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ABSTRACT

Graph neural networks (GNNs) are conventionally trained on a per-domain, per-
task basis. It creates a significant barrier in transferring the acquired knowledge
to different, heterogeneous data setups. This paper introduces GraphBridge, a
novel framework to enable knowledge transfer across disparate tasks and domains
in GNNss, circumventing the need for modifications to task configurations or graph
structures. Specifically, GraphBridge allows for the augmentation of any pre-
trained GNN with prediction heads and a bridging network that connects the input
to the output layer. This architecture not only preserves the intrinsic knowledge of
the original model but also supports outputs of arbitrary dimensions. To mitigate
the negative transfer problem, GraphBridge merges the source model with a con-
currently trained model, thereby reducing the source bias when applied to the tar-
get domain. Our method is thoroughly evaluated across diverse transfer learning
scenarios, including Graph2Graph, Node2Node, Graph2Node, and graph2point-
cloud. Empirical validation, conducted over 16 datasets representative of these
scenarios, confirms the framework’s capacity for task- and domain-agnostic trans-
fer learning within graph-like data, marking a significant advancement in the field
of GNNs. Code is available at https://github.com/jujulili888/GraphBridge!

1 INTRODUCTION

With the explosive growth of graph data, the application of Graph Neural Networks (GNNs) has
become increasingly widespread in domains (Jing et al., [2022; [2021b; Wu et al., 2020b; [Yu et al.|
2018 [Shah et al., 2020) such as recommendation systems (Gao et al.| 2022; Wu et al| [2019) and
biopharmaceutics(Zitnik et al., 2018} |[Rathi et al., 2019). Despite their growing popularity, the ef-
fective implementation of GNNss often requires significant training efforts and substantial memory
resources. This poses challenges for their practical application in diverse settings. To address these
constraints, recent research has focused on reusing pre-trained GNN models (Jing et al.,|2023};|Yang
et al.,2022; Jing et al.| 2021a;|Deng & Zhang|,2021; Hu et al.,|2019a;|Sun et al.,|2022b; |Yang et al.,
2020). This approach aims to reduce the need for extensive training, thereby lessening the associated
time and resource demands to alleviate the extra training expense.

However, to date, these efforts have not been entirely practical, primarily due to two forms of hetero-
geneity in graph data. The first is task heterogeneity. The intrinsic non-Euclidean nature of graph
data allows for its application across a range of tasks, including graph-level, node-level, and edge-
level predictions. However, the graph pre-training paradigm typically assumes consistency between
the tasks used in pre-training and those in downstream applications. This becomes problematic
when adapting GNNs to new tasks with distinct output formats and knowledge requirements. In
such scenarios, GNNs may not perform optimally, as the pre-training might not align well with the
demands of these novel tasks.

Beyond task heterogeneity, domain heterogeneity also poses a significant challenge in transferring
knowledge effectively within graph data applications. This refers to the significant differences in
node features, connection patterns, and topology across various graph datasets. Consequently, a
GNN trained on one specific dataset might struggle to generalize effectively to other datasets with
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different structures. To mitigate this problem, researchers have been exploring the development of
robust GNN transfer frameworks (Hu et al., 2019b; [Xia et al., 2022} [Zhu et al., 2021b), which aim
to enhance the adaptability of GNN models, allowing them to be trained on one graph dataset and
then fine-tuned for diverse downstream tasks. However, when the pre-training source domain vastly
differs from the downstream task’s domain, negative transfer issues arise, highlighting the need for
new approaches to bridge larger domain gaps.

In this paper, we initiate an exploration of a unified workflow for knowledge transfer in diverse
graph tasks. Our goal is to overcome the challenges posed by heterogeneity of graphs, especially
in the reutilization of knowledge within GNN models. Specifically, we aspire to design a versatile
pre-train-tuning graph transfer framework, named ”GraphBridge”, to facilitate seamless knowledge
transfer across diverse graph domains. Rather than updating the parameters of the backbone, we
integrate a trainable side network proficient in efficiently guiding end-to-end graph transfer learning.

In realizing our new vision, the primary concern is addressing the challenge of diverse input and
output dimensions between source and target tasks. Therefore, we have devised adaptable input
dimension adapters, both learnable and non-learnable, tailored to various transfer learning scenarios
of differing complexity. Furthermore, we have developed interchangeable prediction heads for dif-
ferent task outputs, including graph classification, node classification, and point cloud classification.

Additionally, to mitigate negative transfer issues that arise when transferring knowledge across dis-
tinct domains, we have introduced two effective graph side-tuning techniques called Graph-Scaff-
Side-Tune (GSST) and Graph-Merge-Side-Tune (GMST). GSST follows a similar architecture to
the ladder-side, while GMST involves the fusion of the pre-trained backbone and a random ini-
tialized model with the same architecture, aiming to counteract the negative impact of pre-training
knowledge on transfer. Leveraging the advantages of the side-tune branch pathway computations,
these modules yield satisfactory results.

To validate the performance of the framework, we have define a ”Task Pyramid” for graph transfer
learning, as depicted in Figure[I] On 16 graph datasets spanning different tasks, the GraphBridge
and the associated Graph Side-tuning approach have been proven effectiveness in different scenarios,
even surpassing the performance of full fine-tuning, particularly in challenging tasks.

To conclude, our work makes the following contributions:

e We devised a novel knowledge transfer framework, termed GraphBridge, coupled with an accom-
panying Graph Side-tuning method to address transfer learning challenges across arbitrary tasks &
domains in graph-related applications.

e We have created a “Task Pyramid”, which includes four levels of graph transfer tasks across 16
datasets of varying difficulty. We applied our framework to these tasks for comprehensive evaluation.

e Our extended experiments show that our method achieves resource-efficient transfer learning
across various task scenarios, pre-training methods, and backbone structures. Remarkably, with
only 5% ~ 20% of the tunable parameter, it delivers comparable performance while consistently
handling tasks of different complexities.

2 RELATED WORK

Parameter Efficient Transfer Learning (PETL). Parameter Efficient Transfer Learning (PETL)
is a branch of transfer learning focusing on reducing the computational cost of adapting pre-trained
models to new tasks by avoiding updates to the entire parameter set. A popular PETL approach
involves delta tuning, which introduces trainable parameters and tuning them. Techniques like
adapters(Houlsby et al [2019; Sung et al.| [2022b; Zhang et al.| 2021a), LoRA(Hu et al.,[2021) and
side-tuning(Zhang et al., 2020; Sung et al.| [2022a) exemplify this approach. In contrast to adding
new parameters to the pre-trained model, prompt-based tuning(Lester et al., 20215 Zhou et al., 2022
Li & Liang} |2021; [Li et al.,|2023a; |2024) introduces trainable parameters to the input, while keeping
the pre-trained model unchanged during training. As GNN pre-training methods(Hu et al., [2019b;
Zhu et al., [2021b} [Xia et al., [2022; [Zhu et al.l [2021a} Jin et al., 2020) emerge, the PETL paradigm
has gained attention in the GNN domain. Researchers have successfully transferred adapter(Li et al.,
2023b) and prompting-based methods(Sun et al., 2023} |2022a) to GNNs. This paper aims to fully
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exploit the flexible side-tune structure, designing an efficient graph side-tune method to address
severe negative transfer challenges in graph domain tasks.

Graph Domain Adaptation. Domain adaptation, a subtopic of transfer learning, seeks to alleviate
the negative impact of domain drift in transferring knowledge from a source to a target domain(Pan
& Yang| [2009). Particularly prominent in the visual domain, extensive research has been devoted
to this area(Ganin et al., 2016; [Tan et al., 2017; Long et al., 2015} 2018; |[Zhuang et al., [2015} [Pe1
et al., 2018)). Recent advancements have introduced methods addressing graph domain adaptation
tasks, broadly classified into discrepancy-based(Pilanci & Vurall [2020; Vural, |2019)), reconstruction-
based(Wu et al., 20204 (Cai et al., 2021)), and adversarial-based methods(Dai et al.|[2022; Shen et al.,
2020; |Zhang et al., 2019)). Despite their efforts to address heterogeneity in various graph knowledge
domains for transfer learning, these methods are constrained to scenarios involving tasks at the same
level. In contrast, our proposed end-to-end graph transfer learning framework, rooted in the pre-
train-finetune paradigm, aims to transcend this constraint, enabling flexible graph transfer learning
across diverse domains and tasks.

Universal Model. Beyond domain adaptation, it is meaningful for transfer learning to derive a uni-
versal model applicable to various downstream tasks, thereby significantly streamlining the process
of model pre-training. The exploration of such universal models has been previously conducted in
the domains of CV and NLP(McCann et al.| 2018}; [Yu & Huang| 2019; |Silver et al., 2021}, [Reed
et al., 2022). Though the field has seen limited engagement, recent endeavors have emerged to de-
velop universal models in non-Euclidean domains(Sun et al.| 2023} Jing et al., 2023). In contrast
to research on domain adaptation, these models fall short in bridging the substantial domain gaps
inherent in different task transfer learning scenarios, leading to the failure to leverage the knowledge
of pre-trained models across arbitrary tasks. To tackle the limitation, our framework incorporates the
Graph-Merge-Side structure in the tuning stage, which effectively alleviates transfer biases present
in the source domain, stemming negative transfer in universal learning.

3 METHODS

Achieving transfer learning across arbitrary graph task domains enables GNNs to comprehensively
extract general knowledge, laying the foundation for efficient unsupervised graph learning and the
development of universal graph model. However, arbitrary domain transfer learning presents chal-
lenges that need to be addressed. In this section, we begin by uncovering the key challenges of
Arbitrary Graph Transfer Learning and outline how we address the challenges posed by various
work scenarios I proposed in Figure|l| Particularly, we pinpoint two core problems in our mission:
large gap domain adaptation and multi-tasks unification. To handle these challenges, we re-construct
the pre-training-tuning framework for graph domains & tasks transfer learning. Additionally, we
propose new resource-efficient tuning methods tailored for graphs to mitigate negative transfer.
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Figure 1: Task Pyramid & Core Methodology. Left: Graph side-tuning metods proposed to solve
the different difficulty-level of the tasks; Right: Graph transfer learning tasks with different levels
of difficulty defined in our work.
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Figure 2: GraphBridge Framework. Left: End-to-end GraphBridge framework with 2 stage;
Right: Architecture of Graph-Merge-Side-Tuning architecture for addressing negative transfer.

ajdues
umoq

3.1 CHALLENGES TOWARDS ARBITRARY GRAPH TRANSFER

7 Multi Input & Output: The first issue is to fit various input dimensions and output forms
of downstream tasks, considering that we only have a frozen pre-trained backbone without any
additional dimensional transformation. For instance, the HIV molecular dataset has 8 input features
and 1-dimensional output for graph classification, while the Cora network has 1433 input features
and output of the same dimension as the number of nodes for node classification. To tackle the multi
Input & Output dilemmas, we initially devised an end-to-end transfer learning framework capable
of handling arbitrary input-output dimensions.

¢ Domain Gap: The second challenge towards arbitrary graph transfer lies in the insufficient
tuning methods’ capacity to make good use of the knowledge from pre-trained models for adaptation
in the target domain. In cases where there is a substantial domain gap, the efficacy of full-tuning
diminishes, rendering resource-efficient tuning methods even appear as negative transfer. Therefore,
we establish innovative graph side-tuning architectures that not only address the issue of negative
transfer, but also ensure resource efficiency.

3.2 GRAPHBRIDGE FRAMEWORK

In this context, we introduce a pioneering two-stage graph transfer learning framework titled
”GraphBridge”, which facilitates an end-to-end pre-training-tuning transfer paradigm within the
task scenarios outlined in our work. As shown in Figure [A3] our framework comprises a Pre-
training Stage , aimed at extracting generalized graph knowledge, and a Tuning Stage dedicated to
downstream tasks adaptation.

Pre-training Stage. In our work, we do not propose new graph pre-training methods. Instead, we
design a versatile pre-training stage that can be adapted to various existing graph-level pre-training
techniques (since they perform more effectively in graph knowledge learning(Hu et al., [2019b; |Sun
et al.| 2023) in the realm of graph pre-training methods). This adaptability allows our framework to
utilize any graph-level pre-training method to obtain the base model for tuning. In our experiments,
we employ the effective methods, GraphCL and SimGRACE, for base model pre-training.

Tuning Stage. In the tuning stage, our framework comprises three components: Input Bridge,
Efficient-tuning, and Output Bridge, which can be tailored to downstream task transfer learning
with varying input and output formats.

® INPUT BRIDGE adopt the Feat-Adapt methods mentioned above for input feature dimensional
adaptation as well. In addition to the non-trainable adapters, we set a trainable linear layer as an
adapter specifically for the point cloud dataset.
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® EFFICIENT-TUNING consists of a pre-trained backbone and tunable side networks for downstream
task transfer on adapted inputs. In our work, we design a new graph-side-tuning paradigm which
will be discussed in [3.3] instead of using the traditional fine-tuning.

® OUTPUT BRIDGE serves as an output adapter for various graph tasks. It integrates several learn-
able predictor heads tailored to different downstream tasks for graph embeddings obtained from the
tuning process. This ensures the generation of appropriate output formats for various graph tasks.
For instance, in a graph classification task, a pooling operation followed by a linear prediction head
is employed to generate predictions for each graph. In contrast, in a node classification task, a linear
head is directly used for predictions, ensuring that each node corresponds to a label.

3.3 GRAPH SIDE-TUNING

In the tuning stage, we introduced a novel graph side-tuning technique, enabling effective trans-
fer learning of different graph tasks. On one hand, side-tuning showcases resource efficiency by
maintaining performance with fewer parameter manipulations. On the other hand, the flexible ar-
chitecture of side-tuning facilitates the design of solutions to address negative transfers occurring
during large gap domain transfer. For tasks of varied difficulty levels shown in Figure[T} we devised
two graph side-tuning methods to tackle the challenges: the elementary Graph Scaff Side-Tuning
and the advanced Graph Merge Side-Tuning methods.

Graph Scaff Side-Tuning (GSST). In the design of the Graph Side-tuning, we make an innovation
for side network architectures. Unlike the original side-tuning, which used the distillation structure
of the base model as the side network, we directly set the side network as a randomly initialised
MLP. Such a configuration is pertinent: the high computational time overhead of the graph convo-
lution layer can be circumvented when training the MLP solely using node features. Meanwhile,
current research(Han et al.| [2022; Zhang et al.| 2021b) indicates that MLPs can exhibit graph learn-
ing performance comparable to GNNs when guided by the knowledge from GNN models; Hence,
the tuning efficiency can be further enhanced while transfer performance being ensured.

The tuning process of GSST is shown in Figure [A.5] In our approach, a GNN based model with
frozen parameters produces activations at each layer. These activations are then passed through a
down-sampling layer and fused layer-wise with the outputs of a trainable MLP side-network. Thus,
the loss for downstream task 7T; can be formulated as:

‘C(XTdade) = Has : fgnn(XTdaATd§W;|GNNpre)

(1
+(1 = ) - fup(XTa; W1) — YT, ||

where {xT,, AT,,yT,} denotes the node features, adjacency matrix and labels of T;. Moreover,

the fgn, with pre-trained-init parameters wé and fip with random-init w; represent the output of
the frozen base model and activated side network respectively, while a5 represents a set of fusion «
for each layer between base and side.

As such, Eq.[I]indicates that the proposed GSST fixes the parameters of the base model and adjusts
the MLP side network parameters for optimization. Additionally, the alpha blending parameters, as
well as the downsampling module for each layer, are updated during back-propagation. The smaller
scale of the tuning space reflects the parameter efficiency of our methods. Moreover, by exclusively
conducting back propagation on the side network, we avoid the need to compute and retain gradient
values for the base model, presenting an additional memory-efficient attribute. At last, the GSST
method demonstrates commendable performance in easy task scenarios and the experimental results
of it are further elaborated in section 421

Graph Merge Side-Tuning (GMST). Nevertheless, in more challenging task scenarios, GSST
proves inadequate in bridging the substantial gaps between diverse task domains and knowledge
domains. To address the negative transfer problem that occurs when significant domain gap exists,
we further propose a novel side-tuning architecture named Graph Merge Side-Tuning (GMST).

In theory, due to the substantial disparity in knowledge between the source domain and the target
domain, the base model’s involvement tends to trap the model in a local optimum. Therefore, it
becomes imperative to mitigate the impact of bias from the source domain on the target domain.
Here, we achieve this goal by introducing the backup model to the base-side and fusing it with the
original pre-trained model. Specifically, we set up a backup network mirroring the structure of the
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pre-trained model, initializing its parameters from random distributions. The parameters of both the
backup and the pre-trained model are then frozen, while the parameter merging between each layer
of the base model is controlled by the learnable scaling «.

During forward stage, the activation of each layer of the base model layer is initially combined by
the backup and pre-trained models before being directed to the side network for base-side merging
as shown in Figure[A.3] Given the two-step model fusion, the back-propagation loss of the algorithm
for random downstream task 7T}; undergoes minor modifications compared to GSST:

Dp(XTy) = Qb - fann1 (X7, Ar,;wg|GN Npp)

" )
+(1 — ap) - fann2 (XTy; ATy; W)
(I)s (XTd) = fmlp (XTd ; Wl) (3)
L(xT4,¥Tq) = [[(as - Po(x1,) + (1 — s) - Ps(x14) — yrall 4)

where @, and ®; denote the output of base merged activations and side activations, respectively.

And « refers to the set of fusion parameters for each layer of the base model. fgnm and fgnnz
represent pre-trained base model and the random-init. backup model.

As shown in Eq. 2] B] B} GMST only adds forwarding of the gradient of the base model fusion pa-
rameter to the back-propagation; the gradient of side-tuning itself does not change, which maintains
the parameter-efficient attribute of the approach. Meanwhile, Eq. [2] also indicates that by merging
the backup and pre-trained model, we can introduce more randomness into the base model, thus
diluting the negative impact of the source domain bias on the downstream tasks. Finally, GMST
demonstrated significantly better transfer learning than GSST in more difficult task scenarios.

4 EXPERIMENTS

We evaluate the performance of our GraphBridge on 16 publicly available benchmarks across four
different scenarios defined in Figure I}

e Easy: Transfer learning between graph-level classification tasks within similar knowledge do-
mains, a task frequently explored in existing research on graph pre-training and fine-tuning methods

o Medium: Transfer learning between node classification tasks in unrelated knowledge domains.

e Hard: Transfer learning between graph classification tasks and node classification tasks in unre-
lated knowledge domains.

e Extension: For extension, we explored the transfer learning between traditional graph data and
graph-like (point cloud) data.

As a preliminary study in this field, our goal is not to achieve state-of-the-art performance on all
datasets. Instead, we aim to explore the feasibility of a graph-universal model across a diverse range
of tasks and datasets.

4.1 EXPERIMENTAL SETTINGS

Datasets. The datasets employed in our experiments can be categorized based on task levels: graph-
level tasks consist of ZINC-full, BACE, BBBP, ClinTox, HIV, SIDER, Tox21, MUV, ToxCast, which is
a series of molecular graph datasets; node-level tasks include ogbn-arxiv, Cora, CiteSeer, PubMed,
Amazon-Computers, Flickr, encompassing node classification datasets related to citation networks,
product ranking networks, and social networks; point cloud tasks involve ModelNet10, which is a
10-classification point cloud dataset.

Model Settings. In the Graph2Graph task, we employ a five-layer backbone architecture to fa-
cilitate the extraction of general knowledge from the extensive ZINC dataset. In the Node2Node,
Graph2Node, and Graph2PtCld tasks, we consistently utilize a standard graph neural network struc-
ture comprising two-layer graph convolutions. For the backbones of the aforementioned model, we
configure the hidden layer dimension of the base to be 100, while the hidden layer dimension of the
side network is set to 16.
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Comparison Methods. In various task scenarios, we employed different comparison methods to
assess the performance of GraphBridge. For the evaluation of the Graph2Graph task, we conducted
full-stage supervised training, fine- tuning(Zhu et al.|[2021b)), MetaGPBJing et al.|(2023), MetaFPJing
et al.|(2023), and Adapter-GNN(Li et al., 2023b). Given the novelty of the task presented in this pa-
per, there are currently fewer comparison methods available for the last three task scenarios. There-
fore, we choose full-stage supervised training, fine-tuning and MetaFP as baselines, and adaptively
modify the Adapter-GNN for comparison.

4.2 EASY TASK: GRAPH2GRAPH TRANSFER

For the easy-level task, we chose the largest-scale dataset, ZINC-full, as the pre-training dataset, and
utilize the remaining molecular datasets for transfer learning. Additionally, as the Adapter algorithm
is specifically designed for the GIN model, we exclusively used GIN as the backbone of the base
model in our experiments for a fair comparison. As depicted in Table |1} our GSST method has
demonstrated robust performance in the Graph2Graph task, outperforming the fine-tuning method
by 0.6% and 0.1% under different pre-training approaches and significantly working better compared
to other efficient tuning methods. Examining the errors, it is evident that the error fluctuations of
the GSST algorithm are consistently below 1%, highlighting its convergence stability. Moreover, a
comparison of the last column indicates that our algorithm exhibits enhanced robustness compared to
baselines, consistently delivering performance improvements across different pre-training methods.

Table 1: Results of Graph2Graph Transfer. : Test ROC-AUC (%) performances on molecular
prediction benchmarks with different pre-train-tuning workflows. Imp. refers to the improvement
of parameter-efficient tuning methods in comparison to the fine-tuning.

Pre-train | Tuning
Methods |Methods
FT |74.6:22 68.6:23 69.8+22 78.5:1.2 59.6+0.7 74.405 73.7+27 62.9+04 |70.3| -
MetaGP |72.5:1.1 66.9+1.4 67.7+25 77.3:22 59.0+1.8 72.5+1.4 T4.4+30 62.2:04 [69.1|-1.2%
GraphCL | MetaFP |75.3:3.6 66.4:2.1 70.3+12 75.6+13 59.2+33 74.4:02 74.8+28 63.0-23 |69.91-0.4%
Adapter |76.1:22 67.8x1.4 72.0:38 77.8+13 59.6+1.3 74.9209 75.0:2.1 63.104|70.7| 0.4%
GSST |79.3:02 69.5+1.0 71.1:04 72.8+09 60.6:0.1 72.1:0.1 78.0+0.7 62.9:0.1 |70.9|0.6%
FT  |74.7+10 65.5:1.0 53.8+23 74.6+1.2 58.10.6 71.920.4 71.0:19 61.3+04 [66.3| —
MetaGP |72.2+3.1 59.8:1.8 49.6:05 69.6+1.3 57.7:20 70.7=1.7 71.2:2.1 61.6:2.4 |64.3]-2.0%
SimGRACE| MetaFP (74.0:23 62.2:2.1 52.3:3.0 70.3:2.6 58.2:3.5 71.9+1.8 72.8:27 61.1:19 |65.4|-0.9%
Adapter [74.9+1.7 64.6=1.3 53.9:20 72.3:12 57.2:09 T1.4+06 71.8+1.4 61.3+0.6 |65.9]-0.4%
GSST |73.0=0.6 65.4:02 57.2:03 69.1=0.1 57.9:02 72.303 74.4:05 61.6:0.1 |66.4|0.1%

BACE BBBP ClinTox HIV SIDER Tox21 MUV ToxCast|Avg.| Imp.

4.3 MEDIUM TASK: NODE2NODE TRANSFER

In the Node2Node transfer scenario, ogbn-arxiv was selected for model pre-training, while the re-
maining node classification datasets were used for validation.

We show in Table [2| the results of the Graph2Graph transfer task. The 7" and 12'" lines of Table
exhibit that GMST demonstrated superior transfer learning performance across most datasets when
compared to the baselines. This was particularly notable in the GIN backbone settings of PubMed
and CiteSeer, where GMST outperformed training from scratch by 6.8% and 3.7%, respectively. The
proposed method consistently maintains stable performance across various pre-training methods and
GNN backbones, showcasing the universality of GraphBridge. Although, on the Flickr, Amazon
datasets, the performance of the proposed GMST method is slightly inferior to that of the fine-tune
method, it still outperforms other efficient tuning methods. This suggests that the parameter-efficient
GMST method may not exhibit significant advantages when the task domain’s scope is not expansive
enough, but achives SOTA among the efficient tuning methods.

4.4 HARD TASK: GRAPH2NODE TRANSFER

For the Graph2Node transfer scenario, we opted for a relatively larger HIV dataset for models pre-
training, while using the same validation dataset as in the Node2node for transfer learning.
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Table 2: Results of Node2Node Transfer. Test Acc. (%) on diverse node-classification benchmarks
with different tuning methods under node-level data pre-training. We conducted experiments with
two pre-training methods and three GNN backbones. *Due to space constraints, the error bars for

the experiments are shown in Figure[9].

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods Methods |GCN GAT GIN |[GCN GAT GIN |[GCN GAT GIN |[GCN GAT GIN |[GCN GAT GIN
— Scratch Train|64.30 69.21 55.10(75.70 75.10 65.80{76.90 77.00 72.10|92.37 92.33 91.89(53.07 52.97 53.15
FT 56.60 56.80 52.80(69.90 70.20 67.30(74.40 73.30 62.40|92.22 92.00 91.02|53.32 52.85 53.90
MetaFP  [53.50 55.20 54.50[65.40 68.10 65.20(65.40 67.10 60.80|86.67 87.27 82.36|45.52 45.49 44.37
GraphCL Adapter - - 5520 - - 6540| - - 62.40| - - 85.28] - - 50.21
GSST 54.00 55.80 56.40(69.80 71.80 69.00{63.30 64.00 59.10|88.95 84.77 85.13|49.72 44.32 49.54
GMST 59.30 63.40 58.80|72.10 75.00 72.60(73.10 72.30 65.40|89.42 90.19 86.15|51.92 47.70 49.94
FT 58.90 57.60 45.50|71.30 71.70 64.10{72.90 71.20 64.40{92.37 92.29 91.28(53.60 50.81 53.77
MetaFP  [54.20 55.30 46.60(67.20 68.50 65.70(66.30 63.40 60.20|83.45 85.42 80.54|47.74 43.56 48.75
SimGRACE|  Adapter - - 48.40| - - 63.20| - - 61.80| - - 80.22| - - 5123
GSST 52.00 52.10 49.50|68.00 70.00 67.30|64.60 59.30 53.90|88.84 87.86 80.26|48.93 45.20 49.71
GMST 61.60 63.40 58.90|73.20 75.80 72.70|75.10 72.20 66.70|90.88 90.53 84.19|50.56 47.71 51.16

As can be seen in Table 3] the merits of the GMST become more pronounced in more challenging
task: For the Cora dataset, GMST consistently outperforms fine-tuning by 5-10% across different
pre-training methods and backbones. Although on the Amazon and Flickr datasets, GMST does not
strictly surpass the performance of fine-tuning, the gap between the results of the two tuning methods
narrows. Besides, its advantages over other efficient tuning methods extend further. A comparison
between Table [3|and [2]reveals that, for identical downstream tasks, all other tuning methods expe-
rience significant performance degradation, whereas our GMST method keeps a competitive edge.
This result aligns with expectations: with the expansion of the domain, the knowledge extracted
from the original domain tends to have a negative impact for the downstream task. In contrast, the
backup module introduced by the GMST mitigates this influence, accelerating model convergence
on downstream tasks.

Table 3: Results of Graph2Node Transfer. Test Acc. (%) on diverse node-classification bench-
marks with different tuning methods under graph-level data pre-training. We conducted experiments
with two pre-training methods and three GNN backbones. *Due to space constraints, the error bars

for the experiments are shown in Figure|1()|.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods Methods |GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN
— Scratch Train|64.30 69.21 55.10{75.70 75.10 65.80|76.90 77.00 72.10|92.37 92.33 91.89|53.07 52.97 53.15
FT 52.60 49.90 46.90|68.60 68.00 63.50({69.20 60.90 63.10{91.82 89.09 90.44|52.34 49.87 52.38
MetaFP  [50.40 49.80 45.50(65.90 66.30 60.40|64.30 61.00 60.30|85.54 86.11 80.38|48.42 44.79 42.63
GraphCL Adapter - - 46.10| - - 5940 - - 57.80| - - 8277 - - 48.67
GSST 48.70 49.90 50.20|64.60 64.40 65.80(52.20 51.30 56.00(83.68 80.77 80.23|48.22 44.49 47.55
GMST [61.90 62.40 57.90|73.10 73.70 73.90|74.80 72.30 66.50|88.62 89.79 85.50(51.30 47.34 49.54
FT 53.70 53.00 43.30{59.30 68.10 61.80[65.00 64.30 57.70(92.26 89.46 90.88|52.42 48.05 53.50
MetaFP  [51.30 52.30 44.10(56.40 61.40 56.30|61.10 64.50 56.80|85.24 86.49 81.76|46.58 46.99 44.37
SimGRACE| Adapter - - 4540| - - 59.90| - - 56.60| - - 8043 - - 4632
GSST 49.90 45.40 51.90|58.20 61.60 65.30(54.50 49.20 48.30(80.95 81.68 77.39|47.80 44.86 48.93
GMST  [63.00 62.20 58.50|72.70 74.80 73.30|74.30 71.10 65.20(89.67 89.46 85.26(50.24 47.29 51.57

4.5 EXTENSION TASK: GRAPH2PTCLD TRANSFER

Here, the pre-trained model acquired from Node2Node and Graph2Node tasks served as the base
models backbone for the Graph2PtCld task. Subsequently, we transferred the model to adapt to
the ModelNet10 task. In this scenario, we seek to explore whether the GraphBridge framework for
graph tasks can transfer knowledge learned from graph domains to graph-like data.

The experimental results presented in Table [4] affirm the capability of our proposed GraphBridge
framework for achieving transfer learning from graphs to those graph-like data, since our meth-
ods demonstrates significant performance improvements against previous works. According to the



Published as a conference paper at ICLR 2025

extensive exploration, we were surprised to observe that the GSST method demonstrated superior
performance compared to the GMST method in the final results when tuning with a pre-trained back-
bone on graph-level datasets. It even outperformed all other tuning methods, including fine-tuning.
This phenomenon can be explained by considering the dataset: ModelNet10 is a 10-classified point
cloud dataset, which exhibits organizational similarities to a graph classification task. Therefore,
using the molhiv pre-training results as the backbone of the model for transfer learning towards
the point cloud classification task can be considered a Graph2Graph transfer task, a scenario where
GSST excels. However, when employing the arxiv dataset for backbone pre-training, the situation
changes. In contrast to the consistent excellence exhibited by GSST in scenarios where the original
task is graph classification, GMST maintains stability in the face of a larger domain gap.

Table 4: Results of Graph2PtCld Transfer. We configure pre-trained models on graph-level and
node-level data across distinct types of graph layers as the initialization for backbone.

Pre-train | Tuning Graph-level: Node-level:
Methods | Methods ogbg-molhiv ogbn-arxiv
Backbones GCN GAT GIN | GCN GAT GIN
| Serateh g 81601 87.9:10|77.421 816015 87.9:15
Train

FT 78117 74.9:01 83.9+1.1|73.430 75.4+24 87.3:3.1
MetaFP | 73.1:36 70.3:24 78.8+1.6|70.2+25 71.9+28 74.1+20
GraphCL | Adapter - - 80.9+22 - - 75.9+28
GSST |81.7:29 78.6:3.7 84.7:28|70.4:31 74.0:27 80.4:338
GMST |77.8:26 74.8:35 82.5:24|75.6:3.4 74.5:27 80.8+2.7

FT 78.6:15 70.9+18 77.3+17|72.8:20 78.0:23 79.7:1.9
MetaFP | 71.712 66.9:22 76.5:15|69.8:23 71.0:1.7 74.4+20
SimGRACE | Adapter - - 76.9:3.2 - - 73.8:2.9
GSST |79.3:42 81.8:37 77.3:23|71.8+38 69.2:28 63.9:00
GMST |65.2:27 65.1:31 76.4:27|78.1:3.6 78.1+3.0 78.7:32

In summary, GraphBridge demonstrates convincing performance across different task scenarios.
While the proposed framework does not surpass full fine-tuning in all experimental settings, it con-
sistently outperforms the previous efficient tuning methods. Based on the experimental results, we
also outline the specific application scenarios for GSST and GMST. Specifically, GSST is most suit-
able for scenarios where the domain gap between the pre-training task and the downstream task is
minimal, e.g. Graph2Graph and Graph2PtCld; Conversely, GMST is more effective when there is a
significant gap between source and target domains, e.g. Node2Node, Graph2Node, and Node2PtCld.
Furthermore, hard tasks encompass not only the Graph2Node displayed in the main paper, but also
other transfer scenarios such as Node2Graph, Graph2Edge and so on. For experiments of supple-
mentary hard scenarios, please refer to Appendix [A.4]

4.6 ABLATION STUDIES

Tuning Efficacy. To evaluate the efficacy of the proposed GSST and GMST for arbitrary graph
transfer, we assess the tuning outcomes across varying levels of pre-training bases and diverse back-
bones, using the Cora dataset as a representative. As illustrated in Table [5} using the pre-trained
model directly for inference in the downstream task without fine-tuning results in unacceptable
performance. Our proposed parameter-efficient tuning method effectively transfers the pre-trained
model to the downstream task. As the transfer task transitions from moderate to difficult, the perfor-
mance of GSST gradually declines. In contrast, GMST exhibits sustained effectiveness, showcasing
its robust capability in mitigating the challenges associated with negative transfer.

Resource Efficiency. In the discussion of efficiency of our tuning methods, We validate from two
distinct perspectives: parameter efficiency and tuning efficiency.

In terms of parameter efficiency, Figure [3] illustrates the adjustable parameters of different tuning
methods across various backbone architectures. Since MetaGP and MetaFP are prompt-tuning
methods, their tunable parameters are determined by the datasets, rather than the GNN backbone
architecture. Therefore, the tunable parameters scale of both MetaGP and MetaFP are averaged
across various datasets, keeping same for different backbones. Notably, our GSST and GMST ex-
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hibit significantly fewer tuning parameters compared to most alternative methods, especially in the
GIN backbone, where we have only 5% of their parameters. Additionally, due to the fixed MLP
structure in our side network, the scale of our parameter space remains constant across diverse pre-
training backbones, which has the same advantage as the model-free prompt tuning approaches.

Table 5: Ablation studies on the effects of GSST and GMST modules designed for arbitrary
graph transfer learning. we conduct tests under three training scenarios: direct inference without
tuning, tuning with GSST, and tuning with GMST. The results are presented in terms of test Acc.
(%) under various backbones pre-trained by GraphCL strategy.

GSST | GMST |

Dataset: Cora

Node-level Pretrain | Graph-level Pretrain

\ | GC(N GAT GIN | GCN GAT  GIN
X X 1380 11.60 17.30 | 13.50 3190  17.00
v X 6330 64.00 59.13 | 5220 5130  56.00
X v 7310 7232 6540 | 7480 7230  66.50

As for tuning efficiency, we validate the speed-up of different tuning methods compared to scratch
training on the Cora dataset. Here, we computed the relative speed-up by measuring the convergence
time for each tuning method. Table [6] presents the results, demonstrating that our proposed transfer
learning method significantly accelerates the scratch training process. Furthermore, when compared
to other tuning techniques, both GMST and GSST exhibit substantially higher speed-up rates than
fine-tuning and AdapterGNN. The comparatively lower speed-up of our method relative to MetaFP
can be attributed to the model-free characteristic of MetaFP, since the gradient update in data is
faster than the process in model parameter. Overall, the validation of training speed-up indicates
that our method delivers high performance while maintaining strong efficiency.

25K ufine-tune =MetaGP mMetaFP = GSST mGMST = AdapterGNN
- - e Speed-up. t (%) | GCN  GAT  GIN
- FT 3.3 7.2 1.7
MetaFP 77.3 68.6 74.3
10 S Adapter - - 20.2
o 52¢ 5.32K GSST 394 57.6 26.3
Im s Im TR | e GSMT 36 523 208
Elmm Elmm nlimm
Figure 3: Adjustable parameter sizes in  Table 6: Training speed-up of different tuning

different tuning algorithms across distinct
backbones. We conduct statistics on five-layer
backbones.

methods compared to Scratch Training. We
selected the transfer experiment on Cora dataset
in the challenging scenario as a representative.

The validation conducted demonstrates the effectiveness of our approach in seamlessly transferring
the commonly used pre-train + tuning framework from CV and NLP to graph domain research. This
transfer is substantiated from both efficacy and efficiency standpoints, marking an initial success in
achieving seamless transfer learning across diverse tasks in the graph domain.

5 CONCLUSIONS

In this paper, we introduce a novel GraphBridge framework for resource-efficient graph transfer
learning toward arbitrary downstream tasks and domains. Our goal is to create a unified workflow
that maximizes the utility of pre-trained Graph Neural Networks (GNNs) for various cross-level and
cross-domain downstream tasks, eliminating the need for data reorganization and task reformula-
tion. To this end, we have established four scenarios for graph transfer learning tasks, ranging from
easy to complex, and proposed two resource-efficient tuning methods, namely GSST and GMST,
to resolve the dilemmas. Our experiments, conducted on selected datasets across different domains
and tasks—including graph and node classification, as well as 3D object recognition—demonstrate
the effectiveness of our approach in achieving arbitrary domain transfer learning on GNNs with im-
proved resource efficiency. Nevertheless, there are still constraints in our experimental setup. In our
future work, we will strive to tackle transfer tasks across more benchmarks using our GraphBridge.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This project is supported by the National Research Foundation, Singapore, under its Al Singapore
Programme (AISG Award No: AISG2-RP-2021-023).

REFERENCES

Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, and Kun Zhang. Graph domain
adaptation: A generative view. arXiv preprint arXiv:2106.07482, 2021.

Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. Graph transfer learning via
adversarial domain adaptation with graph convolution. IEEE Transactions on Knowledge and
Data Engineering, 35(5):4908-4922, 2022.

Xiang Deng and Zhongfei Zhang. Graph-free knowledge distillation for graph neural networks.
arXiv preprint arXiv:2105.07519, 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The journal of machine learning research, 17(1):2096-2030, 2016.

Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. Graph neural networks for recommender
system. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining, pp. 1623-1625, 2022.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn
training acceleration with mlp initialization. arXiv preprint arXiv:2210.00102, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019b.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1857-1867, 2020b.

Wei Jin, Tyler Derr, Haochen Liu, Yigi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang. Self-
supervised learning on graphs: Deep insights and new direction. arXiv: Learning,arXiv:
Learning, Jun 2020.

Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Amalgamating
knowledge from heterogeneous graph neural networks. In CVPR, 2021a.

Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-aggregator:
Learning to aggregate for 1-bit graph neural networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5301-5310, 2021b.

11



Published as a conference paper at ICLR 2025

Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan, Mingli Song, Xinchao Wang, and
Dacheng Tao. Learning graph neural networks for image style transfer. In European Conference
on Computer Vision, pp. 111-128. Springer, 2022.

Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep graph
reprogramming. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24345-24354, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Qi Li, Liangzhi Li, Zhouqgiang Jiang, and Bowen Wang. Towards robust and accurate visual prompt-
ing. arXiv preprint arXiv:2311.10992, 2023a.

Qi Li, Runpeng Yu, and Xinchao Wang. Encapsulating knowledge in one prompt. In European
Conference on Computer Vision, pp. 215-232. Springer, 2024.

Shengrui Li, Xueting Han, and Jing Bai. Adaptergnn: Efficient delta tuning improves generalization
ability in graph neural networks. arXiv preprint arXiv:2304.09595, 2023b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In International conference on machine learning, pp. 97-105. PMLR,
2015.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In SIGIR, 2015.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345-1359, 20009.

Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adap-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Mehmet Pilanci and Elif Vural. Domain adaptation on graphs by learning aligned graph bases. IEEE
Transactions on Knowledge and Data Engineering, 34(2):587-600, 2020.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gce: Graph contrastive coding for graph neural network pre-training. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 1150-1160, 2020.

Prakash Chandra Rathi, R Frederick Ludlow, and Marcel L Verdonk. Practical high-quality elec-
trostatic potential surfaces for drug discovery using a graph-convolutional deep neural network.
Journal of medicinal chemistry, 2019.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 2008.

Chintan Shah, Nima Dehmamy, Nicola Perra, Matteo Chinazzi, Albert-Laszl6 Barabasi, Alessandro
Vespignani, and Rose Yu. Finding patient zero: Learning contagion source with graph neural
networks. arXiv preprint arXiv:2006.11913, 2020.

12



Published as a conference paper at ICLR 2025

Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. Adversarial deep network
embedding for cross-network node classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 2991-2999, 2020.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 2021.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717-1727, 2022a.

Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. Does gnn pretraining help molecular representation?
Advances in Neural Information Processing Systems, 35:12096-12109, 2022b.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting for
graph neural networks. 2023.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Information Processing Systems, 35:12991-13005,
2022a.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5227-5237, 2022b.

Ben Tan, Yu Zhang, Sinno Pan, and Qiang Yang. Distant domain transfer learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 31, 2017.

Elif Vural. Domain adaptation on graphs by learning graph topologies: theoretical analysis and an
algorithm. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3):1619-1635,
2019.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. QSS, 2020.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In Proceedings of The Web Conference 2020, pp. 1457—
1467, 2020a.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based rec-
ommendation with graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 346-353, 2019.

Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolutional networks with
markov random field reasoning for social spammer detection. In AAAI 2020b.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 2018.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework
for graph contrastive learning without data augmentation. In Proceedings of the ACM Web
Conference 2022, pp. 1070-1079, 2022.

Xingyi Yang, Zhou Daquan, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly.
In NeurlIPS, 2022.

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7074-7083, 2020.

13



Published as a conference paper at ICLR 2025

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In IJCAI, 2018.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In ICCV, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning:
a baseline for network adaptation via additive side networks. In Computer Vision—-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part III 16, pp.
698-714. Springer, 2020.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021a.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021b.

Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. Dane: Domain adaptive network
embedding. arXiv preprint arXiv:1906.00684, 2019.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337-2348, 2022.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web Conference 2021, Apr 2021a. doi:
10.1145/3442381.3449802. URL http://dx.doi.orqg/10.1145/3442381.3449802.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069-2080, 2021b.

Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. Supervised represen-
tation learning: Transfer learning with deep autoencoders. In Twenty-fourth international joint
conference on artificial intelligence, 2015.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 2018.

14


http://dx.doi.org/10.1145/3442381.3449802

Published as a conference paper at ICLR 2025

A APPENDIX

This document provides an in-depth analysis of our proposed methodology, offering additional in-
sights and experimental details that complement our main findings and enhancing the understand-
ing of our methods. Specifically, in Section we delve into the intricacies of various datasets
utilized in our research, shedding light on their unique characteristics and relevance to the study.
Section [A.2] and Section [A.3]is dedicated to a comprehensive ablation study, where we critically
evaluate different architectural configurations and their impact on the performance of our proposed
models. Finally, we further investigated the performance of GraphBridge in supplemental hard
transfer scenarios in[A.4} including Node2Graph and Graph2Edge, to guarantee its generalizability.

A.1 DATASETS DETAILS

We provide in Table [7)the statistics of several graph benchmarks used in the main manuscript. This
section aims to highlight the diversity and range of our benchmark datasets, showcasing their varied
characteristics and applications.

Table 7: Summary of the 16 datasets used in the main manuscript and supplementary material.

Names Task Descriptions Feature Dimensions Nodes Edges # Graphs
1.Flickr Online Images Classification 500 89,250 899,756 1

2. Cora Machine-Learning Paper Classification 1,433 2,708 5,429 1

3. Citeseer Computer-Science Paper Classification 3,703 3,327 4,732 1

4. Pubmed Diabete-related Publication Classification 500 19,717 44,338 1

5. ogbn-arxiv Subject Area Prediction of arXiv Papers 128 169,343 1,166,243 1

6. Amazon Computers Computer-Product Category Prediction 767 13,752 574,418 1

7. BACE Molecule Property Classification 2 ~34.1 ~73.7 1,513
8. BBBP Molecule Property Classification 2 ~ 239 ~51.6 2,039
9.ClinTox Molecule Property Classification 2 ~ 26.1 ~ 555 1,484
10. HIV Molecule Property Classification 2 ~ 255 ~ 549 41,127
11. SIDER Molecule Property Classification 2 ~ 33.6 ~70.7 1,427
12. Tox21 Molecule Property Classification 2 ~ 18.6 ~ 38.6 7,831
13. MUV Molecule Property Classification 2 ~ 242 ~ 52.6 93,087
14. ToxCast Molecule Property Classification 2 ~ 18.7 ~ 384 8,597
15. ZINC-full Molecule Property Classification 2 ~232 ~49.8 249,456
16. Mode1lNet10 3D Object Recognition 3 ~9,508.2 ~37,450.5 4,899

Image Relation Dataset. Specifically, the F1ickr originates from NUS-wide (Zeng et al.| 2019)
which contains 89,250 nodes and 899,756 edges. One node in the graph represents one image
uploaded to Flickr. If two images share some common properties (e.g., same geographic location,
same gallery, comments by the same user, etc.), there is an edge between the nodes of these two
images. Node features are the 500-dimensional bag-of-word representation of the images provided
by NUS-wide. For labels, each image belongs to one of the 7 classes.

Citation Network Dataset. The following three datasets, i.e., Cora, Citeseer and Pubmed
(Sen et al., 2008)), are all citation network datasets used for single-label node classification. Specifi-
cally, both Cora and Citeseer contain publications on computer science. Pubmed, on the other
hand, only comprises the papers pertaining to diabetes. Moreover, ogbn—arxiv dataset(Wang
et al., |2020; [Hu et al.| 2020a)) contains a directed graph, which denotes the citation network among
all Computer Science (CS) papers in arXiv, with each node representing an arXiv paper and each
directed edge indicating that one paper cites another one. The node features are the average embed-
dings of words in their title and abstract, which are computed by using the skip-gram model.

Good Purchase Dataset. Amazon Computers and Amazon Photo are the segments of the Amazon
co-purchase graphs from (McAuley et al.||2015), where the nodes represent various goods, labeled
by the corresponding product categories. Here we chose Amazon-Computers with more samples
for our validation.

Molecular Structure Dataset. BACE, BBBP, C1inTox, HIV, SIDER, Tox21, MUV, ToxCast
and ZIN-full are all molecular property prediction datasets proposed by (Wu et al.| [2018). Every
graph in these datasets denotes a molecule, with the nodes representing atoms, and edges denoting
the chemical bonds. The node features contain the atomic number and chirality and the additional
atom features, e.g., the formal charge. The number of prediction tasks varies across molecular
datasets, and each task corresponds to a binary classification for molecular properties
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Point Cloud Dataset. For the task of point cloud classification, we adopt the Mode 1Net 10 dataset
(Wu et al.L[2015)), which is a subset of ModelNet40. Here, we chose ModelNet10 with fewer samples
to speed up our experiments. Specifically, the Mode1Net 10 dataset contains 4899 CAD models of
10 man-made object categories, of which 3991 CAD models (ModelNet40: 40 classes-classification
dataset with 9,843 CAD models are used for training and 2,468 CAD models are for testing) are
used for training and 908 CAD models are for testing. For each CAD model, we sample 1,024 3D
points from the mesh surfaces and also rescale the associated coordinates to fit into the unit sphere.

A.2 ABLATION FOR NETWORK ARCHITECTURE

(a) G-Block Side-tune (b) G-Assemb Side-tune
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Figure 4: All versions of Graph Side-tuning architectures. (a) G-Block Side-tune: The Simplest
version of the Graph Side-tuning architecture, which has separated base and side networks; (b) G-
Assemb Side-tune: G-Block Side-tune with a backup model designed in base model for negative
transfer alleviation; (¢) G-Scaff Side-tune: Graph Side-tune architecture with layer-wise fusion
between base model and side network; (d) G-Merge Side-tune: G-Scaff Side-tune with a backup
model designed in base for negative transfer alleviation.
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Before proposing Graph Scaff Side-Tuning (GSST) and Graph Merge Side-Tuning (GMST), we first
designed a simple version of the Graph Side-Tuning structures based on (Zhang et al., [2020), known
as the Graph Block Side-Tuning (GBST) and Graph Assemb Side-Tuning (GAST), respectively as
shown in Figure ] In this section, our aim is to demonstrate the superiority of GSST and GMST
over these simpler predecessors, GBST and GAST, by comparing their respective performances and
effectiveness in various applications.

Architecture Setup. GBST, a simplified version of GSST, differs slightly in the fusion of the base
model and side network compared to GSST. In contrast to the layer-wise fusion approach of GSST,
GBST keeps the base model and side network independent until the final output, where they are
fused. Similarly, as a simplified version of GMST, GAST differs from GMST only in the side-
network fusion phase; however, the fusion of the backup and pre-trained models follows the same
layer-by-layer fusion paradigm exactly.

However, such straightforward architectures do not yield satisfactory performance in arbitrary graph
transfer learning. This deficiency arises because, without a layer-wise connection between the side
network and the base network, the side network loses crucial layer-specific information during the
training process. Graph convolution operates uniquely at each layer, contributing to distinct infor-
mation aggregation functions in the forward propagation of the graph network. The side network,
represented by an MLP, needs to learn these layer-specific information aggregation functions inde-
pendently, as it lacks the structured graph convolution inherent in the original graph. This is essential
for achieving a comparable generalization ability in addressing graph-related problems.

While these two simple Graph Side-tuning modules may not effectively address our problem, they
have provided valuable insights that guided the formulation of our final architectures. Following the
same task scenario outlined in the main text, we extended our experiments to include GBST and
GAST across four levels of difficulty: easy, medium, difficult, and extension. The results, along
with those of other methods, are presented in the subsequent tables. Furthermore, we evaluated the
results of GBST and GAST collectively in all supplementary experiments presented in Appendix.

Results. As evident from Tables[8] [0} [T0} the simplified version of Graph Side-tuning performs less
effectively than the final version across tasks of varying difficulty levels—easy, medium, and hard.
Specifically, on hard tasks, the results of the GBST and GAST could not even be compared to the
adapter and fine-tuning methods, exhibiting negative improvement.

Table 8: Results of Graph2Graph Transfer in the consideration of GBST and GAST. : Test
ROC-AUC (%) performances on molecular prediction benchmarks with different workflows.

Pre-train | Tuning
Methods |Methods
FT |74.6:22 68.6:23 69.8:2.2 78.5:1.2 59.6+0.7 74.4+0.5 73.7+27 62.9+04 |70.3| -
MetaGP |72.5<1.1 66.9+1.4 67.7=25 77.3+2.2 59.0=1.8 72.5+1.4 74.4+30 62.2+04 |69.1|-1.2%
MetaFP |75.3+3.6 66.4+2.1 70.3x1.2 75.6+1.3 59.2+3.3 74.4+0.2 74.8+2.8 63.0:2.3|69.9(-0.4%
Adapter [76.1:2.2 67.8+1.4 72.0:3.8 77.8+1.3 59.6+1.3 74.920.9 75.0<2.1 63.1+0.4 |70.7| 0.4%
GBST [73.2:0.7 65.120.4 64.7+0.1 70.0-0.5 60.6+0.2 70.7+0.1 74.820.3 61.4+0.1 |67.6|-2.7%
GSST [79.320.2 69.5+1.0 71.1:0.4 72.8+0.9 60.6+0.1 72.1+0.1 78.0+0.7 62.9+0.1 |70.9|0.6%

FT  [74.7+1.0 65.5+1.0 53.8+2.3 74.6+12 58.1+0.6 71.9+0.4 71.0+19 61.3204 [66.3| —
MetaGP |72.2+3.1 59.8+1.8 49.6+25 69.6+1.3 57.7=2.0 70.7=1.7 71.2+2.1 61.6+2.4 |64.3|-2.0%
MetaFP |74.0-23 62.2+2.1 52.3+3.0 70.322.6 58.2+3.5 71.9<1.8 72.8+2.7 61.1+1.9 |65.4|-0.9%
Adapter [74.9+1.7 64.6+1.3 53.9:2.0 72.321.2 57.2:09 71.4:0.6 71.8+1.4 61.320.6 |65.9|-0.4%

GBST [65.6:2.1 64.1+1.3 53.1:0.7 69.2+0.4 57.7+0.5 70.8+0.1 72.1+2.4 60.6+0.2 |64.3|-2.0%
GSST [73.0:0.6 65.4:02 57.2:03 69.10.1 57.920.2 72.320.3 74.4:05 61.6:0.1 |66.4|0.1%

BACE BBBP ClinTox HIV SIDER Tox21 MUYV ToxCast|Avg.| Imp.

GraphCL

SimGRACE

Nevertheless, GBST and GAST retain their competitiveness in the point cloud transfer task accord-
ing to Table[T1] This observation underscores the distinction between the point cloud classification
task, belonging to the category of graph-like data, and other graph tasks. Even when the network
struggles to efficiently learn an effective aggregation paradigm in a general way, its impact on the
final result is minimal. As a side note, this highlights the ongoing potential for exploration in the
realm of transfer learning from the graph domains to graph-like domains.

17



Published as a conference paper at ICLR 2025

Table 9: Results of Node2Node Transfer in the consideration of GBST and GAST. Test Acc.
(%) on diverse node-classification benchmarks with different tuning methods under node-level data
pre-training with error bars.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods | Methods | GCN  GAT GIN | GCN GAT GIN | GCN GAT GIN | GCN GAT GIN | GCN GAT GIN
— Scratch Train|64.3=1.1 69.2+1.3 55.1£0.9|75.7+1.1 75.11.4 65.8+0.8{76.9+1.0 77.0+1.0 72.1+0.7{92.4+1.3 92.3+1.2 91.9+0.8|53.1+1.3 53.0+1.3 53.2+0.9
FT 56.6+1.6 56.8+2.0 52.8+1.7{69.9+1.4 70.2+1.5 67.3+1.2|74.4+1.3 73.3+1.8 62.4+1.1(92.2+2.3 92.0+2.5 91.0+1.9|53.3+1.8 52.9+2.2 53.9+1.9
MetaFP  |53.5+2.7 55.2+2.5 54.5+2.0|165.4+1.5 68.1+2.4 65.2+1.8/65.4+1.9 67.1+2.0 60.8+1.4|86.7+2.0 87.3+.7 82.4+1.1|45.5+1.3 45.5+1.6 44.4+1.3
Adapter - - 552420 - - 654+17 - - 624+19 - - 85.3:2.6 - - 502426
GraphCL GBST 56.1+2.2 53.5+2.7 54.4+2.0(70.9+2.3 68.8+1.9 68.6+2.0{60.4+2.2 59.6+2.2 57.1+1.7|88.8+2.1 87.8+2.3 85.3+1.4|49.7£2.5 45.7+2.6 49.7+2.2
GSST  |54.0+2.0 55.8+2.0 56.4£1.5/69.8+1.6 71.8+2.3 69.1+1.8|63 1 64.0+2.2 59. .9+3.0 84.8+2.7 85.1+2.2149.7+2.3 44.3+2.5 49.5+2.5
GAST 59.7+2.6 61.3+2.7 54.4+2.1171.142.4 71.1+2.2 69.9+2.4{69.6+1.9 70.3+2.4 57.3+1.7|89.2+2.4 88.8+2.8 86.6+2.4|49.7+2.2 47.2+2.7 49.5+2.0
GMST  |59.3+1.5 63.4+1.9 58.8+1.2(72.1+2.0 75.0£1.7 72.6+1.4|73.1+:2.0 72.3+2.2 65.4+2.1|/89.4+1.7 90.2+1.8 86.2+1.2(51.9+2.2 47.7+2.4 49.9+2.1
FT 58.9+1.2 57.6+1.1 45.5+0.7|71.3+1.9 71.7+2.2 64.1+1.3|72.9+1.4 71.2+2.0 64.4+1.0{92.4+2.3 92.3+2.7 91.3+2.3|53.6+2.5 50.8+2.5 53.8+2.1
MetaFP  |54.2+3.0 55.3+3.3 46.6+2.9{67.2+2.5 68.5+2.7 65.7+2.1|166.3+2.5 63.4+2.8 60.2+2.4(83.5+2.3 85.4+2.8 80.5+1.7|47.7+2.4 43.6+2.4 48.8+2.3
Adapter - - 484+17 - - 632:24 - - 61.8+22 - - 80.2+1.9 - - 51.2#27
SimGRACE GBST 53.0+2.3 48.8+2.5 47.2+1.9 369.4+2.7 64.8+2.2/162.3+1.9 59.6+2.5 51.9+1.5 2.2 88.6+1.9 85.7+1.5(49.1+2.3 45.8+2.5 49.7+1.8
GSST  [52.0+1.9 52.142.2 49.5+1.8 . .567.3:1.964.6+1.9 59.3+2.7 53.942.3 4.87.9+2.7 80.3+1.5(48.9+2.3 45.242.5 49.7+1.8
GAST 54.3+2.4 51.3+2.7 47.8+2.0{69.9+1.9 71.8+2.4 63.8+2.0{63.6+2.6 63.6+3.0 51.2+2.2|188.9+3.0 89.4+3.3 85.5+2.7|49.2+3.2 46.7+3.5 49.7+3.0
GMST  |61.6+2.1 63.4+2.4 58.9+2.0(73.2+1.7 75.8+2.3 72.7+1.5|75.122.1 72.2+2.4 66.7+1.7|90.9+2.5 90.5+3.0 84.2+2.1(50.6+2.8 47.7+3.2 51.2+2.7

Table 10: Results of Graph2Node Transfer in the consideration of GBST and GAST. Test Acc.
(%) on diverse node-classification benchmarks with different tuning methods under graph-level data
pre-training with error bars.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods Methods GCN GAT GIN GCN GAT GIN GCN GAT GIN GCN GAT GIN GCN GAT GIN
— Scratch Train|64.3+1.1 69.2+1.3 55.1+0.9|75.7+1.1 75.1+1.4 65.8+0.8(76.9+1.0 77.0+1.0 72.1+0.7(92.4+1.3 92.3+1.2 91.9+0.8|53.1+1.3 53.0+1.3 53.2+0.9
FT 52.6+2.6 49.9+2.8 46.9+2.1/68.6+2.0 68.0+2.1 63.5+2.3169.2+2.5 60.9+2.5 63.1+1.8/91.8+2.4 89.1+2.7 90.4+1.8(52.3+2.7 49.9+2.7 52.4+2.5
MetaFP  |50.4+2.0 49.8+2.3 45.5+2.3/165.9+2.5 66.3+2.8 60.4+2.1(64.3+2.4 61.0+2.6 60.3+2.0|85.5+2.8 86.1+3.1 80.4+2.5(48.4+2.5 44.8+3.1 42.6:2.5
Adapter - - 46.1+2.2 - - 59.4+2.5 - - 57.8+2.4 - - 82.8+2.3 - - 48.7+2.0
GraphCL GBST  |49.0:2.1 48.4+2.4 50.9+1.7|64.4+2.0 62.4+1.8 67.1+2.151.6+2.7 50.0+2.8 55.0+2.5|87.0+2.7 85.6+2.3 84.8+2.1|48.2+2.2 45.7+3.0 48.0+2.5
GSST 48.7+2.4 49.9+2.6 50.2+2.4164.6+2.3 64.4+2.3 65.8+1.9152.2+2.6 51.3+2.8 56.0+2.4|83. 5 80.8+3.2 80.2+2.1(48.2+2.5 44.5+2.4 47.6+2.5
GAST  |48.4+2.2 50.5+2.5 50.1+2.0{68.8+2.4 64.9+2.4 68.8+2.3|58.9+2.5 52.1+3.0 55.5+2.6|88.4+2.9 87.5+3.0 84.7+2.7|50.3+2.4 46.1+2.2 47.4+2.4
GMST  (61.9+2.7 62.4+2.7 57.9+2.4|73.1+2.5 73.7+2.8 73.9+2.1|74.8+1.9 72.3:2.6 66.5+1.5(88.6+2.4 89.8+2.8 85.5+2.6|51.3+2.4 47.3+2.4 49.5+2.1
FT 53.7+1.8 53.0+2.5 43.3+1.7/59.3+2.0 68.1+2.2 61.8+2.1{65.0+2.3 64.3+2.5 57.7+2.0{92.3+2.8 89.5+3.3 90.9+2.5|52.4+2.5 48.1+2.8 53.5+2.3
MetaFP  |51.3+2.6 52.3+2.8 44.1+1.9|56.4+2.4 61.4+2.2 56.3+2.0{61.1+1.8 64.5+2.1 56.8+2.2|85.2+2.7 86.5+2.9 81.8+2.1|46.6+2.6 47.0+2.6 44.4:2.0
Adapter - - 454423 - - 56.6+2.1 - - - - 46.3+2.7
SimGRACE| GBST  |48.5:+2.3 46.02.5 50.2+2.7 3153.3+2.7 49.9+2.7 49.6+1.9|85.1+2.5 86.2+2.8 83.9+2.1(48.0+2.8 46.0+2.8 47.2:2.4
GSST 49.9+2.4 45.4+2.6 51.9+1. 81.0+2.5 81.7+2.7 77.4+2.4|47.8+2.5 44.9+2.3 48.9+2.3
GAST  |48.2+2.4 45.1+3.0 48.0+2.2|61.6+2.8 65.8+2.8 66.2+2.1 89.3+3.1 89.1+3.4 85.4+2.5/48.7+2.3 46.7+3.1 49.0+2.4
GMST  [63.0+2.8 62.2+3.3 58.5+2.8|72.7+2.3 74.8+2.4 73.3+1.8|74.3+2.4 71.1+2.8 65.2+2.5|89.7+2.2 89.5+3.1 85.3+2.0(50.2+2.2 47.3+2.8 51.6+2.1

Table 11: Results of Graph2PtCld Transfer. We configure pre-trained models on graph-level and
node-level data across distinct types of graph layers as the initialization for backbone.

Pre-train Tuning Graph-level: Node-level:
Methods | Methods ogbg-molhiv ogbn-arxiv
Backbones GCN GAT GIN GCN GAT GIN
— Seratch |77 4118 816511 87.961.0 | 774521 81615 879513
Train
FT 78.1+1.7 74.9+2.1 83.9+1.1|73.4+3.0 75.4+2.4 87.33.1
MetaFP | 73.1+3.6 70.3+2.4 78.8+1.6 [ 70.2+2.5 71.9+2.8 74.1+2.0
Adapter - - 80.9+2.2 - - 75.9+2.8
GraphCL GBST |76.6+1.9 79.2+2.6 83.5+1.8|73.843.4 74.6+3.7 86.0+2.4
GAST | 79.3+1.6 78.2+2.0 82.9+2.4|76.4+3.5 72.1+29 83.8+2.5
GSST | 81.7+2.9 78.6+3.7 84.7+2.8|70.4+3.1 74.0+2.7 80.4+3.8
GMST | 77.8+2.6 74.8+3.5 82.5+2.4|75.6+3.4 74.5+2.7 80.8+2.7
FT 78.6+1.5 70.9+1.8 77.3+1.7 [ 72.8+2.0 78.0+2.3 79.7+1.9
MetaFP | 71.7+1.2 66.9+22 76.5+1.5|69.8+2.3 71.0+1.7 74.4+2.0
Adapter - - 76.9+3.2 - - 73.8+2.9
SimGRACE | GBST |75.7+2.8 77.4+25 7541772139 76.8+3.0 79.3+2.7
GAST |[76.9+24 743+2.6 T74.1+1.5|73.3+2.8 77.5+3.1 79.3+2.6
GSST | 79.3+4.2 81.8+3.7 77.3+2.3|71.8+3.8 69.2+2.8 63.9+2.0
GMST | 65.2+2.7 65.1+3.1 76.4+2.7 | 78.1+3.6 78.1+3.0 78.7+3.2

A.3 ADDITIONAL ABLATION STUDIES

To validate the robustness of our method, we conducted additional ablation experiments in two key

areas:

* Influence of Source Dataset. Confirming the algorithm’s ability to achieve comparable perfor-
mance on pre-trained models trained on different datasets.

18



Published as a conference paper at ICLR 2025

* Influence of GNN Architecture. Verifying that the algorithm can maintain stable prediction
performance across backbone architectures with varying numbers of layers.

¢ Influence of Pre-training Methods. Proving that our framework can flexibly adopt different
graph-level pre-training methods and maintain stable prediction performance during tuning stage.

* Influence of Side Network Structure. Justifying the use of MLP as a side network for both the
GSST GMST tuning algorithm.

Table 12: Ablation Study: Node2Node Transfer Results for Model Pre-trained on Flickr. Test
Acc. (%) on diverse node-classification benchmarks with different tuning methods under node-level

data pre-training.

Pre-train Tuning Citeseer PubMed Cora Amazon ogbn-arxiv
Methods Methods |GCN GAT GIN [GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN |[GCN GAT GIN
— Scratch Train |64.30 69.21 55.10{75.70 75.10 65.80(76.90 77.00 72.10|92.37 92.33 91.89|61.36 63.63 64.37
FT 61.20 50.90 52.30{72.00 61.60 60.50|72.20 64.10 65.50|91.78 88.00 90.84[59.65 61.08 58.78
GBST  |53.30 45.80 46.70|67.00 64.60 65.50{57.00 54.30 52.20|88.62 85.61 86.30|35.46 31.12 30.52
GraphCL GSST 54.40 47.50 48.10{66.30 64.10 60.00(63.40 50.90 53.70|88.19 81.86 82.99(31.16 26.94 25.06
GAST  [54.10 55.30 46.40|67.60 64.00 63.30|61.40 60.00 50.00(87.93 88.77 86.15|38.95 43.46 31.38
GMST  [59.60 62.80 56.30|72.90 75.40 72.20|74.70 70.40 64.40|89.51 88.95 89.86|35.27 35.46 41.85
FT 57.90 52.40 50.10{70.00 67.10 62.00|71.60 65.90 65.40{91.60 90.11 91.20{60.71 61.92 60.67
GBST  |50.30 46.50 49.2 |67.40 62.90 63.90(56.90 52.00 54.10|88.40 85.42 85.50|39.67 28.69 38.75
SimGRACE GSST 53.50 46.70 50.90{64.60 60.70 58.30|58.00 52.40 52.30|88.55 81.02 83.46(35.41 25.16 37.12
GAST  [53.70 53.20 50.40|68.40 65.50 66.20|64.00 62.40 54.00{88.00 88.51 85.53|40.55 45.79 30.64
GMST  [60.20 63.50 57.20|70.30 75.60 71.30{73.70 70.30 64.50|89.99 89.88 86.59|34.97 44.35 34.35

Table 13: Ablation Study: Graph2Node Transfer Results for Model Pre-trained on MUYV. Test
Acc. (%) on diverse node-classification benchmarks with different tuning methods under graph-level

data pre-training.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods Methods |GCN GAT GIN [GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN |GCN GAT GIN
— Scratch Train |64.30 69.21 55.10{75.70 75.10 65.80(76.90 77.00 72.10|92.37 92.33 91.89(53.07 52.97 53.15
FT 54.60 46.00 53.90(65.10 68.70 68.70(69.50 72.10 68.40|91.78 91.31 90.91{52.99 49.35 53.23
GBST  [51.00 57.70 50.30|63.10 64.60 66.30(52.20 49.90 53.10(87.35 86.11 84.26(46.28 45.78 48.72
GraphCL GSST 49.00 46.50 50.20{57.20 63.70 66.80(53.20 49.80 54.70|84.30 82.19 79.93|45.50 44.94 48.44
GAST  [48.10 50.90 50.10(66.30 66.40 68.00{56.10 60.20 54.20{87.93 88.80 83.93|50.10 46.02 49.63
GMST  [59.10 60.60 55.20{71.30 72.50 71.80|74.20 72.50 69.90|90.48 90.55 88.01|51.41 48.60 51.42
FT 52.40 52.60 48.00{69.30 66.90 61.30{69.10 65.80 63.70(91.60 90.19 90.40|53.06 49.62 53.26
GBST  |45.70 46.50 45.40|67.00 66.70 61.80{49.50 48.40 46.00(85.71 85.50 83.90|46.19 45.54 45.84
SimGRACE GSST 46.60 43.80 44.10{64.00 63.80 62.80(53.10 50.90 45.80|81.90 80.48 75.50(45.54 44.09 45.54
GAST  |44.60 50.80 47.90(68.60 68.00 60.80(52.70 59.00 48.80|88.11 89.24 84.62|49.70 47.36 47.04
GMST  [58.20 56.40 57.90|72.70 74.00 70.60|74.00 72.70 66.10(90.44 90.02 85.90|51.42 46.15 52.80

A.3.1 THE EFFECT OF DIFFERENT PRE-TRAINING DATA ON THE ARBITRARY GRAPH

TRANSFER

To assess the impact of different pre-training datasets on the final transfer performance of our
proposed method, we conducted new experiments in two task scenarios: medium and hard. For
Node2Node Transfer, we chose Flickr as the pre-training dataset and utilized all other graph clas-
sification datasets as downstream tasks to evaluate transfer learning performance. Conversely, for
Graph2Node transfer, we opted for the MUYV dataset as the training data and selected the same graph
classification datasets as those applied in the main text as downstream tasks for transfer learning.
The rest of the experimental setup is consistent with the main text.

The results of the experiments are presented in Table where our method performs well on the
first 4 test datasets in a moderately difficult task but exhibits poor performance on the ogbn-arxiv
transfer. It is noteworthy that both the number of nodes and the number of edges in the Flickr dataset
are only about half of those in ogbn-arxiv. This suggests that the transfer of downstream tasks
can face challenges when the knowledge from the source domain is not sufficiently rich because
the absence of knowledge in the source domain can lead to pre-trained models being unable to
achieve sufficiently generalized performance. This phenomenon aligns with the pre-train-tuning
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paradigm. Examining the remaining results in the table, it is evident that our method maintains
stable performance. The algorithm effectively carries out downstream task transfer learning on a
well-pre-trained model.

A.3.2 THE EFFECT OF DIFFERENT BACKBONE LAYERS ON THE ARBITRARY GRAPH
TRANSFER

To investigate the impact of different numbers of backbone layers on the performance of the GSST
and GMST methods, we configured the number of layers of the backbone to 5, the maximum cur-
rently used in stacked graph neural networks. Subsequently, we trained and tested these configura-
tions on medium and difficult task scenarios, utilizing the same pre-trained models and downstream
tasks as detailed in the main text. The results obtained are recorded in Tables

Table 14: Ablation Study: Node2Node Transfer Results with 5-layers Backbone. Test Acc.
(%) on diverse node-classification benchmarks with different tuning methods under node-level data

pre-training.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods Methods |GCN GAT GIN [GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN |GCN GAT GIN
— Scratch Train |63.20 65.80 58.20{73.50 74.50 70.90(76.00 77.40 69.80(|91.97 91.75 91.13|55.76 54.02 54.89
FT 62.10 65.30 48.70{70.30 70.80 66.00|75.40 74.80 68.80|91.56 90.62 90.19{55.23 55.77 53.56
GBST  |52.30 58.70 47.30|68.10 69.30 66.40(64.30 61.20 50.90|87.97 87.13 84.41|48.52 48.53 48.67
GraphCL GSST 49.30 55.00 46.70{70.50 71.80 68.10|66.00 67.30 51.60|87.42 84.59 73.79{49.72 48.33 48.83
GAST  [54.00 54.40 50.20|70.10 69.70 68.80|64.80 66.20 52.90(88.08 87.53 84.73|48.67 49.75 48.80
GMST  [62.50 64.40 50.50{73.80 72.90 71.60|71.00 72.00 69.10|88.46 89.90 86.41|51.44 49.96 50.97
FT 57.50 56.20 47.30{71.40 73.80 66.30|74.00 70.60 58.30(91.38 91.42 89.68|54.87 55.22 54.46
GBST  |52.90 52.80 50.50|66.50 67.30 61.90(52.80 60.50 49.60|87.64 88.55 83.86|48.21 47.11 48.65
SimGRACE GSST 45.30 47.70 40.20{65.90 65.70 65.60|53.90 58.50 36.20|87.46 86.80 80.74|48.41 47.87 49.73
GAST  |55.80 56.40 49.80(68.60 67.50 65.30(58.20 59.20 49.50|88.08 88.33 85.06|48.76 48.61 49.55
GMST  [56.40 57.2 50.30|70.50 73.80 66.90{69.20 69.80 53.60|88.74 86.01 87.90|50.88 49.75 50.78

Table 15: Ablation Study: Graph2Node Transfer Results with 5-layers Backbone. Test Acc.
(%) on diverse node-classification benchmarks with different tuning methods under graph-level data

pre-training.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods Methods |GCN GAT GIN [GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN |[GCN GAT GIN
— Scratch Train|63.20 65.80 58.20(74.80 76.00 68.70|76.00 77.40 69.80|91.97 91.75 91.13|55.76 54.02 54.89
FT 53.10 51.70 50.80{68.10 68.80 68.30|70.40 70.70 63.50(90.28 90.22 89.53|51.52 52.88 50.29
GBST  |51.30 51.10 47.20|69.60 65.60 63.50{52.20 55.20 56.70|85.35 84.88 84.95|48.23 47.44 48.99
GraphCL GSST 41.80 42.70 39.70{63.20 57.20 66.30|46.20 54.10 48.00|81.86 75.91 82.92{49.78 47.96 49.83
GAST  |51.00 54.00 50.00{69.80 70.40 66.50|55.90 64.20 57.80|86.99 85.37 84.70|49.98 49.28 49.80
GMST  [58.60 58.40 56.80|71.20 74.70 69.60{70.90 72.40 60.90|89.70 89.78 88.92|51.19 49.29 50.25
FT 54.40 55.10 49.50{66.00 69.30 65.80(68.90 66.80 62.30|90.60 90.42 90.37(50.67 51.45 51.22
GBST  |46.06 48.10 51.00{63.90 64.10 63.40(51.10 47.90 51.70|85.64 85.97 85.21|47.43 46.28 48.56
SimGRACE GSST 32.90 39.80 41.20(63.10 62.70 56.80|43.40 37.60 38.80|81.42 72.66 80.56|49.76 47.21 48.53
GAST  [48.60 49.50 50.20|63.30 67.30 64.70|51.40 48.50 48.20{86.30 84.44 84.44|47.98 48.33 49.80
GMST  [55.50 55.40 50.50|69.00 74.20 67.00|70.70 70.40 66.40|89.53 88.62 88.28|50.49 48.89 50.00

The experimental results in Tables demonstrate that even with the backbone layers set to 5,
our GMST algorithm consistently achieves impressive performance across various task scenarios,
pre-training methods, and graph convolution layers. This underscores the stability of our algorithm.

In summary, our method exhibits robustness across various transfer scenarios and experimental se-
tups.

A.3.3 ADAPTATION OF THE PRE-TRAINING STAGE TO DIFFERENT GRAPH-LEVEL
PRE-TRAINING METHODS

As described in the main paper, our GraphBridge framework is capable of adapting various graph-
level pre-training methods to pre-train our base model in Pre-training Stage. Consequently, we also
evaluated the the transfer performance following pre-training with the GCC(Qiu et al., |2020) and
GPT-GNN(Hu et al.,[2020b)) methods.
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The GCC(Qiu et al., [2020) framework is a graph-level pre-training methods which learns structural
representations across graphs by leveraging the idea of contrastive learning to design the graph pre-
training task as instance discrimination. Its basic idea is to sample instances from input graphs,
treat each of them as a distinct class of its own, and learn to encode and discriminate between
these instances. Similar to GraphCL and SimGRACE, GCC employs graph-level GNN pre-training
schemes based on contrastive learning strategies. In our experiments, we do not utilize the end-
to-end fine-tuning setup proposed in GCC’s paper. Instead, we focus solely on the pre-training
component of GCC to obtain our base models for our arbitrary transfer learning.

On the other hand, GPT-GNN(Hu et al.| [2020b)) is a generative pre-training framework for graph
neural networks based on the self-supervised attributed graph generation task proposed by the au-
thor, with which both the structure and attributes of the graph are modeled. In attributed graph
generation task, the graph generation objective has been decomposed into two components: At-
tribute Generation and Edge Generation, whose joint optimization is equivalent to maximizing the
probability likelihood of the whole attributed graph. In doing this, the pre-trained model can capture
the general knowledge of the graphs. Here, we only utilize the GPT-GNN pre-training stage as well
to obtain our base models.

Table 16: Ablation Study: Node2Node Transfer Results with the Base Model Pre-trained by
Different Graph-level Pre-training Methods. Test Acc. (%) on diverse node-classification bench-
marks with different tuning methods under graph-level data pre-training.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr
Methods | Methods |GCN GAT GIN |[GCN GAT GIN |[GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN
—_ Scratch Train|64.30 69.20 55.10(75.70 75.10 65.80|76.90 77.00 72.10(92.37 92.33 91.89|53.07 52.97 53.15
FT 58.10 56.40 46.80(70.80 70.70 65.20(72.90 71.40 61.60(91.44 92.68 90.87|52.79 50.61 53.24
GCC GSST 50.40 51.00 50.10{66.70 69.30 67.80(63.20 60.10 54.70|87.56 87.23 81.77|48.15 43.56 49.21
GMST [61.90 62.80 58.60|73.10 75.40 71.50|73.50 71.20 67.29|90.37 90.10 83.87|50.22 45.62 51.46
FT 54.20 51.30 42.40(67.60 65.20 62.40(70.90 69.40 62.10(91.42 92.12 90.22|52.77 50.41 52.89
GPT-GNN GSST 48.70 50.10 43.10{64.40 66.70 63.70|61.70 57.40 51.80(85.78 83.23 77.42(44.98 45.12 47.42
GMST  [56.10 56.20 54.70|70.10 70.80 68.50|74.70 71.00 63.20|87.84 88.13 82.56|47.33 47.18 50.03

Table 17: Ablation Study: Graph2Node Transfer Results with the Base Model Pre-trained
Test Acc. (%) on diverse node-classification

by Different Graph-level Pre-training Methods.
benchmarks with different tuning methods under graph-level data pre-training.

Pre-train | Tuning Citeseer PubMed Cora Amazon Flickr
Methods | Methods |GCN GAT GIN [GCN GAT GIN [GCN GAT GIN |[GCN GAT GIN |GCN GAT GIN
— Scratch Train|64.20 69.20 55.10(75.70 75.10 65.80|76.90 77.00 72.10(92.37 92.33 91.89|53.07 52.97 53.15
FT 57.70 56.10 47.10{69.70 70.30 64.70|71.80 71.70 60.70(90.21 91.23 90.14|51.46 50.21 52.19
GCC GSST 51.60 52.10 50.70{65.20 69.50 67.10(61.90 60.40 54.70(86.11 85.67 80.25|46.35 42.78 47.96
GMST  [61.40 61.90 56.60|71.30 74.20 70.50|72.60 71.00 65.20|90.35 91.24 83.76|50.53 46.82 51.32
FT 54.10 50.60 42.10{67.30 68.70 62.10{70.40 70.20 62.00{89.12 90.13 90.47|51.46 50.20 51.77
GPT-GNN GSST 47.20 50.70 44.30{64.00 66.00 64.30({63.80 57.00 51.30(86.75 85.83 80.11(44.93 44.40 46.32
GMST  [56.20 57.80 55.90|70.20 71.80 69.70|72.10 71.20 63.70|89.88 90.63 82.66|48.22 47.21 50.07

The supplemental experiments were conducted on the medium and difficult task scenarios as well,
with all other settings for the parameters consistent with those in the main paper experiment. The
results of the experiment are presented in Tables [[6]and [17]

According to the results presented in the Tables[I6]and[T7] our framework still has the ability to per-
form arbitrary end-to-end graph transfer learning effectively using different graph-level pre-training
methods in the Pre-training Stage. Although different pre-training strategies influence the absolute
transfer learning performance, our proposed GMST structure consistently achieves superior perfor-
mance on most downstream tasks and backbones, aligning with the results reported in the main
paper’s experiments.

In summary, the results of the ablation experiments displayed in this section demonstrate the flex-
ibility and adaptability of the GraphBridge framework during both the pre-training and fine-tuning
stages, highlighting its practical value.
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A.3.4 THE EFFECT OF DIFFERENT SIDE NETWORK STRUCTURES ON THE TUNING RESULTS

To investigate the impact of side network structures on arbitrary graph transfer, we conducted ad-
ditional experiments with GMST fine-tuning. Specifically, we used each GNN backbone’s corre-
sponding lightweight structure as the side network (consistent with the implementation of Sung
et al.| (2022a)) to conduct the GMST across different datasets and compared the results with those
obtained using an MLP as the side network. These experiments were carried out under the Middle
and Hard task scenarios, and the results are presented in Table [[§]and Table[T9] respectively.

Table 18: Ablation Study: Node2Node Transfer Results with Different Side Network Struc-
tures using GMST Tuning Algorithm. Test Acc. (%) on diverse node-classification benchmarks

with different tuning methods under graph-level data pre-training.

Pre-train

Methods

Tuning
Methods

Citeseer
GCN GAT GIN

PubMed
GCN GAT GIN

Cora
GCN GAT GIN

Amazon
GCN GAT GIN

Flickr
GCN GAT GIN

GraphCL

GNN-Side
MLP-Side

60.10 63.20 60.50
59.30 63.40 58.80

71.80 74.70 72.60
72.10 75.00 72.60

73.50 71.70 65.80
73.10 72.30 65.40

89.88 89.93 86.72
89.42 90.19 86.15

51.99 47.56 50.37
51.92 47.70 49.94

SimGRACE

GNN-Side

MLP-Side

61.90 64.00 60.00
61.60 63.40 58.90

73.00 75.60 72.70
73.20 75.80 72.70

74.90 72.00 66.90
75.10 72.20 66.70

90.78 90.32 84.85
90.88 90.53 84.19

50.67 47.57 52.08
50.56 47.71 51.16

Table 19: Ablation Study: Graph2Node Transfer Results with Different Side Network Struc-
tures using GMST Tuning Algorithm. Test Acc. (%) on diverse node-classification benchmarks

with different tuning methods under graph-level data pre-training.

Pre-train

Methods

Tuning

Methods

Citeseer
GCN GAT GIN

PubMed
GCN GAT GIN

Cora

GCN GAT GIN

Amazon
GCN GAT GIN

Flickr
GCN GAT GIN

GraphCL

GNN-Side
MLP-Side

62.10 62.40 58.50
61.90 62.40 57.90

73.00 73.50 74.20
73.10 73.70 73.90

74.50 72.50 66.90
74.80 72.30 66.50

88.75 89.93 85.76
88.62 89.79 85.50

51.42 47.12 49.84
51.30 47.34 49.54

SimGRACE

GNN-Side
MLP-Side

63.30 62.50 58.80
63.00 62.20 58.50

72.40 74.80 73.90
72.70 74.80 73.30

74.60 71.00 65.90
74.30 71.10 65.20

89.54 89.68 85.76
89.67 89.46 85.26

50.57 47.12 51.92
50.24 47.29 51.57

The experimental results demonstrate that employing the corresponding lightweight GNN as the
side network does not yield significant performance improvements for GMST tuning in either the
Middle or Hard task scenarios. Furthermore, based on the comparative analysis of training effi-
ciency between GNN and MLP in [Sung et al.| (2022a)) and Han et al.| (2022), using an MLP as the
side network ensures that computational overhead increases linearly with data scale, thereby main-
taining the efficiency of our GMST algorithm. In conclusion, our innovative use of an MLP as the
side network for pre-trained GNNs significantly enhances fine-tuning efficiency while preserving
performance in arbitrary graph domain transfer, which is a successful attempt.

A.4 SUPPLEMENTARY TRANSFER SCENARIOS

To further refine our task setup and comprehensively validate the generalization of the framework,
we conducted additional transfer experiments on scenarios with the same level of difficulty as the
Graph2Node task, including Node2Graph and Graph2Edge scenarios.

® Node2Graph. Transfer learning from node classification tasks to graph classification tasks within
unrelated knowledge domains.

* Graph2Edge. Transfer learning from graph classification tasks to edge prediction tasks within
unrelated knowledge domains.

A.4.1 NODE2GRAPH TRANSFER TASK

In the Node2Graph transfer scenario, we adapted the settings from the Graph2Node setup: during
pre-training, we used the node-level ogbn-arxiv dataset to pre-train the model, while employing
the graph-level downstream datasets used in the Graph2Graph tasks for fine-tuning. Moreover, we
applied the same setup as in the Graph2Node scenario: The performance of GraphBridge was eval-
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vated using a GIN backbone pre-trained with both the GraphCL and SimGRACE methods against
fine-tuning, MetaFP and AdapterGNN. The experimental results are presented in Figure

The experimental results of Node2Graph transfer show that our proposed GMST method dominates
in this domain gap-obvious condition, both compared to the normal fine-tuning method and to the
previous efficient tuning methods. Therefore, the additional experiments further reinforced the rules
we previously established.

Table 20: Results of Node2Graph Supplementary Transfer Scenario. : Test ROC-AUC (%)
performances on molecular prediction benchmarks with different workflows.

;:t;r:;: h}‘e‘:‘l:gﬁs BACE BBBP ClinTox HIV SIDER Tox2 MUV ToxCast|Avg.| Imp.
FT |72.3:1.767.1:25 68.2:27 75.4+24 58.9+19 72.3+15 73.0:34 61.7+14|68.7| -
MetaFP |70.2+1.6 63.4+19 66.4:22 71.6+14 57.2+18 7T1.4+13 70.5:26 59.3+17 |66.3|-2.4%
GraphCL | Adapter [70.6:2.1 64.0=1.4 65218 71.7+1.9 56.7+2.3 71.5+1.5 72.0:2.1 60.1:23 |66.5]-2.2%
GSST [76.3+1.1 69.3+13 71.2:09 69.9:2.4 60.7+1.1 71.7+14 77.4+17 62.9+1.7 |69.9|1.2%
GSMT [78.5:1270.2+18 71.2+1.4 72.0:09 60.9+1.1 71.1+13 78.3+07 61.9:2.0 [70.5| 1.8%
FT |73.7:1263.1:17 52418 72.1:22 59.1:23 69.5+13 69.2:14 60.8+15|65.0| -
MetaFP |71.2+23 60.0=19 50.1:23 69.1+18 56.6+2.5 68.9+15 69.1+19 59.2+23(63.3|-1.7%
SimGRACE| Adapter |71.9+1.7 60.6=1.8 50.9:22 70.3+1.7 55.2+1.9 69.41.6 70.4+24 59.3:20 [63.5]|-1.9%
GSST |73.5+1262.3+1.4 53.8+1.5 72.5+1.9 60.3:2.1 70.5:2.1 70.0:1.5 59.9+18 |65.4|0.6%
GSMT |73.0:06 63.8:2.1 55.2+13 70.6+1.1 61.9+22 72.0+22 72.8+15 61.1:2.1 [66.3| 1.3%

Table 21: Results of Graph2Edge Supplementary Transfer Scenario. : Test ROC-AUC (%)
performances on diverse edge prediction benchmarks with different workflows.

Pre-train Tuning Citeseer PubMed Cora Amazon Flickr

Methods Methods GCN GAT GIN GCN GAT GIN GCN GAT GIN GCN GAT GIN GCN GAT GIN
— Scratch Train|89.8+0.3 88.8+1.0 78.6+1.0(69.4+0.9 86.3+1.2 79.6+1.5(88.3+0.7 86.2+0.4 76.1+0.5(92.0+1.3 83.3+1.1 88.2+1.0|61.4+0.7 52.5+0.6 60.2+1.1
FT 71.6+0.3 71.1+0.5 72.9+0.1]65.9+0.5 74.5+0.7 74.6+1.5|66.8+0.4 68.9+0.7 65.9+0.7|81.2+1.4 72.0+1.1 82.4+1.5/64.2+1.2 53.4+1.6 64.5+1.0
MetaFP  [67.8+0.3 68.7+1.1 66.3+1.2{60.2+0.7 66.1+1.5 64.3+1.0{62.3+1.1 62.0£0.8 61.5£0.4|72.5+1.1 74.1+1.3 74.5+1.3|55.8+1.6 48.8+0.9 52.2+1.3
GraphCL Adapter - 68.3+1.0 - 65.8+1.2 - 59.7+0.9 - 77.6+1.4 - 55.4+1.1
GSST 68.6+0.4 75.2+0.4 72.2+0.5|58.6+0.7 77.1+0.2 74.1+0.7|74.5+0.7 74.6+1.5 64.9+0.6(80.2+1.3 80.0+1.6 82.2+1.3({60.4+1.0 51.2+1.6 61.7+1.2
GMST  |79.8+1.5 85.6+0.4 75.7+0.6/65.5+0.9 84.4+1.5 85.0+1.2|75.3+0.7 80.9+0.3 65.2+0.789.7+0.9 83.7+1.4 83.2+1.0{65.8+1.5 53.6+1.4 64.7+0.8
FT 72.4+0.7 70.7+0.7 71.3+1.1(64.8+0.5 73.4+1.3 72.8+0.3|70.8+0.7 71.3+0.5 62.6+0.4]80.1+1.0 75.0+0.3 81.2+0.7|61.7+1.1 52.5+1.2 61.7+1.6
MetaFP  |64.1+0.9 65.7+1.0 65.1+1.1|58.3+1.2 63.2+0.1 65.4+1.1{61.3+0.7 60.5+0.8 60.4+1.0{70.3+0.1 73.2+0.7 73.8+1.3|53.8+1.4 48.4+1.0 53.3+1.8
SimGRACE| Adapter - 61.31.3 - 65.00.8 - 60.8+1.0 - 74.6:0.9 - 53.2+1.1
GSST  |74.4+1.1 75.8+1.5 70.8+1.2(58.8+1.3 75.6+1.0 73.2+1.3|72.5+1.2 71.7+0.3 63.7+1.2|78.5+0.8 79.7+0.2 80.3+1.5(59.8+1.1 50.3+1.2 60.5+1.1
GMST  [75.2+1.1 80.6+1.5 74.7+0.7(65.0+1.7 80.8+1.5 81.7+1.3|74.4+0.6 77.9+1.6 65.2+0.9|85.4+0.6 80.2+1.1 82.0+1.3|163.3+1.4 52.5+1.5 62.0+1.1

A.4.2 GRAPH2EDGE TRANSFER TASK

For the Graph2Edge transfer scenario, we used the same datasets, pre-training methods, and GNN
backbones as in the Graph2Node setup. However, we reformulated the original node classification
downstream task into an edge prediction task by sampling edges with both positive and negative ex-
amples. As the edge prediction task is a binary classification problem, we evaluated the performance
using ROC-AUC scores. The results of this experiment are shown in Figure [21]

The results exhibited in Figure [21| indicate that our method achieves outstanding performance in
the Graph2Edge transfer task. On the CiteSeer, PubMed, and Cora datasets, GMST consistently
outperforms all fine-tuning methods, maintaining a clear competitive advantage. Moreover, our
GMST breakthrough outperforms the fine-tuning method on the Amazon and Flickr considering
Graph2Edge transfer.

In conclusion, by taking all the results from complementary scenarios into consideration, we find
that GraphBridge demonstrates reliable performance across a variety of cross-domain transfer tasks,
regardless of transfer task’s complexity. This confirms the robustness and generalization capabilities
of the GraphBridge framework, establishing it as an efficient and high-performing approach for
graph transfer learning.
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A.5 CONFUSION MATRIX VISUALIZATION OF GMST TUNING RESULTS

In order to display a clear visualization of the class-wise performance of the GMST method across
different datasets, we take the Hard Task Scenario as an example to plot the confusion matrices for
GMST results of various GNN backbones pre-trained with GraphCL on diverse node-classification
benchmarks.

The results demonstrate that on CiteSeer, PubMed, and Cora datasets where GMST performs well,
the predictions of the fine-tuned model are concentrated along the diagonal, indicating high accuracy
across all categories. In contrast, for the Flickr and Amazon datasets, the fine-tuned model tends to
predict test data as belonging to the category with the highest proportion in the training set, reflecting
the impact of label imbalance during fine-tuning. These findings highlight that category imbalance
in downstream task datasets can negatively influence the performance of the GMST algorithm.

Figure 5: Visualization Results of GMST Fine-tuning in Hard Task Scenario on Different
Datasets. The visualized confusion matrices of all fine-tuned GNN backbones across five down-

stream task datasets are displayed.
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Figure 6: Visualization Results of GMST Fine-tuning in Hard Task Scenario on Different
Datasets. (Cont’d)
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