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Abstract: The combination of behavioural cloning and neural networks has
driven significant progress in robotic manipulation. As these algorithms may
require a large number of demonstrations for each task of interest, they remain
fundamentally inefficient in complex scenarios. This issue is aggravated when the
system is treated as a black-box, ignoring its physical properties. This work char-
acterises widespread properties of robotic manipulation, such as pose equivariance
and locality. We empirically demonstrate that transformations arising from each
of these properties allow neural policies trained with behavioural cloning to better
generalise to out-of-distribution problem instances.
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1 Introduction

The behavioural cloning (BC) paradigm has been the foundation of recent advances in robotic ma-
nipulation [1, 2]. BC is particularly promising for robot manipulation, as humans are very proficient
in general manipulation, and can quickly learn to collect demonstrations when given a well-designed
interface [3]. An important benefit of using this data to train a robot policy is that it can be collected
on the real system, thus avoiding the sim-to-real gap. However, as a supervised learning method,
BC requires the collected data to cover the workspace with relatively high density [4, 5, 6]. Neu-
ral networks trained with BC, and more generally functions estimated through supervised learning,
hardly generalise outside the support of the training data, i.e. ”out-of-distribution” (OOD) [7, 8].
Policy prediction for OOD states can be arbitrary, which poses a safety risk. Avoiding OOD states
by providing sufficient data coverage can quickly become infeasible. This is particularly aggravat-
ing for robotic manipulation, as collection of human demonstrations remains time intensive and thus
expensive [2].

This work highlights and leverages practical assumptions on object-centric manipulation tasks, and
explores a family of problem space transformations that enable OOD generalisation with respect
to the original problem space. We observe that these transformations are a crucial design compo-
nent for learning-based control of manipulators, and enable policies learned through simple BC to
perform well on OOD states. We present three main contributions: (i) we determine properties
underlying practical manipulation problems; (ii) we describe several transformations of the prob-
lem space that embed these properties; (iii) we provide experimental results demonstrating that the
choice of problem space transformation drastically impacts the ability of OOD generalisation for
three robotic manipulation tasks.

2 Preliminaries

Behavioural Cloning We assume that the data is collected in a finite-horizon Markov Decision
Process (MDP) modelled as tuple M = (X ,A, P,R, µ0, H), where X is the state space, A is the
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action space, R : X ×A → R is the reward function, P : X ×A → ∆(X ) is the dynamics
transition probability function, µ0 ∈ ∆(X ) is the initial state distribution and H is the horizon. BC
learns a parameterised policy πθ : X → A from a dataset of K task rollouts D = {τ1, ..., τK}
with τk = {(x0, a0), ..., (xH , aH)}, x0 ∼ µ0, xt+1 ∼ P (xt, at) and at ∼ πd(st). In this case
πd represents the demonstrator’s policy. The policy πθ is trained by regressing actions with a loss
function L =

∑
(x,a)∈D D(a, πθ(x)), where D is an appropriate distance metric. This constitutes a

proxy objective, as the actual goal is to maximise the policy’s returns: Eµ0,πθ,P

∑H−1
t=0 R(xt, at).

Robotic Manipulation and Problem Space In this work, we consider robotic manipulation
tasks. We define the space of state-action tuples as the problem space P = X × A. As multiple
MDPs can model the same environment, the problem space is in general chosen by the designer
of the system. A common choice of state and action space by practitioners is as follows [9]. The
state space will include proprioceptive information xr, e.g. in the form of joint positions or the
end-effector (EE) pose. Furthermore, the poses of the entities in the scene would be included,
resulting in x = [xr, (xo,i)

N0
1 ], where NO is the number of entities. The action space is usually

a set point for the low level robot control, either at joint or at EE level a = [ar]. As forward and
inverse kinematics (calculation of EE pose from joint position values and its inverse) are usually
accessible, we assume that both action and proprioception are expressed as EE poses without loss
of generality. We also assume that the action is given as the next target EE position, though it is
also common to include it as an offset to the current EE position or as a velocity. We leave out the
state and change of the gripper in state and action space respectively for the sake of brevity.

Out of Distribution Generalisation and BC Out-of-distribution (OOD) generalisation is the de-
sirable capability of a model to return reasonable predictions for unseen data points. We provide a
practical, more specific definition in the context of this work. As the learned model πθ operates over
states, we introduce a state occupancy Ω ∈ ∆(S) such that samples in the dataset D can be consid-
ered to be drawn independently and identically distributed (iid) from it. For a given choice of Ω (e.g.
the solution of MLE in a class of smooth densities) and a threshold ϵ, in-distribution generalisation
occurs when the learned policy πθ returns the unseen demonstrator’s action for a state x ̸∈ D, but
with Ω(x) ≥ ϵ. We can thus introduce an in-distribution manifold X̂ = {x ∈ X | Ω(x) ≥ ϵ}.
Similarly, we define

Definition 1 (OOD generalisation, informal) A policy π is capable of OOD generalisation if its
error is low for arbitrary states x ̸∈ D such that Ω(x) ≤ ϵ.

Let us consider a desired manifold of states X ⋆ ⊃ X̂ including OOD data points. In general, a
policy trained through BC on D will not generalise to X ⋆, as supervised learning assumes that the
training and test data to be iid. Further assumptions on the problem space are thus needed to enable
OOD generalisation (see Appendix A for a broader discussion).

3 Problem Space Transformation

In order to enable OOD generalisation over X ⋆, we propose to apply a transformation T : P → Q,
and thus introduce a transformed problem space Q over which the policy is learned 1. Let π̂θ be the
minimiser of the empirical BC loss over the transformed dataset T (D) = {(T (x,a) | (x,a) ∈ D}.
The goal of this transformation is to maximise data coverage over the desired manifold 2:
minT | T (X ⋆) \ T (X̂ ) |, while ensuring that the BC solution can recover the demonstrator’s
actions from the transformed state space: πd(x) ≈ T −1(π̂θ(T (x))) ∀x ∈ X̂ . Intuitively, while
the objective can be optimised by “removing information” (e.g. via a low-rank linear projection),
the constraint ensures that any task-relevant information is retained. If the demonstrator πd fulfils
certain assumptions, then the problem space may contain irrelevant information, and the objective
can be optimised.

1To ease notation, we will overload T to also operate over states and actions separately.
2| · | represents an n-dimensional volume or Lebesgue measure.
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3.1 Practical Assumptions for Robotic Manipulation

This works leverages two assumptions. First, a well-known property of many manipulation
demonstrations is equivariance to transformations in SE(n) (where n is equal to 2 or 3, depending
on the problem dimension) with respect to (w.r.t.) to a fixed world frame W . For example, in
picking up an object with a parallel gripper, what is relevant is the relative location of the gripper
to the object, not the absolute location in W . The second assumption is that object manipulation
often affects objects locally. As a consequence, it is often sufficient to have complete information
about the surroundings of the EE. For example, the exact position and orientation of an entity are
not decisive when the EE is further away from the object than a distance λ ∈ R+. This distance λ is
task specific, and excessively low values might make the demonstrator’s policy irrecoverable in the
transformed problem space. Nonetheless, for most tasks, we hypothesise that an appropriate value
can be determined with low effort.

3.2 Applying Assumptions in Problem Space

Transformation T1 The first transformation we consider encodes SE(n) equivariance to changes
of the entities’ poses w.r.t. to a fixed world frame W , where W measures the state values in a
Cartesian coordinate system with fixed origin, denoted as W (e.g., at the base of the robot arm). A
state x ∈ X can be expressed as x = [Wxr,Wxo,1, ...,Wxo,NO

], where the prescript denotes the
frame in which the state is measured. Actions are expressed analogously a = [War]. We propose to
transform X to a frame E matching the position and the orientation of the end-effector. Additionally
to the change of the frame of reference, the EE pose can be removed from the state space as it
has a constant (zero) value. This induces a transformed state T1(x) : [ Exo,1, ..., Exo,NO

]. Any
action 3 a ∈ A is also transformed accordingly: T1(a) = [Ear]. This ensures that interactions
between end-effector and entities may have the same representation, regardless of poses in the fixed
coordinate frame W . In turn, this can increase the density of the occupancy over the transformed
state space, effectively enlarging the in-distribution manifold. An important aside to T1: For some
MDP modelling choices, an additional entity corresponding to a fixed point (usually the target
position) in W needs to be added to X when transforming the problem space to frame E such that
the demonstrator’s policy remains recoverable.

Transformation T2 The second transformation we consider encodes the assumption that manipu-
lation largely occurs locally. Starting from the output of T1, we introduce a parameter λ ∈ R+ and
project the position of each entity xo,i with i ∈ [1, . . . , NO] to the surface of the λ-ball centred in
the origin:

proj(xo,i) =

{
(pos(xo,i), rot(xo,i)), if ∥pos(xo,i)∥2 < λ

(
λpos(xo,i)

∥pos(xo,i)∥2
, rot(xo,i)), otherwise

(1)

where pos(·) and rot(·) denote the positional and rotational parts of the object pose vectors, respec-
tively. For (x,a) ∈ X ×A, the transformation T2 can thus be written as

T2(x) = [ proj(Exo,1), ..., proj(Exo,NO
) ] and T2(a) = [Ear]. (2)

Small values of λ can greatly reduce the size of the transformed desired manifold T2(X ⋆) (i.e., by
“clipping” it), and thus maximise data coverage over it. As long as the demonstrator is concerned
with local information (i.e., it is invariant to entities that are further away than λ), its policy can be
recovered after the transformation. On the other hand, if λ is too small, an arbitrary policy might be
irrecoverable as T2 effectively loses information (i.e., on the exact position of distant entities).

4 Experimental Results

In this section we want to understand how BC policies perform in-distribution and OOD, in the
baseline problem space P , and in those defined by the proposed transformations. We consider

3This transformation can be applied no matter if the action is supplied as a next EE position, an offset to the
current position or as a velocity, though the exact transformation varies.
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Figure 1: Comparison of BC policies trained in the original problem space P , in T1(P) and T2(P)
on in-distribution and OOD initial states. The x-axis shows the normalised distance to the in-
distribution manifold, where the value at 0 represents the in-distribution performance. The y-axis
shows the mean and standard deviation of final rewards across seeds (higher reward is better).

three environments increasing in difficulty. PushT is a simulated 2D environment, where the
demonstrator controls a 2D point mass EE, adapted from Chi et al. [1]. The task is to move the
T shape from its initial position to the goal position at the centre of the screen. In PickPlace

and Assembly, the demonstrator controls the position of the EE of a 7-DOF robot arm in a 3D
environment. In the former, the task is to move a block from an arbitrary initial position to a goal
position fixed above the table. In the latter, the task is to pick up a tool with a handle and a loop
and then to place the tool with the loop around the peg. We treat Assembly as a 2D problem when
applying T2 (see Appendix C for more details).

All policies are trained by minimising MSE of policies parametrised with standard deterministic
MLPs with respect to demonstrations. In-distribution performance is measured by initialising the
environments as during data collection, while OOD performance is evaluated by sampling OOD
initial object positions (i.e. are outside of the support of µ0). Further details are in Appendix B.

Figure 1 reports the final rewards for all tasks and problem spaces, as a function of the distance
of the initial configuration with respect to those for which data was collected. From left to right,
the position of entities (e.g. T, cube or ring with handle) is initialised in bins, which expand con-
centrically from the in-distribution manifold. As expected, all problem spaces display performance
degradation OOD. However, T2 performs significantly better in all tasks, which also highlights the
relative importance of locality to SE(n) equivariance.

In Figure 2, the heat map of final rewards per initial cube position in PickPlace is shown, providing
a detailed comparison between the three problem spaces. The policy in P is able to solve the task
for initial states of the object which lie on the fringes of the in-distribution manifold, and not far
beyond. The performance improves only somewhat for T1, while T2 is able to successfully execute
tasks far outside the in-distribution manifold, where the others fail to pick up the object, let alone
bring it to the target position. Heat maps for PushT and Assembly can be found in Appendix D.

5 Conclusion
Problem space transformations have the potential to enable broader OOD generalisation for BC
manipulation policies by leveraging practical assumptions about manipulation problems. As our
experimental validation is restricted to vanilla BC settings, one direction of future investigation is
to understand if problem space transformations would also benefit more advanced BC architectures
such as Diffusion Policies [1]. A second question is to understand if these transformations can be
recovered automatically when an appropriate regulariser is added to the BC loss.
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Figure 2: Comparison of Baseline P (left), T1(P) (middle) and T2(P) (right) for PickPlace. Plot
colour indicates (interpolated) reward per initial box position. The in-distribution manifold lies
within the red rectangle, the OOD manifold outside of it.
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A Related Works

Using Robotic Manipulation Properties in Policy Learning Past work has explored exploit-
ing different invariances and equivariances in robot manipulation learning. In [10], learnt SE(3)-
equivariant object representations, which have an object point cloud as input, are deployed to enable
a pick and place system that requires only a few demonstrations. In [11], SIM(3) equivariance
(which additionally to SE(3) includes scale equivariance) is embedded in the object representation
learning module (again from point clouds) as well as in the BC policy network module. The work in
[12] takes a similar approach, though adding a SIM(3)-equivariant diffusion policy as the BC policy
module. Concurrent work additionally explores the usefulness of the locality of manipulation prob-
lems to increase sample efficiency by predicting actions as displacements to points in the scene point
cloud [13]. All of the above works assume that the scene entities are sensed as point clouds. Some
past work also looks at the benefits of introducing SO(2)-equivariance to online [14] and offline RL
[15] where the scene entity poses are assumed to be available.

B Implementation Details

We train our models using PyTorch. For all three tasks we use the same basic training setup. The
policy is implemented as a deterministic MLP with ReLU activation functions. We use dropout and
L2 regularisaition. The models are trained using mini random batches and all data is standardised to
zero mean and one standard deviation before being passed to the neural network. The loss function
is the 2-norm between policy prediction and dataset sample. The Adam optimizer is used to update
the weights. Training time for all tasks is in the order of minutes, while evaluation in simulation is
on the order of 10 minutes.
The PushT MLP has 5 hidden layers with a hidden dimension of 512; dropout probability is 0.05 and
the regularisation weight is 1e-5; batch size is 1024 and it is trained for 1200 epochs. The projection
uses λ = 150 pixels.
The PickPlace MLP has 5 hidden layers with a hidden dimension of 512; dropout probability is
0.05 and the regularisation weight is 1e-5; batch size is 512 and it is trained for 600 epochs. The
projection uses λ = 0.1 meters.
The Assembly MLP has 5 hidden layers with a hidden dimension of 512; dropout probability is
0.001 and the regularisation weight is 1e-5, batch size is 512 and it is trained for 600 epochs. The
projection uses λ = 0.2 meters.

C Task Details

Push T The shape can take an arbitrary initial orientation, and the goal is a position only, thus any
orientation is allowed as long as the position is correct. The shape is moved using the contact friction
between point mass and shape to push the shape in the desired direction, pulling is not possible.
200 training episodes are collected by a human demonstrator. The in-distribution performance is
measured with 100 initial position samples, the OOD performance with 400 initial position sampled
uniformly on the respective manifolds. The in-distribution manifold and the OOD manifold are tori.
The in-distribution manifold has an inner radius of 32 pixels and an outer radius of 150 pixels. In
cylindrical coordinates, the in-distribution initial position is sampled with the radius r ∈ [32, 150]
(pixel) and θ ∈ [0, 2π]. The OOD initial object positions are sampled with r ∈ [150, 406] (pixels)
and θ ∈ [0, 2π]. The results are averaged over 10 seeds. The reward is the distance of the object
position to the target.
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Figure 3: Comparison of Baseline P (left), T1(P) (middle) and T2(P) (right) for PushT. Plot colour
indicates (interpolated) reward per initial box position. The in-distribution manifold lies within the
two red circles, the OOD manifold outside of it.
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Figure 4: Comparison of Baseline P (left), T1(P) (middle) and T2(P) (right) for Assembly. Plot
colour indicates (interpolated) reward per initial box position. The in-distribution manifold lies
within the red rectangle, the OOD manifold outside of it.

Pick Place We modify the original environment by replacing a cylinder for a box. The block
position is always initialised with the same orientation. To solve the task, the scripted policy
moves towards the block position at an elevated height above the table top. Once above the
block, the robot moves down to pick it up and then moves to the goal position. The orientation
of the end-effector is fixed throughout the entire episode. 100 training episodes are collected by
a scripted policy. The scripted policy can be inspected in the open implementation [16]. The
in-distribution performance is measured with 100 initial position samples, the OOD performance
with 450 initial positions sampled uniformly on the respective manifolds. The in-distribution man-
ifold and the OOD manifold are rectangles. The in-distribution range for the object initial po-
sition: x1 ∈ [−0.15, 0.15], x2 ∈ [0.48, 0.62]. The OOD range for the object initial position:
x1 ∈ [−0.465, 0.465], x2 ∈ [0.4, 0.7]. The results are averaged over 8 seeds. The reward is the
distance of the object position to the target.

Assembly While the environment is generally a 3D environment, the vertical direction is mainly
used to simply move up or down to pick and place the handle and loop object. All of the data which
is characteristic to solving the task - moving to the object and after gripping it moving to the loop -
happen in the plane. Therefore we treat the problem as a 2D problem for the transformation T2 and
apply the projection in the dimensions which form the plane parallel to the table and not the per-
pendicular dimension. 200 training episodes are collected by a scripted policy. The scripted policy
can be inspected in the open implementation [16]. The in-distribution performance is measured with
100 initial position samples, the OOD performance with 450 initial positions sampled uniformly on
the respective manifolds. The in-distribution manifold and the OOD manifold are rectangles. The
in-distribution range for the object initial position: x1 ∈ [−0.15, 0.15], x2 ∈ [0.43, 0.67]. The OOD
range for the object initial position: x1 ∈ [−0.465, 0.465], x2 ∈ [0.38, 0.72]. The results are aver-
aged over 8 seeds. The reward function is based on different factors, we refer to the openly available
implementation of the reward function which we have not modified [16].

D Additional Results

Figure 3 shows the heat maps for PushT and Figure 4 shows them for Assembly.
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