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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) trains policies against
automated verifiers to avoid costly human labeling. To reduce vulnerability to
verifier hacking, many RLVR systems collapse rewards to binary {0, 1} during
training. This choice carries a cost: it introduces false negatives (rejecting correct
answers, FNs) and false positives (accepting incorrect ones, FPs). For instance,

a rule-based checker may mark the correct fraction % as wrong when compared

against the canonical % due to brittle parsing/equivalence rules (FN), while a large
language model (LLM) judges can be gamed by superficial cues or even a single
adversarial token, yielding inflated correctness for wrong solutions (FP). We for-
malize verifier unreliability by modeling the verifier as a stochastic reward channel
with asymmetric noise rates. From this abstraction, we derive two correction al-
gorithms for verifier errors. The first is a backward correction that de-biases the
observed binary reward to recover an unbiased estimator of the clean policy gradi-
ent. The second is a forward correction that reweights score-function terms so that
the expected update direction aligns with the clean gradient; notably, it requires
only the FN rate. We implement both as lightweight hooks in a group relative
policy optimization (GRPO)-based RLVR pipeline and evaluate them on math-
reasoning models and benchmarks. Across models and datasets, both corrections
improve over uncorrected training; the forward variant converges faster and re-
mains stable under heavier noise. Finally, we show a practical appeal mechanism
in which a lightweight LLM verifier estimates the FN rate online by rechecking
rule-based negatives, obtaining outperformance compared with other state-of-the-
art contenders.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) offers a scalable paradigm for improving
the reasoning abilities of Large Language Models (LLMs) by replacing expensive human annotation
with automated feedback (Wen et al., 2025)). In this problem, a policy is trained using rewards from
a verifier that automatically checks the correctness of a model’s output (Shao et al.| [2024b). The
efficacy of this approach, however, heavily depends on the verifier’s reliability. Emerging evidence
reveals that verifiers are systematically fallible in two critical and opposing ways: they can accept
incorrect solutions (false positives; FPs) or reject correct ones (false negatives; FNs) (Xu et al.
2025 Zhao et al., [2025)).

FPs have been widely documented as a vulnerability of LLM-based verifiers. Recent studies showed
that LLM judges can be swayed by superficial cues—e.g., popular specialized verifiers, such as GPT-
4o, give 35 % - 66.8% FP rate when the answer starts with Let’s solve this problem step by step (Zhao
et al.,[2025;|Shi et al., 2025 [2024a}; |Chen et al., 2024). Conversely, FNs are common with rule-based
verifiers. These checkers, while highly precise, are often brittle; they may reject valid solutions that
are formatted differently, expressed in an algebraically equivalent form, or embedded in explanatory
text (Hugging Face|,[2025)). A recent analysis of a math-RL dataset found that over 38% of responses
flagged as incorrect by a rule-based system were in fact correct, a gap that a lightweight LLM verifier
could partially close (Xu et al.,[2025). Both FPs and FNs materially degrade RLVR training: FNs
deprive the agent of informative gradients and slow convergence, while FPs reward hackable patterns
and inflate returns during policy optimization (Xu et al., 2025} |[Huang et al.,|2025} [Yan et al., | 2025).
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Figure 1: Verifier-noise flow in RLVR. An Al agent produces candidate solutions that are scored by
automated verifiers. While verifiers would yield false negatives (% Vs. %, reaching 38% rates (Xu
et al., [2025))) and false positives (mislead by “Let’s solve it step by step...”’, reaching 35% — 68%
rates (Zhao et al., [2025))), confusing the agent; applying our backward/forward corrections restores

correct learning signals.

Motivated by this asymmetry, we address these challenges by explicitly treating verifier errors as
noise in the reward signal. We model the verifier as a stochastic reward channel that corrupts the
true, latent reward with verifier-conditional probabilities—pg and p;. Building on this formulation,
we derive two estimators to counteract this noise. Our first method, noisy Policy Gradient with
Backward Correction (PGBC), inverts the noise process to compute an unbiased estimator of the
true reward, which can be used as a drop-in replacement in any advantage-estimation in RL. Our
second method, noisy Policy Gradient with Forward Correction (PGFC), directly reweights the
terms of the policy gradient to ensure its expected direction aligns with the clean gradient. This
approach requires only an estimate of p; to achieve directional correctness, making it suitable for
the often harder-to-estimate FP rate (Xu et al.l 2025). The pipeline is illustrated in Figure I]

We integrate these corrections into a group relative policy optimization (GRPO)-based RLVR
pipeline and demonstrate their effectiveness on competitive math reasoning benchmarks (Shao et al.|
2024a)). Both methods consistently outperform uncorrected training and achieve performance nearly
equivalent to that of noise-free scenarios, with the forward correction offering the fastest and most
stable convergence. We also propose a practical online estimation scheme for p;: a querying mech-
anism where a low-cost LLM verifier like TinyV (Xu et al., 2025) re-evaluates outputs rejected by
a primary rule-based checker. This hybrid approach provides a reliable estimate of the FN rate with
minimal computational overhead, recovering near-oracle performance. Our contributions are: (i) a
formal verifier-channel model for RLVR that captures the prevalent FP and FN errors; (ii) backward
and forward corrections derived from RL principles to calibrate policy learning; and (iii) a prac-
tical implementation for online noise estimation that makes these corrections viable in real-world
systems.

2 RELATED WORKS

Reasoning with LLMs. A large body of work improves LLM reasoning through prompting and
search at inference time. Chain-of-Thought (CoT) prompting elicits step-by-step rationales and
boosts arithmetic and commonsense reasoning (Wei et al., 2022)), while self-consistency aggregates
diverse reasoning paths to further improve robustness (Wang et al) 2022)). Decomposition-based
prompting, such as Least-to-Most, solves complex problems via ordered sub-problems (Zhou et al.|
2022); search-based schemes like Tree-of-Thoughts explicitly explore and evaluate alternative rea-
soning branches (Yao et al.,[2023)). Orthogonally, training-time verifier signals can be used to re-rank
candidate solutions, as in|Cobbe et al.| (2021). Our work is complementary: rather than proposing a
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new inference-time strategy or re-ranking scheme, we address how to perform policy optimization
when the reward itself—supplied by a verifier—is noisy.

RLVR and verifier reliability. Recent math-RL pipelines combine on-policy RL (e.g., GRPO)
with programmatic or LLM-based verifiers to yield verifiable rewards (Mroueh, 2025). However,
LLM-as-a-judge is prone to systematic biases, including position bias and prompt-based attacks,
producing false positives (accepting incorrect solutions) (Gu et al., [2024bj [Thakur et al.| 2024 |Shi
et al.,[2024b};|Goyal et al.| 2025} |Zeng et al.,[2024). Conversely, exact-match or brittle parsers in rule-
based checkers can miss algebraic equivalences and text-formatted answers, leading to widespread
false negatives (Li et al.,|2025ajb). A recent study shows that over 38% of model responses labeled
incorrect by a rule-based pipeline were in fact correct, and introduces a lightweight verifier (TinyV)
that recovers many such cases with minimal overhead (Xu et al., [2025). Prior efforts therefore
improve the verifier (e.g., better judges or appeals) or evaluation suites; in contrast, we treat verifier
errors as verifier-conditional noise and directly correct the policy gradient so that learning remains
aligned with the clean objective even when the verifier is imperfect.

Learning with noisy labels. While our method is derived from RL principles, it shares intuition
with the literature on learning with label noise. Wang et al.| (2020) model reward corruption via
a class-conditional confusion matrix and derive an unbiased surrogate reward for Q-learning algo-
rithms to solve control tasks. In supervised learning, a central thread is to make empirical-risk mini-
mization robust either by correcting the loss given a noise-transition model or by avoiding or down-
weighting suspected noisy examples (Song et al., 2020; [Li et al., [2021). The former includes the
unbiased-risk estimators of Natarajan et al.|(2013)) and the now-standard loss corrections of [Patrini
et al.|(2017). A second family avoids the noise explicitly by relying on the “small-loss first” memo-
rization dynamics of deep nets: curriculum/mentor methods (MentorNet) learn a weighting network
that feeds cleaner samples to the student, and Co-teaching trains two peers that exchange their se-
lected small-loss examples; semi-supervised hybrids such as DivideMix split data into clean/noisy
partitions via mixture modeling and co-train with consistency regularization (Jiang et al.,[2018;|Han
et al., 2018; |Li et al., [2020). Unlike these approaches, we target the policy gradient estimator in
RLVR: we instantiate both backward and forward corrections inside the policy gradient estimator to
stabilize and align RL under verifier noise.

3 PROBLEM SETUP AND ALGORITHMS

We consider the standard RLVR setting where a stochastic policy 7y generates a response y for a
given prompt x. The goal is to maximize an objective based on the true, or clean, reward R*(x,y) €
{0,1}, which indicates whether the response y is genuinely correct. This objective is typically
regularized by a KL-divergence term to a reference policy m,.f to maintain stability:

max J5(6) = B Eyor, (o] B (@) — BKL(mo(- | 2) | met(- | 2))],

in which KL denotes the KL-divergence. The policy gradient with respect to the unregularized
reward is given by the REINFORCE estimator, Vo J(0) = E[R*(x,y) >, Gi], where G; =
Vo log mo(y: | @, y<+) is the score function for the token at step ¢. In the follows we will replace
R(x,y) with R for brevity.

In practice, the clean reward R* is unavailable. Instead, the agent receives a noisy reward R(x,y) €
{0, 1} from an automated verifier. We model this verifier as a stochastic reward channel that flips
the latent clean reward to an observed noisy one. This channel is characterized by asymmetric,
verifier-conditional noise rates.

Definition 1 (Verifier Reward Channel). The observed verifier reward R is generated from the latent
clean reward R* according to the following conditional probabilities, which define:

P(R=1|R*=0) = po,
P(R=0|R*=1) = p1,

where pg, p1 € [0,0.5).
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Algorithm 1 Noisy Policy Gradient with Backward Correction (PGBC)

1: Input: Initial policy y; learning rate 7; batch size M; estimates of noise rates, (g, p1)-
2: loop

3:  Roll out M trajectories {(z;, ;) },, obtaining observed rewards { R; } ;.
4: For each trajectory ¢, compute the unbiased reward estimate:
—~ R — 5
R i
1—po—p1

5 Compute the policy gradient using the corrected rewards {Ez}ﬁl
6: Update parameters: 6 < 6 + n A6.
7: end loop

Based on this noise model, we establish a linear relationship between the expected noisy reward and
the clean reward, which is presented in Proposition
Proposition 1 (Connection between Corrupted Rewards and True Rewards). Under the Verifier

Reward Channel model, the expectation of the noisy reward R conditioned on the clean reward R*
is an affine transformation of R*:

E[R | R*] = (1—po—p1) R" + po.

The proof is provided in Appendix The central challenge of RLVR is that naively optimizing
with the noisy reward R leads to a biased policy gradient, causing the policy to learn from mistakes
of the verifier. Our goal is to develop policy gradient estimators that use only the observable noisy
reward R but the expectation is either identical or parallel to the true policy gradient Vy.J(6). We
integrate these estimators within REINFORCE-style policy gradient algorithms widely used for

reasoning tasks that compute normalized advantages over a group of sampled trajectories (Shao
et al.l[2024b).

3.1 Noisy POLICY GRADIENT WITH BACKWARD CORRECTION (PGBC)

Our first proposed approach aims to construct an unbiased estimator of the true reward R* by “in-
verting” the noise process. Since the expected noisy reward IE[R | R*] is an affine transformation
of the clean reward R* in Propositionﬂ], we can solve for R* to derive a corrected reward estimator,
R, that is unbiased in expectation.

Theorem 1 (Unbiased Reward Estimator). Given the verifier channel with known noise rates pg
and py with pg, p1 € [0,0.5), the estimator

~ R—
R— Po
1—po—p1

-~

is an unbiased estimator of the true reward R*(x,y), i.e, E[R] = R*.

The proof is provided in Appendix Theorem |1 shows that, by replacing the noisy reward R

with R in any standard policy gradient formulation, we obtain an unbiased estimate of the true
policy gradient. The expected update direction is not merely aligned with the clean gradient; it is
identical. This allows R to serve as a drop-in replacement for the reward signal in complex RL
algorithms like GRPO, seamlessly integrating with advantage estimation and other machinery. The
details of the backward correction algorithm are summarized in Algorithm [I] After rolling out a
set of trajectories and obtaining their rewards, we use the corrected rewards to compute the policy
gradients for model update.

3.2 Noisy PoLICY GRADIENT WITH FORWARD CORRECTION (PGFC)

While PGBC provides an elegant unbiased estimator, it faces two practical challenges. First, the
denominator (1 — pg — p1) can be small if the total noise rate is high, leading to high variance in
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Algorithm 2 Noisy Policy Gradient with Forward Correction (PGFC)

1: Input: Initial policy y; learning rate 7; batch size M ; an estimate of the false negative rate, p;.
2: loop

3: Roll out M trajectories and observe rewards {R;} .

4 For each trajectory 4, define the weight based on the observed reward R;:

A~ 71 ,f "i:
U)RZ — {pl ) if R 07

1, if R, = 1.
5: For each trajectory 4, compute the score-function term G; and the weighted term h; <
w Ri G1
6: Form the policy gradient estimate: § < ﬁ vail h.
7: Update parameters: 6 < 6 + 7 g.
8: end loop

the reward estimate R and potentially unstable training. Second, it requires accurate estimation of
both the false positive rate pg and the false negative rate p;, which are usually difficult to obtain in
practice. The PGFC approach is introduced to mitigate these issues.

Instead of correcting the reward itself, this method directly modifies the policy gradient estimator to
ensure its expectation is correctly aligned. The core idea is to reweight the score function G under
the ¢-th token based on the observed noisy reward R. We define an update term h; = wzG; and
choose the forward weights w (for R = 0) and w; (for R = 1) such that the expected update E[h;]
is parallel to the clean gradient VyJ (). The key insight is to choose the forward weights so that the
conditional expectations given the true reward R* have a specific structure.

Proposition 2 (Conditional Expectation of Forward Weights). Let the forward weights be defined as
wo = p1 — 1 and w1 = p1. Under the Verifier Reward Channel model, the conditional expectations
of the corresponding weight w given the true reward R* are:

I. Blwy | R* =1] = 0.
2. Elwg | R*=0] = —(1—po — p1).

The proof can be found in Appendix Proposition |2| reveals that, in expectation, the forward
weights are chosen so that their conditional expectation vanishes when R* = 1, i.e., truly positive
cases do not require correction. Consequently, the explicit contribution to the correction term arises
from samples with R* = 0. This structure allows us to recover the correct gradient direction, as
shown in the following theorem.

Theorem 2 (Policy Gradient Correction with Only p1). Let the gradient-update term be A0 =
ﬁ ZwR Gy, where wg = p1 — 1 and w1 = py. Under the Verifier Reward Channel model, the
expected update is parallel to the clean policy gradient:

E[A0] = ¢VyJ(6),
in which ¢ = (1 — po — p1)-
The proof is given in Appendix[C.4] Since 1 — pg — p1 > 0, Theorem [2] guarantees that the expected
update of the policy points in the same direction as the true gradient; meanwhile, the positive scaling
factor (1 — po — p1) can be absorbed into the learning rate. By avoiding the inverse operation of
PGBC, PGFC circumvents the variance-inflation problem. Furthermore, its reliance solely on p;

makes it more practical, as the false negative rate is often the more dominant and easily estimable
error source in RLVR with rule-based verifiers.

In practice, we estimate p; during training by appealing a small, uniformly random subset of rule-
based negatives to a lightweight LLM verifier (e.g., TinyV (Xu et al., [2025)) and then smoothing
the empirical flip rate. Concretely, at step ¢, let ngf) be items labeled negative by the rule-based
verifier, PF(f ) the rule-based positives, and sample a fraction ¢ € (0, 1] of /\/'1({) for appeal; denote by
Pr(f) those appealed items that the LLM flips to positive (i.e., rule-negative & LLM-positive). Using
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a Horvitz—Thompson correction (Karwa & Airoldi, 2023)), we estimate FN as \Pl(f) |/q and TP as

t
1P| (Since rule-based FP should be 0). We then set 5" = — P21/ i with small Beta-
|PL |/q+|PR |+O‘+ﬁ
prior pseudocounts «, 3 (we use 10~°), and apply EMA smoothing over a sliding window. If both
po and pp are available, one can use PGBC:; if only p; is available, use PGFC. We include implemen-
tation details in Appendix [B]and release code atht tps://anonymous. 4open.science/r/
noisy—RLVR-2BE9/README . md.

4 EXPERIMENTS

We evaluate our approach under both synthetic and real-world verifier noise. We first spell out
the experimental protocol—models, verifiers, training recipe, evaluation suites, metrics, and com-
pute—and then present ablations and main results. Unless otherwise noted, sampling hyperparame-
ters and KL regularization are held fixed across conditions.

4.1 EXPERIMENTAL SETUP

We train on two small backbones, Qwen2.5-Math-1.5B and DeepSeek-R1-Distill-Qwen-1.5B, and
probe scale with Qwen2.5-Math-7B. Rewards come from either (i) a rule-based checker that ex-
tracts the final \boxed{\cdot } answer and tests numeric/rational equivalence or (ii) a lightweight
LLM verifier (TinyV 1.5B) used for appeals/estimation; prior work motivates explicit noise mod-
eling due to systematic FP/FN behavior in these verifiers. Unless stated otherwise, we follow
the DeepScaleR corpus and a GRPO-style on-policy recipe with BoN sampling, implement-
ing our backward and forward corrections as drop-in hooks at the advantage-construction stage
within VERL. Evaluation uses six verifiable math suites—AIME-2024, AIME-2025, AMC-
2023, MATH500, MINERVA MATH, and OLYMPIADBENCH—reporting Pass@ ] with 16 sam-
ples (Pass@8 appears in the appendix). Compute is 8 xA100 (40GB) GPUs servers; unless noted,
KL schedules, sampling temperatures, and other rollout settings are kept identical across compared
conditions.

4.2 SYNTHETIC NOISE

To disentangle optimization effects from verifier unreliability, we inject verifier-conditional noise
into the binary reward stream during training. Concretely, when the latent clean reward is R* €
{0,1}, the observed reward R is drawn from a reward channel with Pr(R=1| R*=0) = po and
Pr(R=0 | R*=1) = py; unless stated otherwise we use po=0.1 and p;=0.2. We train GRPO
on DeepScaleR with identical sampling and KL settings across conditions, and evaluate Pass@1
(16 samples) on AIME-2024/2025, AMC-2023, MATH500, MINERVA MATH, and OLYMPIAD-
BENCH. We compare five variants: Base (no RL), Oracle (clean revyards), Noise (uncorrected),
and our two corrections—PGBC (backward correction using R = T _Rp_o‘i Opl) and PGFC (forward
correction that rescales the gradient using p; only).

As illustrated in Figure 2] across models and benchmarks, the injected noise degrades uncorrected
GRPO substantially, while both corrections recover most of the gap to the oracle. On DeepSeek-R1-
Distill-Qwen-1.5B, uncorrected training under noise underperforms the oracle across all tasks (e.g.,
a noticeably lower Average), whereas PGBC and PGFC nearly match oracle performance; PGFC is
consistently as good as or slightly better than PGBC, echoing its variance advantages from avoiding
division by (1 — pg — p1). From Qwen2.5-Math-1.5B and DeepSeek-RI-Distill-Qwen-1.5B, as well
as the up-scale model Qwen2.5-Math-7B, we observe the same pattern: noise hurts, PGBC/PGFC
close the gap compared with Oracle.

4.3 REAL-WORLD NOISE

As discussed above, automated verifiers exhibit both false positives (LLM judges over-crediting in-
correct solutions) and false negatives (rule-based checkers rejecting correct ones) (Gu et al., 2024a;
Xu et al., [2025} [Li et al., [2025bja)). In math RL pipelines, the latter is particularly prevalent: brittle
exact-match or limited equivalence rules lead to many valid answers being scored as incorrect, de-
priving the agent of learning signal. Motivated by this, in this subsection we specifically investigate
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Figure 2: Synthetic-Noise Results on Qwen2.5-Math-1.5B, DeepSeek-R1-Distill-Qwen-1.5B, and
QOwen2.5-Math-7B. Base: baseline without RL; Oracle: Training with clean rewards; Noise:
Training with noisy verifier rewards; Noise BC: Training with noise under backward correction;
Noise_FC: Training with noise under forward correction.

whether denoising false negatives—i.e., estimating p1 as in Section [3.2}—can measurably improve
policy optimization. Concretely, we keep a fast rule-based checker as the primary reward source
and whenever it returns R=0, trigger an appeals pass with a lightweight LLM verifier (TinyV) ( m

et al, [2025). From disagreements on negatives we maintain an online estimate j; (EMA over a
sliding window to track policy drift).

Results in Table[T]show a consistent pattern across backbones and benchmarks. Using a lightweight
LLM as the reward (LV) underperforms the rule-based pipeline, corroborating prior observations
that LLM judges are bias-prone and gameable (Gu et all, 20244} [Shi et al., 2024b). Employing the
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Table 1: Real-world noise with appeals on negative samples and forward correction results. Rule:
rule-based rewards; LV: direct LLM-judge rewards; Adds on: rule-based reward plus LLM ap-
peals on negative samples (no gradient correction); FCO: forward correction using online p.

(a) Qwen2.5-Math-1.5B

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH  Olympiad Bench \ Average
Base 6.0 4.0 342 475 5.1 25.1 20.3
Rule 15.0 5.6 50.3 69.4 17.8 31.6 31.6
LV 10.9 4.7 42.1 63.0 15.9 253 27.0
Adds on 11.9 5.8 47.8 68.3 16.7 29.8 30.1
PGFC (Ours) 20.3 10.7 53.3 68.6 16.5 329 33.7

(b) DeepSeek-R1-Distill-Qwen-1.5B

Dataset AIME2024  AIME2025 AMC2023 Math500 Minerva MATH  Olympiad Bench | Average
Base 9.0 9.4 41.4 61.1 10.5 229 257
Rule 19.0 17.5 65.6 77.6 19.9 38.5 39.7
LV 11.9 12.7 52.3 69.8 14.2 31.9 32.1
Adds on 21.7 17.3 66.2 77.4 20.0 37.9 40.1
PGFC (Ours) 23.2 22.5 70.7 78.2 19.4 41.0 42.5

(c) Qwen2.5-Math-7B

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH  Olympiad Bench ‘ Average
Base 12.7 5.8 44.4 52.0 9.8 26.4 25.2
Rule 29.2 13.5 62.8 78.9 24.2 37.8 41.1
LV 16.8 6.8 50.2 62.5 10.1 31.0 29.6
Adds on 27.4 11.8 63.7 74.9 20.6 37.6 39.3
PGFC (Ours) 31.0 14.6 65.7 81.6 26.2 39.3 43.1
Sa0] RO ERe BRL WL o0y 208 301 Sa0f 2oL 308 311 302 o 228 <30 295 299 305 36 90 294 306
§20 gZO EZO
T@ém %‘10 F%‘m
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b1 Ao e
(a) BC: po=0.1, p1 €[0.1,0.3] (b) BC: $1=0.2, po €[0.0,0.2] (¢) FC: po=0.1, p1 €[0.1,0.3]

Figure 3: Robustness results. (a) Backward correction (BC) with pg fixed and sweeping p1; (b)
Backward correction (BC) with p; fixed and sweeping pg; (c) Forward correction (FC) with pg fixed
and sweeping p;. Replace each placeholder with your heatmap later.

LLM as adds-on to recheck rule-based negatives (Adds on) reduces FN and yields a modest but
reliable lift, yet the benefit remains indirect because the primary gradient is still driven by noisy
binary rewards. In contrast, our forward correction (FCO) directly applies the FN correction to the
policy gradient via weights w5 € {p1 — 1, 1 }, and it delivers the strongest and stable improvements.

4.4 ROBUSTNESS TO NOISE MIS-SPECIFICATION

There now exist practical procedures to estimate verifier false positive/false negative rates—our
po and p;—via rule-based equivalence checkers (e.g., MATH-VERIFY), lightweight appeals/judges
such as TinyV, and meta-evaluation suites that quantify verifier reliability (Hugging Facel 2025} Xu
et al., [2025; [Li et al., 2025azb; |Gu et al. 2024a). In real deployments, however, these estimates
can be imperfect. We therefore test how backward and forward corrections behave under mis-
specified noise rates. We follow the synthetic-noise setting from Section {f.2] with Qwen2.5-math-
1.5B: rewards are corrupted at data-time with pg=0.1, p1=0.2. During training, we intentionally
feed each algorithm mis-specified rates from a grid po € [0.0,0.2], p1 € [0.1,0.3], and report the
Average Pass@1 (16 samples) across our six benchmarks. Because the forward method only requires
the false negative rate, we vary p; for forward correction while keeping po unused. Heatmaps
summarizing the sweep are shown in Fig.[3]

Backward correction remains strong when the total noise is underestimated, but performance de-
grades as we overestimate the rates (i.e., as 1 — pg — py shrinks). Intuitively, the unbiased de-biasing,
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R = T fﬁ;‘i Om , involves an inverse factor that amplifies reward variance and accentuates estimation
error when the effective denominator becomes small; this sensitivity to mis-specified transition mod-
els aligns with the loss-correction literature for noisy labels. In contrast, forward correction exhibits
a notably flat response curve around the true p;; perturbing p; changes only the per-sample weights

and avoids any inverse operation, yielding lower-variance policy gradient estimates.

4.5 CASE STUDIES

We also provide typical failure modes observed during math RL with automated verifiers on
Qwen?2.5-Math-7B under MATH500 dataset. For rule-based verifier: 0 FN and 52 FPs out of
500 items (marginal rates 0% and 10.4%); for LLM verifier: 168 FNs and 81 FPs out of 500 items
(marginal rates 33.6% and 81.4%). The FP case shows an LLM judge over-crediting a malformed
solution, while the FN case shows a rule-based checker rejecting a numerically correct answer due
to formatting. The raw context can be found in Appendix [E]

False Positive (FP).
Problem. Compute: 1 —2 +3 — 4+ --- 4+ 99 — 100.

Ground truth.

Model response (excerpt).

Compute: $1+2-3-4+5+6-7-8+\dots+97+98-99-1005.
\boxed{ } \boxed{ } \boxed{ } \dots

Verifier signals. Rule-based checker: X (incorrect); LLM judge: v (incorrectly accepts) = FP.

False Negative (FN).
Problem. Each of seven islands independently has treasure with probability % What is the
probability that exactly four islands have treasure?

448
Correct answer. 5625 (equals 0.028672).

Model answer. | 0.028672

Verifier signals. Rule-based exact-match: X (expects a fraction); numeric equivalence check: v/
(values match) = FN.

5 CONCLUSION

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a practical and increas-
ingly popular paradigm for training reasoning-focused LLMs. Yet binarized rewards inevitably
suffer from false positives (FP) and false negatives (FN). Prior efforts largely mitigate these errors
from the verifier side—e.g., debiasing LLM judges or strengthening equivalence checking—to re-
duce the downstream impact on learning (Gu et al.| |2024a; |Li et al.| |2025azb; [Hugging Facel [2025).
In contrast, we model verifier unreliability as a verifier-conditional noise channel with rates (pg, p1)
and introduce two theory-driven corrections that act directly at the policy-learning interface. The
backward correction de-biases the observed reward to yield an unbiased gradient estimator; it re-
quires estimates (g, p1) but is agnostic to the choice of policy-optimization algorithm and can thus
be used beyond policy gradient methods (Natarajan et al., 2013} |[Patrini et al., 2017). The forward
correction rescales score-function terms so that the expected update is aligned with the clean gradi-
ent; notably, it needs only p;, which is often the dominant—and more readily estimable—source of
real-world noise due to rule-based FNs (Li et al., 2025b; [Hugging Face, [2025; Xu et al., [2025)).

While we instantiated appeals with a lightweight LLM verifier for efficiency, the same backward/for-
ward correction mechanisms should also gains from stronger verifiers or richer equivalence checkers
(Xu et al., 2025). Meanwhile, currently using the constant noise rate, the proposed models already
show clear advantages. This means that the constant noise rate pg and p; approximate the real-
world noise rate well. However, real-world noise can be very complex, e.g., depending both on the
contents and verifiers po(x, y) and p;(z,y), leaving interesting future directions.
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Figure 4: Synthetic-Noise Results on Qwen2.5-Math-7B. Base: baseline without RL; : Train-

ing with clean rewards; Noise: Training with noisy verifier rewards; PGBC: Training with noise
under backward correction; PGFC: Training with noise under forward correction.

Table 2: Real-world noise with appeals on negative samples and forward correction on Qwen2.5-
Math-7B. Rule: rule-based rewards; LV: direct LLM-judge rewards; Adds on: rule-based reward
plus LLM appeals on negative samples (no gradient correction); FCO: forward correction using
online p1.

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH  Olympiad Bench ‘ Average
Base 36.2 233 81.9 66.6 11.8 339 423
Oracle 50.0 28.7 83.4 82.8 29.0 45.8 533
LV 41.7 22.1 81.9 69.0 132 39.4 44.6
Adds on 47.1 30.4 84.4 80.8 235 45.6 52.0
PGFC (Ours) 54.6 30.4 82.8 83.2 29.0 47.6 54.6

LLM USAGE DISCLOSURE

Large Language Models were used solely for English language polishing (grammar and minor
wording); all technical contributions—including algorithms, proofs, code, experiments, and anal-
yses—were conceived and validated by the authors.

A MORE EXPERIMENTAL RESULTS

In this section, we also report the average Pass@S8 results on Qwen2.5-Math-7B to investigate
whether our algorithms can still achieve better performance under more relaxed metrics with up-
scale models. The experiment setups align that of Section[d.2]and [4.3]

As shown in Figure ] and Table 2] the conclusion in the main paper remains the same: our method
can still obtain the best results with both synthetic and real-world noise.

B IMPLEMENTATION DETAILS

We describe how to integrate Algorithm 1 (backward, unbiased reward de-biasing) and Algorithm 2
(forward, gradient-scaled) into Group Relative Policy Optimization (GRPO) under both outcome and
process supervision. GRPO samples, for each prompt z, a group of K responses {y;}X, from the
behavior policy, computes a group-normalized advantage for each sample (or step), and then applies
a PPO-style clipped surrogate with a separate KL regularizer to a reference policy; no value network
is used. Our modifications are confined to the advantage-construction stage, leaving ratio clipping
and KL loss unchanged (details of GRPO in (Shao et al.,[2024b)) and open-source implementations).
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Notation (shared). Let 7y be the current policy and 7,1q the behavior policy. Define token-level

Tolyidr.yi<d)  GRPO’s PPO-style surrogate at token ¢ uses an advantage A

ratios r; ; = S TP

lyil

Lgrpo =% Z i Zmln rztAlt, clip(r; ¢, 1£e) An) — BKL(mg||7ret),

where the KL term is added to the loss rather than folded into the reward. Our corrections only
change how A; ; is formed.

OUTCOME SUPERVISION (ONE SCALAR REWARD PER RESPONSE)

For each ¢, we observe a binary verifier reward 7; € {0, 1}.

Algo 1 (Backward) in GRPO. First construct an unbiased per-sample reward
N i — Po
r, = —— -
1—po—p1
Compute group statistics on {7; } 2, :

1 X
rf?;r,-, s =

Define the group-normalized advantage constant across tokens of the same response,

, T ,
aéb“k) = 7;+€7 Ai,t = agdek), Vt.

This is a drop-in replacement for the usual GRPO outcome-advantage, with the sole change being
that the group mean/variance are computed over de-noised rewards 7; rather than raw 7.

Algo 2 (Forward) in GRPO. First form the standard GRPO outcome-advantage from the observed
rewards: _

T —T
std({7;}) + ¢’

Then apply the forward weight determined only by p1:

Air = a;, V.

a; =

o1 — 1 ~i: )
w; = {’fl ’ t 0 Aip — wi- Ay
P1, 7"1':1, ’ ’

Intuitively, the group-normalization is a positive scaling of each sample’s (token-shared) factor, so
multiplying by w; implements the same gradient scaling as in REINFORCE, but expressed at the
advantage level that GRPO’s surrogate consumes. The rest of GRPO (ratio clipping, KL loss) is
unchanged.

PROCESS SUPERVISION (STEP-WISE REWARDS)

Suppose each response y; has step indices index; (1) < --- < index; (K;) with step-level observed

rewards 7’(] ) attached at those indices. GRPO forms step-normalized rewards and turns them into
token advantages by backward accumulation over steps.

Algo 1 (Backward) in GRPO-Process. De-noise each step reward:
( ) _ s
) " = bo _
’ 1—po—p1
Normalize across the group and steps in the current batch following GRPO’s process recipe:
~() _ ﬁj) - mean({?(gm)})
std({7y™}) + ¢

9
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Accumulate into token-level advantages (for all tokens ¢ at or before the j-th step boundary):
D D
index; (j)>t
This mirrors the standard GRPO-Process pipeline, but with 7 replaced by 7.

Algo 2 (Forward) in GRPO-Process. First follow the standard GRPO-Process normalization to

X (

Z-j ) from the observed fij ), then accumulate the token advantages

Ai,t = Z Ff]) )

index; (j)>t

obtain

and finally apply forward weights. If the verifier outputs are binary per step, use

A ~(7)

j -1, r77 =0, N ~(

w?) = {pf G, Awe > @),
P15 v index; (j)>t

If only a final binary reward is available, use a single sample-level weight w; for all steps of y; (as
in outcome supervision) after the standard process accumulation.

Practical notes. (i) Where to hook. Implement the corrections exactly at the interface where
GRPO converts rewards to (group-)normalized advantages; no change to sampling, clipping, opti-
mizer, or KL regularization. (ii) Stability. Backward correction can inflate variance when 1— pg— 1
is small; GRPO’s group normalization mitigates scale but not variance—use ¢ and EMA’d statistics
as in practice. (iii) Forward variant. Because group normalization is a positive rescaling, post-
normalization multiplication by w preserves the intended gradient-direction property from the RE-
INFORCE analysis while keeping the rest of GRPO intact. Open-source GRPO implementations
follow this decomposition (reward—advantage, then PPO-style surrogate + KL loss).

C PROOFS AND DERIVATIONS

C.1 PROOF OF PROPOSITION[I]

Proof. We compute the expectation of the noisy reward R conditioned on the clean reward R*,
which is a binary variable. By the definition of expectation:

E[R|=1-P(R=1|R*)+0-P(R=0|R")
=P(R=1|R").
We can expand this using the law of total probability, conditioning on the value of R* € {0,1}:
ER|R]=R* P(R=1|R*=1)+(1-R*)-P(R=1| R* =0).
From Deﬁnition we have P(R = 1 | R* = 0) = pp and P(R = 0 | R* = 1) = py, which implies
P(R=1]| R* =1) =1 — py. Substituting these values:
E[R| Rl =R*(1-p)+(1-R")po

=R"—p1R" + po — poR*

= (1=po—p1)R* + po.
This completes the proof. O

C.2 PROOF OF THEOREM[I]

Proof. From proposition[I] we have:
E[R| R*] = (1—po— p1)R* + po.
Taking the full expectation of R:

gy = BRI 0 _ (A= po —pOR +p0) = o _ .
1=po—p1 I—=po—p ’

showing unbiasedness. ]
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C.3 PROOF OF PROPOSITION[Z]

Proof. The proposition states two claims about the conditional expectation of the forward weights.
The weights are defined as:

e — {w0:p1—1 if]?:O,
R wy = p1 if R=1.
The noise model provides the conditional probabilities:
Pr(R=0|R*=1)=p;, Pr(R=1|R*'=1)=1-p
Pr(R=1|R*=0)=py, Pr(R=0|R"=0)=1-pp

Part 1: Proof of E[wj | R* =1] =0 We compute the expectation of w  conditioned on the true
reward being positive (R* = 1):

Ews | R*=1]= Y wi-Pr(R=Fk|R* =1)
ke{0,1}
—wy-Pr(R=0|R*=1)+w -Pr(R=1|R"=1)
(p1=1) - (p1) + (p1) - (1 = p1)

= (p} — p1) + (p1 — p1)
—0.

Part 2: Proof of Elw; | R* = 0] = —(1 — po — p1) Next, we compute the expectation of w
conditioned on the true reward being negative (R* = 0):
Elwp | R*=01= Y  wy Pr(R=Fk|R" =0)
ke{0,1}

=wy-Pr(R=0|R*=0)4w;-Pr(R=1| R* =0)
=(p1—1)- (1= po) + (p1) - (po)

= (p1 — pop1 — 1 + po) + pop1

=p1+po—1

=—(1=po—p1).

This proves both claims of the proposition. O

C.4 PROOF OF THEOREM[Z]

Proof. We want to show that E[A#] = (1 — po — p1) VoJ(0), where A = 4 fil h and

hi = wzGy. By linearity of expectation and assuming i.i.d. samples, it suffices to show this for a
single sample’s contribution, E[h;].
We use the law of total expectation, conditioning on the latent true reward R* € {0, 1}:
Elh] = ElwzGy] = E[E[wz G, | R*]]
=Pr(R* =1)E[wzG; | R* = 1]+ Pr(R* = 0) E[lwzG: | R* = 0].

The noise process generating R is independent of the policy’s action generation process (which
produces G;), conditional on the true reward R*. Thus, we can separate the expectations:

EwzGe | R*] = Elwg | R*] - E[G, | R"].
Using the results from Proposition 2}
* Elwg | R*=1] =0.

* Elwg | R* =0] = —(1—po — p1).

17



Under review as a conference paper at ICLR 2026

Substituting these back into the main expectation formula:

ElwzGi] = Pr(R* = 1) - (0)-E[G, | R = 1] + Pr(R* = 0) - (~(1 — po — p1)) - E[G¢ | R* = 0]
= —(1 — pPo — pl) . PY(R* = O)E[Gt | R* = 0]
=—(L=po—p1) E[l{g-—0yGi],

where 1.y is the indicator function. From two fundamental properties of the score function:

1. The unconditional expectation is zero: E[G}] = 0 (Williams} 1992} |Sutton et al.,|1999).

2. The clean policy gradient is Vo J(0) = E[R*G,].

From property 1, we have E[G;] = E[(1{g+=1} + 1{g-=0})G¢] = E[R*G}] + E[1{g-—01G:] = 0.
This implies that E[1{z-—0}G:] = —E[R*G| = —VJ(0).

Finally, we substitute this back into our expression for the expected update direction:
Elh] = ElwzG]
=—(1—po—p1) E[l{r-—0, G4
=—(1=po—p1)- (=VeJ(9))
=(1—po—p1)VeJ(0).

Therefore, the expectation of the full update is E[A0] = 37 " E[h,] = (1 — po — p1)VJ (). This
completes the proof. O

D PROMPT TEMPLATES AND TRAINING/EVALUATION DETAILS

This section records the exact prompt formats and the concrete hyperparameters we used for all ex-
periments in Reinforcement Learning with Verifiable yet Noisy Rewards under Unreliable Verifiers.
We mirror the level of detail used in recent RLVR appendices and report settings sufficient for full
reproducibility from our released code.

D.1 PROMPT TEMPLATES

Training (generation) prompt. For each math problem z (a plain-text question), the user message
is built by concatenating the raw question with a short instruction that elicits chain-of-thought and
enforces a verifiable answer format.

<user>
{QUESTION}

Let’s think step by step and enclose the reasoning process within <
think> and </think> tags.

The final result in the answer MUST BE within \boxed{}.

</user>

During data preprocessing, we write chat-style JSON with a single user turn as shown above and
attach the rule-based ground-truth answer for reward checking.

Evaluation (validation/test) prompt. We use the same prompt template as training for validation
and test-time generation so that the rule-based verifier can parse the boxed answer consistently.

Verifier I/0. The rule-based checker operates on the model’s final string and extracts the last
\boxed{ ...} expression; it then applies numeric/rational parsing and equality tests to pro-
duce a binary reward R € {0,1}. When the LLM verifier is enabled, it receives the pair
(problem, model solution) and returns a binary correctness decision used only to estimate the false
negative rate p; over a sliding window. The LLM verifier does not replace the rule-based reward.
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D.2 DATA PREPROCESSING

We load the preview split of the math-reasoning corpus and map each example to a chat-style record
as above, keeping the reference (ground-truth) answer for programmatic checking.

D.3 TRAINING CONFIGURATION

Unless otherwise stated, all runs use GRPO (outcome supervision) with the following constants.

Training (GRPO)

Train batch size

128

Rollouts per question (group size) 8

Max prompt length (tokens)

512

Max response length (tokens) 3072

Sampling temperature (rollouts) 1.0

Advantage estimator Group-normalized (GRPO)
KL regularization Enabled

KL coefficient 5 0.001

Entropy coefficient 0.0

Optimizer AdamW

Learning rate 3e-6

Total epochs 1

Table 3: Core training settings.

Model/backbone. We load the base model from local cache (HuggingFace layout), enable FSDP2
for actor/ref, and use shared-memory weights with remove-padding for efficient vLLM rollouts. The
KL is computed w.r.t. a frozen reference initialized from the same base.

D.4 DATASETS
Training.

* DeepScaleR (Luo et al.l 2025): the math-reasoning corpus used for RLVR rollouts and
policy updates.

Evaluation. We evaluate with the standard official/problem releases for each benchmark and apply
the same rule-based programmatic checking protocol throughout.

« MATHS500 (Lightman et al., 2023): a verifiable subset of math reasoning problems for
reliable evaluation.

» AIME 2024 (HuggingFaceH4, 2024): the 2024 American Invitational Mathematics Exam-
ination set.

* AIME 2025 (OpenCompass} 2025): the 2025 AIME set.

o AMC 2023 (math-ai, 2025): problems from the 2023 American Mathematics Competi-
tions.

* Minerva Math (Lewkowycz et al.}[2022): the Minerva math evaluation suite.

* OlympiadBench (He et al.,|[2024)): olympiad-level mathematics benchmark.

E FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) EXAMPLES

We provide FP and FN examples using Qwen2.5-Math-7B base model on MATH 500.
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"idx": 16,

"question":
"model_prediction":
"model_response":

"Compute: $1-2+3-4+5- \\dots +99-100$.",
"{}",

"Compute: $1+2-3-4+5+6-7-8+ \\dots +97+98-99-100$

\\boxed{{}}.

\\boxed{{}}.

\\boxed{{}}.

\\boxed{{}}.

\\boxed{{}}.

\\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\",
"ground_truth": "-50",

"rule_based": false,

"llm_verifier": true,

"llm verifier_ score": 1.0,
"llm _verifier_raw_value":
"math_verify": false,
"math_verify_score": 0.0

"1.0",

b

FN
{
"idx": 92,
"question": "A pirate searches seven islands for buried treasure.
If each island has a S$\\frac{1l}{5}$ chance of having treasure, what
is the probability that exactly 4 of the islands have treasure?",
"answer": "\\frac{448}{15625}",
"model_prediction": "0.028672",

"model_response": "To solve this problem, we can use the binomial
probability formula. The probability of having exactly $k$ successes
in $n$ independent Bernoulli trials (each with success probability

$p$) is given by:\n\n\\[ P(X = k) = \\binom{n}{k} p°k (1-p) {n-k}
\\1\n\nHere, $n = 7$ (the number of islands), Sk = 4$ (the number of
islands with treasure), and $p = \\frac{1l}{5}$ (the probability
that a single island has treasure).\n\nThe binomial coefficient $\\
binom{n}{k}$ is the number of ways to choose $k$ successes out of
$n$ trials, and it is calculated as:\n\n\\[ \\binom{n}{k} = \\frac{n
'1{k! (n=k) !} \\]\n\nSo, the probability that exactly 4 of the 7
islands have treasure is:\n\n\\[ P(X = 4) = \\binom{7}{4} \\left (\\
frac{1}{5}\\right) "4 \\left (\\frac{4}{5}\\right) {3} \\]l\n\nLet’s
calculate this using Python.\n''‘python\nimport math\n\n# Number of
islands\nn = 7\n# Number of islands with treasure\nk = 4\n#
Probability of a single island having treasure\np = 1/5\n\n#
Binomial coefficient\nbinom_coeff = math.comb(n, k)\n\n# Probability
calculation\nprobability = binom_coeff x (px*k) * ((l-p)=**(n-k))\
nprint (probability)\n***\n'*‘output\n0.02867200000000001\n"**\nThe
probability that exactly 4 of the 7 islands have treasure is \\ (\\
boxed{0.028672}\\).",
"ground_truth": "\\frac{448}{15625}",
"rule_based": false,
"llm _verifier": false,
"llm_verifier_score": 0.0,
"llm verifier raw_value":
"math_verify": true,

"0.0",
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}

"math_verify_score":

1

.0
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