
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCEMENT LEARNING WITH VERIFIABLE YET
NOISY REWARDS UNDER IMPERFECT VERIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) trains policies against
automated verifiers to avoid costly human labeling. To reduce vulnerability to
verifier hacking, many RLVR systems collapse rewards to binary {0, 1} during
training. This choice carries a cost: it introduces false negatives (rejecting correct
answers, FNs) and false positives (accepting incorrect ones, FPs). For instance,
a rule-based checker may mark the correct fraction 12

36 as wrong when compared
against the canonical 1

3 due to brittle parsing/equivalence rules (FN), while a large
language model (LLM) judges can be gamed by superficial cues or even a single
adversarial token, yielding inflated correctness for wrong solutions (FP). We for-
malize verifier unreliability by modeling the verifier as a stochastic reward channel
with asymmetric noise rates. From this abstraction, we derive two correction al-
gorithms for verifier errors. The first is a backward correction that de-biases the
observed binary reward to recover an unbiased estimator of the clean policy gradi-
ent. The second is a forward correction that reweights score-function terms so that
the expected update direction aligns with the clean gradient; notably, it requires
only the FN rate. We implement both as lightweight hooks in a group relative
policy optimization (GRPO)-based RLVR pipeline and evaluate them on math-
reasoning models and benchmarks. Across models and datasets, both corrections
improve over uncorrected training; the forward variant converges faster and re-
mains stable under heavier noise. Finally, we show a practical appeal mechanism
in which a lightweight LLM verifier estimates the FN rate online by rechecking
rule-based negatives, obtaining outperformance compared with other state-of-the-
art contenders.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) offers a scalable paradigm for improving
the reasoning abilities of Large Language Models (LLMs) by replacing expensive human annotation
with automated feedback (Wen et al., 2025). In this problem, a policy is trained using rewards from
a verifier that automatically checks the correctness of a model’s output (Shao et al., 2024b). The
efficacy of this approach, however, heavily depends on the verifier’s reliability. Emerging evidence
reveals that verifiers are systematically fallible in two critical and opposing ways: they can accept
incorrect solutions (false positives; FPs) or reject correct ones (false negatives; FNs) (Xu et al.,
2025; Zhao et al., 2025).

FPs have been widely documented as a vulnerability of LLM-based verifiers. Recent studies showed
that LLM judges can be swayed by superficial cues—e.g., popular specialized verifiers, such as GPT-
4o, give 35 % - 66.8% FP rate when the answer starts with Let’s solve this problem step by step (Zhao
et al., 2025; Shi et al., 2025; 2024a; Chen et al., 2024). Conversely, FNs are common with rule-based
verifiers. These checkers, while highly precise, are often brittle; they may reject valid solutions that
are formatted differently, expressed in an algebraically equivalent form, or embedded in explanatory
text (Hugging Face, 2025). A recent analysis of a math-RL dataset found that over 38% of responses
flagged as incorrect by a rule-based system were in fact correct, a gap that a lightweight LLM verifier
could partially close (Xu et al., 2025). Both FPs and FNs materially degrade RLVR training: FNs
deprive the agent of informative gradients and slow convergence, while FPs reward hackable patterns
and inflate returns during policy optimization (Xu et al., 2025; Huang et al., 2025; Yan et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AI Agent

Response:

Output: boxed{ 12
36

 }

Question:
 Two fair dice are rolled
once. What is the probability
that the sum is divisible by 3?

Backward/Forward
 Correction

Sample

Verifiers

Let’s solve it step by step
[details omitted] Pr = 12

36
.

Feedback:

Output:

Feedback:

Output:

False
Negative (FN) !

False
Positive (FP) !Response:

Output: boxed{ 11
36

 }

Let’s solve it step by step
[details omitted] Pr = 11

36
.

Focus: Ground truth
boxed { 1

3
 }.

Focus: “Let’s solve it step
by step” in the response.

FN 38%
[Xu et al., 2025]

FP 35% - 68%
[Zhao et al., 2025]

Figure 1: Verifier-noise flow in RLVR. An AI agent produces candidate solutions that are scored by
automated verifiers. While verifiers would yield false negatives (1236 vs. 1

3 , reaching 38% rates (Xu
et al., 2025)) and false positives (mislead by “Let’s solve it step by step...”, reaching 35% − 68%
rates (Zhao et al., 2025)), confusing the agent; applying our backward/forward corrections restores
correct learning signals.

Motivated by this asymmetry, we address these challenges by explicitly treating verifier errors as
noise in the reward signal. We model the verifier as a stochastic reward channel that corrupts the
true, latent reward with verifier-conditional probabilities—ρ0 and ρ1. Building on this formulation,
we derive two estimators to counteract this noise. Our first method, noisy Policy Gradient with
Backward Correction (PGBC), inverts the noise process to compute an unbiased estimator of the
true reward, which can be used as a drop-in replacement in any advantage-estimation in RL. Our
second method, noisy Policy Gradient with Forward Correction (PGFC), directly reweights the
terms of the policy gradient to ensure its expected direction aligns with the clean gradient. This
approach requires only an estimate of ρ1 to achieve directional correctness, making it suitable for
the often harder-to-estimate FP rate (Xu et al., 2025). The pipeline is illustrated in Figure 1.

We integrate these corrections into a group relative policy optimization (GRPO)-based RLVR
pipeline and demonstrate their effectiveness on competitive math reasoning benchmarks (Shao et al.,
2024a). Both methods consistently outperform uncorrected training and achieve performance nearly
equivalent to that of noise-free scenarios, with the forward correction offering the fastest and most
stable convergence. We also propose a practical online estimation scheme for ρ1: a querying mech-
anism where a low-cost LLM verifier like TinyV (Xu et al., 2025) re-evaluates outputs rejected by
a primary rule-based checker. This hybrid approach provides a reliable estimate of the FN rate with
minimal computational overhead, recovering near-oracle performance. Our contributions are: (i) a
formal verifier-channel model for RLVR that captures the prevalent FP and FN errors; (ii) backward
and forward corrections derived from RL principles to calibrate policy learning; and (iii) a prac-
tical implementation for online noise estimation that makes these corrections viable in real-world
systems.

2 RELATED WORKS

Reasoning with LLMs. A large body of work improves LLM reasoning through prompting and
search at inference time. Chain-of-Thought (CoT) prompting elicits step-by-step rationales and
boosts arithmetic and commonsense reasoning (Wei et al., 2022), while self-consistency aggregates
diverse reasoning paths to further improve robustness (Wang et al., 2022). Decomposition-based
prompting, such as Least-to-Most, solves complex problems via ordered sub-problems (Zhou et al.,
2022); search-based schemes like Tree-of-Thoughts explicitly explore and evaluate alternative rea-
soning branches (Yao et al., 2023). Orthogonally, training-time verifier signals can be used to re-rank
candidate solutions, as in Cobbe et al. (2021). Our work is complementary: rather than proposing a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

new inference-time strategy or re-ranking scheme, we address how to perform policy optimization
when the reward itself—supplied by a verifier—is noisy.

RLVR and verifier reliability. Recent math-RL pipelines combine on-policy RL (e.g., GRPO)
with programmatic or LLM-based verifiers to yield verifiable rewards (Mroueh, 2025). However,
LLM-as-a-judge is prone to systematic biases, including position bias and prompt-based attacks,
producing false positives (accepting incorrect solutions) (Gu et al., 2024b; Thakur et al., 2024; Shi
et al., 2024b; Goyal et al., 2025; Zeng et al., 2024). Conversely, exact-match or brittle parsers in rule-
based checkers can miss algebraic equivalences and text-formatted answers, leading to widespread
false negatives (Li et al., 2025a;b). A recent study shows that over 38% of model responses labeled
incorrect by a rule-based pipeline were in fact correct, and introduces a lightweight verifier (TinyV)
that recovers many such cases with minimal overhead (Xu et al., 2025). Prior efforts therefore
improve the verifier (e.g., better judges or appeals) or evaluation suites; in contrast, we treat verifier
errors as verifier-conditional noise and directly correct the policy gradient so that learning remains
aligned with the clean objective even when the verifier is imperfect.

Learning with noisy labels. While our method is derived from RL principles, it shares intuition
with the literature on learning with label noise. Wang et al. (2020) model reward corruption via
a class-conditional confusion matrix and derive an unbiased surrogate reward for Q-learning algo-
rithms to solve control tasks. In supervised learning, a central thread is to make empirical-risk mini-
mization robust either by correcting the loss given a noise-transition model or by avoiding or down-
weighting suspected noisy examples (Song et al., 2020; Li et al., 2021). The former includes the
unbiased-risk estimators of Natarajan et al. (2013) and the now-standard loss corrections of Patrini
et al. (2017). A second family avoids the noise explicitly by relying on the “small-loss first” memo-
rization dynamics of deep nets: curriculum/mentor methods (MentorNet) learn a weighting network
that feeds cleaner samples to the student, and Co-teaching trains two peers that exchange their se-
lected small-loss examples; semi-supervised hybrids such as DivideMix split data into clean/noisy
partitions via mixture modeling and co-train with consistency regularization (Jiang et al., 2018; Han
et al., 2018; Li et al., 2020). Unlike these approaches, we target the policy gradient estimator in
RLVR: we instantiate both backward and forward corrections inside the policy gradient estimator to
stabilize and align RL under verifier noise.

3 PROBLEM SETUP AND ALGORITHMS

We consider the standard RLVR setting where a stochastic policy πθ generates a response y for a
given prompt x. The goal is to maximize an objective based on the true, or clean, reward R∗(x, y) ∈
{0, 1}, which indicates whether the response y is genuinely correct. This objective is typically
regularized by a KL-divergence term to a reference policy πref to maintain stability:

max
θ

Jβ(θ) = Ex Ey∼πθ(·|x)

[
R∗(x, y) − βKL(πθ(· | x) ∥πref(· | x))

]
,

in which KL denotes the KL-divergence. The policy gradient with respect to the unregularized
reward is given by the REINFORCE estimator, ∇θJ(θ) = E[R∗(x, y)

∑
t Gt], where Gt =

∇θ log πθ(yt | x, y<t) is the score function for the token at step t. In the follows we will replace
R(x, y) with R for brevity.

In practice, the clean reward R∗ is unavailable. Instead, the agent receives a noisy reward R̃(x, y) ∈
{0, 1} from an automated verifier. We model this verifier as a stochastic reward channel that flips
the latent clean reward to an observed noisy one. This channel is characterized by asymmetric,
verifier-conditional noise rates.

Definition 1 (Verifier Reward Channel). The observed verifier reward R̃ is generated from the latent
clean reward R∗ according to the following conditional probabilities, which define:

P
(
R̃ = 1 | R∗ = 0

)
= ρ0,

P
(
R̃ = 0 | R∗ = 1

)
= ρ1,

where ρ0, ρ1 ∈ [0, 0.5).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Noisy Policy Gradient with Backward Correction (PGBC)

1: Input: Initial policy θ0; learning rate η; batch size M ; estimates of noise rates, (ρ̂0, ρ̂1).
2: loop
3: Roll out M trajectories {(xi, yi)}Mi=1, obtaining observed rewards {R̃i}Mi=1.
4: For each trajectory i, compute the unbiased reward estimate:

R̂i ←
R̃i − ρ̂0

1− ρ̂0 − ρ̂1
.

5: Compute the policy gradient using the corrected rewards {R̂i}Mi=1.
6: Update parameters: θ ← θ + η∆θ.
7: end loop

Based on this noise model, we establish a linear relationship between the expected noisy reward and
the clean reward, which is presented in Proposition 1.
Proposition 1 (Connection between Corrupted Rewards and True Rewards). Under the Verifier
Reward Channel model, the expectation of the noisy reward R̃ conditioned on the clean reward R∗

is an affine transformation of R∗:

E[R̃ | R∗] = (1− ρ0 − ρ1)R
∗ + ρ0.

The proof is provided in Appendix C.1. The central challenge of RLVR is that naively optimizing
with the noisy reward R̃ leads to a biased policy gradient, causing the policy to learn from mistakes
of the verifier. Our goal is to develop policy gradient estimators that use only the observable noisy
reward R̃ but the expectation is either identical or parallel to the true policy gradient ∇θJ(θ). We
integrate these estimators within REINFORCE-style policy gradient algorithms widely used for
reasoning tasks that compute normalized advantages over a group of sampled trajectories (Shao
et al., 2024b).

3.1 NOISY POLICY GRADIENT WITH BACKWARD CORRECTION (PGBC)

Our first proposed approach aims to construct an unbiased estimator of the true reward R∗ by “in-
verting” the noise process. Since the expected noisy reward E[R̃ | R∗] is an affine transformation
of the clean reward R∗ in Proposition 1, we can solve for R∗ to derive a corrected reward estimator,
R̂, that is unbiased in expectation.
Theorem 1 (Unbiased Reward Estimator). Given the verifier channel with known noise rates ρ0
and ρ1 with ρ0, ρ1 ∈ [0, 0.5), the estimator

R̂ =
R̃− ρ0

1− ρ0 − ρ1

is an unbiased estimator of the true reward R∗(x, y), i.e., E[R̂] = R∗.

The proof is provided in Appendix C.2. Theorem 1 shows that, by replacing the noisy reward R̃

with R̂ in any standard policy gradient formulation, we obtain an unbiased estimate of the true
policy gradient. The expected update direction is not merely aligned with the clean gradient; it is
identical. This allows R̂ to serve as a drop-in replacement for the reward signal in complex RL
algorithms like GRPO, seamlessly integrating with advantage estimation and other machinery. The
details of the backward correction algorithm are summarized in Algorithm 1. After rolling out a
set of trajectories and obtaining their rewards, we use the corrected rewards to compute the policy
gradients for model update.

3.2 NOISY POLICY GRADIENT WITH FORWARD CORRECTION (PGFC)

While PGBC provides an elegant unbiased estimator, it faces two practical challenges. First, the
denominator (1 − ρ0 − ρ1) can be small if the total noise rate is high, leading to high variance in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 Noisy Policy Gradient with Forward Correction (PGFC)

1: Input: Initial policy θ0; learning rate η; batch size M ; an estimate of the false negative rate, ρ̂1.
2: loop
3: Roll out M trajectories and observe rewards {R̃i}Mi=1.
4: For each trajectory i, define the weight based on the observed reward R̃i:

wR̃i
←

{
ρ̂1 − 1, if R̃i = 0,

ρ̂1, if R̃i = 1.

5: For each trajectory i, compute the score-function term Gi and the weighted term hi ←
wR̃i

Gi.
6: Form the policy gradient estimate: ĝ ← 1

M

∑M
i=1 hi.

7: Update parameters: θ ← θ + η ĝ.
8: end loop

the reward estimate R̂ and potentially unstable training. Second, it requires accurate estimation of
both the false positive rate ρ0 and the false negative rate ρ1, which are usually difficult to obtain in
practice. The PGFC approach is introduced to mitigate these issues.

Instead of correcting the reward itself, this method directly modifies the policy gradient estimator to
ensure its expectation is correctly aligned. The core idea is to reweight the score function Gt under
the t-th token based on the observed noisy reward R̃. We define an update term ht = wR̃Gt and
choose the forward weights w0 (for R̃ = 0) and w1 (for R̃ = 1) such that the expected update E[ht]
is parallel to the clean gradient∇θJ(θ). The key insight is to choose the forward weights so that the
conditional expectations given the true reward R∗ have a specific structure.
Proposition 2 (Conditional Expectation of Forward Weights). Let the forward weights be defined as
w0 = ρ1 − 1 and w1 = ρ1. Under the Verifier Reward Channel model, the conditional expectations
of the corresponding weight wR̃ given the true reward R∗ are:

1. E[wR̃ | R∗ = 1] = 0.

2. E[wR̃ | R∗ = 0] = −(1− ρ0 − ρ1).

The proof can be found in Appendix C.3. Proposition 2 reveals that, in expectation, the forward
weights are chosen so that their conditional expectation vanishes when R∗ = 1, i.e., truly positive
cases do not require correction. Consequently, the explicit contribution to the correction term arises
from samples with R∗ = 0. This structure allows us to recover the correct gradient direction, as
shown in the following theorem.
Theorem 2 (Policy Gradient Correction with Only ρ1). Let the gradient-update term be ∆θ =
1
M

∑
wR̃ Gt, where w0 = ρ1 − 1 and w1 = ρ1. Under the Verifier Reward Channel model, the

expected update is parallel to the clean policy gradient:

E[∆θ] = c∇θJ(θ),

in which c = (1− ρ0 − ρ1).

The proof is given in Appendix C.4. Since 1−ρ0−ρ1 > 0, Theorem 2 guarantees that the expected
update of the policy points in the same direction as the true gradient; meanwhile, the positive scaling
factor (1 − ρ0 − ρ1) can be absorbed into the learning rate. By avoiding the inverse operation of
PGBC, PGFC circumvents the variance-inflation problem. Furthermore, its reliance solely on ρ1
makes it more practical, as the false negative rate is often the more dominant and easily estimable
error source in RLVR with rule-based verifiers.

In practice, we estimate ρ̂1 during training by appealing a small, uniformly random subset of rule-
based negatives to a lightweight LLM verifier (e.g., TinyV (Xu et al., 2025)) and then smoothing
the empirical flip rate. Concretely, at step t, let N (t)

R be items labeled negative by the rule-based
verifier, P(t)

R the rule-based positives, and sample a fraction q ∈ (0, 1] ofN (t)
R for appeal; denote by

P(t)
L those appealed items that the LLM flips to positive (i.e., rule-negative & LLM-positive). Using

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a Horvitz–Thompson correction (Karwa & Airoldi, 2023), we estimate FN as |P(t)
L |/q and TP as

|P(t)
R | (Since rule-based FP should be 0). We then set ρ̂(t)1 =

|P(t)
L |/q+α

|P(t)
L |/q+|P(t)

R |+α+β
with small Beta-

prior pseudocounts α, β (we use 10−5), and apply EMA smoothing over a sliding window. If both
ρ̂0 and ρ̂1 are available, one can use PGBC; if only ρ̂1 is available, use PGFC. We include implemen-
tation details in Appendix B and release code at https://anonymous.4open.science/r/
noisy-RLVR-2BE9/README.md.

4 EXPERIMENTS

We evaluate our approach under both synthetic and real-world verifier noise. We first spell out
the experimental protocol—models, verifiers, training recipe, evaluation suites, metrics, and com-
pute—and then present ablations and main results. Unless otherwise noted, sampling hyperparame-
ters and KL regularization are held fixed across conditions.

4.1 EXPERIMENTAL SETUP

We train on two small backbones, Qwen2.5-Math-1.5B and DeepSeek-R1-Distill-Qwen-1.5B, and
probe scale with Qwen2.5-Math-7B. Rewards come from either (i) a rule-based checker that ex-
tracts the final \boxed{\cdot} answer and tests numeric/rational equivalence or (ii) a lightweight
LLM verifier (TinyV 1.5B) used for appeals/estimation; prior work motivates explicit noise mod-
eling due to systematic FP/FN behavior in these verifiers. Unless stated otherwise, we follow
the DeepScaleR corpus and a GRPO-style on-policy recipe with BoN sampling, implement-
ing our backward and forward corrections as drop-in hooks at the advantage-construction stage
within VERL. Evaluation uses six verifiable math suites—AIME-2024, AIME-2025, AMC-
2023, MATH500, MINERVA MATH, and OLYMPIADBENCH—reporting Pass@1 with 16 sam-
ples (Pass@8 appears in the appendix). Compute is 8×A100 (40GB) GPUs servers; unless noted,
KL schedules, sampling temperatures, and other rollout settings are kept identical across compared
conditions.

4.2 SYNTHETIC NOISE

To disentangle optimization effects from verifier unreliability, we inject verifier-conditional noise
into the binary reward stream during training. Concretely, when the latent clean reward is R∗ ∈
{0, 1}, the observed reward R̃ is drawn from a reward channel with Pr(R̃=1 | R∗=0) = ρ0 and
Pr(R̃=0 | R∗=1) = ρ1; unless stated otherwise we use ρ0=0.1 and ρ1=0.2. We train GRPO
on DeepScaleR with identical sampling and KL settings across conditions, and evaluate Pass@1
(16 samples) on AIME-2024/2025, AMC-2023, MATH500, MINERVA MATH, and OLYMPIAD-
BENCH. We compare five variants: Base (no RL), Oracle (clean rewards), Noise (uncorrected),
and our two corrections—PGBC (backward correction using R̂ = R̃−ρ0

1−ρ0−ρ1
) and PGFC (forward

correction that rescales the gradient using ρ1 only).

As illustrated in Figure 2, across models and benchmarks, the injected noise degrades uncorrected
GRPO substantially, while both corrections recover most of the gap to the oracle. On DeepSeek-R1-
Distill-Qwen-1.5B, uncorrected training under noise underperforms the oracle across all tasks (e.g.,
a noticeably lower Average), whereas PGBC and PGFC nearly match oracle performance; PGFC is
consistently as good as or slightly better than PGBC, echoing its variance advantages from avoiding
division by (1− ρ0 − ρ1). From Qwen2.5-Math-1.5B and DeepSeek-R1-Distill-Qwen-1.5B, as well
as the up-scale model Qwen2.5-Math-7B, we observe the same pattern: noise hurts, PGBC/PGFC
close the gap compared with Oracle.

4.3 REAL-WORLD NOISE

As discussed above, automated verifiers exhibit both false positives (LLM judges over-crediting in-
correct solutions) and false negatives (rule-based checkers rejecting correct ones) (Gu et al., 2024a;
Xu et al., 2025; Li et al., 2025b;a). In math RL pipelines, the latter is particularly prevalent: brittle
exact-match or limited equivalence rules lead to many valid answers being scored as incorrect, de-
priving the agent of learning signal. Motivated by this, in this subsection we specifically investigate

6

https://anonymous.4open.science/r/noisy-RLVR-2BE9/README.md
https://anonymous.4open.science/r/noisy-RLVR-2BE9/README.md

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

AIME2024

AIME2025

AMC2023

Math500

Minerva MATH

Olympiad Bench
Average

0
8

16
24
32
40
48
56
64
72

Sc
or

e
(%

)

Base
Oracle
Noise

PGBC (Ours)
PGFC (Ours)

(a) Qwen2.5-Math-1.5B

AIME2024

AIME2025

AMC2023

Math500

Minerva MATH

Olympiad Bench
Average

0

10

20

30

40

50

60

70

80

Sc
or

e
(%

)

Base
Oracle
Noise

PGBC (Ours)
PGFC (Ours)

(b) DeepSeek-R1-Distill-Qwen-1.5B

AIME2024

AIME2025

AMC2023

Math500

Minerva MATH

Olympiad Bench
Average

0

10

20

30

40

50

60

70

80

Sc
or

e
(%

)

Base
Oracle
Noise

PGBC (Ours)
PGFC (Ours)

(c) Qwen2.5-Math-7B

Figure 2: Synthetic-Noise Results on Qwen2.5-Math-1.5B, DeepSeek-R1-Distill-Qwen-1.5B, and
Qwen2.5-Math-7B. Base: baseline without RL; Oracle: Training with clean rewards; Noise:
Training with noisy verifier rewards; Noise BC: Training with noise under backward correction;
Noise FC: Training with noise under forward correction.

whether denoising false negatives—i.e., estimating ρ̂1 as in Section 3.2—can measurably improve
policy optimization. Concretely, we keep a fast rule-based checker as the primary reward source
and, whenever it returns R̃=0, trigger an appeals pass with a lightweight LLM verifier (TinyV) (Xu
et al., 2025). From disagreements on negatives we maintain an online estimate ρ̂1 (EMA over a
sliding window to track policy drift).

Results in Table 1 show a consistent pattern across backbones and benchmarks. Using a lightweight
LLM as the reward (LV) underperforms the rule-based pipeline, corroborating prior observations
that LLM judges are bias-prone and gameable (Gu et al., 2024a; Shi et al., 2024b). Employing the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Real-world noise with appeals on negative samples and forward correction results. Rule:
rule-based rewards; LV: direct LLM-judge rewards; Adds on: rule-based reward plus LLM ap-
peals on negative samples (no gradient correction); FCO: forward correction using online ρ̂1.

(a) Qwen2.5-Math-1.5B

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH Olympiad Bench Average

Base 6.0 4.0 34.2 47.5 5.1 25.1 20.3
Rule 15.0 5.6 50.3 69.4 17.8 31.6 31.6
LV 10.9 4.7 42.1 63.0 15.9 25.3 27.0
Adds on 11.9 5.8 47.8 68.3 16.7 29.8 30.1
PGFC (Ours) 20.3 10.7 53.3 68.6 16.5 32.9 33.7

(b) DeepSeek-R1-Distill-Qwen-1.5B

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH Olympiad Bench Average

Base 9.0 9.4 41.4 61.1 10.5 22.9 25.7
Rule 19.0 17.5 65.6 77.6 19.9 38.5 39.7
LV 11.9 12.7 52.3 69.8 14.2 31.9 32.1
Adds on 21.7 17.3 66.2 77.4 20.0 37.9 40.1
PGFC (Ours) 23.2 22.5 70.7 78.2 19.4 41.0 42.5

(c) Qwen2.5-Math-7B

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH Olympiad Bench Average

Base 12.7 5.8 44.4 52.0 9.8 26.4 25.2
Rule 29.2 13.5 62.8 78.9 24.2 37.8 41.1
LV 16.8 6.8 50.2 62.5 10.1 31.0 29.6
Adds on 27.4 11.8 63.7 74.9 20.6 37.6 39.3
PGFC (Ours) 31.0 14.6 65.7 81.6 26.2 39.3 43.1

0.1 0.15 0.19 0.2 (True) 0.21 0.25 0.3
1

0

10

20

30

pa
ss

@
1

(m
ac

ro
 %

) 31.0 30.9 31.1 31.1 29.1 29.8 30.1

(a) BC: ρ̂0=0.1, ρ̂1∈ [0.1, 0.3]

0 0.05 0.09 0.1 (True) 0.11 0.15 0.2
0

0

10

20

30

pa
ss

@
1

(m
ac

ro
 %

) 30.1
26.9

30.8 31.1 30.2
26.9

29.6

(b) BC: ρ̂1=0.2, ρ̂0∈ [0.0, 0.2]

0.1 0.15 0.19 0.2 (True) 0.21 0.25 0.3
1

0

10

20

30

pa
ss

@
1

(m
ac

ro
 %

) 29.5 29.9 30.5 31.6
29.0 29.4 30.6

(c) FC: ρ̂0=0.1, ρ̂1∈ [0.1, 0.3]

Figure 3: Robustness results. (a) Backward correction (BC) with ρ̂0 fixed and sweeping ρ̂1; (b)
Backward correction (BC) with ρ̂1 fixed and sweeping ρ̂0; (c) Forward correction (FC) with ρ̂0 fixed
and sweeping ρ̂1. Replace each placeholder with your heatmap later.

LLM as adds-on to recheck rule-based negatives (Adds on) reduces FN and yields a modest but
reliable lift, yet the benefit remains indirect because the primary gradient is still driven by noisy
binary rewards. In contrast, our forward correction (FCO) directly applies the FN correction to the
policy gradient via weights wR̃∈{ρ̂1−1, ρ̂1}, and it delivers the strongest and stable improvements.

4.4 ROBUSTNESS TO NOISE MIS-SPECIFICATION

There now exist practical procedures to estimate verifier false positive/false negative rates—our
ρ0 and ρ1—via rule-based equivalence checkers (e.g., MATH-VERIFY), lightweight appeals/judges
such as TinyV, and meta-evaluation suites that quantify verifier reliability (Hugging Face, 2025; Xu
et al., 2025; Li et al., 2025a;b; Gu et al., 2024a). In real deployments, however, these estimates
can be imperfect. We therefore test how backward and forward corrections behave under mis-
specified noise rates. We follow the synthetic-noise setting from Section 4.2 with Qwen2.5-math-
1.5B: rewards are corrupted at data-time with ρ0=0.1, ρ1=0.2. During training, we intentionally
feed each algorithm mis-specified rates from a grid ρ̂0 ∈ [0.0, 0.2], ρ̂1 ∈ [0.1, 0.3], and report the
Average Pass@1 (16 samples) across our six benchmarks. Because the forward method only requires
the false negative rate, we vary ρ̂1 for forward correction while keeping ρ̂0 unused. Heatmaps
summarizing the sweep are shown in Fig. 3.

Backward correction remains strong when the total noise is underestimated, but performance de-
grades as we overestimate the rates (i.e., as 1− ρ̂0− ρ̂1 shrinks). Intuitively, the unbiased de-biasing,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

R̂ = R̃−ρ̂0

1−ρ̂0−ρ̂1
, involves an inverse factor that amplifies reward variance and accentuates estimation

error when the effective denominator becomes small; this sensitivity to mis-specified transition mod-
els aligns with the loss-correction literature for noisy labels. In contrast, forward correction exhibits
a notably flat response curve around the true ρ1; perturbing ρ̂1 changes only the per-sample weights
and avoids any inverse operation, yielding lower-variance policy gradient estimates.

4.5 CASE STUDIES

We also provide typical failure modes observed during math RL with automated verifiers on
Qwen2.5-Math-7B under MATH500 dataset. For rule-based verifier: 0 FN and 52 FPs out of
500 items (marginal rates 0% and 10.4%); for LLM verifier: 168 FNs and 81 FPs out of 500 items
(marginal rates 33.6% and 81.4%). The FP case shows an LLM judge over-crediting a malformed
solution, while the FN case shows a rule-based checker rejecting a numerically correct answer due
to formatting. The raw context can be found in Appendix E.

False Positive (FP).
Problem. Compute: 1− 2 + 3− 4 + · · ·+ 99− 100.
Ground truth. −50
Model response (excerpt).

Compute: $1+2-3-4+5+6-7-8+\dots+97+98-99-100$.
\boxed{ } \boxed{ } \boxed{ } \dots

Verifier signals. Rule-based checker: ✗ (incorrect); LLM judge: ✓ (incorrectly accepts) ⇒FP.

False Negative (FN).
Problem. Each of seven islands independently has treasure with probability 1

5 . What is the
probability that exactly four islands have treasure?

Correct answer.
448

15625
(equals 0.028672).

Model answer. 0.028672
Verifier signals. Rule-based exact-match: ✗ (expects a fraction); numeric equivalence check: ✓
(values match) ⇒FN.

5 CONCLUSION

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a practical and increas-
ingly popular paradigm for training reasoning-focused LLMs. Yet binarized rewards inevitably
suffer from false positives (FP) and false negatives (FN). Prior efforts largely mitigate these errors
from the verifier side—e.g., debiasing LLM judges or strengthening equivalence checking—to re-
duce the downstream impact on learning (Gu et al., 2024a; Li et al., 2025a;b; Hugging Face, 2025).
In contrast, we model verifier unreliability as a verifier-conditional noise channel with rates (ρ0, ρ1)
and introduce two theory-driven corrections that act directly at the policy-learning interface. The
backward correction de-biases the observed reward to yield an unbiased gradient estimator; it re-
quires estimates (ρ̂0, ρ̂1) but is agnostic to the choice of policy-optimization algorithm and can thus
be used beyond policy gradient methods (Natarajan et al., 2013; Patrini et al., 2017). The forward
correction rescales score-function terms so that the expected update is aligned with the clean gradi-
ent; notably, it needs only ρ̂1, which is often the dominant—and more readily estimable—source of
real-world noise due to rule-based FNs (Li et al., 2025b; Hugging Face, 2025; Xu et al., 2025).

While we instantiated appeals with a lightweight LLM verifier for efficiency, the same backward/for-
ward correction mechanisms should also gains from stronger verifiers or richer equivalence checkers
(Xu et al., 2025). Meanwhile, currently using the constant noise rate, the proposed models already
show clear advantages. This means that the constant noise rate ρ0 and ρ1 approximate the real-
world noise rate well. However, real-world noise can be very complex, e.g., depending both on the
contents and verifiers ρ0(x, y) and ρ1(x, y), leaving interesting future directions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All experimental details required to fully reproduce our results—including datasets, prompts, hy-
perparameters, training/evaluation protocols, and compute settings—are specified in Section 4.1
and the Appendix (notably Appendix B and Appendix D); furthermore, we publish an anonymous
code repository link at the end of Section 3.2, ensuring complete reproducibility while preserving
author anonymity.

ETHICS STATEMENT

There is no ethics concerns in this work. Our anonymized code release (see Appendix D) provides
end-to-end training pipelines; all models and datasets used are publicly available under their respec-
tive licenses, and users reproducing or extending this work should obtain and comply with those
licenses—no additional restrictions are imposed beyond the originals.

REFERENCES

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or
llms as the judge? a study on judgement bias. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 8301–8327, Miami, Florida, USA,
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.474. URL
https://aclanthology.org/2024.emnlp-main.474/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Nishant Goyal, Ruibo Liu, Sean Yang, Karthik Narasimhan, and Danqi Chen. One token to fool
LLM-as-a-judge. arXiv preprint arXiv:2506.08662, 2025.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594, 2024a. URL
https://arxiv.org/abs/2411.15594.

Jinlan Gu, Jiarui Wang, Wenkai Lei, Ziyang Wang, Xiang Yue, Xiangyu Zhao, Yangqiu Song, and
Jie Fu. LLM-as-a-judge: A survey. arXiv preprint arXiv:2411.15594, 2024b.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
In Advances in Neural Information Processing Systems (NeurIPS), volume 31, pp. 8535–8545,
2018.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024.

Yuzhen Huang, Weihao Zeng, Xingshan Zeng, Qi Zhu, and Junxian He. Pitfalls of rule- and model-
based verifiers – a case study on mathematical reasoning. arXiv preprint arXiv:2505.22203, 2025.
doi: 10.48550/arXiv.2505.22203. URL https://arxiv.org/abs/2505.22203.

Hugging Face. Math-Verify: A robust mathematical expression evaluator for llm outputs. GitHub
repository, 2025. URL https://github.com/huggingface/Math-Verify.

HuggingFaceH4. Aime 2024 (dataset card). Hugging Face, 2024. URL https://
huggingface.co/datasets/HuggingFaceH4/aime_2024.

10

https://aclanthology.org/2024.emnlp-main.474/
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2505.22203
https://github.com/huggingface/Math-Verify
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In Proceedings of the 35th
International Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine
Learning Research, pp. 2309–2318. PMLR, 2018.

Vishesh Karwa and Edoardo M Airoldi. On the admissibility of horvitz-thompson estimator for
estimating causal effects under network interference. arXiv preprint arXiv:2312.01234, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. volume 35, pp. 3843–3857, 2022.

Junnan Li, Richard Socher, and Steven C. H. Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. In International Conference on Learning Representations (ICLR), 2020.
URL https://openreview.net/forum?id=HJgExaVtwr.

X. Li, T. Liu, B. Han, G. Niu, and M. Sugiyama. Provably end-to-end label-noise learning
without anchor points. In Proceedings of 38th International Conference on Machine Learning
(ICML2021), pp. 6403–6413, online, Jul. 18–24 2021.

Yanran Li, Jiaqing Liang, Hanzheng Wang, Xiaonan Li, Xun Wang, Fei Mi, and Shafiq Joty.
VerifyBench: A unified benchmark and toolkit for verifiers of LLM reasoning. arXiv preprint
arXiv:2507.09884, 2025a.

Yuxuan Li, Shuyan Zhou, Yicheng Li, Jiaqing Liang, and Shafiq Joty. Pitfalls of rule- and
model-based verifiers: Toward accurate reward modeling for reasoning. arXiv preprint
arXiv:2505.22203, 2025b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai, Jef-
frey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025. Notion Blog.

math-ai. Amc 2023 (dataset card). Hugging Face, 2025. URL https://huggingface.co/
datasets/math-ai/amc23.

Youssef Mroueh. Reinforcement learning with verifiable rewards: Grpo’s effective loss, dynamics,
and success amplification. arXiv:2503.06639, 2025.

Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep K. Ravikumar, and Ambuj Tewari. Learning with
noisy labels. In Advances in Neural Information Processing Systems (NeurIPS), volume 26, pp.
1196–1204, 2013.

OpenCompass. Aime 2025 (dataset card). Hugging Face, 2025. URL https://huggingface.
co/datasets/opencompass/AIME2025.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. doi: 10.1109/
CVPR.2017.240.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
ematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024a. doi:
10.48550/arXiv.2402.03300.

11

https://openreview.net/forum?id=HJgExaVtwr
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://huggingface.co/datasets/math-ai/amc23
https://huggingface.co/datasets/math-ai/amc23
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
ematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b. URL
https://arxiv.org/abs/2402.03300.

Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang, Pan Zhou, Lichao Sun, and Neil Zhenqiang
Gong. Optimization-based prompt injection attack to llm-as-a-judge. In Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2024a. doi: 10.
48550/arXiv.2403.17710. URL https://arxiv.org/abs/2403.17710.

Lin Shi, Chiyu Ma, Wenhua Liang, Xingjian Diao, Weicheng Ma, and Soroush Vosoughi.
Judging the judges: A systematic study of position bias in llm-as-a-judge. arXiv preprint
arXiv:2406.07791, 2025. doi: 10.48550/arXiv.2406.07791. URL https://arxiv.org/
abs/2406.07791. v8, 2025-04 revision.

Shen Shi, Shuyang Cao, Xiaochuang Han, Chris Callison-Burch, Mohit Bansal, and He He. Position
bias in LLM-as-a-judge. arXiv preprint arXiv:2410.02825, 2024b.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. arXiv preprint arXiv:2007.08199, 2020. doi: 10.
48550/arXiv.2007.08199.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Anurag Thakur, Hao Tang, Ryan Cotterell, and Mrinmaya Sachan. Judging the judges: Evaluating
alignment and vulnerabilities of LLM-as-a-judge. arXiv preprint arXiv:2406.12624, 2024.

Jingkang Wang, Yang Liu, and Bo Li. Reinforcement learning with perturbed rewards. In Proceed-
ings of the 34th AAAI conference on artificial intelligence, pp. 6202–6209, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
NeurIPS, 2022.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
Lin, and Radha Poovendran. Tinyv: Reducing false negatives in verification improves rl for llm
reasoning. arXiv preprint arXiv:2505.14625, 2025.

Yuchen Yan, Jin Jiang, Zhenbang Ren, Yijun Li, Xudong Cai, Yang Liu, Xin Xu, Mengdi Zhang,
Jian Shao, Yongliang Shen, Jun Xiao, and Yueting Zhuang. Verifybench: Benchmarking
reference-based reward systems for large language models. arXiv preprint arXiv:2505.15801,
2025. URL https://arxiv.org/abs/2505.15801.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Xiaokang Zeng, Shibo Hao, Lichang Chen, Furong Huang, Heng Huang, Tom Goldstein, and Tianyi
Zhou. JudgeDeceiver: Optimization-based prompt injection attack to LLM-as-a-judge. arXiv
preprint arXiv:2403.17710, 2024.

12

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2403.17710
https://arxiv.org/abs/2406.07791
https://arxiv.org/abs/2406.07791
https://arxiv.org/abs/2505.15801

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yulai Zhao, Haolin Liu, Dian Yu, S. Y. Kung, Haitao Mi, and Dong Yu. One token to fool llm-
as-a-judge. arXiv preprint arXiv:2507.08794, 2025. doi: 10.48550/arXiv.2507.08794. URL
https://arxiv.org/abs/2507.08794.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

13

https://arxiv.org/abs/2507.08794

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

AIME2024

AIME2025

AMC2023

Math500

Minerva MATH

Olympiad Bench
Average

0
10
20
30
40
50
60
70
80
90

Sc
or

e
(%

)

Base
Oracle
Noise

PGBC (Ours)
PGFC (Ours)

Figure 4: Synthetic-Noise Results on Qwen2.5-Math-7B. Base: baseline without RL; Oracle: Train-
ing with clean rewards; Noise: Training with noisy verifier rewards; PGBC: Training with noise
under backward correction; PGFC: Training with noise under forward correction.

Table 2: Real-world noise with appeals on negative samples and forward correction on Qwen2.5-
Math-7B. Rule: rule-based rewards; LV: direct LLM-judge rewards; Adds on: rule-based reward
plus LLM appeals on negative samples (no gradient correction); FCO: forward correction using
online ρ̂1.

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH Olympiad Bench Average

Base 36.2 23.3 81.9 66.6 11.8 33.9 42.3
Oracle 50.0 28.7 83.4 82.8 29.0 45.8 53.3
LV 41.7 22.1 81.9 69.0 13.2 39.4 44.6
Adds on 47.1 30.4 84.4 80.8 23.5 45.6 52.0
PGFC (Ours) 54.6 30.4 82.8 83.2 29.0 47.6 54.6

LLM USAGE DISCLOSURE

Large Language Models were used solely for English language polishing (grammar and minor
wording); all technical contributions—including algorithms, proofs, code, experiments, and anal-
yses—were conceived and validated by the authors.

A MORE EXPERIMENTAL RESULTS

In this section, we also report the average Pass@8 results on Qwen2.5-Math-7B to investigate
whether our algorithms can still achieve better performance under more relaxed metrics with up-
scale models. The experiment setups align that of Section 4.2 and 4.3.

As shown in Figure 4 and Table 2, the conclusion in the main paper remains the same: our method
can still obtain the best results with both synthetic and real-world noise.

B IMPLEMENTATION DETAILS

We describe how to integrate Algorithm 1 (backward, unbiased reward de-biasing) and Algorithm 2
(forward, gradient-scaled) into Group Relative Policy Optimization (GRPO) under both outcome and
process supervision. GRPO samples, for each prompt x, a group of K responses {yi}Ki=1 from the
behavior policy, computes a group-normalized advantage for each sample (or step), and then applies
a PPO-style clipped surrogate with a separate KL regularizer to a reference policy; no value network
is used. Our modifications are confined to the advantage-construction stage, leaving ratio clipping
and KL loss unchanged (details of GRPO in (Shao et al., 2024b) and open-source implementations).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Notation (shared). Let πθ be the current policy and πold the behavior policy. Define token-level
ratios ri,t =

πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

. GRPO’s PPO-style surrogate at token t uses an advantage Ai,t:

Lgrpo(θ) =
1

K

K∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t Ai,t, clip(ri,t, 1±ε)Ai,t

)
− βKL(πθ∥πref),

where the KL term is added to the loss rather than folded into the reward. Our corrections only
change how Ai,t is formed.

OUTCOME SUPERVISION (ONE SCALAR REWARD PER RESPONSE)

For each i, we observe a binary verifier reward r̃i ∈ {0, 1}.
Algo 1 (Backward) in GRPO. First construct an unbiased per-sample reward

r̂i =
r̃i − ρ̂0

1− ρ̂0 − ρ̂1
.

Compute group statistics on {r̂i}Ki=1:

r̄ =
1

K

K∑
i=1

r̂i, s =

√√√√ 1
K

K∑
i=1

(r̂i − r̄)2 .

Define the group-normalized advantage constant across tokens of the same response,

a(back)
i =

r̂i − r̄

s+ ε
, Ai,t ≡ a(back)

i , ∀t.

This is a drop-in replacement for the usual GRPO outcome-advantage, with the sole change being
that the group mean/variance are computed over de-noised rewards r̂i rather than raw r̃i.

Algo 2 (Forward) in GRPO. First form the standard GRPO outcome-advantage from the observed
rewards:

ai =
r̃i − r̃

std({r̃j}) + ε
, Ai,t ≡ ai, ∀t.

Then apply the forward weight determined only by ρ̂1:

wi =

{
ρ̂1 − 1, r̃i = 0,

ρ̂1, r̃i = 1,
Ai,t ← wi ·Ai,t .

Intuitively, the group-normalization is a positive scaling of each sample’s (token-shared) factor, so
multiplying by wi implements the same gradient scaling as in REINFORCE, but expressed at the
advantage level that GRPO’s surrogate consumes. The rest of GRPO (ratio clipping, KL loss) is
unchanged.

PROCESS SUPERVISION (STEP-WISE REWARDS)

Suppose each response yi has step indices indexi(1) < · · · < indexi(Ki) with step-level observed
rewards r̃

(j)
i attached at those indices. GRPO forms step-normalized rewards and turns them into

token advantages by backward accumulation over steps.

Algo 1 (Backward) in GRPO-Process. De-noise each step reward:

r̂
(j)
i =

r̃
(j)
i − ρ̂0

1− ρ̂0 − ρ̂1
.

Normalize across the group and steps in the current batch following GRPO’s process recipe:

r̃
(j)
i =

r̂
(j)
i −mean({r̂(m)

ℓ })
std({r̂(m)

ℓ }) + ε
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Accumulate into token-level advantages (for all tokens t at or before the j-th step boundary):

Ai,t =
∑

indexi(j)≥t

r̃
(j)
i .

This mirrors the standard GRPO-Process pipeline, but with r̃ replaced by r̂.

Algo 2 (Forward) in GRPO-Process. First follow the standard GRPO-Process normalization to
obtain r̃

(j)
i from the observed r̃

(j)
i , then accumulate the token advantages

Ai,t =
∑

indexi(j)≥t

r̃
(j)
i ,

and finally apply forward weights. If the verifier outputs are binary per step, use

w
(j)
i =

{
ρ̂1 − 1, r̃

(j)
i = 0,

ρ̂1, r̃
(j)
i = 1,

Ai,t ←
∑

indexi(j)≥t

(
w

(j)
i r̃

(j)
i

)
.

If only a final binary reward is available, use a single sample-level weight wi for all steps of yi (as
in outcome supervision) after the standard process accumulation.

Practical notes. (i) Where to hook. Implement the corrections exactly at the interface where
GRPO converts rewards to (group-)normalized advantages; no change to sampling, clipping, opti-
mizer, or KL regularization. (ii) Stability. Backward correction can inflate variance when 1−ρ̂0−ρ̂1
is small; GRPO’s group normalization mitigates scale but not variance—use ε and EMA’d statistics
as in practice. (iii) Forward variant. Because group normalization is a positive rescaling, post-
normalization multiplication by w preserves the intended gradient-direction property from the RE-
INFORCE analysis while keeping the rest of GRPO intact. Open-source GRPO implementations
follow this decomposition (reward→advantage, then PPO-style surrogate + KL loss).

C PROOFS AND DERIVATIONS

C.1 PROOF OF PROPOSITION 1

Proof. We compute the expectation of the noisy reward R̃ conditioned on the clean reward R∗,
which is a binary variable. By the definition of expectation:

E[R̃] = 1 · P(R̃ = 1 | R∗) + 0 · P(R̃ = 0 | R∗)

= P(R̃ = 1 | R∗).

We can expand this using the law of total probability, conditioning on the value of R∗ ∈ {0, 1}:
E[R̃ | R∗] = R∗ · P(R̃ = 1 | R∗ = 1) + (1−R∗) · P(R̃ = 1 | R∗ = 0).

From Definition 1, we have P(R̃ = 1 | R∗ = 0) = ρ0 and P(R̃ = 0 | R∗ = 1) = ρ1, which implies
P(R̃ = 1 | R∗ = 1) = 1− ρ1. Substituting these values:

E[R̃ | R∗] = R∗(1− ρ1) + (1−R∗)ρ0

= R∗ − ρ1R
∗ + ρ0 − ρ0R

∗

= (1− ρ0 − ρ1)R
∗ + ρ0.

This completes the proof.

C.2 PROOF OF THEOREM 1

Proof. From proposition 1, we have:

E[R̃ | R∗] = (1− ρ0 − ρ1)R
∗ + ρ0 .

Taking the full expectation of R̂:

E[R̂] =
E[R̃ | R∗]− ρ0
1− ρ0 − ρ1

=
((1− ρ0 − ρ1)R

∗ + ρ0)− ρ0
1− ρ0 − ρ1

= R∗ ,

showing unbiasedness.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.3 PROOF OF PROPOSITION 2

Proof. The proposition states two claims about the conditional expectation of the forward weights.
The weights are defined as:

wR̃ =

{
w0 = ρ1 − 1 if R̃ = 0,

w1 = ρ1 if R̃ = 1.

The noise model provides the conditional probabilities:

Pr(R̃ = 0 | R∗ = 1) = ρ1, Pr(R̃ = 1 | R∗ = 1) = 1− ρ1

Pr(R̃ = 1 | R∗ = 0) = ρ0, Pr(R̃ = 0 | R∗ = 0) = 1− ρ0

Part 1: Proof of E[wR̃ | R∗ = 1] = 0 We compute the expectation of wR̃ conditioned on the true
reward being positive (R∗ = 1):

E[wR̃ | R
∗ = 1] =

∑
k∈{0,1}

wk · Pr(R̃ = k | R∗ = 1)

= w0 · Pr(R̃ = 0 | R∗ = 1) + w1 · Pr(R̃ = 1 | R∗ = 1)

= (ρ1 − 1) · (ρ1) + (ρ1) · (1− ρ1)

= (ρ21 − ρ1) + (ρ1 − ρ21)

= 0.

Part 2: Proof of E[wR̃ | R∗ = 0] = −(1 − ρ0 − ρ1) Next, we compute the expectation of wR̃
conditioned on the true reward being negative (R∗ = 0):

E[wR̃ | R
∗ = 0] =

∑
k∈{0,1}

wk · Pr(R̃ = k | R∗ = 0)

= w0 · Pr(R̃ = 0 | R∗ = 0) + w1 · Pr(R̃ = 1 | R∗ = 0)

= (ρ1 − 1) · (1− ρ0) + (ρ1) · (ρ0)
= (ρ1 − ρ0ρ1 − 1 + ρ0) + ρ0ρ1

= ρ1 + ρ0 − 1

= −(1− ρ0 − ρ1).

This proves both claims of the proposition.

C.4 PROOF OF THEOREM 2

Proof. We want to show that E[∆θ] = (1 − ρ0 − ρ1)∇θJ(θ), where ∆θ = 1
M

∑M
t=1 ht and

ht = wR̃Gt. By linearity of expectation and assuming i.i.d. samples, it suffices to show this for a
single sample’s contribution, E[ht].

We use the law of total expectation, conditioning on the latent true reward R∗ ∈ {0, 1}:

E[ht] = E[wR̃Gt] = E [E[wR̃Gt | R∗]]

= Pr(R∗ = 1)E[wR̃Gt | R∗ = 1] + Pr(R∗ = 0)E[wR̃Gt | R∗ = 0].

The noise process generating R̃ is independent of the policy’s action generation process (which
produces Gt), conditional on the true reward R∗. Thus, we can separate the expectations:

E[wR̃Gt | R∗] = E[wR̃ | R
∗] · E[Gt | R∗].

Using the results from Proposition 2:

• E[wR̃ | R∗ = 1] = 0.

• E[wR̃ | R∗ = 0] = −(1− ρ0 − ρ1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Substituting these back into the main expectation formula:

E[wR̃Gt] = Pr(R∗ = 1) · (0) · E[Gt | R∗ = 1] + Pr(R∗ = 0) · (−(1− ρ0 − ρ1)) · E[Gt | R∗ = 0]

= −(1− ρ0 − ρ1) · Pr(R∗ = 0)E[Gt | R∗ = 0]

= −(1− ρ0 − ρ1) · E[1{R∗=0}Gt],

where 1{·} is the indicator function. From two fundamental properties of the score function:

1. The unconditional expectation is zero: E[Gt] = 0 (Williams, 1992; Sutton et al., 1999).

2. The clean policy gradient is ∇θJ(θ) = E[R∗Gt].

From property 1, we have E[Gt] = E[(1{R∗=1} + 1{R∗=0})Gt] = E[R∗Gt] + E[1{R∗=0}Gt] = 0.
This implies that E[1{R∗=0}Gt] = −E[R∗Gt] = −∇θJ(θ).

Finally, we substitute this back into our expression for the expected update direction:

E[ht] = E[wR̃Gt]

= −(1− ρ0 − ρ1) · E[1{R∗=0}Gt]

= −(1− ρ0 − ρ1) · (−∇θJ(θ))

= (1− ρ0 − ρ1)∇θJ(θ).

Therefore, the expectation of the full update is E[∆θ] = 1
M

∑
E[ht] = (1− ρ0 − ρ1)∇θJ(θ). This

completes the proof.

D PROMPT TEMPLATES AND TRAINING/EVALUATION DETAILS

This section records the exact prompt formats and the concrete hyperparameters we used for all ex-
periments in Reinforcement Learning with Verifiable yet Noisy Rewards under Unreliable Verifiers.
We mirror the level of detail used in recent RLVR appendices and report settings sufficient for full
reproducibility from our released code.

D.1 PROMPT TEMPLATES

Training (generation) prompt. For each math problem x (a plain-text question), the user message
is built by concatenating the raw question with a short instruction that elicits chain-of-thought and
enforces a verifiable answer format.

<user>
{QUESTION}

Let’s think step by step and enclose the reasoning process within <
think> and </think> tags.

The final result in the answer MUST BE within \boxed{}.
</user>

During data preprocessing, we write chat-style JSON with a single user turn as shown above and
attach the rule-based ground-truth answer for reward checking.

Evaluation (validation/test) prompt. We use the same prompt template as training for validation
and test-time generation so that the rule-based verifier can parse the boxed answer consistently.

Verifier I/O. The rule-based checker operates on the model’s final string and extracts the last
\boxed{...} expression; it then applies numeric/rational parsing and equality tests to pro-
duce a binary reward R̃ ∈ {0, 1}. When the LLM verifier is enabled, it receives the pair
(problem,model solution) and returns a binary correctness decision used only to estimate the false
negative rate ρ1 over a sliding window. The LLM verifier does not replace the rule-based reward.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.2 DATA PREPROCESSING

We load the preview split of the math-reasoning corpus and map each example to a chat-style record
as above, keeping the reference (ground-truth) answer for programmatic checking.

D.3 TRAINING CONFIGURATION

Unless otherwise stated, all runs use GRPO (outcome supervision) with the following constants.

Training (GRPO)

Train batch size 128
Rollouts per question (group size) 8
Max prompt length (tokens) 512
Max response length (tokens) 3072
Sampling temperature (rollouts) 1.0
Advantage estimator Group-normalized (GRPO)
KL regularization Enabled
KL coefficient β 0.001
Entropy coefficient 0.0
Optimizer AdamW
Learning rate 3e-6
Total epochs 1

Table 3: Core training settings.

Model/backbone. We load the base model from local cache (HuggingFace layout), enable FSDP2
for actor/ref, and use shared-memory weights with remove-padding for efficient vLLM rollouts. The
KL is computed w.r.t. a frozen reference initialized from the same base.

D.4 DATASETS

Training.

• DeepScaleR (Luo et al., 2025): the math-reasoning corpus used for RLVR rollouts and
policy updates.

Evaluation. We evaluate with the standard official/problem releases for each benchmark and apply
the same rule-based programmatic checking protocol throughout.

• MATH500 (Lightman et al., 2023): a verifiable subset of math reasoning problems for
reliable evaluation.

• AIME 2024 (HuggingFaceH4, 2024): the 2024 American Invitational Mathematics Exam-
ination set.

• AIME 2025 (OpenCompass, 2025): the 2025 AIME set.

• AMC 2023 (math-ai, 2025): problems from the 2023 American Mathematics Competi-
tions.

• Minerva Math (Lewkowycz et al., 2022): the Minerva math evaluation suite.

• OlympiadBench (He et al., 2024): olympiad-level mathematics benchmark.

E FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) EXAMPLES

We provide FP and FN examples using Qwen2.5-Math-7B base model on MATH 500.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

FP
{

"idx": 16,
"question": "Compute: $1-2+3-4+5- \\dots +99-100$.",
"model_prediction": "{}",
"model_response": "Compute: $1+2-3-4+5+6-7-8+ \\dots +97+98-99-100$
. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}.
\\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\",
"ground_truth": "-50",
"rule_based": false,
"llm_verifier": true,
"llm_verifier_score": 1.0,
"llm_verifier_raw_value": "1.0",
"math_verify": false,
"math_verify_score": 0.0

},

FN
{

"idx": 92,
"question": "A pirate searches seven islands for buried treasure.
If each island has a $\\frac{1}{5}$ chance of having treasure, what
is the probability that exactly 4 of the islands have treasure?",
"answer": "\\frac{448}{15625}",
"model_prediction": "0.028672",
"model_response": "To solve this problem, we can use the binomial
probability formula. The probability of having exactly k successes
in n independent Bernoulli trials (each with success probability

p) is given by:\n\n\\[P(X = k) = \\binom{n}{k} pˆk (1-p)ˆ{n-k}
\\]\n\nHere, $n = 7$ (the number of islands), $k = 4$ (the number of
islands with treasure), and $p = \\frac{1}{5}$ (the probability

that a single island has treasure).\n\nThe binomial coefficient $\\
binom{n}{k}$ is the number of ways to choose k successes out of
n trials, and it is calculated as:\n\n\\[\\binom{n}{k} = \\frac{n
!}{k!(n-k)!} \\]\n\nSo, the probability that exactly 4 of the 7
islands have treasure is:\n\n\\[P(X = 4) = \\binom{7}{4} \\left(\\
frac{1}{5}\\right)ˆ4 \\left(\\frac{4}{5}\\right)ˆ{3} \\]\n\nLet’s
calculate this using Python.\n‘‘‘python\nimport math\n\n# Number of
islands\nn = 7\n# Number of islands with treasure\nk = 4\n#
Probability of a single island having treasure\np = 1/5\n\n#
Binomial coefficient\nbinom_coeff = math.comb(n, k)\n\n# Probability
calculation\nprobability = binom_coeff * (p**k) * ((1-p)**(n-k))\

nprint(probability)\n‘‘‘\n‘‘‘output\n0.02867200000000001\n‘‘‘\nThe
probability that exactly 4 of the 7 islands have treasure is \\(\\
boxed{0.028672}\\).",
"ground_truth": "\\frac{448}{15625}",
"rule_based": false,
"llm_verifier": false,
"llm_verifier_score": 0.0,
"llm_verifier_raw_value": "0.0",
"math_verify": true,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

"math_verify_score": 1.0
}

21

	Introduction
	Related Works
	Problem Setup and Algorithms
	Noisy Policy Gradient with Backward Correction (PGBC)
	Noisy Policy Gradient with Forward Correction (PGFC)

	Experiments
	Experimental Setup
	Synthetic Noise
	Real-World Noise
	Robustness to Noise Mis-Specification
	Case Studies

	Conclusion
	More Experimental Results
	Implementation Details
	Proofs and Derivations
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Theorem 2

	Prompt Templates and Training/Evaluation Details
	Prompt Templates
	Data Preprocessing
	Training Configuration
	Datasets

	False Positive (FP) and False Negative (FN) Examples

