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Abstract
Uncertainty estimation (UE), as an effective
means to quantify predictive uncertainty, is crucial
for safe and reliable decision-making, especially
in high-risk scenarios. Existing UE schemes
usually assume that there are completely-labeled
samples to support fully-supervised learning. In
practice, however, many UE tasks often have no
sufficiently-labeled data to use, such as the Multi-
ple Instance Learning (MIL) with only weak in-
stance annotations. To bridge this gap, this paper,
for the first time, addresses the weakly-supervised
issue of Multi-Instance UE (MIUE) and proposes
a new baseline scheme, Multi-Instance Residual
Evidential Learning (MIREL). Particularly, at the
fine-grained instance UE with only weak supervi-
sion, we derive a multi-instance residual operator
through the Fundamental Theorem of Symmetric
Functions. On this operator derivation, we further
propose MIREL to jointly model the high-order
predictive distribution at bag and instance lev-
els for MIUE. Extensive experiments empirically
demonstrate that our MIREL not only could often
make existing MIL networks perform better in
MIUE, but also could surpass representative UE
methods by large margins, especially in instance-
level UE tasks. Our source code is available at
https://github.com/liupei101/MIREL.

1. Introduction
Deep learning models have shown impressive capability
and become ubiquitous in the last decade. However, they
often tend to produce overconfident predictions, even for
shifted or unseen samples (Nguyen et al., 2015; Kendall &
Gal, 2017). Such behaviour may lead to disastrous conse-
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quences in safety-critical scenarios, e.g., autonomous driv-
ing and medical diagnosis (Franchi et al., 2022; Linmans
et al., 2023), calling into question their real-world usability.
Thus, it is particularly important to provide an accurate con-
fidence level for the prediction of neural networks (NNs)
through uncertainty estimation (UE) methods.

To accomplish accurate UE, epistemic (model) uncertainty
is considered generally (Postels et al., 2022; Mukhoti et al.,
2023). From a principled Bayesian perspective (Neal, 2012),
it is characterized by the distribution over model parameters
given training data D, i.e., p(ω|D). Due to its involvement,
a model parameter ω would be low in likelihood when it
is incompatible with D; as a result, less confidence would
be yielded for the new samples shifted in distribution, thus
alleviating overconfidence in prediction. However, most
current practices often assume that there are completely-
labeled samples in D with which NNs can be trained to
support p(ω|D) (Mena et al., 2021).

In fact, there are many practical tasks involving weakly-
annotated data, in which no complete label can be di-
rectly utilized for training. While such tasks remain under-
explored in UE, a fundamental machine learning problem
we consider under this class is multiple instance learn-
ing (MIL) (Dietterich et al., 1997). As a typical task
of weakly-supervised learning, it is prominent in many
labeling-intensive applications, e.g., histopathology diag-
nosis (Ilse et al., 2020; Liu et al., 2024a), video anomaly
detection (Sultani et al., 2018; Zhong et al., 2019) and video
analysis (Babenko et al., 2010; Rizve et al., 2023), etc.
Specifically, in histopathology diagnosis an image usually
contains gigapixels, so it is often divided into thousands of
small patches for MIL, where multiple patches (instances)
are observed but only a general statement of their labels
is given. In this case, a diagnosis model has to learn from
weakly-annotated patches to make patch-level predictions.
UE is highly anticipated to provide accurate uncertainty
measures for these weakly-supervised predictions to make
final diagnostic decisions safer and more reliable.

Generally, a sample given in MIL is described as a bag
X and its label is known, Y ∈ {0, 1}. In particular, X is
composed of multiple instances, i.e., X = {x1, . . . ,xK},
but instance labels {y1, . . . , yK} are unknown and instead
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connect with bag label via a classical MIL assumption,
Y = maxk{yk} and k ∈ [1,K]. Under these special set-
tings, MIL is usually interested in two tasks, bag-level and
instance-level prediction (Kandemir & Hamprecht, 2015).
This means that, a MIL model needs to i) learn p(ω|D)
from the multi-instance bags with variable sizes and mean-
while ii) jointly estimate a new weakly-supervised posterior
p(θw|D) from weakly-annotated instances. Therefore, in
such MIL tasks, the common way of capturing epistemic
uncertainty for UE seems less practical. This motivates us to
focus on the problem of Multi-Instance UE (termed MIUE)
and study a baseline approach for it.

Bag-level The Fundamental Theorem of Symmetric Func-
tions (Zaheer et al., 2017) provides a general strategy to
score a bag of instances. It deals with size-varied bags by
a permutation-invariant MIL pooling operator (Ilse et al.,
2018). Accordingly, p(ω|D) could be estimated from fully-
labeled bags using common UE techniques to capture bag-
level epistemic uncertainty, like that in fully-supervised
learning (Mena et al., 2021).

Instance-level Without complete instance labels, modeling
predictive uncertainty at instance level would not be as
straightforward as that at bag level. Nonetheless, attention-
based MIL (Ilse et al., 2018; Li et al., 2021) still could
generate instance predictions with their instance scoring
proxy—attention branch. Following this approach, various
strategies (Shi et al., 2020; Qu et al., 2022; Cui et al., 2023)
are proposed to make instance prediction more accurate.
We argue that such attention-dependent means may not be
suitable for learning p(θw|D) jointly with p(ω|D). Because
i) the parameter θw given by attention branch for instances
is completely contained within the parameter ω for bags,
and notably ii) the attention scores given by that proxy are
produced essentially for learning better bag representations,
leaving a substantial gap to ideal instance predictions.

In this paper, with the Fundamental Theorem of Symmetric
Functions, we demonstrate that the gap to ideal instance
prediction can be narrowed by turning to exploit a good bag-
level decision space. With this basic finding, we propose
a new MIL scheme for MIUE. Concretely, (1) we devise a
new instance estimator to jointly learn p(θw|D) by deriving
a multi-instance residual operator. This operator makes
instance prediction separated from bag decision. (2) Fur-
ther, we model high-order probability distribution at bag
and instance levels to fulfill MIUE, by parameterizing two
Dirichlet distributions with the evidences provided by gen-
eral bag estimator and our residual instance estimator. (3) To
optimize θw without complete instance labels, we propose
a weakly-supervised evidence learning strategy and prove
that it provides a tighter upper bound for ideal instance loss
function than common strategies under given conditions.

The main contributions of this paper are summarized as fol-

lows: (1) A new problem of uncertainty estimation, termed
MIUE (Multi-Instance UE), is introduced in this paper. To
our knowledge, we are the first to study it in MIL. (2) With
the Fundamental Theorem of Symmetric Functions, this
paper demonstrates that a good estimator for instances can
be directly deduced from a good bag-level decision space,
no longer relying on the scoring proxy from attention-based
MIL. (3) This paper further derives a residual estimator
specially for instances, and proposes a new scheme, Multi-
Instance Residual Evidential Learning (MIREL), for MIUE.
This scheme can jointly quantify the predictive uncertainty
at bag and instance levels in MIL.

2. Preliminary
2.1. Multiple Instance Learning (MIL)

Definition Here we give the formal conventions and nota-
tions in MIL, following Ilse et al. (2018). A given sample
(bag) is denoted as X = {x1, . . . ,xK}, where x1, . . . ,xK
are usually treated to be i.i.d. Its label, Y ∈ {0, 1}, is ac-
cessible for training; its instance-level labels, {y1, . . . , yK},
are unknown and yk ∈ {0, 1} for k ∈ [1,K]. A classical
MIL assumption states that, a bag is positive (Y = 1) iff it
has at least one positive instance; otherwise, it is negative
(Y = 0). Namely, there is Y = maxk{yk}.

Learning paradigm To learn from size-varied bags, a com-
mon practice is to leverage a permutation-invariant pooling
operator. It can be expressed by the Fundamental Theorem
of Symmetric Functions as follows:

Theorem 2.1 ((Zaheer et al., 2017; Ilse et al., 2018)). A
scoring function for a set of instances X = {x1, . . . ,xK},
S(X) ∈ R, is a symmetric function (permutation-invariant
to the elements in X), if and only if it can be written as

S(X) = g
( K∑
k=1

f(xk)
)
, (1)

where f and g are suitable transformations.

This theorem holds as before or under weak conditions,
when the form of instance pooling in Eq.(1),

∑
k f(xk),

is replaced by others, such as i) mean, ii) max (Qi et al.,
2017), and iii) attention-based MIL pooling.

Attention-based MIL pooling The most representative
one is ABMIL (Ilse et al., 2018). It first proposes to
leverage dynamic instance weights for pooling, written as∑K
k=1 akf(xk), where ak is called attention score and

ak = softmax
(
t(hk)

)
=

exp
(
t(hk)

)∑K
τ=1 exp

(
t(hτ )

) . (2)

hk stands for the instance embedding given by hk = f(xk)
and t(·) is a transformation parameterized by NNs.
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Owing to attention mechanism, most attention-based MIL
networks can provide a proxy (i.e., attention score ak) to
estimate instance labels, as highlighted in Ilse et al. (2018)
and Li et al. (2021). This proxy is frequently used and
improved afterwards (Qu et al., 2022; Cui et al., 2023),
often taken as a reliable estimator for instances.

2.2. Evidential Deep Learning (EDL)

As one of general UE methods, recently-proposed EDL
(Sensoy et al., 2018) models predictive uncertainty using
the Dempster–Shafer Theory of Evidence (DST) (Dempster,
1968). It formalizes the belief assignment in DST with
Subjective Logic (SL) (Jøsang, 2016).

Belief assignment Considering C (C ≥ 2) mutually ex-
clusive singletons (e.g., class labels), SL assigns a belief
mass bi to the i-th singleton for i ∈ [1, C] and defines an
overall uncertain mass u. Let bi = ei∑C

i=1(ei+1)
≥ 0 and

u = C∑C
i=1(ei+1)

≥ 0, where ei is the evidence of the i-th

singleton. There is u+
∑C
i=1 bi = 1, i.e., a weaker belief

over singletons indicates a higher overall uncertainty.

Posterior Dirichlet distribution SL further formalizes the
belief assignment stated above as a Dirichlet distribution,
offering the potential approach to modeling predictive prob-
ability. Specifically, let Dir(p|α) denote a Dirichlet dis-
tribution, where p ∈ SC−1 (a probability simplex with
C − 1 dimensions), α = [α1, · · · , αC ], and αi ≥ 0. By
definition, there are Dir(p|α) = 1

B(α)

∏C
i=1 p

αi−1
i and

B(α) =
∏C

i=1 Γ(αi)

Γ(α0)
, where B(α) is a multinomial Beta

function, Γ(·) is a gamma function, and α0 =
∑C
i=1 αi

often called the precision or Dirichlet strength. Therefore,
predictive probability can be expressed by a posterior Dirich-
let distribution Dir(p|α), by deriving evidences e for C
singletons and then adopting α = e + 1 to parameterize
Dir(p|α), where e = [e1, · · · , eC ].

Evidential learning For any sampleX , EDL employs a NN-
based transformation Φ to derive evidences, i.e., e = Φ(X),
forming a belief assignment over C classes. This assign-
ment is then formalized as Dir(p|α) with α = Φ(X) + 1,
to obtain the prediction of X . Compared with the standard
neural classifiers that predict a Categorical distribution over
classes, EDL predicts a distribution over Categorical dis-
tribution, the conjugate prior of Categorical distribution,
thus modeling second-order probability distribution for UE
(Jøsang, 2016; Sensoy et al., 2018).

By using NNs to parameterize Dir(p|α), EDL provides a
simple yet efficient deterministic method for UE. It can dis-
tinguish different uncertainties originated from data, model,
or distribution (Ulmer et al., 2023). Moreover, Deng et al.
(2023) show that EDL can be cast as learning PAC-Bayesian

generalization bounds. These favorable advantages motivate
us to study a baseline approach for MIUE through EDL.

3. Problem Formulation: Multi-Instance
Uncertainty Estimation (MIUE)

First of all, we formalize MIUE from the perspective of
Bayesian (Neal, 2012), as it offers a principled way to study
predictive uncertainty and is widely adopted in UE.

Bag-level Given a bag dataset D = {(Xj , Yj)}Nj=1 and the
parameter ω of any MIL model, the prediction of a bag X∗

can be written as a posterior distribution:

P (Y ∗|X∗,D) =

∫
P (Y ∗|X∗,ω)p(ω|D)dω. (3)

This predictive form reflects that the uncertainty in bag pre-
diction results from data (aleatoric) and model (epistemic)
uncertainty (Der Kiureghian & Ditlevsen, 2009; Kendall &
Gal, 2017), captured by P (Y ∗|X∗,ω) and p(ω|D), respec-
tively. ω parameterizes the mapping from X to Y .

Instance-level For any (Xj , Yj) ∈ D, Xj = {xjk}
Kj

k=1,
where Kj is the instance number of Xj . Following the
assumption of MIL, there is Yj = max{yjk}

Kj

k=1 and yjk is
unknown. The prediction of an instance x∗ is expressed as

P (y∗|x∗,D) =

∫
P (y∗|x∗,θw)p(θw|D)dθw, (4)

where θw is the parameter estimated from weakly-annotated
instances to represent the mapping from x to y. θw and ω
could share some parameters in their joint learning on D.

Uncertainty measures To quantify the uncertainty in pre-
diction, various measures could be adopted (Malinin &
Gales, 2018). Max probability and the entropy of expected
predictive distribution are the most frequently used two for
measuring total uncertainty. Moreover, expected entropy
and mutual information (MI) are often adopted as the mea-
sures to capture data uncertainty and model uncertainty,
respectively. More details are elaborated in Appendix B.

Traditional non-Bayesian MIL networks usually treat ω and
θw deterministically, ignoring the model uncertainty in bag
and instance predictions. This could lead to failures on
out-of-distribution samples (Blanchard et al., 2011). By
contrast, Bayesian frameworks account for both data and
model uncertainties, allowing us to quantify multi-instance
uncertainty more accurately and holistically.

4. Method
4.1. Bag-level Predictive Uncertainty

Bag-level predictive uncertainty can be quantified via Eq.(3).
However, integrating over a high-dimensional space of ω

3
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is often intractable. To tackle this, we propose to model
bag-level predictive probability with a posterior Dirichlet
distribution, inspired by EDL.

Evidential learning Concretely, for a bag X = {xk}Kk=1,
we express its predictive probability as follows:

p(µ|X) = Dir(µ|αbag),

αbag = ebag + 1 = A(S(X)) + 1

= A
(
gϕ
(∑

k

fψ(xk)
))

+ 1,
(5)

where αbag is the concentration parameter of bag-level
Dirichlet distribution, ebag is the bag evidence collected
from X , A(·) is an activation function for non-negative evi-
dence outputs, and the transformations f and g are parame-
terized by the NNs with parameters ψ and ϕ, respectively.
To optimize parameters, we adopt a Fisher Information-
based objective function (Deng et al., 2023), proven to be
well-suited for EDL. It is denoted by LI-EDL as follows:

min
ψ,ϕ

E(X,Y )∼PEµ∼Dir(αbag)

[
−log p(Y |µ,αbag, σ

2)
]
, (6)

where p(Y |µ,αbag, σ
2) is assumed to be a multivariate

Gaussian distribution N
(
Y |µ, σ2I(αbag)

−1
)

and I(αbag)
is the Fisher Information Matrix of Dir(αbag). We give its
details in Appendix C for completeness.

Justification (1) p(µ|X): the predictive form of bag X
given in Eq.(5), i.e., a posterior Dirichlet distribution rather
than a conventional Categorical one, can be derived from
Eq.(3) approximately (Malinin & Gales, 2018), i.e.,∫

P (Y |X,ω)p(ω|D)dω =

∫
P (Y |µ)p(µ|X,D)dµ

≈
∫
P (Y |µ)p(µ|X; ω̂)dµ,

(7)
with a point estimation ω̂ satisfying p(ω|D) = δ(ω − ω̂)
where δ(·) is a Dirac delta function. Eq.(7) makes the full
posterior in Eq.(3) tractable by introducing a new poste-
rior Dirichlet distribution, thus enabling us to quantify the
uncertainty in p(µ|X) deterministically. More details are
provided in Appendix A.1. (2) αbag: its evidential learning
formulation in Eq.(5) still satisfies the condition of Theorem
2.1. This thereby provides broad MIL networks with an
alternative means to model bag-level uncertainty.

4.2. Rethinking Instance-level Estimator

It is often of interest to ask MIL models to jointly estimate
instance labels. For this purpose, herein, we first consider
the estimator for instances before modeling instance-level
predictive uncertainty. Instead of scoring instances with
attention mechanism as written in Eq.(2), we rethink and

derive a new estimator for instance prediction through the
Fundamental Theorem of Symmetric Functions.

Given the unified form of permutation-invariant bag classi-
fiers (Theorem 2.1), i.e., S(X) = g

(∑
k f(xk)

)
, it could

be found that a single aggregated embedding (by pooling
over instance embeddings) is transformed into a bag score
by g. Obviously, it is also possible to transform a single
instance embedding for scoring, thereby obtaining a feasible
estimator for instances, as summarized below:

Corollary 4.1. Given a scoring function for a set of
instances X = {x1, . . . ,xK}, written as S(X) =
g
(∑

k f(xk)
)
∈ R where k ∈ [1,K], a scoring function

for any single instance can be written as

T = g ◦ f, (8)

and T (x) ∈ R for an instance x.

Its proof is shown in Appendix A.2. This corollary allows
us to make instance prediction by skipping permutation-
invariant pooling. Nonetheless, it is still insufficient to
conclude that T is also a good instance estimator, apart
from a feasible one. We thereby give Proposition 4.2.

Proposition 4.2. Let S(·) be a classifier for a bag of in-
stances X = {xk}Kk=1 and satisfy S(X) = g

(∑
k f(xk)

)
.

For any bag X and its label Y ∈ {0, 1}, further assume S
can predict bags precisely: S(X) = Y . Then, there exists
an estimator with T = g ◦ f for any single instance x, such
that T (x) = y, where y ∈ {0, 1} is the label of x.

This proposition implies that a perfect T can be directly
deduced from a perfect S. Refer to Appendix A.2 for its
proof. Furthermore, by relaxing the ideal assumption, i.e., a
perfect S, it suggests that a good instance-level estimator is
likely to be obtained from a good bag classifier. Intuitively,
if S is good at distinguishing between positive and negative
bags, it would recognize an instance x correctly as long as
one duplicates x to form a new bag for prediction, because
this bag is expected to be classified correctly by S and it
exactly has the same label with x. Extensive experiments
(Section 6) empirically demonstrate this finding.

Compared with the commonly-used attention score ak, our
new instance-level estimator T (x) exhibits the following
merits. (1) It could be obtained from not merely attention-
based but general MIL approaches, as stated in Corollary 4.1.
(2) It is no longer a scoring proxy like ak but an estimator
with a classification decision space same to that of S(X),
probably closer to an ideal instance estimator than ak.

4.3. Weakly-supervised Instance-level Predictive
Uncertainty

Given T (x) = gϕ(fψ(x)), T could be adopted as the es-
timator to infer instance probabilities, with the same fψ

4
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and gϕ as S. However, it could be not desirable for UE in
practice, because the NN-based gϕ is actually trained with
those pooled instance embeddings (i.e.,

∑
k fψ(xk)) instead

of raw ones (i.e., fψ(xk)), thus inclining to estimate high
uncertainties for unseen data. To this end, we propose to
improve T by learning instance-specific residuals, thereby
obtaining a new estimator specially for instance-level UE.
Moreover, we propose a weakly-supervised evidence learn-
ing objective to optimize our residual instance estimator.

Residual evidential modeling For any single instance x,
we assume there is a residual estimation for the given T ,
denoted as ϵ = T ∗(x) − T (x) where T ∗(x) is a target
estimation. We model this instance-specific residual ϵ by
leveraging a new NN-parameterized transformation rπ(·)
whose input is h = fψ(x). It is encouraged to compensate
for the initial biased T (x), so as to approach T ∗(x). Let
R(·) denote our new residual instance estimator. Further, we
introduce a Dirichlet distribution into R for instance-level
UE. Therefore, the predictive distribution of instance x can
be summarized and written as follows:

p(ν|x) = Dir(ν|αins),

αins = eins + 1 = A
(
R(x)

)
+ 1,

R(x) = T (x) + rπ(h) = gϕ(fψ(x)) + rπ(fψ(x)),

(9)

where αins is instance-level concentration parameter and
eins indicates the evidence derived from x.

Optimization strategy Given any bag sample (X,Y ) where
X = {xk}Kk=1, our optimization strategy for R(x) is as fol-
lows. (1) Y = 0: we have yk = 0 ∀k ∈ [1,K], so the
objective function given by Eq.(6) can be utilized similarly.
(2) Y = 1: since only maxk{yk} = 1 is given, we propose a
weakly-supervised evidential learning strategy. Concretely,
we simply multiply ek (the evidence of xk) by different
weights to mimic the selection of positive instances, and
then aggregate them into a single one that can be optimized
by Eq.(6). Those weights are the expected instance proba-
bilities given by T , likely to indicate positive instances as
stated in Section 4.2. Therefore, our objective function for
R(x) can be summarized and given as follows:

LMIREL = min
ψ,π

E(X,Y )∼P
[
Y L+

ins + (1− Y )L−
ins

]
,

L−
ins = Eν∼Dir(αk)

[
− log p(y = 0|ν,αk, σ2)

]
,

L+
ins = Eν∼Dir(α̃)

[
− log p(Y = 1|ν, α̃, σ2)

]
,

(10)

where αk is the αins for xk, α̃ =
∑
k ekw̄k + 1, w̄k is

a normalized wk, wk = E
ν∼Dir

(
α

(T )
k

)p(y = 1|ν), and

α
(T )
k = A(T (xk)) + 1. Note that only ψ and π are op-

timized in Eq.(10), without the ϕ for bags, as we aim at
encouraging rπ ◦ fψ to learn residuals for instances.

Justification (1) R(x): this new residual instance estima-
tor has independent parameters π with S(X), as written

in Eq.(9). This enables R to separately learn instance-
specific evidences and enhance instance-level UE. (2) L+

ins:
we analyze its upper bounds, given in Proposition 4.3.
This proposition suggests that L+

ins may provide a more
suitable θ̂w than common objectives such that there is
p(θw|D) ≈ δ(θw−θ̂w) for accurate UE. Refer to Appendix
A.3 for proofs and further explanations. Therefore, similar
to that done in Eq.(7), the intractable posterior in Eq.(4) can
be approximated by Dir(ν|αins; θ̂w). As a result, we can
obtain a closed-form analytical solution (Appendix B.2) for
instance-level uncertainty quantification.
Proposition 4.3. Let L(α, y) be a loss function w.r.t α and
y. For any positive bag X = {x1, · · · ,xK}, assume w̄k ≥
0 ∀k ∈ [1,K],

∑
k w̄k = 1, and α̃ =

∑
k w̄kαk. L+

ins =
L(α̃, 1) ≤

∑
k w̄kL(αk, 1) ≤

∑
k

1
KL(αk, 1) holds in

instance evidential learning, when L is a convex function
w.r.t α and there is w̄1 ≥ w̄2 ≥ · · · ≥ w̄K for L(α1, 1) ≤
L(α2, 1) ≤ · · · ≤ L(αK , 1).

Complete objective function To jointly train instance-level
R(x) and bag-level S(X) for MIUE, the complete objective
function we adopt is summarized as follows:

L = LI-EDL + LMIREL + LRED, (11)

where LRED is a RED loss (Pandey & Yu, 2023) serv-
ing as a regularization term in EDL. As LRED shows to
be effective in avoiding zero-evidence regions to improve
EDL, we exploit this loss to regularize both the evidence
output of R(x) and S(X). For an evidence output α,
LRED = − C

α0
log(αgt − 1), where αgt is the predicted evi-

dence for ground truth class. Refer to Appendix E.2 and
F.3 for the ablation studies on Eq.(11). Note that in joint
training, the parameters ψ and ϕ are optimized by LI-EDL
in bag-level evidential learning. Meanwhile, the parameters
ψ and π are optimized by LMIREL in instance-level residual
evidential learning. Thus, ψ is jointly optimized to improve
both instance-level and bag-level UE performance.

5. Related Work
Uncertainty estimation (UE) methods could be grouped
into two categories. (1) Bayesian NNs (BNNs) generally
adopt stochastic NN weights to model predictive uncertainty
(Neal, 2012). Many techniques (Gal & Ghahramani, 2016;
Lakshminarayanan et al., 2017; Loquercio et al., 2020) are
proposed to approximate the intractable posterior of BNNs.
Nonetheless, they usually require sampling and are demand-
ing computationally. (2) Deterministic uncertainty methods
(BUMs) emerge as a promising means to mitigate this us-
ing deterministic NN weights. They can accomplish UE
with a single forward pass mainly by regularizing hidden
feature spaces (Alemi et al., 2018; Charpentier et al., 2020)
or employing distance-aware output layers (Liu et al., 2020;
Van Amersfoort et al., 2020; Mukhoti et al., 2023). BUM
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is rapidly developing and encompasses many interesting
works beyond those mentioned here. Readers could refer to
Postels et al. (2022) and Mukhoti et al. (2023).

Dirichlet-based uncertainty (DBU) methods (Ulmer et al.,
2023) belong to another type of BUMs. They predict the pa-
rameters of Dirichlet distribution, allowing us to distinguish
different uncertainty sources and write common uncertainty
measures with closed-form solutions. As one of them, EDL
(Sensoy et al., 2018) have received great attention due to
its simplicity and impressive performance. It has inspired
many real-world applications (Bao et al., 2022; Chen et al.,
2022; 2023; Zhao et al., 2023). In addition, EDL has been
further improved recently in learning strategies (Deng et al.,
2023; Pandey & Yu, 2023) and concepts (Fan et al., 2023),
showing better results in UE. All of these motivate us to
study a baseline approach for MIUE through EDL.

MIL with instance-level estimator predicts not only bag
results but also instance responses. It contains two main
classes. (1) Instance-level methods (Liu et al., 2012). For
model interpretability, they directly predict instance scores
and then aggregate these scores into a bag-level result (Ilse
et al., 2020). (2) Embedding-level methods with explicit in-
stance scoring branches. They work on instance embeddings
rather than scores, and aim to enhance the accuracy of both
instance and bag prediction using two separate branches
(Chikontwe et al., 2020; Qu et al., 2022) or two branches
decoupled via attention (Ilse et al., 2018; Shi et al., 2020; Li
et al., 2021; Cui et al., 2023). Most of them are specially
designed for pathology applications. In addition, some other
methods concentrate on alleviating the negative effect of
noisy instances on MIL to improve the accuracy, mainly by
maximizing the gap between two representative instances
from a pair of negative and positive bags (Tian et al., 2021;
Sapkota & Yu, 2022). These methods are often seen in video
anomaly detection tasks. This paper roughly follows the
second class; yet we do not focus on classification accuracy
but UE performance, and devise a new residual instance
estimator independent of attention-based MIL.

Uncertainty estimation for MIL is formally studied far
less than that for standard single instance learning, largely
due to the weak-supervision nature of MIL. A recent or-
thogonal work is based on BNNs (Schmidt et al., 2023;
Cui et al., 2023). It converts ABMIL networks into BNNs
and model the uncertainty of attention scores by variational
approximation. However, it focuses on improving classi-
fication performance, not specially for UE. Moreover, it
also requires multiple forward passes like typical BNNs.
By contrast, we propose a DBU method that quantifies the
uncertainty in MIL with a single forward pass. In particular,
our study focuses on UE and designs extensive experiments
to assess the UE capability of MIL models.

6. Experiments
6.1. Experimental Setup

Datasets (1) Two bag datasets are MNIST-bags (LeCun,
1998) and CIFAR10-bags (Krizhevsky et al., 2009), fol-
lowing Ilse et al. (2018) to generate bags for MIL. A bag is
positive if it contains at least one instance with the class of
interest. The class of interest is ‘9’ for MNIST and ‘truck’
for CIFAR10. FMNIST-bags (Xiao et al., 2017), KMNIST-
bags (Clanuwat et al., 2018), SVHN-bags (Yuval, 2011),
and Texture-bags (Cimpoi et al., 2014) are taken as OOD
(out-of-distribution) datasets. (2) One pathology dataset is
CAMELYON16 (Bejnordi et al., 2017) for breast cancer
metastasis detection. We synthesize its three distribution-
shifted versions (Tellez et al., 2019) for detection and take
TCGA-PRAD (Kandoth et al., 2013) as OOD dataset. More
details are provided in Appendix D.1 and D.2.

Baselines (1) Classical deep MIL networks: Mean, Max,
ABMIL (Ilse et al., 2018), and DSMIL (Li et al., 2021).
They cover three popular MIL pooling operators, used to
verify whether our MIREL could improve their UE perfor-
mances. (2) Related UE methods. General ones, Deep
Ensemble (Lakshminarayanan et al., 2017), MC Dropout
(Gal & Ghahramani, 2016), and I-EDL (Deng et al., 2023)
are adopted. ABMIL is employed as the base network for
them and our MIREL. Moreover, a BNN-based MIL method,
Bayes-MIL (Cui et al., 2023), is also compared. Refer to
Appendix D.3 for implementation and training details.

Evaluation Both bag-level and instance-level uncertainty
are quantified for evaluation. We mainly use two typical UE
tasks, confidence evaluation (Conf.) and OOD detection,
i.e., we assess whether a model could show more confidence
(or less uncertainty) for those correctly-classified samples
(vs. misclassified ones) and those ID (in-distribution) sam-
ples (vs. OOD ones). AUROC is their evaluation metrics.
We calculate max probability as confidence measure by
default. Following Deng et al. (2023), for EDL models,
we adopt Max.α (maxc αc) and α0 (

∑
c αc) as confidence

measures in Conf. and OOD detection, respectively. Classi-
fication accuracy (Acc.) is listed only for reference. Each
model is run with 5 seeds, and we report the mean and
standard deviation of evaluation metrics.

6.2. MNIST-bags

Main results are shown in Table 1. (1) Comparing the
deep MIL networks with and without our MIREL, we
have three main observations. (i) In instance-level Conf.,
our MIREL always helps existing MIL networks to perform
better, with an average improvement of 16.49%. (ii) In bag-
level OOD detection, the MIL networks with our MIREL
exceed their counterparts by 7.03% on average, in 7 out of
8 comparisons. At instance level, they present an average
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Table 1. Main results on MNIST-bags. OOD-F and OOD-K mean that FMNIST and KMNIST are used for generating OOD bags,
respectively. The results colored in gray are from our derived instance estimator T (x). UE is the average metrics on three UE tasks.

Method Bag-level Instance-level
Acc. Conf. OOD-F OOD-K UE Acc. Conf. OOD-F OOD-K UE

- Combined with deep MIL networks

Mean 93.38 ± 0.90 87.02 ± 1.04 77.57 ± 2.46 54.66 ± 2.62 73.08 86.52 ± 0.97 66.49 ± 1.37 79.36 ± 1.95 57.43 ± 1.50 67.76
Mean + MIREL 93.50 ± 0.53 87.01 ± 1.04 75.26 ± 1.52 57.69 ± 6.28 73.32 92.45 ± 1.22 91.49 ± 1.76 69.98 ± 4.41 56.70 ± 4.97 72.72

Max 94.56 ± 0.46 87.82 ± 1.49 75.23 ± 1.32 62.44 ± 3.00 75.17 92.53 ± 0.54 81.86 ± 1.54 76.97 ± 1.71 62.53 ± 1.61 73.79
Max + MIREL 95.96 ± 0.29 87.85 ± 2.23 84.17 ± 3.32 66.75 ± 5.70 79.59 96.82 ± 0.27 84.22 ± 0.43 80.81 ± 4.88 61.15 ± 3.28 75.40

DSMIL 96.22 ± 0.17 87.56 ± 0.95 71.13 ± 5.20 60.71 ± 7.91 73.13 70.16 ± 3.56 64.64 ± 0.49 59.75 ± 2.35 57.50 ± 2.55 60.63
DSMIL + MIREL 96.50 ± 0.37 87.26 ± 2.66 87.27 ± 4.27 62.03 ± 7.78 78.85 97.19 ± 0.29 73.79 ± 15.68 73.29 ± 10.85 57.58 ± 3.44 68.22

ABMIL 95.74 ± 0.38 86.91 ± 0.98 82.93 ± 4.81 74.37 ± 4.84 81.41 75.03 ± 0.28 61.28 ± 0.86 63.68 ± 1.00 52.63 ± 1.07 59.20
ABMIL + MIREL 96.48 ± 0.22 86.63 ± 1.32 92.84 ± 0.60 79.95 ± 4.12 86.47 87.71 ± 0.67 90.73 ± 1.31 78.13 ± 2.19 67.02 ± 1.94 78.63

- Compared with related UE methods using ABMIL as the base MIL network

Deep Ensemble 96.06 ± 0.35 87.36 ± 0.59 80.07 ± 2.57 74.33 ± 3.97 80.59 75.56 ± 0.32 71.89 ± 0.91 70.48 ± 0.53 55.22 ± 1.16 65.87
MC Dropout 96.28 ± 0.41 88.46 ± 1.82 89.57 ± 3.84 78.24 ± 4.89 85.42 75.61 ± 0.66 68.40 ± 1.54 68.34 ± 1.06 58.61 ± 1.38 65.12
I-EDL 96.08 ± 0.20 86.78 ± 0.87 85.51 ± 7.56 73.15 ± 3.87 81.82 75.45 ± 0.13 60.72 ± 1.46 63.91 ± 1.31 54.14 ± 2.19 59.59
Bayes-MIL 96.44 ± 0.33 85.63 ± 1.53 81.02 ± 11.71 57.04 ± 12.61 74.57 91.64 ± 1.25 82.24 ± 1.85 60.77 ± 6.59 42.06 ± 2.84 61.69
MIREL 96.48 ± 0.22 86.63 ± 1.32 92.84 ± 0.60 79.95 ± 4.12 86.47 87.71 ± 0.67 90.73 ± 1.31 78.13 ± 2.19 67.02 ± 1.94 78.63

improvement of 9.26%, in 5 out of 8 comparisons. (iii)
Overall, our MIREL could often enhance the performance
of deep MIL networks by large margins in terms of UE,
especially for Max, ABMIL, and DSMIL. (2) Compared
with related UE methods, our MIREL always shows better
UE performances except in bag-level Conf.; particularly,
at instance level, our MIREL leads runner-up by 7.62% ∼
8.41%. These comparative results suggest that our MIREL
is an effective and preferable approach for MIUE.
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Figure 1. Distribution of bag-level predictive confidence (negative
expected entropy). Different ratios of OOD (FMNIST) instances
are set to assess the UE capability of MIL models.

Uncertainty analysis is carried out to further examine the
UE capability of our method. (1) Bag-level. We use OOD in-
stances to randomly replace the instances from ID test bags,
according to a specific target ratio of OOD instances. From
the results shown in Fig. 1, we find that it is hard for ABMIL
to identify the bags with different degrees of anomalies; but
interestingly, when combined with our MIREL, ABMIL
shows plausible reflections on those various abnormal bags.
(2) Instance-level. We show results in Fig. 2. (i) From
the result at top row, we observe that the ABMIL with our
MIREL tends to predict clearly-higher uncertainty for num-

bers ‘4’ and ‘7’ while ABMIL does so only for ‘7’. The
former result is in line with experiences since both ‘4’ and
‘7’ can be easily mistaken with ‘9’ in hand-written numbers
(Ilse et al., 2018). (ii) From the result at bottom row, we see
that the ABMIL w/ MIREL is more likely to predict lower
confidences for OOD instances than ABMIL. These results
further confirm that our MIREL could assist classical MIL
networks to capture uncertainty. More uncertainty analysis
on KMNIST, α0, and DSMIL are given in Appendix E.1.
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Figure 2. Distribution of instance-level predictive confidence (neg-
ative expected entropy). Top row is the result of MNIST instances,
where ‘9’ is the number of interest (positive instance). Bottom row
is the result of ID (MNIST) and OOD (FMNIST) instances.

Ablation study is conducted on our MIREL to verify the
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Table 2. Ablation study on the ABMIL with our MIREL using MNIST-bags.

Loss Ins. Bag-level Instance-level
LI-EDL LMIREL Acc. Conf. OOD-F OOD-K UE Acc. Conf. OOD-F OOD-K UE

ak 95.74 ± 0.38 86.91 ± 0.98 82.93 ± 4.81 74.37 ± 4.84 81.41 75.03 ± 0.28 61.28 ± 0.86 63.68 ± 1.00 52.63 ± 1.07 59.20
T 95.74 ± 0.38 86.91 ± 0.98 82.93 ± 4.81 74.37 ± 4.84 81.41 87.03 ± 1.42 84.30 ± 3.45 64.64 ± 4.92 52.67 ± 4.23 67.20

✓ ak 96.08 ± 0.20 86.78 ± 0.87 85.51 ± 7.56 73.15 ± 3.87 81.82 75.45 ± 0.13 60.72 ± 1.46 63.91 ± 1.31 54.14 ± 2.19 59.59
✓ T 96.08 ± 0.20 86.78 ± 0.87 85.51 ± 7.56 73.15 ± 3.87 81.82 85.19 ± 0.64 87.67 ± 1.11 73.52 ± 5.66 56.63 ± 1.66 72.60
✓ ✓ R 96.48 ± 0.22 86.63 ± 1.32 92.84 ± 0.60 79.95 ± 4.12 86.47 87.71 ± 0.67 90.73 ± 1.31 78.13 ± 2.19 67.02 ± 1.94 78.63

Table 3. Comparison with related UE methods on CAMELYON16. OOD-PRAD means that TCGA-PRAD is taken as OOD data. The
baseline of this experiment is vanilla ABMIL without any additional UE techniques. UE is the average metrics on two UE tasks.

Method Bag-level Instance-level
Acc. Conf. OOD-PRAD UE Acc. Conf. OOD-PRAD UE

Baseline 86.77 ± 0.77 72.05 ± 1.72 41.90 ± 2.91 56.98 96.07 ± 0.01 49.87 ± 3.28 31.34 ± 0.85 40.60

Deep Ensemble 86.93 ± 0.63 70.44 ± 1.79 39.62 ± 3.32 55.03 96.08 ± 0.02 49.62 ± 2.53 28.16 ± 1.07 38.89
MC Dropout 87.09 ± 1.37 67.50 ± 5.92 45.66 ± 5.48 56.58 96.05 ± 0.00 56.35 ± 2.20 33.93 ± 2.05 45.14
I-EDL 87.72 ± 0.63 57.48 ± 8.07 72.43 ± 11.98 64.95 96.05 ± 0.01 45.41 ± 5.33 32.06 ± 1.49 38.74
Bayes-MIL 86.61 ± 1.11 66.91 ± 6.73 48.77 ± 7.97 57.84 97.27 ± 0.28 82.12 ± 9.12 54.53 ± 21.34 68.33
MIREL 87.09 ± 1.07 61.62 ± 6.85 82.51 ± 8.34 72.06 97.79 ± 0.71 77.85 ± 5.69 67.85 ± 5.71 72.85

effectiveness of its components. Different loss functions
and instance estimators are adopted. More details are shown
in Appendix D.3. From the results shown in Table 2, there
are three main findings. (1) For our derived instance es-
timator T , it leads attention-based scoring proxy (ak) at
instance level by large margins (8% and 13.01%) in terms
of overall UE performance. (2) For the adopted LI-EDL, it
could help to enhance instance-level UE performances in the
presence of T ; no obvious effect is observed in other cases.
(3) For our new residual estimator R trained with LMIREL,
it boosts not only instance-level but also bag-level UE per-
formances. Particularly, its performance improvements in
OOD detection range from 4.61% to 10.39%. These findings
could demonstrate the effectiveness of those components
proposed in our MIREL. More studies, including i) the
optimization strategies for R(x) and ii) adopting T (x) for
related UE methods, are presented in Appendix E.2.

More experiments (1) The results on CIFAR10-bags, in-
cluding main results (F.1), uncertainty analysis (F.2), and
ablation studies (F.3), are given in Appendix F. (2) A syn-
thetic MIUE experiment is presented in Appendix H, in
order to intuitively understand the behavior of our weakly-
supervised residual instance estimator R(x).

6.3. Histopathology Dataset

Main results are exhibited in Table 3. We mainly compare
our method with related UE methods in this experiment.
There are four main observations from these results. (1)
Our MIREL obtains the best overall UE performance at
both bag and instance levels, surpassing the second best
method by 7.11% and 4.52%, respectively. (2) Our MIREL
improves the overall performance of ABMIL (baseline) in
UE by considerable margins, 15.08% and 32.35% at bag
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Figure 3. Performance of compared UE methods in distribution
shift detection on CAMELYON16. The test samples of CAME-
LYON16 are shifted with different degrees of image noises for
detection. Refer to Appendix G.2 for complete numerical results.

and instance level, respectively. (3) Especially, our method
shows impressive results in OOD detection, with a margin
of more than 10% over others at both instance and bag level.
(4) The UE methods not specially proposed for MIL often
obtain the AUROC even less than 0.5 in OOD detection. It
is because, the pathology images from TCGA-PRAD are
near-OOD data and near-OOD detection is usually more
challenging than far-OOD detection for these UE methods.
These four observations suggest that our MIREL has the
potential to be applied in real-world applications.

Distribution shift (DS) detection is a more challenging
task than OOD detection, so it is further adopted to test
our method. We generate three distribution-shifted test sets
by adding routine noises to original CAMELYON16 test
images, called lighter, light, and strong according to noise
strengths. Refer to Appendix D.2 for experimental details.
Detection result is shown in Fig. 3. (1) Bag-level. Lighter
DS is hard to detect for all the adopted UE methods (only
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about 0.52). Our MIREL can detect both light and strong
DS with the best or the second best performance, while the
competitive Bayes-MIL fails to detect light DS with an AU-
ROC less than 0.53. (2) instance-level. All the compared
methods not specially for MIL, consistently show mean-
ingless results (AUROC < 0.5). By contrast, our MIREL
detects strong DS with an AUROC of 0.62, better than the
Bayes-MIL with an AUROC of 0.57. This experiment could
further verify the superiority of our MIREL in MIUE.

7. Limitation and Future Work
Although our baseline approach MIREL shows promising
results in MIUE, there are still some limitations in our exper-
iments. First, since multi-instance bag is usually expensive
in computation, our MIL datasets are limited in scale. Larger
datasets (e.g., with more than 10,000 bags) would be better
for more comprehensive validation. In addition, we take
AUROC as the main metric to quantitatively evaluate the
performance of UE methods. Additional calibration met-
rics, e.g., Expected Calibration Error (ECE) or Brier Score,
would help to evaluate more holistically.

In the future, there are some directions worth further re-
search. (1) The optimization strategy for the weakly-
supervised posterior p(θw|D). It could be further improved
to provide a tighter upper bound for more accurate UE at
instance level. (2) Seeking other efficient UE methods, such
as distance-aware UE and feature space regularization, as
stated in Postels et al. (2022). (3) More general settings
beyond binary MIL, e.g., multi-label MIL, as they cover
more practical applications (Zhou et al., 2012).

8. Conclusion
This paper addresses a new MIUE problem and presents a
baseline scheme, Multi-Instance Residual Evidential Learn-
ing. In this scheme, we propose to model bag-level predic-
tive uncertainty using a Dirichlet-based posterior distribu-
tion parameterized by general MIL networks. In particular,
at weakly-supervised instance level, we derive a new resid-
ual estimator through the Fundamental Theorem of Sym-
metric Functions for instance-level UE. Moreover, without
complete instance labels, we propose a weakly-supervised
evidential optimization strategy for that residual estimator.
Different UE tasks and extensive experiments demonstrate
that our MIREL could often outperform other related UE
methods. In addition, it can be applied to existing MIL
networks, effectively assisting them in improving MIUE
performances, especially at instance level. Since MIL has
close connections with many real-world and safe-critical ap-
plications, it is of great importance and highly anticipated to
enhance the reliability of MIL systems through MIUE. Our
work could inspire more research on investigating MIUE,

paving the way to explore uncertainty estimation in more
weakly-supervised settings.
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A. Derivation and Proof
In this section, A.1 gives the derivation of Eq.(7) to clarify the connection of our bag-level predictive uncertainty modeling
with Bayesian frameworks. A.2 presents the proof details of Corollary 4.1 and Proposition 4.2 (in Section 4.2). Lastly, in
A.3, we justify our weakly-supervised optimization strategy (in Section 4.3) that aims to provide a more suitable θ̂w.

A.1. Derivation of Eq.(7)

From the perspective of Bayesian (Neal, 2012), for a new bag input X∗, its predictive distribution can be written by Eq.(3):

P (Y ∗|X∗,D) =

∫
P (Y ∗|X∗,ω)p(ω|D)dω.

By introducing a new distribution p(µ|X∗,ω), we can re-write the equation above as follows:∫
P (Y ∗|X∗,ω)p(ω|D)dω =

∫ ∫
P (Y ∗|µ)p(µ|X∗,ω)p(ω|D)dµdω

=

∫
P (Y ∗|µ)

[∫
p(µ|X∗,ω)p(ω|D)dω

]
dµ

=

∫
P (Y ∗|µ)p(µ|X∗,D)dµ

(12)

As a result, P (Y ∗|µ) can be taken as the new model. p(µ|X∗,D) is the distribution over model parameters conditioned the
input bag X and the given bag dataset D. It is also referred to as the estimate of distributional uncertainty given model
uncertainty. However, the marginalization of the equation above is intractable. To tackle this, a point estimate of model
parameters ω̂ is often assumed to satisfy p(ω|D) = δ(ω − ω̂) (Malinin & Gales, 2018). Hence,∫

P (Y ∗|X∗,ω)p(ω|D)dω =

∫
P (Y ∗|µ)p(µ|X∗,D)dµ ≈

∫
P (Y ∗|µ)p(µ|X∗, ω̂)dµ.

p(µ|X∗, ω̂) is exactly the posterior Dirichlet distribution given in our bag-level predictive uncertainty modeling. Accordingly,
quantifying its uncertainty becomes tractable, as there is a closed-form analytical solution for those commonly-used
uncertainty measures (refer to Appendix B for details).

A.2. Proof of Corollary 4.1 and Proposition 4.2

Corollary 4.1 (to Theorem 2.1). Given a scoring function for a set of instances X = {x1, . . . ,xK}, written as S(X) =
g
(∑

k f(xk)
)
∈ R where k ∈ [1,K], a scoring function for any single instance can be written as

T = g ◦ f,

and T (x) ∈ R for an instance x.

Proof. Without loss of generality, we assume f(x) ∈ RM . Given that the input of g(·) is
∑
k f(xk) in S(X), the domain

of g(·) is in RM , since
∑
k f(xk) ∈ RM . Therefore, g(·) can take f(x) as input. Namely, there is a feasible function

T (x) = g(f(x)) ∈ R. Further, S(X) is stated as a bag scoring function in Theorem 2.1. Hence, the T (x), which has the
same decision function g(·) as S(X), can also be cast a scoring function specially for instances.

Proposition 4.2. Let S(·) be a classifier for a bag of instances X = {xk}Kk=1 and satisfy S(X) = g
(∑

k f(xk)
)
. For any

bag X and its label Y ∈ {0, 1}, further assume S can predict bags precisely: S(X) = Y . Then, there exists an estimator
with T = g ◦ f for any single instance x, such that T (x) = y, where y ∈ {0, 1} is the label of x.

Proof. According to Corollary 4.1, given S(X) = g
(∑

k f(xk)
)
, there is an instance-level estimator T that can be written

as T (x) = g(f(x)). With the existence of T , we need to prove T (x) = y, for any single instance x and its label y.

Recall that, Theorem 2.1, which gives the bag scoring function S(X) = g
(∑

k f(xk)
)
, holds as before or under weak

conditions, when the form of instance pooling,
∑
k f(xk), is replaced by others, such as i) mean, ii) max (Qi et al., 2017),

and iii) attention-based MIL pooling (Ilse et al., 2018). Next, we finish the proof with the basics of MIL.
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First of all, for any instance x, we assume that there is a virtual bag as follows:

Xvir = {x, · · · ,x︸ ︷︷ ︸
n

}.

Based on the classical MIL assumption, i.e., Y = maxk{yk}, we have

Yvir = max
x∈Xvir

{y} = y,

where Yvir is the ground-truth of Xvir. Then, we discuss three cases for the form of instance pooling in MIL:

Case (1): mean,

S(Xvir) = g
( 1
n

∑
x∈Xvir

f(x)
)
= g(f(x)).

Case (2): max (Qi et al., 2017),
S(Xvir) = g

(
max
x∈Xvir

{f(x)}
)
= g(f(x)).

Case (3): attention (Ilse et al., 2018). Combining with Eq.(2), there is

S(Xvir) = g
( ∑

x∈Xvir

exp
(
t(f(x))

)∑n
τ=1 exp

(
t(f(x))

)f(x)) = g
( ∑

x∈Xvir

1

n
f(x)

)
= g(f(x)).

Since there is S(X) = Y , we have
Ŷvir = S(Xvir) = Yvir,

where Ŷvir is the prediction of Xvir. Eventually,

Yvir = max
x∈Xvir

{y} = y

S(Xvir) = g(f(x))

Ŷvir = S(Xvir) = Yvir

 =⇒ ŷ = T (x) = g(f(x)) = y (13)

A.3. Justification for the Objective Function LMIREL Given in Eq.(10)

This section presents the details of our justification for LMIREL, including the proof of Proposition 4.3.

Considering any bag X ∈ D and its label Y ∈ {0, 1}, there are X = {x1, · · · ,xK} and Y = max{y1, · · · , yK} in MIL.
To train an unbiased instance estimator R(x) given instance labels, an ideal loss function could be written as follows:

minLR = min

K∑
k=1

1

K
L(αk, yk), (14)

where L is a loss function derived from MLE for evidence learning, and αk is the concentration parameter of predictive
Dirichlet distribution for the k-th instance. Note that here L is a loss function for αk, i.e., the prediction of the k-th instance,
rather than a raw instance input.

When Y = 0, we have yk = 0 ∀k = [1,K]. In this case, LR can be directly used for optimization given instance labels.
When Y = 1, we only know maxk{yk} = 1, without complete instance labels. In this case, there are three alternative
strategies for the training of R(x).

Strategy (1): naive instance label assignment. Assuming yk = 1 ∀k = [1,K], an alternative objective function is

minL1 = min

K∑
k=1

1

K
L(αk, 1).
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Strategy (2): naive instance label assignment and weighted loss. It is a weighted variant of strategy (1), written as follows:

minL2 = min

K∑
k=1

wk∑K
τ=1 wτ

L(αk, 1),

where wk is the probability of the k-th instance being positive. Here, wk could be estimated by T (xk) = g(f(xk)).

Strategy (3): weighted instance evidence. wk is used to aggregate instance evidences in order to learn from key positive
instances. This is the strategy we adopt, as written in Eq.(10). We simplify its objective function and re-write it by

minL+
ins = minL

( K∑
k=1

wk∑K
τ=1 wτ

αk, 1
)
.

Next, we prove that strategy (3) can provide a tighter upper bound for ideal Eq.(14) than the other two under given conditions.
Before that, we first give Proposition A.1 and Proposition A.2, as well as their proof, as follows:

Proposition A.1. L+
ins ≤ L2 holds in instance evidential learning for a convex objective function L(α, y = 1).

Proof. By definition, wk ≥ 0. L(α, y = 1) is a given convex function w.r.t α. Therefore, by Jensen’s inequality we have

L+
ins = L

( K∑
k=1

wk∑K
τ=1 wτ

αk, 1
)
≤

K∑
k=1

wk∑K
τ=1 wτ

L(αk, 1) = L2. (15)

✍ Additional explanation: The condition given in Proposition A.1, a convex L w.r.t model prediction, could be satisfied
for common loss functions, e.g., the negative logarithm w.r.t prediction, or the mean square error between prediction and
target. Although the L(α, y = 1) used for our instance evidential learning (Appendix C) contains non-convex terms and
is not a strict convex function w.r.t α, we still find that L+

ins could be better than L2 in terms of overall UE performance,
demonstrated by the ablation study on optimization strategy (refer to Appendix E.2 and Appendix F.3).

Proposition A.2. L2 ≤ L1 holds in instance evidential learning when there is w1 ≥ w2 ≥ · · · ≥ wK for L(α1, 1) ≤
L(α2, 1) ≤ · · · ≤ L(αK , 1).

Proof. Let
bk =

wk∑K
τ=1 wτ

∀k = 1, · · · ,K.

Hence
∑K
k=1 bk = 1. Given wk ≥ 0 and w1 ≥ w2 ≥ · · · ≥ wK , there is

b1 ≥ b2 ≥ · · · ≥ bK .

First of all, we prove the following inequality through proof by contradiction:

∆n =

n∑
k=1

bk −
n

K
≥ 0.

Concretely, we assume ∆n < 0, i.e.,
∑n
k=1 bk <

n
K . Given b1 ≥ b2 ≥ · · · ≥ bn ≥ bq ∀q = n+ 1, · · · ,K, we have

n∑
k=1

bk <
n

K
=⇒

n∑
k=1

bq ≤
n∑
k=1

bk <
n

K
=⇒ nbq <

n

K
=⇒ bq <

1

K
.

Further, by adding all bq into
∑n
k=1 bk and using bq < 1

K , there is

n∑
k=1

bk +

K∑
q=n+1

bq <
n

K
+

K∑
q=n+1

1

K
=⇒

n∑
k=1

bk +

K∑
q=n+1

bq <
n

K
+
K − n

K
=⇒

n∑
k=1

bk +

K∑
q=n+1

bq < 1.
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This contradicts
∑K
k=1 bk = 1. Namely, ∆n =

∑n
k=1 bk −

n
K ≥ 0 holds.

Then, given L(α1, 1) ≤ L(α2, 1) and ∆1 = b1 − 1
K ≥ 0, there is(

b1 −
1

K

)
L(α1, 1) ≤

(
b1 −

1

K

)
L(α2, 1) =⇒ b1L(α1, 1) +

( 2

K
− b1

)
L(α2, 1) ≤

1

K
L(α1, 1) +

1

K
L(α2, 1).

Further, by introducing ∆2L(α2, 1) ≤ ∆2L(α3, 1) (∆2 = b1 + b2 − 2
K ≥ 0) into the inequality above, we have

b1L(α1, 1) + b2L(α2, 1) +
( 3

K
− b1 − b2

)
L(α3, 1) ≤

1

K
L(α1, 1) +

1

K
L(α2, 1) +

1

K
L(α3, 1).

By analogy, we can obtain

L2 = b1L(α1, 1) + b2L(α1, 1) + · · ·+ bKL(αK , 1) ≤
1

K
L(α1, 1) +

1

K
L(α2, 1) + · · ·+ 1

K
L(αK , 1) = L1

✍ Additional explanation: The condition given in Proposition A.2, w1 ≥ w2 ≥ · · · ≥ wK for L(α1, 1) ≤ L(α2, 1) ≤
· · · ≤ L(αK , 1), states that there is a higher weight for the instance whose prediction is closer to the expected evidence
derived from positive instances. Here, we assume that the instance-level estimator T = g ◦ f could predict a higher wk for
positive instances and a lower one for negative instances, in order to satisfy that condition approximately.

With Proposition A.1 and Proposition A.2, we give the proof of Proposition 4.3 as follows:

Proposition 4.3. Let L(α, y) be a loss function w.r.t α and y. For any positive bag X = {x1, · · · ,xK}, assume
w̄k ≥ 0 ∀k ∈ [1,K],

∑
k w̄k = 1, and α̃ =

∑
k w̄kαk. L+

ins = L(α̃, 1) ≤
∑
k w̄kL(αk, 1) ≤

∑
k

1
KL(αk, 1)

holds in instance evidential learning, when L is a convex function w.r.t α and there is w̄1 ≥ w̄2 ≥ · · · ≥ w̄K for
L(α1, 1) ≤ L(α2, 1) ≤ · · · ≤ L(αK , 1).

Proof. Since
∑
k w̄kL(αk, 1) = L2 and L is a convex function w.r.t α, we have L+

ins ≤ L2 according to Proposition A.1.
Further,

∑
k

1
KL(αk, 1) = L1 and those given conditions exactly satisfy the condition of Proposition A.2, so L2 ≤ L1.

Hence, there is L+
ins ≤ L2 ≤ L1. Namely, L+

ins = L(α̃, 1) ≤
∑
k w̄kL(αk, 1) ≤

∑
k

1
KL(αk, 1) holds.

Proposition 4.3 ensure that our objective function L+
ins can provide a tighter upper bound than L1 and L2 for the ideal

objective function Eq.(14) under given conditions. This implies that our optimization strategy (3) could yield a more suitable
weakly-supervised posterior θ̂w in instance evidential learning, such that p(θw|D) ≈ δ(θw − θ̂w). Accordingly, we could
approximate the intractable posterior in Eq.(4) with p(ν|x∗,D) ≈ p(ν|x∗, θ̂w) for a new instance input x∗, as follows:

P (y∗|x∗,D) =

∫
P (y∗|x∗,θw)p(θw|D)dθw =

∫
P (y∗|ν)p(ν|x∗,D)dν ≈

∫
P (y∗|ν)p(ν|x∗, θ̂w)dν,

where ν is instance-level predictive probability. The above equation with Dirichlet distribution has a closed-form solution
for instance-level uncertainty quantification, as elaborated in Appendix B.2. The ablation studies on instance loss functions
(refer to Appendix E.2 and Appendix F.3) empirically demonstrate Proposition 4.3.

B. Uncertainty Measures
This section mainly shows common measures for uncertainty quantification. Two predictive distributions, general Categorical
distribution and related Dirichlet distribution, are considered here. This section is adapted from Malinin & Gales (2018), in
order to provide readers with additional reference.

B.1. Measures for Predictive Categorical Distribution

Given a predictive Categorical distribution for input X , P (Y |X), its total uncertainty could be quantified through two
common measures as follows:
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(1) Max probability It is the probability of the predicted category, as a measure of confidence in prediction. Intuitively, a
larger max probability means that model is more confident of its prediction. Max probability can be written as follows:

max
i
P (Y = i|X),

where i ∈ [1, C] and C is the total number of categories.

(2) Entropy By definition, it is calculated by

H[P (Y |X)] = −
C∑
i=1

[
P (Y = i|X) lnP (Y = i|X)

]
A flat predictive distribution would yield a maximum H[P (Y |X)], implying high predictive uncertainty.

Moreover, from the perspective of Bayesian (Neal, 2012), consider the posterior distribution of model parameter given
dataset D, i.e., p(ω|D). There is another measure commonly used for quantifying the model uncertainty in prediction:

I[Y,ω|X,D]︸ ︷︷ ︸
Model Uncertainty

= H
[
Ep(ω|D)P (Y |X,ω)

]︸ ︷︷ ︸
Total Uncertainty

−Ep(ω|D)

[
H[P (Y |X,ω)]

]︸ ︷︷ ︸
Expected Data Uncertainty

. (16)

It is referred to as Mutual information (MI). As shown in the equation above, MI can be cast as the difference of
total uncertainty and expected data uncertainty. The former is captured by H

[
Ep(ω|D)P (Y |X,ω)

]
, i.e., the entropy of

expected predictive distribution. The latter is captured by Ep(ω|D)

[
H[P (Y |X,ω)]

]
, i.e., the expected entropy of predictive

distribution. For traditional non-Bayesian NN models, MI is zero because their parameter is usually a point estimation.

B.2. Measures for Predictive Dirichlet Distribution

Consider a prediction with Dirichlet distribution (known as the conjugate prior of Categorical distribution):

Dir(p|α) =
Γ(α0)∏C
i=1 Γ(αi)

C∏
i=1

pαi−1
i ,

where p ∈ SC−1 (a probability simplex with C − 1 dimensions), α = [α1, · · · , αC ], αi ≥ 0 ∀i ∈ [1, C], Γ(·) is a gamma
function, and α0 =

∑C
i=1 αi often called the precision or Dirichlet strength. Its expected probability is as follows:

E[p] =
[α1

α0
,
α2

α0
, · · · , αC

α0

]
.

Next, we give common uncertainty measures for Dir(p|α). All of them have a closed-form analytical solution.

Max probability and Entropy By simply taking E[p] as prediction, they can be written as

max
{αi
α0

}C
i=1

and H
[
Ep∼Dir(α)P (Y |p)

]
= −

C∑
i=1

αi
α0

ln
αi
α0
,

respectively, to capture the total uncertainty in prediction.

Expected Entropy Different from the calculation of predictive entropy above, expected entropy is expressed as

Ep∼Dir(α)

[
H[P (Y |p)]

]
=

∫
SC−1

Dir(p|α)
(
−

C∑
i=1

pi ln pi

)
dp = −

C∑
i=1

αi
α0

(
ψ(αi + 1)− ψ(α0 + 1)

)
,

where ψ(·) is a digamma function defined as ψ(x) = d
dx log Γ(x). As mentioned in Eq.(16), expected entropy is usually

utilized to measure data uncertainty. Intuitively, it could capture the ‘peak’ probabilities in E[p].

Mutual Information By definition, mutual information (MI) can be written as follows:

I[Y,p|X,D]︸ ︷︷ ︸
Distributional Uncertainty

= H
[
Ep∼Dir(p|X,D)P (Y |p)

]︸ ︷︷ ︸
Total Uncertainty

−Ep∼Dir(p|X,D)

[
H[P (Y |p)]

]︸ ︷︷ ︸
Expected Data Uncertainty

.
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This equation calculates the MI between Y and the categorical p, rather than the ω written in Eq.(16). Thereby, I[Y,p|X,D]
is generally used to measure distributional uncertainty. Assuming there is a sufficient point estimate ω̂ satisfying
Dir(p|X,D) ≈ Dir(p|X, ω̂) = Dir(p|α) where α is the prediction of X given the model parameter ω̂, MI (Ma-
linin & Gales, 2018) could be approximated and calculated as follows:

I[Y,p|X,D]︸ ︷︷ ︸
Distributional Uncertainty

≈ H
[
Ep∼Dir(α)P (Y |p)

]︸ ︷︷ ︸
Total Uncertainty

−Ep∼Dir(α)

[
H[P (Y |p)]

]︸ ︷︷ ︸
Expected Data Uncertainty

= −
C∑
i=1

αi
α0

ln
αi
α0

−

(
−

C∑
i=1

αi
α0

(
ψ(αi + 1)− ψ(α0 + 1)

))

= −
C∑
i=1

αi
α0

(
ln
αi
α0

− ψ(αi + 1) + ψ(α0 + 1)
)
.

(17)

More measures involving concentration parameters α = [α1, · · · , αC ], e.g., maxi{αi}, α0 =
∑C
i=1 αi, and C∑C

i=1 αi
, are

often utilized in Dirichlet-based uncertainty (DBU) models, to capture model uncertainty, as α shapes the distribution of
predictive probabilities. For more discussions about this, readers could refer to Ulmer et al. (2023).

C. Objective Function for Evidential Deep Learning
For completeness, here we provide the details of Fisher Information-based objective function (Deng et al., 2023). This
section is adapted from Deng et al. (2023).

The Fisher Information-based objective function employed by us, LI-EDL, can be written as follows:

min E(X,Y )∼PEµ∼Dir(α)

[
− log p(Y |µ,α, σ2)

]
.

s.t. α = F(X) + 1

p(Y |µ,α, σ2) = N
(
Y |µ, σ2I(α)−1

)
I(α) = EDir(µ|α)

[
− ∂2 logDir(µ|α)

∂ααT

] (18)

In this function, α is the concentration parameter of Dirichlet distribution predicted from X by F(·). Moreover,
p(Y |µ,α, σ2) is assumed to be a multivariate Gaussian distribution N

(
Y |µ, σ2I(α)−1

)
, and I(α) is referred to as

Fisher Information Matrix (FIM) for Dir(α).

Intuitively, FIM is introduced into the variance of predictive distribution to obtain a non-isotropic Normal distribution for
the label generation of a specific sample. As a result, there is an adaptive weight provided by FIM. This weight is assigned
to each class in eventual loss function, to adjust the information of each class contained in the sample. This could avoid the
potential over-penalty of some classes in the supervision based on one-hot labels.

Given a dataset {(Xj , Yj)}Nj=1, the eventual form of LI-EDL is as follows:

min
1

N

N∑
j=1

(
LI-MSE
j − λ1L|I|

j + λ2LKL
j

)
,

where

LI-MSE
j =

C∑
i=1

(
(yji −

αji
αj0

)2 +
αji(αj0 − αji)

α2
j0(αj0 + 1)

)
ψ(1)(αji),

L|I|
j =

C∑
i=1

logψ(1)(αji) + log

(
1−

C∑
i=1

ψ(1)(αj0)

ψ(1)(αji)

)
,

LKL
j = log Γ

( C∑
i=1

α̂ji

)
− log Γ(C)−

C∑
i=1

log Γ(α̂ji) +

C∑
i=1

(α̂ji − 1)

[
ψ(α̂ji)− ψ

( C∑
c=1

α̂jc

)]
,
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and λ1 ≥ 0, λ2 ≥ 0. Moreover, α̂ji = αji(1 − Yji) + Yji ∀j ∈ [1, N ], i ∈ [1, C] . ψ(·) is a digamma function defined
as ψ(x) = d

dx log Γ(x), ψ
(1)(·) is a trigamma function with ψ(1)(x) = d

dxψ(x), and Γ(·) stands for a gamma function.
Readers could refer to Deng et al. (2023) for derivation details.

For better understanding, we briefly explain these terms as follows:

(1) For the first term LI-MSE
j , it introduces a new ψ(1)(αji) to the MSE (mean square error) loss LMSE

j frequently-used in
EDL (Sensoy et al., 2018). Concretely,

LMSE
j =

C∑
i=1

(
(yji −

αji
αj0

)2 +
αji(αj0 − αji)

α2
j0(αj0 + 1)

)
.

It is derived from a simple MSE-based Bayes risk function:

LMSE =

∫
||Y − µ||22Dir(µ|α)dµ.

ψ(1)(αji) is specially added into LMSE
j , in order to encourage the model to focus more on the class with low evidence.

(2) For the second term −L|I|
j , it is equal to − log |I(αj)|, i.e.,

−L|I|
j = − log |I(αj)|.

It is taken to avoid the overconfidence caused by excessive evidence.

(3) For the final term LKL
j , its original form (Sensoy et al., 2018) is as follows:

LKL
j = KL(Dir(µ|α̂j)||Dir(µ|1)),

where KL(·) is a function measuring Kullback-Leibler (KL) divergence. Moreover, α̂j = αj ⊙ (1− Yj) + Yj where Yj
stands for the one-hot label of Yj . It indicates manually masking the predicted parameter corresponding to the ground-truth
class. Therefore, LKL

j can be view as a loss term aiming to suppress the evidence of irrelevant classes.

D. Experimental Details
This section provides the additional details of experimental setup (Section 6.1), including bag generation (D.1), datasets
(D.2), and implementation and network training (D.3). Our source code has been submitted as Supplementary Material.

D.1. Bag Generation

Following Ilse et al. (2018), we generate a bag dataset for MIL from a given single-instance dataset. (1) Steps: At first, we
set a class of interest (as positive class) and this class is from the given dataset. Then, we randomly select a certain number
of samples from the given dataset to form a multi-instance bag. This bag is positive if it contains at least one sample from the
class of interest; otherwise, it is negative. Bag length follows a Normal distribution N (10, 2). (2) More settings: positive
and negative bags are generated sequentially in a loop to obtain a balanced bag dataset. The ratio of positive instances
roughly follows an Uniform distribution U(0, 1) for positive bags. No that, we ensure that all the instances of training bags
are only sampled from the training set of the given dataset, and do so for validation and test bags.

D.2. Datasets

MNIST-bags (LeCun, 1998) Following the dataset setting in Ilse et al. (2018), there are 500, 100, and 1000 generated
MNIST bags in training, validation, and test set, respectively. Each bag contains multiple MNIST images (each image with
the size of 1× 28× 28). The number ‘9’ is set as the class of interest, as it is easily mistaken with ‘7’ and ‘4’ in hand-written
numbers. In OOD detection tasks, FMNIST-bags (Xiao et al., 2017) and KMNIST-bags (Clanuwat et al., 2018) are taken
as OOD MIL datasets. Both of two contain 1000 OOD bags. The length of these OOD bags also follows N (10, 2). We
show bag examples in Fig. 4.

CIFAR10-bags (Krizhevsky et al., 2009) We generate 6000, 1000 and 2000 CIFAR bags for training, validation, and test,
respectively. This dataset is more complex than MNIST-bags since its instances, CIFAR10 images, are more diverse than
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FMNIST-bags KMNIST-bagsMNIST-bags

CIFAR10-bags SVHN-bags Texture-bags

ID PositiveID Negative OOD OOD

ID PositiveID Negative OOD OOD

Figure 4. Bag examples of each bag dataset. Red box indicates the class of interest, ‘9’ and ‘truck’ for MNIST and CIFAR10, respectively.

MNIST ones. A single instance (image) in each bag is with the size of 3× 32× 32. We randomly select ‘truck’ as the class
of interest. In OOD detection tasks, SVHN-bags (Yuval, 2011) and Texture-bags (Cimpoi et al., 2014) are two OOD MIL
datasets; and each contains 2,000 OOD bags. OOD instances are resized to 3× 32× 32, in order to keep the same size as
CIFAR10 instances. Similarly, the length of OOD bags follows N (10, 2). Bag examples are exhibited in Fig. 4.

CAMELYON16 (Bejnordi et al., 2017) It is a real-world pathology dataset, originally proposed for breast cancer lymph
node metastasis detection and frequently used for evaluating MIL algorithms. We obtain 270 and 129 histopathology WSIs
(Whole-Slide Images) for training and test, respectively, provided by official organizers. There are 111 tumor slides and 159
normal slides in the training set, and 49 tumor slides and 80 normal slides in the test set. We leave 15% training samples as a
validation set. Please refer to Fig. 5(a) for WSI examples. More details of CAMELYON16 are as follows:

• Preprocessing: Since a single WSI has extremely-high resolution (e.g., 40, 000× 40, 000 pixels), we process each
image into a bag of feature vectors with CLAM (Lu et al., 2021) by three steps: i) tissue region selection, ii) image
patching, and iii) patch feature extraction. Each patch is an image with 256 × 256 pixels from the WSI at 20×
magnification. Feature vector is extracted from patch image by a fixed (frozen) deep network. This fixed network is
pre-trained on the patches of training samples by self-supervised learning, provided by Li et al. (2021). As a result,
there are 11,753 instances in each WSI bag on average, and each instance is a feature vector with the length of 512.

• OOD dataset: The histopathology WSIs of prostate cancer are used as the OOD samples of CAMELYON16 (breast
cancer), following Linmans et al. (2023). These WSIs are from TCGA-PRAD (The Cancer Genome Atlas Prostate
Adenocarcinoma1) (Kandoth et al., 2013), containing 449 diagnostic images. Their preprocessing is the same as that of
CAMELYON16. Finally, there are 3,484 instances in each bag on average. TCGA-PRAD samples are shown in Fig.
5(a). They often present differences with CAMELYON16 in cell distribution and tissue morphology.

• Distribution shift dataset: Given the test WSIs of CAMELYON16, we synthesize its three shifted versions using
the image noises with different strengths, called lighter, light, and strong. Specifically, Gaussian Blurring or HED
(Hematoxylin-Eosin-DAB) color variation is applied to the patch images of each test WSI, to simulate the possible
noises in digital pathology, following Tellez et al. (2019) and Liu et al. (2024a). The patch image samples with different
noises are shown in Fig. 5(b). Eventually, all the patch images with noises are transformed into instances (feature
vectors) using the same feature extractor mentioned in WSI preprocessing.

1Available at https://portal.gdc.cancer.gov/projects/TCGA-PRAD
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CAMELYON16

TCGA-PRAD

ID Negative ID Positive

OOD OOD

(a) (b) Distribution shift (CAMELYON16)

lighter light strong

w/o

Blur

HED

Blur

HED

Figure 5. (a) Samples of CAMELYON16 and TCGA-PRAD. Red box indicates the patch with tumorous cells. (b) Patch samples of
distribution shift CAMELYON16. Blur and HED mean the image noise of Gaussian Blurring and HED color variation, respectively.

D.3. Implementation and Network Training

Deep MIL networks The most representative deep MIL networks, e.g., Mean, Max, ABMIL (Ilse et al., 2018), and DSMIL
(Li et al., 2021), are adopted in our experiments. From a unified perspective, these networks comprise three key parts as
follows. (1) Instance encoder. We employ LeNet (LeCun, 1998) as the encoder to transform MNIST images into instance
embeddings, following Ilse et al. (2018). For CIFAR10-bags, a modified AlexNet (Krizhevsky et al., 2012) is adopted. For
CAMELYON16, we directly use an MLP (Multi-Layer Perceptron) layer, since image patches have been transformed into
feature vectors. (2) MIL pooling operator. Mean and max-based pooling are used for Mean and Max MIL networks,
respectively. For ABMIL and DSMIL, we follow their respective implementation in MIL pooling. Specifically, for ABMIL,
a standard attention mechanism, rather than its gated variant, is adopted in MIL pooling, because it is more efficient in
computation and is often competitive in performance, compared to its gated variant (Ilse et al., 2018; Shi et al., 2020). (3)
Classification head. It is a fully-connected layer with negative and positive output nodes.

Related UE methods For the classical UE method, Deep Ensemble (Lakshminarayanan et al., 2017), by default we train
10 ABMIL networks with different random seeds. For MC Dropout (Gal & Ghahramani, 2016), Dropout layers are used in
the instance encoder of ABMIL, with a drop rate of 0.25; 10 estimates are sampled from the network and their mean is taken
as prediction. For BNN-based Bayes-MIL (Cui et al., 2023), we follow its implementation to sample 16 estimates. Lastly,
for I-EDL (Deng et al., 2023), we modify the classification head of ABMIL into an evidential output layer (Sensoy et al.,
2018), and adopt a I-EDL loss function for evidential learning.

MIREL Its implementation details are as follows. (1) Bag-level network: Our method could be combined with existing
deep MIL networks for MIUE. Thus, we directly follow their implementations and employ them to implement our bag-level
networks. In particular, we replace their conventional classification head with an evidential output layer (Sensoy et al., 2018),
and utilize exp(·) for the implementation of A(·). (2) instance-level network: For our proposed residual instance estimator,
R(x) = T (x) + rπ(fψ(x)), T (·) is exactly the bag-level network, fψ(·) is the instance encoder of bag-level network, and
rπ(·) is simply implemented by an MLP layer. To make instance-level evidential learning more stable, we adopt tanh(·) to
let rπ output a scale value in [−1, 1]. This scale value expresses a residual estimate proportional to T (x). (3) Loss function:
Apart from Fisher Information-based objective function (Appendix C), a RED loss (Pandey & Yu, 2023) is also adopted to
avoid zero-evidence regions in EDL, as stated in the last paragraph of Section 4.3. (4) Optimization strategy for LMIREL:
In the experiments on MNIST-bags and CAMELYON16, the bag-level parameter ψ and the instance-level parameter π
are optimized by LMIREL in weakly-supervised instance residual evidential learning. While on CIFAR10-bags, only the
instance-level parameter π is involved in the optimization of LMIREL. Namely, we specially freeze the bag-level parameter ψ
in optimizing LMIREL. We will elaborate on this setting in Appendix F.3. (5) Hyper-parameters: Following Deng et al.
(2023), the coefficient λ1 of −L|I|

j is set by a grid-search over (0.1, 0.05, 0.01, 0.005, 0.001), and the coefficient λ2 of LKL
j
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is set to min(1, t10 ) ∈ [0, 1], where t is the index of current training epoch.

Network training Learning rate, by default, is set to 0.0001 and it decays by a factor of 0.5 when the criterion on validation
set does not decrease within 10 epochs. The other default settings are as follows: an epoch number of 200, a batch size of 1
(bag), a gradient accumulation step of 8, and an optimizer of Adam with a weight decay rate of 1× 10−5. Early stopping is
applied when the criterion on validation set does not decrease within 20 epochs by default. The sum of loss and error is
adopted as the criterion. Moreover, EDL-based models, e.g., I-EDL and our MIREL, are trained using the same LI-EDL;
while the other standard classification models use LBCE, i.e., a BCE (binary cross-entropy) loss. In ablation study, three
types of models are trained. Their details are shown in Table 4.

Table 4. Details of the models used in ablation study.
Network Loss Instance prediction

Deep MIL LBCE
ak (attention score)

T (x)

Deep MIL + EDL LI-EDL+LRED
ak (attention score)

T (x)

Deep MIL + MIREL LI-EDL + LMIREL+LRED R(x)

E. Additional Results on MNIST-bags
E.1. Uncertainty Analysis

ABMIL (1) The result of uncertainty analysis on KMNIST-bags is shown in Fig. 6. From this result, we could see that i) the
ABMIL w/ MIREL can provide more discriminative predictive uncertainty for the bags with different OOD ratios, compared
to original ABMIL; ii) our method can assist ABMIL in distinguishing ID (MNIST) instances and OOD (KMNIST) ones
more accurately. (2) α0 is another commonly-used uncertainty measure for EDL models. Its distribution at instance and bag
levels are shown in Fig. 7. These results suggest that our MIREL could also detect OOD samples through the concentration
parameter α0.
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Figure 6. Distribution of bag-level and instance-level predictive confidence (negative expected entropy). MNIST-bags is ID dataset. The
OOD instances used in this experiment are from KMNIST.

DSMIL We show more results of uncertainty analysis, in which DSMIL is taken as the base MIL network. These results
contain bag-level UE (Fig. 8), instance-level UE (Fig. 9), and α0 estimate (Fig. 10). We summarize our observations from
these as follows. (1) When OOD dataset is FMNIST-bags, our MIREL helps DSMIL to provide more accurate uncertainty
for the bags with different OOD ratios, while vanilla DSMIL often shows overconfident prediction and cannot response to
abnormal bags. When using the bags with different OOD instance ratios, there is no obvious change in bag-level predictive
confidence for both DSMIL and its MIREL counterpart. (2) At instance level, DSMIL often mistakenly predicts more
confidence for OOD instances than ID ones. After combining with our MIREL, DSMIL tends to assign ID instances with
more confidence. (3) There are similar findings from the results of α0 for the DSMIL models with our MIREL.
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Figure 7. Distribution of bag-level and instance-level α0 output by the ABMIL models with our MIREL. MNIST-bags is ID dataset.
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Figure 8. Distribution of bag-level predictive confidence (negative expected entropy). DSMIL is the base MIL network in this experiment.
ID dataset is MNIST-bags.
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Figure 9. Distribution of instance-level predictive confidence (negative expected entropy). DSMIL is the base MIL network in this
experiment. ID dataset is MNIST-bags.
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Figure 10. Distribution of bag-level and instance-level α0 output by the DSMIL models with our MIREL. ID dataset is MNIST-bags.

E.2. Ablation Study

Optimization strategy for R(x) We adopt three different optimization strategies for the instances from positive bags. They
can be represented by three loss functions, L1, L2, and L+

ins, as described in Appendix A.3. Test results are shown in Table
5. Our main findings are as follows. (1) Compared to L+

ins, the UE performance obtained by L1 often lags far behind. (2)
Compared to L+

ins, L2 leads to the worse overall UE performance at bag level, with a drop of 2.84%, although it performs
slightly better at instance level, with a narrow increase of 0.77%. These findings empirically demonstrate the effectiveness
of our weakly-supervised evidential learning strategy.

Table 5. Ablation study on the loss function used for training R(x). The base MIL network is ABMIL and it is trained on MNIST-bags.

Loss Bag-level Instance-level
Acc. Conf. OOD-F OOD-K UE Acc. Conf. OOD-F OOD-K UE

L1 96.46 ± 0.59 83.30 ± 4.43 90.91 ± 2.46 76.89 ± 2.76 83.70 85.70 ± 0.50 85.42 ± 5.48 66.63 ± 4.77 63.00 ± 4.82 71.68
L2 96.46 ± 0.30 84.40 ± 2.41 91.15 ± 2.91 75.33 ± 3.14 83.63 86.29 ± 0.59 90.67 ± 1.71 81.27 ± 3.63 66.26 ± 3.53 79.40
L+

ins 96.48 ± 0.22 86.63 ± 1.32 92.84 ± 0.60 79.95 ± 4.12 86.47 87.71 ± 0.67 90.73 ± 1.31 78.13 ± 2.19 67.02 ± 1.94 78.63

The effect of LRED on our MIREL As shown in Table 6, we could find that the involvement of RED loss often obtains
performance improvements over its counterpart. This is largely because LRED can effectively mitigate zero-evidence regions
to improve evidential learning, as highlighted in Pandey & Yu (2023).

Table 6. Ablation study on the effect of RED loss on our MIREL (MNIST-bags). The base MIL network is ABMIL.

LRED
Bag-level Instance-level

Acc. Conf. OOD-F OOD-K UE Acc. Conf. OOD-F OOD-K UE

× 96.12 ± 0.37 84.89 ± 3.49 88.41 ± 5.15 78.46 ± 1.76 83.92 85.40 ± 1.78 96.89 ± 1.25 63.50 ± 4.50 57.72 ± 1.86 72.70
✓ 96.48 ± 0.22 86.63 ± 1.32 92.84 ± 0.60 79.95 ± 4.12 86.47 87.71 ± 0.67 90.73 ± 1.31 78.13 ± 2.19 67.02 ± 1.94 78.63

Related UE methods As shown in Table 7, our derived T (x) could often boost the performance of related UE methods in
instance-level UE tasks. Moreover, our T (x) surpasses attention-based scoring proxy (ak) in overall UE performance by
1.64%, 6.41%, and 13.01% for Deep Ensemble, MC Dropout, and I-EDL, respectively. This study further demonstrates the
superiority of our T (x) to conventional attention-based instance scoring proxy.

E.3. More Experiments with Different Settings

To investigate the effect of different experimental settings on MIREL’s performance, we conduct more experiments and
show their results in this section.

Adopting gated attention mechanism in ABMIL When using ABMIL as the base network for our MIREL, we compare
two different attention operators proposed in ABMIL, namely, standard attention mechanism and gated attention mechanism.
Their results are presented in Table 8. These results show that the standard attention operator is competitive with its gated
variant in terms of average UE performance. The standard attention mechanism is our default setting in ABMIL.

24



Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation

Table 7. Additional instance-level ablation study on T (x) for related UE methods (MNIST-bags). † These methods directly adopt our
T (x) derived from S(X) for instance-level estimation. The other results are copied from Table 1 for comparisons.

Method Ins. Instance-level
Acc. Conf. OOD-F OOD-K UE

Deep Ensemble ak 75.56 ± 0.32 71.89 ± 0.91 70.48 ± 0.53 55.22 ± 1.16 65.87
Deep Ensemble † T 85.97 ± 1.47 84.57 ± 2.62 63.75 ± 2.44 54.22 ± 3.01 67.51

MC Dropout ak 75.61 ± 0.66 68.40 ± 1.54 68.34 ± 1.06 58.61 ± 1.38 65.12
MC Dropout † T 88.85 ± 1.54 85.19 ± 3.44 71.61 ± 3.18 57.80 ± 1.53 71.53

I-EDL ak 75.45 ± 0.13 60.72 ± 1.46 63.91 ± 1.31 54.14 ± 2.19 59.59
I-EDL † T 85.19 ± 0.64 87.67 ± 1.11 73.52 ± 5.66 56.63 ± 1.66 72.60

Table 8. Performance of our MIREL when using standard or gated attention mechanism for ABMIL (MNIST-bags).

Attention Bag-level Instance-level
Acc. Conf. OOD-F OOD-K UE Acc. Conf. OOD-F OOD-K UE

Gated 96.52 ± 0.29 87.57 ± 2.51 93.84 ± 2.37 70.67 ± 4.74 84.03 87.96 ± 0.86 87.95 ± 2.46 81.15 ± 2.13 70.45 ± 1.13 79.85
Standard 96.48 ± 0.22 86.63 ± 1.32 92.84 ± 0.60 79.95 ± 4.12 86.47 87.71 ± 0.67 90.73 ± 1.31 78.13 ± 2.19 67.02 ± 1.94 78.63

Comparison with UE methods on DSMIL The results of this experiment are shown in Table 9. From these results, we
observe that our MIREL could still perform better than compared methods in terms of overall UE performance, even when
changing the base MIL network from ABMIL to DSMIL. This implies that our method is of good adaptability.

Table 9. Comparison with UE methods when using DSMIL as the base MIL network (MNIST-bags). The baseline of this experiment is
vanilla DSMIL without any additional UE techniques. Bayes-MIL is not compared here because it is not compatible with DSMIL.

Method Bag-level Instance-level
Acc. Conf. OOD-F OOD-K UE Acc. Conf. OOD-F OOD-K UE

Baseline 96.22 ± 0.17 87.56 ± 0.95 71.13 ± 5.20 60.71 ± 7.91 73.13 70.16 ± 3.56 64.64 ± 0.49 59.75 ± 2.35 57.50 ± 2.55 60.63

Deep Ensemble 96.66 ± 0.17 87.15 ± 0.99 76.06 ± 2.12 64.94 ± 1.49 76.05 72.68 ± 0.84 70.18 ± 0.64 70.15 ± 2.27 64.01 ± 1.65 68.11
MC Dropout 96.36 ± 0.43 88.13 ± 0.61 77.82 ± 2.85 66.56 ± 6.59 77.50 70.27 ± 3.01 64.78 ± 1.33 64.88 ± 5.38 60.78 ± 4.81 63.48
I-EDL 96.60 ± 0.44 89.53 ± 2.03 79.69 ± 9.72 57.77 ± 6.01 75.67 69.04 ± 2.84 63.68 ± 1.43 62.08 ± 2.35 57.93 ± 2.62 61.23
MIREL 96.50 ± 0.37 87.26 ± 2.66 87.27 ± 4.27 62.03 ± 7.78 78.85 97.19 ± 0.29 73.79 ± 15.68 73.29 ± 10.85 57.58 ± 3.44 68.22

F. Results on CIFAR10-bags
F.1. Main Results

The main comparative results on CIFAR10-bags are shown in Table 10. (1) Classical deep MIL networks: Our MIREL
could often assist them to perform better in UE. Especially for Max, DSMIL, and ABMIL, the improvements in overall UE
performance are 10.45%, 5.11%, and 9.75% at bag level, and 2.80%, 12.06%, and 20.85% at instance level, respectively. (2)
Related UE methods: With the same base MIL network (ABMIL), our MIREL could often obtain better UE performance
than others. Especially at instance level, there is an improvement of 2.40% over the runner-up method in overall UE
performance. Moreover, It is worth mentioning that, our MIREL only requires a single forward pass for UE, different from
the compared Deep Ensemble, MC Dropout, and Bayes-MIL involving multiple forward passes.

F.2. Uncertainty Analysis

Using ABMIL as the base MIL network, here we show the results of uncertainty analysis on CIFAR10-bags, including
bag-level uncertainty (Fig. 11), instance-level uncertainty (Fig. 12), and α0 distribution (Fig. 13). Our main findings are
briefly summarized as follows. (1) The ABMIL models with our MIREL performs slightly better than vanilla ABMIL, in
the predictive confidence of abnormal bags. (2) Our MIREL improves the UE capability of ABMIL at instance level by
estimating less confidence for OOD instances and more confidence for ID ones. (3) The uncertainty measure of α0 seems
better in detecting the bags with different OOD instance ratios, than that of negative expected entropy.

25



Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation

-0.4 0.0-0.8-0.5-0.6 -0.3-0.4 0.0-0.8

Cu
m

ula
tiv

e 
de

ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ula
tiv

e 
de

ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ula
tiv

e 
de

ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ula
tiv

e 
de

ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Bag-level predictive confidence Bag-level predictive confidence Bag-level predictive confidence Bag-level predictive confidence

ABMIL (OOD = SVHN) w/ MIREL (OOD = SVHN) ABMIL (OOD = Texture) w/ MIREL (OOD = Texture)
OOD ratio

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

OOD ratio
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

OOD ratio
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

OOD ratio
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-0.4 -0.5-0.6 -0.3-0.4

Figure 11. Distribution of bag-level predictive confidence (negative expected entropy). ID dataset is CIFAR10-bags.
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Figure 12. Distribution of instance-level predictive confidence (negative expected entropy). CIFAR10-bags is ID dataset.
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Table 10. Main results on CIFAR10-bags. OOD-S and OOD-T mean that SVHN and Texture are used for generating OOD bags,
respectively. The results colored in gray are from our derived instance estimator T (x). UE is the average metrics on three UE tasks.

Method Bag-level Instance-level
Acc. Conf. OOD-S OOD-T UE Acc. Conf. OOD-S OOD-T UE

- Combined with deep MIL networks

Mean 91.69 ± 0.65 84.79 ± 1.71 87.99 ± 3.09 73.15 ± 4.32 81.98 91.92 ± 0.58 56.62 ± 3.32 88.03 ± 2.46 69.10 ± 3.42 71.25
Mean + MIREL 92.07 ± 0.80 83.07 ± 1.64 81.05 ± 7.82 73.38 ± 6.47 79.17 92.09 ± 0.75 53.70 ± 11.02 67.06 ± 10.75 63.01 ± 5.68 61.26

Max 92.17 ± 0.52 84.36 ± 0.74 72.39 ± 6.95 65.87 ± 3.95 74.21 90.22 ± 0.68 69.13 ± 1.14 76.65 ± 5.36 67.86 ± 2.70 71.21
Max + MIREL 93.21 ± 0.60 84.96 ± 2.03 90.04 ± 1.40 78.99 ± 3.81 84.66 92.81 ± 0.56 68.32 ± 4.98 82.26 ± 5.71 71.44 ± 2.84 74.01

DSMIL 92.15 ± 0.85 84.70 ± 0.55 61.81 ± 4.57 62.89 ± 5.04 69.80 71.42 ± 2.24 58.22 ± 0.88 59.10 ± 3.19 53.84 ± 3.42 57.05
DSMIL + MIREL 92.69 ± 0.44 83.02 ± 3.83 77.54 ± 13.29 64.16 ± 7.84 74.91 92.71 ± 0.50 60.81 ± 0.55 78.21 ± 8.07 68.30 ± 4.57 69.11

ABMIL 91.62 ± 0.62 86.15 ± 1.15 65.56 ± 10.45 63.43 ± 2.84 71.71 76.89 ± 1.07 60.33 ± 0.77 51.60 ± 1.29 44.65 ± 2.43 52.19
ABMIL + MIREL 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 93.18 ± 0.32 66.40 ± 2.48 80.22 ± 4.93 72.49 ± 5.52 73.04

- Compared with related UE methods using ABMIL as the base MIL network

Deep Ensemble 93.33 ± 0.29 86.37 ± 0.91 65.00 ± 6.83 64.86 ± 4.69 72.08 78.80 ± 1.20 71.97 ± 0.64 54.65 ± 4.55 46.07 ± 2.11 57.57
MC Dropout 92.37 ± 0.42 86.26 ± 1.53 62.36 ± 6.62 63.77 ± 3.31 70.79 81.91 ± 1.57 75.81 ± 2.09 64.91 ± 8.65 49.61 ± 3.05 63.44
I-EDL 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 77.82 ± 0.78 51.61 ± 1.19 62.79 ± 4.12 54.48 ± 2.61 56.29
Bayes-MIL 92.46 ± 0.77 84.52 ± 1.57 83.74 ± 3.82 71.19 ± 5.28 79.82 65.14 ± 32.68 72.44 ± 13.36 74.81 ± 8.78 64.67 ± 6.34 70.64
MIREL 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 93.18 ± 0.32 66.40 ± 2.48 80.22 ± 4.93 72.49 ± 5.52 73.04

F.3. Ablation Study

ABMIL with our MIREL The result of this experiment is exhibited in Table 11.

• Result analysis: (1) EDL improves the UE capability of vanilla ABMIL models by a large margin (9.75%) at bag
level. (2) adopting our derived T (x) rather than ak for instance prediction often leads to large improvements in overall
UE performance, 16.40% and 16.67% for the ABMIL without and with EDL, respectively. (3) our residual instance
estimator R(x) shows comparable UE performance with T (x) on CIFAR10-bags.

• Explanation for the same bag-level performance: Note that our MIREL obtains the same bag-level performance
as its counterparts, i.e., the EDL-based ABMIL network without our R(x). It is because we only optimize the
parameter π, instead of optimizing both π and ψ, in LMIREL. We choose to do so as we empirically find that a deeper
instance encoder, e.g., the network with more than 4 convolutional layers, often leads to unstable training in the
weakly-supervised instance-level estimator. One possible reason is that the weak supervision signals used for training
the instance-level estimator are more likely to vanish in its gradient back-propagation to the deeper layers of instance
encoder. Such behavior is also discussed and highlighted in Li et al. (2023). We leave its investigation as future work.

• Clarification on the setting of instance encoder: In fact, a deep instance encoder is not a common choice in most
MIL applications; instead, a high-dimensional single instance is usually first transformed into a low-dimensional vector
and then a shallow network, e.g. shallow MLP, is utilized as the real instance encoder for MIL. This fact can be seen
from many real-world MIL applications (Lu et al., 2021; Liu et al., 2024b; Tian et al., 2021; Sapkota & Yu, 2022;
Rizve et al., 2023). This means that, in most cases, a shallow instance encoder is a universal setting so our LMIREL can
be leveraged as expected to optimize both π and ψ and enhance both instance-level and bag-level UE performance.

Table 11. Ablation study on the ABMIL with our MIREL. CIFAR10-bags is ID dataset.

Loss Ins. Bag-level Instance-level
LI-EDL LMIREL Acc. Conf. OOD-S OOD-T UE Acc. Conf. OOD-S OOD-T UE

ak 91.62 ± 0.62 86.15 ± 1.15 65.56 ± 10.45 63.43 ± 2.84 71.71 76.89 ± 1.07 60.33 ± 0.77 51.60 ± 1.29 44.65 ± 2.43 52.19
T 91.62 ± 0.62 86.15 ± 1.15 65.56 ± 10.45 63.43 ± 2.84 71.71 91.76 ± 0.40 80.54 ± 2.28 67.79 ± 7.60 57.45 ± 5.24 68.59

✓ ak 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 77.82 ± 0.78 51.61 ± 1.19 62.79 ± 4.12 54.48 ± 2.61 56.29
✓ T 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 92.54 ± 0.40 63.83 ± 3.65 82.25 ± 10.73 72.81 ± 8.04 72.96
✓ ✓ R 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 93.18 ± 0.32 66.40 ± 2.48 80.22 ± 4.93 72.49 ± 5.52 73.04

Optimization strategy for R(x) Similar to that done on MNIST-bags, we test different optimization strategies on CIFAR10-
bags. Test results are shown in Table 12. Note that, bag-level results are dropped, since only π is involved in the training of
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R(x) (as explained above) and different strategies lead to the same bag-level performance. From Table 12, we could find
that L+

ins often obtains the best UE performance at instance level, surpassing the second-placed L2 by 1.86% on average.
This could further confirm the superiority of our weakly-supervised evidential learning strategy.

Table 12. Ablation study on the loss function used for training R(x). The base MIL network is ABMIL and it is trained on CIFAR10-bags.

Loss Instance-level
Acc. Conf. OOD-S OOD-T UE

L1 93.18 ± 0.32 61.26 ± 2.65 75.80 ± 4.89 69.31 ± 5.69 68.79
L2 93.19 ± 0.34 64.22 ± 3.25 78.42 ± 3.53 70.91 ± 5.28 71.18
L+

ins 93.18 ± 0.32 66.40 ± 2.48 80.22 ± 4.93 72.49 ± 5.52 73.04

The effect of LRED on our MIREL The results of this experiment are shown in Table 13. From these results, we observe
that on CIFAR10-bags, using LRED often leads to worse performances in UE, although it is better in overall bag-level UE
performance. Nevertheless, we choose to use LRED in our baseline approach by default for simplicity. In other words, the
setting of LRED is simply shared between all experiments and is not fine-tuned for different datasets, although fine-tuning it
could lead to better performances in MIUE.

Table 13. Ablation study on the effect of RED loss on our MIREL (CIFAR10-bags). The base MIL network is ABMIL.

LRED
Bag-level Instance-level

Acc. Conf. OOD-S OOD-T UE Acc. Conf. OOD-S OOD-T UE

× 92.80 ± 0.41 84.23 ± 2.50 69.05 ± 23.26 78.27 ± 6.84 77.18 93.19 ± 0.38 73.10 ± 2.80 81.57 ± 5.80 74.56 ± 3.23 76.41
✓ 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 93.18 ± 0.32 66.40 ± 2.48 80.22 ± 4.93 72.49 ± 5.52 73.04

Related UE methods As shown in Table 14, there are large improvements in overall UE performance for compared UE
methods, when turning to adopt our T (x) derived from S(X) as instance-level estimator. These improvements are 11.22%,
3.00%, and 16.67% for Deep Ensemble, MC Dropout, and I-EDL, respectively. These again demonstrate our argument, i.e.,
attention-dependent scoring proxies may not be suitable for instance-level prediction.

Table 14. Additional instance-level ablation study on T (x) for related UE methods (CIFAR10-bags). † These methods directly adopt our
T (x) derived from S(X) for instance-level estimation. Other results are copied from Table 10 for comparisons.

Method Ins. Instance-level
Acc. Conf. OOD-S OOD-T UE

Deep Ensemble ak 78.80 ± 1.20 71.97 ± 0.64 54.65 ± 4.55 46.07 ± 2.11 57.57
Deep Ensemble † T 93.28 ± 0.16 85.57 ± 1.14 64.92 ± 6.61 55.88 ± 4.33 68.79

MC Dropout ak 81.91 ± 1.57 75.81 ± 2.09 64.91 ± 8.65 49.61 ± 3.05 63.44
MC Dropout † T 92.62 ± 0.73 82.65 ± 1.00 62.64 ± 5.92 54.03 ± 3.10 66.44

I-EDL ak 77.82 ± 0.78 51.61 ± 1.19 62.79 ± 4.12 54.48 ± 2.61 56.29
I-EDL † T 92.54 ± 0.40 63.83 ± 3.65 82.25 ± 10.73 72.81 ± 8.04 72.96

F.4. More Experiments with Different Settings

Similar to those experiments shown in Section E.3, in this section we conduct more experiments with different settings to
investigate the effect of these settings on our MIREL scheme.

Gated attention mechanism for ABMIL As shown in Table 15, there is no significant difference in average UE performance
between the two attention mechanisms. We choose the standard attention operator by default for ABMIL network in all
experiments, because it is more efficient in computation and is adopted more frequently than its gated version although it
sometimes performs slightly worse than its gated version in UE tasks.

Comparison with UE methods on DSMIL As shown in Table 16, our MIREL also could often perform better than other
UE methods by a large margin at instance level on DSMIL. This result further suggests the adaptability of our method.
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Table 15. Performance of our MIREL when using standard or gated attention mechanism for ABMIL (CIFAR10-bags).

Attention Bag-level Instance-level
Acc. Conf. OOD-S OOD-T UE Acc. Conf. OOD-S OOD-T UE

Gated 92.25 ± 0.64 81.76 ± 1.42 88.73 ± 4.26 76.54 ± 6.56 82.35 93.08 ± 0.17 62.96 ± 3.76 85.98 ± 1.14 73.10 ± 3.23 74.01
Standard 92.47 ± 0.19 78.43 ± 3.57 88.72 ± 2.78 77.22 ± 6.68 81.46 93.18 ± 0.32 66.40 ± 2.48 80.22 ± 4.93 72.49 ± 5.52 73.04

Table 16. Comparison with UE methods when using DSMIL as the base MIL network (CIFAR10-bags). The baseline of this experiment
is vanilla DSMIL without any additional UE techniques. Bayes-MIL is not compared here because it is not compatible with DSMIL.

Method Bag-level Instance-level
Acc. Conf. OOD-S OOD-T UE Acc. Conf. OOD-S OOD-T UE

Baseline 92.15 ± 0.85 84.70 ± 0.55 61.81 ± 4.57 62.89 ± 5.04 69.80 71.42 ± 2.24 58.22 ± 0.88 59.10 ± 3.19 53.84 ± 3.42 57.05

Deep Ensemble 93.20 ± 0.14 86.45 ± 0.74 70.50 ± 4.34 63.57 ± 3.52 73.51 74.25 ± 1.30 66.49 ± 1.01 63.78 ± 4.72 57.86 ± 4.81 62.71
MC Dropout 92.39 ± 0.59 84.81 ± 1.56 72.61 ± 8.90 67.15 ± 6.69 74.86 73.82 ± 1.80 63.18 ± 1.53 66.93 ± 10.46 53.46 ± 6.01 61.19
I-EDL 92.69 ± 0.44 83.02 ± 3.83 77.54 ± 13.29 64.16 ± 7.84 74.91 69.07 ± 8.63 57.98 ± 0.62 52.22 ± 4.02 49.66 ± 4.51 53.29
MIREL 92.69 ± 0.44 83.02 ± 3.83 77.54 ± 13.29 64.16 ± 7.84 74.91 92.71 ± 0.50 60.81 ± 0.55 78.21 ± 8.07 68.30 ± 4.57 69.11

G. Additional Results on Histopathology Dataset
G.1. Related UE Methods

As shown in Table 17, our T (x) obtains considerable improvements over ak in overall UE performance, even better than
MIREL at instance level. These improvements are 40.08%, 38.57%, and 40.91% for Deep Ensemble, MC Dropout, and
I-EDL, respectively. Such impressive results may result from two main factors:

• ak is obtained by softmax, so its values for negative instances would be extremely small when instance number is
very large (recall that there are 11,753 instances in each CAMELYON16 bag on average), thus more likely to yield
overconfident estimations.

• our T (x) is directly deduced from S(X), with the ability of distinguishing between negative and positive instances
when S(X) is good enough at classifying bags, as stated in Section 4.2.

Table 17. Additional instance-level results of related UE methods on CAMELYON16. † These methods directly adopt our T (x) derived
from S(X) for instance-level estimation. The other results are copied from Table 3. Particularly, the AUROC of ID instance classification,
along with Acc., is reported due to the dominant negative patches (∼ 97.7%) in the slides of CAMELYON16.

Method Ins. Instance-level
Acc. AUROC Conf. OOD-PRAD UE

Deep Ensemble ak 96.08 ± 0.02 50.34 ± 2.53 49.62 ± 2.53 28.16 ± 1.07 38.89
Deep Ensemble † T 89.38 ± 5.23 95.09 ± 0.17 86.36 ± 3.31 71.58 ± 7.25 78.97

MC Dropout ak 96.05 ± 0.00 56.25 ± 2.16 56.35 ± 2.20 33.93 ± 2.05 45.14
MC Dropout † T 94.06 ± 2.08 94.07 ± 0.37 88.83 ± 0.85 78.60 ± 3.05 83.71

I-EDL ak 96.05 ± 0.01 45.39 ± 4.78 45.41 ± 5.33 32.06 ± 1.49 38.74
I-EDL † T 87.53 ± 5.61 95.11 ± 0.26 87.28 ± 4.12 72.02 ± 7.87 79.65

G.2. Distribution Shift Detection

The numerical results of Fig. 3 are presented in Table 18. Similar to that provided in Section 6.3, our result analysis of Table
18 is as follows. (1) Bag-level. The AUROC performance on lighter DS is often less than 0.52, namely, lighter DS is hard
to detect for all presented UE methods. Our MIREL can detect light DS with an AUROC of 0.59 and strong DS with an
AUROC of 0.75, obtaining the best or the second best performance. Moreover, its overall UE performance is the best (0.62).
(2) instance-level. All compared methods not specially for MIL, consistently obtain an AUROC less than 0.5, indicating
meaningless detection results on three shift datasets. On strong DS, our MIREL obtains an AUROC of 0.62, exceeding
Bayes-MIL by 5.09%. This experiment could further verify the superiority of our MIREL scheme in MIUE.
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Table 18. Comparison with related UE methods on histopathology dataset (CAMELYON16). Three shifted versions of CAMELYON16
test set are used for detection. DS means Distribution Shift, and ‘lighter’, ‘light’, and ‘strong’ indicate three degrees of shift. The baseline
of this experiment is vanilla ABMIL without any additional UE techniques. UE is the average metrics on three DS detection tasks.

Method Bag-level Instance-level
DS-lighter DS-light DS-strong UE DS-lighter DS-light DS-strong UE

Baseline 50.86 ± 0.38 51.87 ± 1.36 54.48 ± 6.31 52.40 49.17 ± 0.35 46.87 ± 0.53 42.88 ± 1.87 46.31

Deep Ensemble 50.70 ± 0.40 52.39 ± 1.23 53.62 ± 9.06 52.24 49.09 ± 0.18 45.86 ± 0.87 40.73 ± 0.94 45.23
MC Dropout 50.49 ± 0.49 52.54 ± 1.42 52.70 ± 5.35 51.91 49.68 ± 0.61 47.80 ± 1.23 43.89 ± 2.07 47.12
I-EDL 51.50 ± 0.34 57.46 ± 2.48 72.74 ± 3.58 60.57 49.11 ± 0.33 45.84 ± 1.51 38.89 ± 2.84 44.61
Bayes-MIL 50.19 ± 0.46 52.20 ± 1.45 77.42 ± 6.32 59.94 50.29 ± 0.21 50.36 ± 1.19 56.95 ± 3.92 52.53
MIREL 51.98 ± 0.89 58.97 ± 2.14 74.84 ± 1.71 61.93 50.11 ± 0.18 50.72 ± 0.75 62.04 ± 1.19 54.29

H. Synthetic MIUE Experiment
To understand the UE behavior of our weakly-supervised instance estimator, we synthesize a simple bag dataset with
2-dimensional instances. The surface of predictive probability and predictive uncertainty are visualized in a 2D plane for
intuitive interpretation.

H.1. MIL Dataset

2D instance generation We generate 2D instances using three isotropic Gaussian with σ2 = 0.1. The centroid of three
Gaussian are located in (0, 1.5), (–1.5, –0.5), and (1.5, –0.5). Each Gaussian contains 1,000 points (instances). The Gaussian
with a centroid of (0, 1.5) is the class of interest (positive), and the remaining two are negative. Note that, actually, instance
labels are unknown in training.

Bag generation Following the process described in Appendix D.1, we synthesize bags using the 2D instances generated
above. Finally, there are 2,000 bags for training and 500 bags for validation and early stopping. Only bag-level labels are
utilized for training MIL networks.

H.2. Implementation Details

ABMIL is adopted as the base MIL network in this experiment. Its instance encoder is implemented by an MLP with two
layers. In network training, learning rate is set to 5 × 10−5 and λ1 = 0.4. The patience step for learning rate decay and
early stopping are 5 and 10 epochs, respectively. Other settings are the same as those given in Appendix D.3.

H.3. Result Visualization

Similar to the settings of ablation study, there are three models used for analysis and comparison, as explained in Table 4.
Their results are visualized in Fig. 14. Our main observations are as follows:

• For the ak of ABMIL, it shows high confidence in the region near and below negative instances, but low in the region
near or above positive ones. It is mainly caused by the softmax operator in attention score calculation. Generally,
softmax would lead to small ak for positive instances when multiple positive instances are contained in a bag. As a
result, there would be relatively large entropy and high uncertainty for positive instances, compared to negative ones.

• For the T (x) of ABMIL, it seems better than ak in instance classification. However, it only predicts high uncertainty
near the boundary between positive and negative instances, showing overconfidence in the region far from ID instances.
This behavior is very similar to that of standard classification models, possibly caused by the ignorance of epistemic
uncertainty or distributional uncertainty in predictive modeling.

• For the T (x) of EDL-based ABMIL, it captures the uncertainty in some regions far from ID instances, owing
to its Dirichlet-based predictive uncertainty modeling. For Dirichlet-based models, the uncertainty caused by the
distributional mismatch between training and test is specially considered and incorporated into model prediction
(Malinin & Gales, 2018; Ulmer et al., 2023).
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• For the R(x) of MIREL-based ABMIL, it further improve the quality of predictive uncertainty. Especially in the region
near positive instances, R(x) often predicts less uncertainty than the T (x) of EDL-based ABMIL. This improvement
is largely due to our residual evidential learning scheme. As stated in Section 4.3, our R(x) is specially proposed to
learn instance-specific residuals and is encouraged to compensate for the initial biased T (x).

✍ Discussion This synthetic MIL experiment could assist us in understanding the UE behavior of different weakly-
supervised instance estimators. At the same time, it could be found that there is still room for further improvements. For
example, R(x) cannot obtain desirable UE results in some regions far from negative instances. This could be one of the
main challenges posed by weak supervision. We leave its solution as future work.

Figure 14. Visualization of the instance prediction given by different weakly-supervised estimators. A synthetic MIL dataset with 2D
instances is used in this experiment. The points colored in red and green are positive and negative instance, respectively. Note that, unlike
standard fully-supervised settings, there are no complete instance labels to use for training.
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