2.1

7: {tq}bq=1 ← queried timestamps acquired by Q from DU ;
8: Hr ← Hr

⋃
{plateau model htq}bq=1;

9: Hr ← ADJUST(Hr); // see Appendix C
10: DL ← LABELPROPAGATION(Hr); // see Section 3.2.2
11: θr+1 = θr − λminiNi

Nyt
∇`(ŷt, yt) for each (xt, yt) ∈ DL;

12: return fθR+1
;

Algorithm 1 summarizes how TCLP works in time-series active learning. First, plateau models are
initialized with the initially labeled set DL and stored in the set H0 (Line 1); and then using DL,
TCLP trains the classifier model fθ0 (Line 2). Then, at each active learning round r, TCLP first per-
forms calibration by inferring the data points with the classifier model fθr and scaling the softmax
output, and then initializes a new set of plateau models Hr (Line 4). Next, each plateau model in
Hr−1 from the previous round is fitted to the scaled output, and then the updated plateau model
is added to Hr (Line 6). The new plateau models are then initialized from queried timestamp la-
bels (Line 7) and added to Hr (Line 8). Then, any overlapping plateaus in Hr are adjusted—either
merged into one or reduced to avoid the overlap—as needed (Line 9). Finally, the queried labels are
propagated following the plateau models in Hr (Line 10), and the classifier model fθr is re-trained
with the augmented labeled set DL (Line 11). The complexity analysis of TCLP is presented in
Appendix A.

4 EVALUATION

We conduct experiments with various active learning settings to test the following hypotheses.

• TCLP accelerates active learning methods faster than other label propagation methods can.
• TCLP achieves both high accuracy and wide coverage in segment estimation.
• TCLP overcomes the label sparsity by the extensions discussed in Section 3.2.2.

4.1 EXPERIMENT SETTING

Table 1: Summary of datasets and configurations.

Timestamps Length #class Dim b R w0 s0

50salads 288798 289 19 2048 200 15 15 0.5

GTEA 31225 34 11 2048 200 15 5 0.5

mHealth 343195 2933 12 23 200 15 15 0.5

HAPT 815614 967 6 6 200 15 15 0.5

Datasets: The four benchmark datasets sum-
marized in Table 1 are used. 50Salads contains
videos at 30 frames per second that capture 25
people preparing a salad (Stein & McKenna,
2013), and GTEA contains 15 frame videos of
four people (Fathi et al., 2011). For these two
video datasets, we extract I3D features of 2,048
dimensional vectors at each timestamp follow-
ing the previous literature (Farha & Gall, 2019). mHealth contains 50Hz sensor time-series record-
ings of human movement, measured by 3D accelerometers, 3D gyroscopes, 3D magnetometers,
and electrocardiograms (Banos et al., 2014); we extract labeled regions from the raw data and stitch
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Figure 4: Classification accuracy measured at each (1st–15th) round of active learning. The accuracy
value is an average over all query selection methods. Detailed results are in Appendix B.

them in chronological order to make a time series. HAPT represents 50Hz sensor time-series record-
ings of human actions in laboratory setting, measured by 3D accelerometers and multiple 3D gyro-
scopes (Anguita et al., 2013).

Query selection methods: To evaluate the efficacy of TCLP, we combine it with six different query
selection methods. CONF (Wang & Shang, 2014) selects b timestamps exhibiting the lowest con-
fidence in the model’s prediction, where the confidence is evaluated by using the largest predicted
class probability; MARG (Settles, 2012) is similar to CONF, but it defines the confidence as the
difference between the first- and second-largest predicted class probabilities; ENTROPY (Wang &
Shang, 2014) selects the top b timestamps exhibiting the largest entropy for their predicted class
probabilities; CS (Sener & Savarese, 2018) chooses the top b most representative timestamps in em-
bedding space; BADGE (Ash et al., 2020) computes gradients from fθ at each timestamp t and
queries b timestamps found by k-MEANS++ to consider uncertainty and diversity; UTILITY is our
simple selection strategy that selects b timestamps randomly from the timestamps not covered by
the current set of plateau models, to increase the utility of the plateau models.

Compared label propagation methods: For a thorough comparison, we compare TCLP with three
available label propagation approaches—NOP, PTP, and ESP. For this purpose, each of TCLP and
the three approaches is combined with each of the aforementioned six query selection methods. NOP
is the baseline without using any label propagation. As explained in Section 2.2, PTP propagates
labels based on the predicted class probabilities with a certain threshold (δ = 0.8), while ESP
leverages cosine similarity between embeddings for label propagation. PTP and ESP are modified
to work in an active learning setting as done by Deldari et al. (2021).

TCLP implementation details: We use the multi-stage temporal convolutional network (MS-
TCN) (Farha & Gall, 2019) as the classifier fθ for time-series data. We use exactly the same training
configuration suggested in the original work (Farha & Gall, 2019). Regarding active learning hy-
perparameters, the number of queried data points per round (b) and the number of active learning
rounds (R) are summarized in Table 1. For TCLP, we use the initial parameters for plateau mod-
els (w0 and s0) in Table 1 and temperature scaling with T = 2. Our experience indicates that any
value of w0 smaller than 20% of the mean segment length is adequate enough. Accuracy met-
rics: Timestamp accuracy and segmental F1 score are measured at each round by five-fold cross
validation; they represent the prediction accuracy at the granularity of timestamp and segment, re-
spectively. The former is defined as the proportion of the timestamps with correct prediction. The
latter is defined as the F1 score of segments with an overlapping threshold on the intersection over
union (IoU) (Farha & Gall, 2019); that is, a prediction is classified as correct if the IoU between pre-
dicted and true segments is larger than the threshold. F1@25, with the threshold 25%, is commonly
used in the literature (Lea et al., 2017; Farha & Gall, 2019); the trends with the thresholds 10% and
50% are similar.
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Table 2: Classification accuracy measured after the final (15th) round (the best results in bold).

Dataset Query F1@25 Timestamp Accuracy
NOP PTP ESP TCLP NOP PTP ESP TCLP

50salads

CONF 0.191±0.015 0.204±0.015 0.280±0.017 0.433±0.010 0.505±0.017 0.451±0.032 0.462±0.031 0.559±0.010
ENTROPY 0.133±0.004 0.193±0.011 0.263±0.020 0.368±0.031 0.432±0.019 0.416±0.019 0.455±0.024 0.496±0.027
MARG 0.287±0.021 0.359±0.018 0.436±0.031 0.600±0.028 0.616±0.033 0.615±0.015 0.637±0.031 0.697±0.020
CS 0.322±0.021 0.426±0.018 0.480±0.022 0.559±0.021 0.595±0.021 0.602±0.017 0.632±0.023 0.657±0.024
BADGE 0.197±0.014 0.317±0.032 0.377±0.019 0.471±0.030 0.514±0.023 0.529±0.024 0.567±0.018 0.600±0.025
UTILITY 0.372±0.017 0.482±0.012 0.511±0.028 0.595±0.022 0.625±0.028 0.642±0.022 0.659±0.026 0.672±0.018
AVERAGE 0.250±0.034 0.330±0.043 0.391±0.038 0.504±0.035 0.548±0.028 0.543±0.035 0.569±0.034 0.614±0.028

GTEA

CONF 0.386±0.119 0.297±0.123 0.443±0.108 0.690±0.020 0.409±0.107 0.321±0.115 0.443±0.082 0.654±0.011
ENTROPY 0.355±0.119 0.575±0.032 0.422±0.128 0.613±0.028 0.364±0.114 0.565±0.028 0.456±0.104 0.590±0.021
MARG 0.248±0.072 0.491±0.122 0.582±0.035 0.727±0.024 0.320±0.057 0.469±0.099 0.545±0.026 0.659±0.015
CS 0.656±0.031 0.512±0.125 0.610±0.057 0.666±0.011 0.609±0.026 0.520±0.102 0.591±0.035 0.630±0.007
BADGE 0.718±0.041 0.723±0.033 0.710±0.029 0.703±0.028 0.705±0.020 0.682±0.010 0.692±0.017 0.663±0.015
UTILITY 0.661±0.025 0.671±0.030 0.700±0.014 0.656±0.025 0.608±0.018 0.608±0.033 0.646±0.019 0.644±0.019
AVERAGE 0.504±0.074 0.545±0.056 0.578±0.046 0.676±0.015 0.502±0.059 0.528±0.047 0.562±0.038 0.640±0.010

mHealth

CONF 0.016±0.005 0.015±0.002 0.029±0.006 0.228±0.064 0.294±0.016 0.445±0.044 0.398±0.063 0.685±0.051
ENTROPY 0.008±0.004 0.011±0.001 0.023±0.005 0.074±0.030 0.175±0.047 0.363±0.032 0.413±0.050 0.560±0.054
MARG 0.018±0.005 0.065±0.017 0.078±0.027 0.363±0.082 0.305±0.011 0.485±0.042 0.485±0.030 0.693±0.079
CS 0.055±0.024 0.289±0.085 0.187±0.049 0.594±0.094 0.590±0.034 0.680±0.032 0.577±0.040 0.817±0.009
BADGE 0.131±0.042 0.145±0.041 0.129±0.024 0.296±0.054 0.404±0.056 0.578±0.026 0.545±0.049 0.665±0.047
UTILITY 0.076±0.006 0.462±0.103 0.432±0.089 0.538±0.113 0.752±0.051 0.831±0.028 0.901±0.015 0.789±0.065
AVERAGE 0.051±0.018 0.164±0.067 0.146±0.057 0.349±0.072 0.420±0.080 0.564±0.064 0.553±0.069 0.702±0.034

HAPT

CONF 0.324±0.114 0.289±0.084 0.459±0.050 0.656±0.034 0.611±0.107 0.592±0.083 0.793±0.026 0.857±0.019
ENTROPY 0.332±0.055 0.368±0.082 0.384±0.044 0.653±0.047 0.646±0.067 0.755±0.024 0.763±0.044 0.836±0.011
MARG 0.276±0.043 0.667±0.042 0.790±0.020 0.805±0.022 0.556±0.031 0.799±0.010 0.809±0.025 0.889±0.031
CS 0.739±0.033 0.816±0.010 0.843±0.026 0.835±0.024 0.880±0.005 0.898±0.018 0.926±0.007 0.909±0.014
BADGE 0.784±0.029 0.719±0.044 0.813±0.019 0.860±0.018 0.859±0.032 0.840±0.016 0.858±0.014 0.886±0.035
UTILITY 0.846±0.012 0.867±0.018 0.811±0.026 0.849±0.023 0.936±0.006 0.937±0.008 0.916±0.010 0.934±0.004
AVERAGE 0.550±0.099 0.621±0.089 0.684±0.076 0.776±0.036 0.748±0.060 0.803±0.046 0.844±0.025 0.885±0.013

4.2 OVERALL ACTIVE LEARNING PERFORMANCE

Figure 4 shows the F1@25 and timestamp accuracy at each round of varying the queried data ra-
tio (= the number of queried data points / the total number of data points), where the accuracy values
are averaged over the six query selection methods. 15 rounds are conducted for each dataset. TCLP
performs the best among all label propagation approaches, with the accuracy improving much faster
with a smaller number of queries than in the other approaches; this performance is attributed to the
larger number of correctly propagated labels in TCLP, as will be shown in Section 4.3. Interestingly,
the accuracy gain is higher in F1@25 than in timestamp accuracy; this difference makes sense be-
cause F1@25 measures the accuracy at the granularity of segment and therefore reflects temporal
coherence better than the granularity of timestamp. Appendix D shows more details.

Table 2 shows the F1@25 and timestamp accuracy measured after the final (15th) round, i.e., at
the last queried data ratio in Figure 4, for each of the six query selection methods. TCLP performs
best here as well in almost all combinations of datasets, query selection methods, and accuracy
metrics. Specifically, TCLP outperforms the compared label propagation approaches (NOP, PTP,
and ESP) for all query selection methods except only a few cases. This result confirms that TCLP
maintains its performance advantage regardless of the query selection method. Interestingly, TCLP’s
performance gain is most outstanding for the mHealth dataset and least outstanding for the GTEA
dataset. The reason lies in the length of the segments. As shown in Table 1, mHealth’s segments are
the longest (2,933 on average) and GTEA’s segments are the shortest (34 on average). Longer seg-
ments certainly allow more temporal coherence to be exploited in label propagation, thus resulting
in higher performance. For instance, using UTILITY on the mHealth dataset, TCLP outperforms
NOP by 7.1 times, PTP by 1.2 times, and ESP by 1.2 times in F1@25 while, on the GTEA dataset,
TCLP outperforms them less significantly.

4.3 LABEL PROPAGATION PERFORMANCE

Table 3 shows the correct label propagation ratio (= the number of correctly propagated labels / the
total number of data points) to verify how many labels are correctly propagated with each label prop-
agation approach. Overall, fully taking advantage of the temporal coherence based on the plateau
model, TCLP adds far more correct labels than PTP and ESP. Specifically, using UTILITY on the
mHealth dataset, the correct propagation ratio of TCLP is higher than that of PTP by 5.0 times and
that of ESP by 3.7 times. It is impressive that querying only 0.8% of data points results in up to 33%
of data points correctly labeled. Appendix E shows more details.
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Table 3: Correct label propagation ratio after the final (15th) round (the best results in bold).

Dataset Query Correct Propagation Ratio Dataset Query Correct Propagation Ratio
PTP ESP TCLP PTP ESP TCLP

50salads

CONF 0.032±0.001 0.054±0.001 0.129±0.005

mHealth

CONF 0.027±0.001 0.038±0.002 0.109±0.017
ENTROPY 0.026±0.000 0.042±0.001 0.100±0.005 ENTROPY 0.024±0.000 0.031±0.001 0.066±0.009
MARG 0.071±0.000 0.151±0.004 0.368±0.006 MARG 0.054±0.001 0.083±0.004 0.204±0.027
CS 0.076±0.000 0.151±0.001 0.306±0.003 CS 0.061±0.000 0.081±0.001 0.210±0.018
BADGE 0.054±0.001 0.094±0.004 0.193±0.013 BADGE 0.060±0.001 0.087±0.002 0.201±0.020
UTILITY 0.081±0.000 0.170±0.002 0.352±0.003 UTILITY 0.065±0.000 0.089±0.001 0.325±0.017
AVERAGE 0.057±0.009 0.110±0.020 0.241±0.043 AVERAGE 0.049±0.007 0.068±0.010 0.186±0.034

GTEA

CONF 0.270±0.008 0.252±0.008 0.498±0.007

HAPT

CONF 0.011±0.001 0.019±0.001 0.050±0.005
ENTROPY 0.226±0.009 0.220±0.010 0.403±0.018 ENTROPY 0.009±0.000 0.014±0.000 0.033±0.002
MARG 0.423±0.008 0.380±0.002 0.404±0.009 MARG 0.022±0.001 0.047±0.002 0.148±0.007
CS 0.437±0.014 0.398±0.014 0.371±0.014 CS 0.026±0.000 0.048±0.002 0.146±0.004
BADGE 0.348±0.014 0.305±0.013 0.404±0.008 BADGE 0.026±0.000 0.053±0.001 0.160±0.008
UTILITY 0.516±0.002 0.453±0.001 0.424±0.006 UTILITY 0.028±0.000 0.058±0.003 0.257±0.004
AVERAGE 0.370±0.041 0.335±0.034 0.418±0.016 AVERAGE 0.020±0.003 0.040±0.007 0.132±0.031

Table 4: Classification timestamp accuracy after the final (15th) round with and without plateau
width regularization and temperature scaling (the best results in bold).

Dataset Width Reg. No Yes
Temp. Scal. No (T = 1) Yes (T = 2) T = 0.5 T = 0.75 T = 1 T = 1.5 T = 1.75 T = 2 T = 2.25 T = 2.5 T = 2.75

50salads

CONF 0.441±0.015 0.487±0.030 0.465±0.044 0.489±0.026 0.480±0.035 0.519±0.019 0.559±0.020 0.559±0.010 0.535±0.020 0.508±0.023 0.460±0.045
ENTROPY 0.431±0.042 0.455±0.040 0.430±0.044 0.410±0.027 0.442±0.013 0.462±0.029 0.452±0.009 0.496±0.027 0.479±0.015 0.462±0.018 0.482±0.041
MARG 0.655±0.033 0.671±0.027 0.668±0.033 0.667±0.016 0.691±0.025 0.671±0.024 0.682±0.018 0.697±0.020 0.664±0.028 0.658±0.013 0.599±0.030
CS 0.611±0.028 0.618±0.026 0.592±0.040 0.616±0.027 0.624±0.034 0.610±0.020 0.627±0.029 0.657±0.024 0.656±0.018 0.633±0.025 0.626±0.015
BADGE 0.595±0.018 0.599±0.020 0.575±0.021 0.594±0.037 0.623±0.023 0.631±0.017 0.634±0.014 0.600±0.025 0.575±0.018 0.546±0.028 0.566±0.010
UTILITY 0.671±0.017 0.670±0.016 0.662±0.024 0.644±0.036 0.662±0.022 0.652±0.037 0.651±0.024 0.672±0.018 0.661±0.024 0.661±0.025 0.667±0.028
AVERAGE 0.567±0.039 0.583±0.034 0.565±0.037 0.570±0.037 0.587±0.038 0.591±0.031 0.601±0.031 0.614±0.028 0.595±0.029 0.578±0.032 0.566±0.030

GTEA

CONF 0.539±0.072 0.575±0.052 0.614±0.025 0.587±0.020 0.603±0.023 0.607±0.010 0.575±0.011 0.654±0.011 0.553±0.082 0.638±0.027 0.477±0.087
ENTROPY 0.553±0.016 0.578±0.020 0.606±0.016 0.574±0.018 0.596±0.018 0.614±0.019 0.592±0.022 0.590±0.021 0.582±0.026 0.551±0.022 0.593±0.010
MARG 0.605±0.014 0.646±0.023 0.609±0.015 0.636±0.014 0.632±0.010 0.636±0.014 0.672±0.009 0.659±0.015 0.682±0.021 0.669±0.009 0.657±0.032
CS 0.596±0.012 0.606±0.013 0.601±0.021 0.586±0.012 0.484±0.112 0.598±0.021 0.597±0.019 0.630±0.007 0.616±0.020 0.629±0.015 0.673±0.011
BADGE 0.645±0.015 0.644±0.011 0.616±0.012 0.635±0.018 0.620±0.010 0.641±0.016 0.658±0.015 0.663±0.015 0.676±0.019 0.687±0.017 0.677±0.007
UTILITY 0.589±0.043 0.608±0.031 0.605±0.011 0.529±0.081 0.616±0.016 0.595±0.017 0.627±0.017 0.644±0.019 0.638±0.014 0.659±0.015 0.667±0.013
AVERAGE 0.588±0.014 0.609±0.012 0.608±0.002 0.591±0.015 0.592±0.020 0.615±0.007 0.620±0.014 0.640±0.010 0.624±0.019 0.639±0.018 0.624±0.029

4.4 EFFECTS OF SPARSITY-AWARE LABEL PROPAGATION TECHNIQUES IN TCLP

Table 4 shows the timestamp accuracy achieved by TCLP with and without two techniques em-
ployed to handle sparsity of labels—temperature scaling for classifier output calibration and plateau
width regularization in Section 3.2.2. The class skewness balancing is employed by default to assure
stable performance. In addition, the temperature scale factor T is varied for the temperature scal-
ing technique. Compared with enabling both width regularization and temperature scaling (T = 2),
removing width regularization only, temperature scaling only, and both degrades the timestamp ac-
curacy by 5.0%, 4.3%, and 7.6%, respectively, in the 50salads dataset and 4.8%. 4.2%, and 8.1%,
respectively, in the GTEA dataset. Clearly, both techniques are helpful for the label propagation,
with the width regularization showing higher effect than the temperature scaling. Note that when
T > 2, the label propagation length is suppressed, thereby causing deficiency in labels needed to
train a classifier; when T < 1, the label propagation length may exceed the true segment length,
thereby including wrong labels when training the classifier. The break point is affected by the av-
erage length of segments in each dataset, where it occurs at a higher value of T in a dataset with
shorter segments: the average segment length is 34 in the GTEA dataset whereas it is 289 in the
50salads dataset.

5 CONCLUSION

In this paper, we present a novel label propagation framework for time-series active learning, TCLP,
that fully takes advantage of the temporal coherence inherent in time-series data. The temporal co-
herence is modeled by the quadratic plateau model, which plays a key role in segment estimation.
Furthermore, the sparsity of known labels is relieved using temperature scaling and plateau reg-
ularization. Thanks to accurate and effective label propagation, TCLP enables us to improve the
performance of time-series supervised learning with much smaller labeling effort. Extensive experi-
ments with various datasets show that TCLP improves the classification accuracy by up to 7.1 times
when only 0.8% of data points are queried for their labels. Future work includes developing a query
selection strategy that maximizes the merit of label propagation and utilizing a constraint on plateau
model fitting based on similarity among plateau models with the same class. Overall, we expect that
our work will contribute greatly to various applications whose labeling cost is expensive.
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A COMPUTATIONAL COMPLEXITY OF TCLP
In each round of active learning, let M be the number of plateau models, V be the average length
of sub-sequences of predicted probability fθ(xt)[k], and S be the number of training steps for eval-
uating Equation (4). Then, considering constant computational complexity for calculating the loss
and gradient at each timestamp in the sub-sequences, we derive the computational complexity of
plateau model fitting per round to be O(MV S). Here, M can be reduced by merging two overlap-
ping plateau models with the same class. This complexity of fitting the plateau models is negligible
compared with the complexity of training the classifier. For instance, according to the experiment
for the 50salads dataset conducted using Intel Xeon Gold 6226R and Nvidia RTX3080, fitting the
plateau models took only about 1 to 2 minutes, whereas training the classifier took about half an
hour per active learning round.

B DETAILED FIGURE WITH STANDARD ERROR AND SUPERVISED ACCURACY
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Figure 5: Classification accuracy with standard error measured at each (1st–15th) round of active
learning. The accuracy value is an average over all query selection methods. The black line labeled
MAX at the top indicates the maximum classification accuracy.

Figure 5 enriches Figure 4 with standard error, indicated by the shadow around a line, and fully-
supervised classification accuracy, indicated by the horizontal line labeled MAX. At the last queried
data ratio (i.e., after 15 active learning rounds) of each figure, in the 50salads dataset where only
1% of data points are queried, TCLP achieves 85% of the timestamp accuracy of fully-supervised
classification. Similarly, in the HAPT dataset where only 0.4% of data points are queried, TCLP
achieves 92% of the timestamp accuracy of fully-supervised classification. Overall, these results
show that TCLP achieves the performance very close to fully-supervised classification using a very
small proportion of query data points.

C ADJUSTMENT OF OVERLAPPING PLATEAUS IN TCLP

The process of adjusting overlapping updated plateaus through either merge or reduction is as fol-
lows. Consider two plateaus hkl(cl, wl, sl) (on the left) and hkr (cr, wr, sr) (on he right), where
(cl− wl<cr−wr) ∧ (cl+wl>cr−wr) ∧ (cl+wl<cr+wr) holds. If the classes assigned to these
two plateaus are the same, i.e., kl = kr, then they are merged to become one plateau whose width
covers the segment merged from the two plateaus’ segments. Hence, the half-width w′ and center
c′ of the new plateau are w′ = (cr + wr − cl + wl)/2 and c′ = cl − wl + w′, respectively. If, on
the other hand, different classes are assigned to the two plateaus, i.e., kl 6= kr, their half-widths are
reduced to remove any overlap between them. As a result, separating the two plateaus at the mid-
point m(= (cl + cr)/2) between their centers, after the reduction the left plateau has the half-width
w′l = (m− (cl−wl))/2 and the center at c′l = cl−wl +w′l, and the right plateau has the half-width
w′r = (cr + wr − m)/2 and the center c′r = cr + wr − w′r. Note that the labels of queried data
points should not change as a result of this reduction. If the right plateau covers multiple queried
data points whose timestamps are smaller than cr, the timestamp of the leftmost queried data point
becomes a new cr. The same is applicable to the left plateau, except the change of the direction.
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D EFFICACY OF TCLP FOR EACH QUERY SELECTION METHOD

Figures 6–11 show the efficacy of each label propagation (LP) approach combined with each query
selection method. The performance plot shown in Figure 4 is the average of these results over the
six query selection methods. For all query selection methods, TCLP is shown to be effective in
improving active learning performance compared to the other label propagation approaches.
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Figure 6: Efficacy of the four LP approaches with CONF query selection.
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Figure 7: Efficacy of the four LP approaches with ENTROPY query selection.
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Figure 8: Efficacy of the four LP approaches with MARG query selection.
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Figure 9: Efficacy of the four LP approaches with CS query selection.
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Figure 10: Efficacy of the four LP approaches with BADGE query selection.
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Figure 11: Efficacy of the four LP approaches with UTILITY query selection.

16



Published as a conference paper at ICLR 2022

E EVALUATION OF PROPAGATED LABELS

Figures 12–17 show the propagation quality of each label propagation approach, again demonstrat-
ing the superiority of TCLP. These plots provide the overall trends including the final round results
reported in Table 3. The correct propagation ratio (CPR), i.e., the number of correctly propagated
labels / the total number of data points, is measured at each round using a specific query selection
method on each dataset. The CPR of TCLP is shown to be higher than those of the other label
propagation approaches throughout the entire period (i.e., from the 1st through the 15th round).
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Figure 12: CPR of the four LP approaches with CONF query selection.
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Figure 13: CPR of the four LP approaches with ENTROPY query selection.
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Figure 14: CPR of the four LP approaches with MARG query selection.
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Figure 15: CPR of the four LP approaches with CS query selection.
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Figure 16: CPR of the four LP approaches with BADGE query selection.
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Figure 17: CPR of the four LP approaches with UTILITY query selection.
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